前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的流体力学和化工原理主题范文,仅供参考,欢迎阅读并收藏。
关键词 工程流体力学 成人教育 教育对象 互动教学
中图分类号:TB126-4 文献标识码:A
流体力学的研究对象包括液体和气体两大物质形态,流体力学的基本任务是建立描述流体运动的基本方程,确定流体经各种通道及绕流不同物体时速度、压强的分布规律,探求能量转换及各种损失的计算方法。在实际工程的许多领域里,流体力学一直起着十分重要的作用。就某种意义而言,也正是在流体力学的研究工作不断取得成就的前提下,才促进了这些工程领域的大力发展。工程流体力学是在阐述流体力学的基本理论基础上,重点阐述和研究流体力学在工程上的应用,工程流体力学广泛应用于动力、水利、机械、化工、石油、土建、冶金、航空、航海、气象、环境等众多领域,是这些领域相关专业的主干技术基础课程。
1教材与教学内容选取
“工程流体力学”教材种类繁多,但是目前为止还没有一本针对能源类本科成人教育《工程流体力学》教材,笔者通过对多种教材的研读,以及往年成教上课的经验,根据各教材所涵盖的基本理论,及描述流体特性表达式推导过程的深度和难度、教材内容的广度,最终选用杨建国等人编著的《工程流体力学》(北京大学出版社,2010年1月第1版)作为成教热能专业的临时教材。
“工程流体力学”的内容繁杂、学科综合性强,流体力学内容很抽象,偏微分方程几乎贯穿全部课程。流体力学欧拉方法的思路与物理及其它力学不同,学生理解、掌握起来有困难。鉴于成人教育对象数学基础和力学基础相对薄弱的特点,在授课中应尽量避免大量的数学公式的推导和微元的受力分析,把第七章相似原理与量纲分析作为自学内容,在讲解动量定理、动能定理和质量守恒定理时,把输运定理作为主要的公式推导工具,着重强调基本概念和基本原理的学习和掌握。
2授课目标及教学方法
2.1 明确教育目标的职业性和教育内容的实用性
成人教育是以提高社会从业人员的履职能力和适应职业变化能力为目标的教育,其教育内容与职业需求联系紧密,以补充、改善成人的职业知识和技能为目的,实用性较强。
对于成人教育一定要明确教育目标的特点,做到有的放矢,才能起到事半功倍的效果。成人教育对象(以下称为“成人”学生)的特点可以归结为以下几点:
(1)“成人”学生职业性强;
(2)“成人”学生都有固定的工作岗位,有着丰富的实践经验,在某些方面的认识和能力要强于授课老师;
(3)“成人”学生专业基础课,例如数学和物理等的基础知识比较薄弱,很难理解深度较高、难以理解的原理和公式推导;
(4)“成人”学生渴望获取知识,尤其是能帮助其解释工作中遇到的实际问题的理论知识。
总之,授课内容的实用性是教学的关键问题之一,授课内容实用“成人”学生才爱听,效果才好。
3教学手段和教学方法
3.1加强理论知识的讲授
成人教育的对象多数为参加工作多年和未受过正规高等教育的成年人,即“成人”学生,他们又有着丰富的实践经验。从笔者实际函授授课的经验来看, “成人”学生专业基础课尤以高等数学的基础最为薄弱,然而流体力学的主要工具就是数学。
3.2采用导学+启发式方法授课
实行“导学式”教学模式。即,贯彻“学生为主体、教师为主导”的教学理念,在教学中实行启发式教学,充分发挥现代教育技术在提高教学效率和教学质量方面的重要作用。所谓互动式教学,是在教学中教与学双方交流、沟通、协商、探讨,在彼此倾听、彼此接纳、彼此坦诚的基础上,通过理性说服甚至辩论,不同观点碰撞交融,激发教学双方的主动性,拓展创造性思维,以达到提高教学效果的一种教学方式。这种讲课的方式,不是老师一个人讲,而是启发学生思考。
“工程流体力学”基础理论讲解比较枯燥,为了提高教学效果,经常在课堂上提出问题和例题,鼓励学生积极回答,激发学生的主观能动性,从而加深理解。在教学中要把握“成人”学生的独特特点:那就是有自己固定的工作岗位,有着丰富的工作经验,对设备的结构和运行了如指掌,对设备处于非常规运行时有自己的处理方法,但是为什么这么处理他们并不清楚。
4结语
针对热能与动力工程专业“成人”学生的特点,对“工程流体力学”的教学进行了探讨,使课程更适合“成人”学生的特点,扩大了他们的知识面,增强了其主动思考的能力。在今后的教学过程中要进一步探索新的教学方法和手段,不断提高自身的综合素质和专业理论知识,立足学校特色优势,继续努力进行“工程流体力学”课程的建设和探索,以期积累更多的经验和取得更大的成绩。
参考文献
[1]陈卓如等.工程流体力学[M].北京:高等教学出版社,2006.
[2]杨建国,张兆营等.工程流体力学[M].北京:北京大学出版社,2010.
[3]孙恒朱,鸿梅,舒丹.“启发―联想式”教学方法在流体力学教学中的应用[J]. 中国电力教育.2010,(5).
[4]黄裕华.成人教育要突出“成教化”特色[J].福建信息技术教育,2005,(7).
关键词:工程流体力学;计算流体力学;CFD软件及源程序;教学研究
中图分类号:G6420;TU 文献标志码:A 文章编号:10052909(2015)05015404
一、工程流体力学与CFD软件、源程序
计算流体力学(Computational Fluid Dynamics,简称CFD)软件通过计算机数值计算和图像显示后处理,对包含流体流动和有热传导等相关物理现象作出系统的分析。目前,CFD 技术已经广泛应用到航空、航天、气象、船舶、水利、化工、建筑、机械、汽车、海洋、体育、环境等领域,取得了令人瞩目的成就。在现代科学技术高度发展的今天,计算技术已被引入到流体力学领域,使以前因计算过于复杂而影响进一步探讨的流体力学问题逐步得以解决,计算流体力学已经成为研究流体力学的重要方法[1-3]。常用的CFD计算软件有FLUENT 、CFX、Phoenix等。FLUENT 软件是目前常用的一套高性能的数值软件,是专门针对流体工程数值计算与仿真需求而开发的一种流体数值仿真软件。
工程流体力学课程教学内容主要分为流体静力学、流体动力学、相似和量纲分析、管中流动、孔口出流和缝隙流动等[4]。其中,管中流动主要研究圆管中的层流及紊流、管路中的沿程阻力、管路中的局部阻力及管路计算等,涉及到一系列的概念和理论公式,学生理解起来有点枯燥、困难[4-5]。通过利用FLUENT软件和源程序进行数值模拟这一环节,变枯燥的理论公式计算为生动的计算机数值求解,既提高了学生的学习兴趣,同时也使学生有了更多的感性认识和理性认识,增强学生解决实际问题的能力。在流体力学课程教学中, 有意识地穿插计算数学、Fortran语言编程、CFD知识,有助于学生理解流体力学公式及方程,
也可以加强学生对其他学科知识的理解和掌握,达到多学科之间的融会贯通, 触类旁通。为此,笔者对科研成果中相关源源程序、部分开源程序和CFD 软件在工程流体力学课程教学中的应用做了一些探索与实践。
二、 教学案例
(一) 圆管中的层流及紊流教学实例
在工程流体力学教学中,管中流动是主要章节的内容,涉及的理论和公式多,不易理解。圆管流动有层流和紊流两种流动状况。雷诺数是判别流体流动状态的准则数。为加深学生对流速分布和压强分布规律的理解,在教学中可安排课外作业,设置用FLUENT软件来模拟研究三维圆管的层流和紊流流动状况,作出验证分析。
图1为圆管流动入口和出口边界截面的流速分布图(l=2m, d=0.1m)。取流动充分发展部分,离入流边界x/D=1.6的截面其流速分布如图2所示。可以看出流速沿半径Y方向成抛物线分布,与书中理论公式相符,如式(1)所示。通过数值模拟,学生对圆管内流动速度分布有了更深刻的认识。
由图3可以看出圆管内部压强分布从管口处向延伸方向逐渐减小,可知流速相应增大,符合流速大、压强小的流动定律,也符合圆管流动压降的原理。另外从入口处的压强分布可以看出,在圆管任何截面上,其压强分布也不是均匀的,也有分层现象。\
图 3 圆管内部压强分布
图4为圆管轴线上的速度分布。由图可以看出,在圆管的轴上,进口段流速分布变化较大,从进口流速v1=0.005m/s急剧上升到最大流速umax=0.00 848m/s。层流入口段长度有经验公式可以算的,即
L≈0.058 dRe (2)
可算得入口段长度约为1.18m,由图4显示效果可以看出,流速在离入口1.1m到1.2m之间,即入口段长度约为1.1~1.2m,符合书中理论计算结果。
图 4 圆管轴线上速度分布
图5为圆管内部x轴方向不同截面的流速分布,可看出流速在截面上从入口到出口的变化。水流在圆管内部的流速分层很明显,靠近壁面处流速接近于零。
图 5 主流方向截面流速分布图
图6为圆管紊流充分发展段某一截面的流速分布图。从图中可以看出在紊流充分发展段,截面流速散点图最高处几乎为一条直线,说明圆管内大多数流体流速趋于稳定,而是更加平滑。紊流过流断面的流速对数分布比层流的抛物面分布均匀得多,这在理论上符合紊流流速的对数分布律,即:
uu=1Klny+C(3)
图6 Y方向中心轴线的流速分布
(二)管路中的沿程阻力教学实例
在流体力学教学内容管中流动一章的教学实践中,笔者利用前期研发的程序[6]设置了以半扩散角为4o、扩散度为3.92的锥形渐扩管路内的不可压缩流动数值模拟算例,旨在将对接科研成果的教学模式用于辅助工程流体力学课程教学实践。已知条件:锥形渐扩管路前接管直径为30 mm,后续管直径为50 mm,总长度为70 mm。管内流动介质为空气,进口速度为1m/s。 网格模型如图7所示。
图7 锥形渐扩管路系统内流场网格模型
数值计算结果如图8所示。从图中可清晰看出,在突然扩大段,压力逐渐增大,表现扩压效果,但中心线上的速度呈下降趋,若扩散角增大时,在渐扩段会出现局部回流区,这是造成局部能量损失的重要原因。
图8 锥形渐扩管路内压力场
局部阻力误差分析:对于锥形渐扩管的局部阻力,可以用包达定理的形式表示:
hζ=ku1-u222g(4)
其中,k为经验系数。由式可知,锥形渐扩管局部阻力损失理论计算公式为:
hz = ku1 - u2 22g = k1 - A1 A2 2×u21 2g = k1 - A2 A1 2×u22 2g(5)
其中A1为渐扩管上游横截面积,A2为渐扩管下游横截面积(m2),u1为渐扩管上游平均流速(理论值),u2为渐扩管下游平均流速(理论值)。A1 = πd21 4 = π×124,A2 = πd22 4 = π×224,u1=1 m/s,g=9.8m/s2 。代入(5)式得:
hζ理=0.004 305 m
实际流体的伯努利方程为[7]:
Z1 + P1 ρg + u21 2g = Z2 + P2 ρg + u22 2g + hf + hζ (6)
将仿真结果代入上式,其中Z1=Z2=0 P1=-0.03pa,P2=0.4pa,u1=1.06m/s, u2=0.58 m/s, hf=0, 得 hζ模拟=0.00 435m。误差率为:
η=hζ模-hζ理hζ模×100%
=0.00 435-0.004 3050.00 435×100%=1.03%
(三) 后台阶流动教学实例
为让学生对雷诺数有更进一步的感性认识,利用开源CFD程序[8]可设置后台阶流动教学实例,比较不同入流Re数时台阶后涡的大小和长度,现选择四种Re数工况的计算结果进行后处理,得到如图9所示的流线图。从图中可以看出,随Re数的增加,台阶后方主涡的大小呈增大趋势,在Re=1 000时在上方有次生涡的出现。
图9 不同雷诺数下的流线图
三、 教学实践中的几点体会
(一) 理论教学与数值实验教学的合理利用
在工程流体力学理论教学时可结合数值实验教学加以辅助,例如在管中流动一章教学时,可以用上述相关教学实例。由于在进行课堂演示教学时,依计算机性能及不同问题的规模难易程度,数值模拟求解的时间将有不同,要掌握合理数值模拟时间。可采取让学生安装CFD程序及软件,并要求学生事先自学使用方法,尝试数值预测,预习理论知识。然后教师理论教学时对学生预测结果进行抽样调查分析,将理论结果与计算结果比较分析。条件许可的话,也可以通过高性能集群提交计算作业,在较短的时间内获得计算结果。这样学生对复杂的理论就能有深入的认识,同时也锻炼了学生的科研能力。
(二)适当安排精选案例教学
课堂教学演示案例的选取应做到简单且具有代表性。 案例简单能够减少计算机的运行时间,使教学更加紧凑;而有代表性的案例贴近生活或工程实际,则有利于提高教学趣味,开阔学生的视野。由于课堂教学时间有限,因此应在简单演示教学案例的基础上,精心布置较为复杂的课外任务。
(三) 源程序和软件互补
在数值模拟教学中结合利用软件和程序。软件不是万能的,商用软件所能解决的问题是已在学术界得到充分研究的问题,对于科学研究来说,自己编程是必不可少的。一方面,自编程能更好地理解CFD具体实施过程,对商用软件的理解和使用也是有帮助的。另一方面,自编程序还可以更好地对接科研成果,用于工程流体力学课程辅助教学。
四、结 语
通过上述几个数值模拟实例可以看出,数值模拟过程并不太难,但结果更形象直观。借助计算机辅助手段,在工程流体力学课堂教学中,利用CFD软件及源程序进行数值模拟辅助理论教学, 将理论性较强的内容形象化,可以开阔学生的视野, 激发学生的学习兴趣和创新意识, 加深学生对基础理论的理解。此外,通过对接科研成果,用源程序进行数值实验教学还可以培养学生的动手能力和科研能力,丰富数值实验教学内容。参考文献:
[1]J.H. Ferziger, M.Peric., Computational Method for Fluid Dynamics[M]. Springer,2002.
[2]张涵信,沈孟育.计算流体力学―差分方法的原理和应用 [M]. 北京: 国防工业出版社,2003.
[3]傅德薰,马延文.计算流体力学[M]. 北京: 高等教育出版社,2000.
[4]张也影.流体力学[M].2版.高等教育出版社,2009.
[5]郑捷庆,邹锋,张军,等. CFD软件在工程流体力学教学中的应用[J]. 中国现代教育装备, 2007(10):119-121.
[6]何永森,舒适,蒋光彪,等.管路内流体数值计算与仿真[M]. 湖南 湘潭: 湘潭大学出版社,2011.
关键词:能源与动力工程;网络教学平台;混合式教育
作者简介:代乾(1981-),男,河北沧州人,天津城市建设学院能源与安全工程学院,讲师;王泽生(1964-),男,天津人,天津城市建设学院能源与安全工程学院,教授。(天津 300384)
基金项目:本文系天津城市建设学院2012年度教育教学改革与研究项目(项目编号:JG-1207)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)05-0074-02
2012年9月,教育部颁布实施新的《普通高等学校本科专业目录(2012年)》,热能与动力本科专业更名为能源与动力工程专业。由专业名称可见该专业的内涵更加广阔和深远,从而也说明随着能源动力科学技术的飞速发展和新问题地提出,社会对人才的培养提出了新的要求。目前,大约有170多所高校设置了热能与动力工程专业。[1]随着经济的发展,能源与环境逐渐成为世界各国所面临的重大科技和社会问题。培养高素质的具有创新意识的能源工程专业人才是本学科义不容辞的责任。而热工系列课程作为重要的专业基础课程,其重要性不言而喻。合理的课程体系是体现教育教学理念的重要载体,是实现专业培养目标、构建学生知识结构的中心环节,建立适应社会主义市场经济发展需要、体现热能动力技术学科内在规律、科学合理的课程体系极为重要。[2]为了使该课程适应新的要求,非常有必要对其进行一定的改革,以培养适应21世纪社会发展需要的人才,同时对推动我国可持续发展战略具有重要的意义。
一、实施混合式教育方式
开发混合式学习方案的关键因素在于确定适当的时机,使用适当的混合方式,为适当的学生施行教学。而教师想要运用适当的混合方式需要考虑学习地点的设置、信息传输技术及时间的安排、教学策略和绩效援助策略等。[3]混合式教学模式一般可分为以下几个阶段:[4-6]
1.前期分析
学生作为学习活动的主体是有认知、有情感的,学生本身的知识水平、学习能力和社会特征都对学习的信息加工过程产生影响,教师进行学生特征分析有助于了解学生的学习准备和学习风格,从而为后面的学习环境设计和媒体的选择提供依据。
2.混合式教学的组织与管理
教师应按照教学进度有针对性地选择和设计教学活动,同时要参照已经设计好的课程目标、课程内容及其呈现形式,将其与具体的章节知识点相关联。教学活动的作用在于为学生创造具体的学习情境,并加强师生、生生之间的交流互动,因此恰当的教学策略对于教学活动的顺利展开尤为重要。
3.网络教学平台及教学资源建设
网络的对于教学来说不应当只是教学内容,而更多的应该是支持教学交互、教学评价和教学管理,教学交互、教学评价和教学管理是保证教学质量的重要环节,这就需要有一个集教学内容与管理、课堂教学、在线教学交互、在线教学评价、基于项目的协作学习、发展性教学评价和教学管理等功能于一体的网络教学平台来支撑混合式教学。本校对“工程热力学”、“传热学”、“工程流体力学”原有的教学网站进行了全面改版,并于2010年先后投入运行。其中“工程热力学”课程教学网站主页如图1所示。网站按照省部级精品课程的要求制作,网上教学内容详实,包括课程的概况、教学文件、习题及答案、实验实践教学等各种资源。学生可通过浏览网站学习更多的知识,这对课堂教育来说是一个非常有益的补充,并有助于实现教与学的互动。
二、教学内容优化
“工程流体力学”是理解能源动力系统工质流动与流量、能量分配的基础。“工程热力学”是研究如何充分和有效利用能量的学科,其基本内容是热力学基本定律和工质热物性、热过程的研究,是理解能源动力系统中能量转换基本规律和提高系统能源利用效率的理论基础。“传热学”研究热量传递的基本规律,是理解和控制能源动力系统热量传递过程的理论基础。“热工学”集成了“工程热力学”、“传热学”的基本理论和核心内容,为能源动力类安全工程专业等提供必要和少量学时的热工理论基础教育,也是其他非能源动力类专业节能技术及应用的理论基础课程。“热工测量技术”和“流体热工基础实验”课程则是关于“工程流体力学”、“工程热力学”、“传热学”的实验理论的技术基础课程,旨在揭示相关课程的实验研究目标、原理、方法以及应用。
1.热工系列课程间内容关联性分析
(1)“工程流体力学”与“工程热力学”在教学内容的关联性之处主要体现以下两个方面:“工程流体力学”中的一维无粘性重力流体流动能量方程(伯努利方程)与“工程热力学”中的热力学第一定律稳态稳流能量方程式具有相同的理论基础,后者是普遍适用的能量方程式,而后者是前者在一维无粘性重力流体条件下的特例和不同的表达方式;“工程流体力学”中的可压缩流体流动基础与“工程热力学”中的气体和蒸汽的流动研究对象及理论基础完全相同,只不过研究的侧重点不同,前者强调流动特性,后者注重能量传递与转换过程。
(2)“工程流体力学”与“传热学”课程在教学内容方面具有紧密的关联性和延续性,主要体现在“工程流体力学”中粘性流动方面与“传热学”中对流换热方面的相关内容,具体为:
1)研究对象均为传递现象,“工程流体力学”研究的是动量的传递,而“传热学”研究的则是热量的传递,其规律及分析方法具有类比性。首先,传递驱动力分别为速度差和温度差;其次,传递方式均为分子扩散和对流扩散,其中对于分子扩散基本规律两者具有类似的形式,即牛顿摩擦定律及傅里叶定律,也均有描述传递能力的物性参数,即运动粘度(m2/s)和热扩散系数(m2/s),而且流动边界层与热(温度)边界层具有相似的定义和相同的边界层结构;最后,描述传递现象的控制方程,即动量微分方程式(N-S方程)和能量微分方程,也具有相似的形式。这也是“传热学”中动热类比分析方法(类比律,即将阻力实验结果直接用于表面传热系数的计算)的理论基础。
2)如果粘性流体流经壁面且具有与壁面不同的温度时,就会同时发生动量传递和热量传递现象。此时“工程流体力学”与“传热学”研究的是同一现象的不同方面的特性,即阻力特性和传热特性。一般阻力特性是传热特性研究的基础,某些特殊情况(流动及对流换热具有耦合特征)下两者相互影响,如流体外掠平板的层流与紊流流动及对流换热、圆管内层流与紊流流动及对流换热、外掠圆柱的层流与紊流流动及对流换热、各类自由流动及对流换热等等。显然在此类教学内容中,“工程流体力学”是“传热学”的基础。
3)具有相同的分析、计算方法。正是由于动量方程和能量方程具有相似的形式,理论分析法(包括微分方程组求解及积分方程组求解)、模化实验方法(相似原理)、数值计算方法均可应用于阻力特性和传热特性的研究,甚至同一数值计算商业软件(如FLUENT、ANSYS、PHINICS等)可同时分析求解同一现象的阻力特性和传热特性。因此在研究方法上,“工程流体力学”与“传热学”是并行的或者说是相同的。
(3)“工程热力学”与“传热学”课程在教学内容具有关联性之处主要体现以下两个方面:“工程热力学”中有关热量传递只是讨论热力过程中热量传递的量,而“传热学”研究的是热量传递的机理、方式、影响因素、计算方法。在“热力学”中热量的单位是q(J/kg),而“传热学”中热量(热流密度)单位是q(W/m2),可见后者强调的是热量传递的速率及能力,而后者以前者的理论(即热力学第一定律—能量守恒规律)为基础;“工程热力学”中有关湿空气焓及含湿量变化规律与“传热学”中的热质交换有着内在联系。如电厂冷却塔中,“工程热力学”讨论了其工作原理及状态参数的变化,而“传热学”则讨论了其热湿交换的具体方式和传递速率。
2.热工系列课程教学内容体系优化原则
依据培养方案,流体热工系列课程时间安排顺序是“工程流体力学”—“工程热力学”—“传热学”(或“热工学”)—“热工测量技术”,“流体热工基础实验”课程与上述课程并行安排。因此,热工系列课程教学内容体系优化按照以下原则进行:
(1)安排在前的课程。教师除完成本课程教学内容外,须根据上述各课程之间知识点的关联性,有意识地为后续课程涉及的内容打下牢固的理论基础。“工程流体力学”课程的教师需要向“工程热力学”、“传热学”课程任课教师了解相关的内容,如一元绝热稳定流动的能量转换规律、相似原理等等,在“工程流体力学”的教学中兼顾这些内容的教学需求。
(2)安排在后的课程。教师依据上述各课程之间知识点的关联性分析,在相关内容的教学过程中,须了解前面课程任课教师的授课内容和方法,精选授课内容,避免不必要的重复,使该课程与前面课程有机衔接,且注意采取比较教学法,让学生更容易掌握课堂知识。
(3)“热工测量技术”和“流体热工基础实验”课程。课程任课教师应了解和引用其他理论课程相关教学内容,使实验教学与理论教学内容有机结合。如温度测量,教师除加强温度测量原理、仪表、标定及使用方法教学外,对于高速气流温度测量,需引用“工程热力学”中气流一维绝热流动能量方程以及滞止温度和气流温度的关系等相关理论知识,说明气流速度对温度测量误差的影响;而对于高温气流温度测量,需引用“传热学”的辐射换热相关理论,说明辐射对测温误差的影响以及消除误差的措施;而对于铠装热电偶或在加温度计套管情况下,还需引用“传热学”的通过肋壁导热的相关理论,说明套管的存在对温度测量误差的影响以及消除误差的措施。
三、结束语
经过一定时间的教学体验和学生的反馈表明,该教学模式使教学效果得到很大提高。笔者认为在以后的教学当中,要把这种模式继续深化并推广到其他课程的教学当中,热工系列课程的教学改革也必然会取得成功。
参考文献:
[1]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考——基于培养复合型应用人才的视角[J].高等教育研究,2011,28(4):44-48.
[2]战洪仁,张建伟,李雅侠,等.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,99(1):19-21.
[3]Matt Donovan,Melissa Carter.Blended Learning:What Really Works[J].CLASTD,2004,(2).
[4]Driscol1 M.Blended learning:Let’s get beyond the hype[J].learning and Training Innovations[R].2002.
关键词 工程力学 环境科学 综合应用
中图分类号:X-019 文献标识码:A
1 工程力学与环境科学的学科交叉理论
工程力学是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。
在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。在这样的背景条件下,促使了工程力学的建立。工程力学之所以出现,一方面是迫切要求能有一种有效地手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。
总的来说,工程力学具有现代工程与理论相结合的特点,有很大的知识面和灵活性,对国家现代化建设具有重大意义。
2工程力学理论在环境科学中的发展
2.1环境与力学的学科特点
工程力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。工程力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。
工程力学注重从微观到宏观,以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而工程力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是工程力学建立的主导思想和根本目的。
虽然工程力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。工程力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。
2.2研究内容和方向
工程力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,工程力学主要借助统计力学的方法。
工程力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。
工程力学研究方向主要有:非线性力学与工程、工程稳定性分析及控制技术、应力与变形测量理论和破坏检测技术、数值分析方法与工程应用、工程材料物理力学性质、工程动力学与爆破。
3工程力学理论在环境科学中的应用
3.1材料力学与环境
材料力学在生活中的应用十分广泛。大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。
利用材料力学中卸载与在加载规律得出冷作硬化现象,工程中常利用其原理以提高材料的承载能力,例如建筑用的钢筋与起重的链条,但冷作硬化使材料变硬、变脆,是加工发生困难,且易产生裂纹,这时应采用退火处理,部分或全部地材料的冷作硬化效应。
3.2固体力学与环境
自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计都应用了固体力学的原理。
固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。
固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。在飞行器、船舶和建筑等工程结构中都广泛采用了薄壁杆件。
3.3流体力学与环境
流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定理和质量守恒定理,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。
1核心课程体系的构建
1.1核心课程体系构建的原则
钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。 所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。
分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。
2核心课程体系的优化
为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。
2.1加强数理基础教学力度,适度拓展
新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到Matlab在科学和工程计算领域的突出作用,建议开设Matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的MATLAB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。
2.2整合化工专业实验
为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。
关键词 化工过程流体机械;网络教学;实践教学
中图分类号:G642.4 文献标识码:B 文章编号:1671-489X(2013)09-0110-02
Exploring and Practice of Teaching Method of Chemical Process Fluid Machinery//Zhou Changjing, Wang Zhenbo, Wang Zongming, Zhang Dahai
Abstract According to the requirement of students’ ability in many aspects of chemical process fluid machinery and teaching goal of course, through the change of teaching mode, strengthening practice teaching content and focus on the extension and expansion of basic theory to enhance the teaching effect, cultivate students’ ability to solve practical problems and to improve students’ comprehensive quality.
Key words chemical process fluid machinery; network teaching; practice teaching
化工过程流体机械是中国石油大学(华东)化工装备与控制工程专业主干专业课程,课程综合了机械、结构、流体力学、工程热力学、调节控制和选型操作等多方面的知识。课程的教学目标是使学生掌握过程流体机械的结构形式、工作原理、性能特点和调节控制,培养学生具有从事化工过程流体机械的使用、选型、调节控制及研究改造的基本能力,实现对理工科专业学生知识、能力、素质的培养要求。为达到课程的教学目标和对学生的培养要求,多年来,课程组一直致力于对化工过程流体机械课程进行教学方式的探索与研究。本文主要介绍“化工过程流体机械”教学过程中探索的教学方法。
1 更改教学模式,多媒体、板书、网络教学相结合
在课程的授课过程中,采用多种教学手段相互配合的办法,并根据授课内容的特点,选用合适的教学手段和方法,以强化学生的学习效果。
针对授课内容中流体机械过流部件和关键机械零部件基本结构形式部分及流体机械工作理论当中涉及的抽象、难懂的问题,采用多媒体教学代替传统的板书和图片讲解,二维的流体机械内部结构图和工作原理图被设计成三维立体图和装配动画,并辅之以学生现场实习期间及机器拆装实践期间所拍摄的照片和录像。多媒体教学不但使复杂的结构和抽象的原理变得直观、易懂,而且会增加真实感,拉近学生和所要学习对象的距离,增强学生对化工过程流体机械的认识。对于授课过程中学生很难理解的流体在叶轮中的流动过程和离心泵气蚀、气缚等现象,则通过计算流体力学CFD获得叶轮内流场分布、三维动画和试验视频展示给学生,在有利于学生掌握好相关知识同时,也增加了课程的生动性,提升了学生对课程学习的兴趣。
化工过程流体机械同时也是一门理论性比较强的课程,授课过程中涉及很多流体机械理论公式的推导。针对公式的推导仍然采用传统的板书形式,这样公式推导过程中可以留给学生足够的时间思考和消化,有助于学生对理论公式的理解和掌握,避免了多媒体幻灯片片片之间易脱节,使公式推导不连贯,导致学生思考不足、理解不透、学习困难等问题。同时利用黑板板书能够增强教师授课时即兴讲解的上课效果,增强教与学的互动性。
网络教学,是远程教学的一种重要形式,是利用计算机设备和互联网技术对学生实行信息化教育的教学模式。网络教学相比传统教学模式,更能培养学生信息获取、加工、分析、创新、利用、交流的能力[1]。针对化工过程流体机械授课人数多、授课学时少等特点,自2007年开始,利用中国石油大学(华东)精品课程网站建设,课程组开始筹建化工过程流体机械课程教学网站,课程课件、授课教案、电子教材、授课录像、学习资料、实践教学资料、参考资料等教学资源相继上网,为学生在线学习提供了条件。根据学生网上学习反馈的信息,课程网站很好地发挥了辅教辅学功能,满足了教师教学和学生学习的需要。
2 强化实践教学内容,注重理论与实际相结合的教学方法
采用理论教学结合实践教学过程、课堂教学结合实验教学过程的教学方法,充分利用实践教学环境、实验教学条件,培养学生自学能力,达到重视理论联系实际、加强工程实践意识和培养学生工程应用能力的教学目标。所以本课程在教学的设计上,采用多种实践方法加强课程的实践教学内容。
在专业实习的安排上,将专业实习安排在课堂教学之前,通过专业实习期间机械运行现场参观,加深学生对流体机械在化工生产中地位的认识,激发学生对流体机械的学习热情。通过校内实习基地教学模型、实物流体机械设备讲解化工生产中涉及的流体机械的结构和工作原理,比较不同类型流体机械的结构特点,加深学生对各类流体机械结构、工作原理和性能的认识。同时通过实习过程中对典型流体机械的拆装训练,学生可以加深对机器基本结构的掌握,提高动手能力,增强对课程学习的兴趣。
在课程实验教学上,通过开设往复活塞式压缩机性能实验、离心泵性能实验和离心泵汽蚀实验,使学生对往复活塞式压缩机和离心泵的工作原理和操作控制有了更深的了解,同时加深了学生对泵和压缩机性能曲线和工作点调节的认识。在整理实验数据的过程中,学生通过对离心泵在不同转速下性能的换算,加深了对基本理论相似原理(比例定律)的理解,同时体验了基本理论在实际工作中的应用,很好地将基本理论与实际结合起来,强化了学生所学知识的工程应用意识。
3 突破课本束缚,注重基本理论的扩展与延伸
化工过程流体机械课程对学生的培养目标之一是要使学生具备对化工过程流体机械调节和控制的基本能力,实际工程中工作点的调节方法有多种,而相似定律是通过调节机流体机械(泵与压缩机)性能调节工作点的基础。例如,因为简单、方便,比例定律常用来确定性能调节所需转速和估算变速调节的节能效果。然而,对于应用比例定律计算变速调节节省的能量还有许多争议[2-3]。实际上,现行化工过程流体机械教材上给出的比例定律表达式只是适合无静扬程管路系统转速的调节,对于有静扬程管路系统则不能简单地套用比例定律来计算调节流量所需转速和估算节能效果。教学过程中通过设计无静扬程管路系统和有静扬程管路系统流量变化后确定变速调节所需转速的案例,让学生通过实际计算体验在两种不同特性管路中比例定律计算结果的差别,无静扬程系统,转速调节后泵提供的能头正好等于管路所需能头,而有静扬程系统泵按比例定律调速泵提供的能头小于管路所需能头,系统不能正常工作。
利用所学基本理论解决实际问题遇到困难后,学生会带着疑问和好奇,这时和学生一起分析有静扬程系统比例定律不再适用的根本原因,指出问题的所在,接着再讲解有静扬程系统比例定律的数学修正[4]。这种基本理论的扩展不但加深了学生对基本理论的理解,拓展了学生的知识面,而且能够培养学生的创新意识和科学精神,调动学生学习的积极性后,再鼓励学生不要满足于书本上的知识,要研究和掌握书本上没有的知识,鼓励学生阅读和教学内容相关的科研和教学论文,培养学生搜集资料、阅读文献的能力,逐步养成研究问题的良好习惯,学生就会乐于接受。
4 结论
通过改变教学模式、加强实践教学和注重基本理论的延伸,大大提高了学生学习的兴趣,对提高化工过程流体机械的教学效率、强化学生专业知识工程应用意识、增强学生学习主动性、激发学生创新意识具有较好的效果。
参考文献
[1]潘树林,卢朝霞.“过程流体机械”课程的教改与实践[J].广西大学学报,2003(6):81-83.
[2]姜校林.变速水泵节能机理研究及错误纠编[J].自动化博览,2006(2):62-64.
为了便于对过程流体机械教学方法实施教学改革,满足工程教育的要求,对过程流体机械课程的特点进行分析。理论性强,需要良好的基础知识要想较好地学习过程流体机械专业课程,学生不仅需具备扎实的力学基础知识(如流体力学、工程热力学、传热学、理论力学以及材料力学知识),还需具备良好的专业基础知识(如机械原理、机械设计等)。对于以“讲授”为主的传统的教学方法而言,学生要想在课堂上完全理解教师讲授的教学知识点,紧跟教师的备课思路,就必须对这些现行课程有良好的认识和理解。专业性强,内容复杂、繁多过程流体机械专业课程涉及的内容非常广泛,包括机构原理、热力学计算、流体力学原理、动力学计算、结构设计、运行维护、故障诊断、总体方案设计与选型等。每一个知识点似乎都涉及一门独立的基础课或者专业课程。如果学生没有充分的准备,听课时似乎很难对教师讲授的知识做出敏捷的反应,极大地影响课堂的互动气氛。知识点与工程实践紧密联系过程流体机械专业课程涉及的知识点与工程生产实践紧密联系,其理论水平远高于实际,可用于指导流体机械在企业生产应用中的稳定操作和运行,以及机器的技术改造与新机型的开发。课程讲授过程中需要注重培养学生的工程意识与理论联系实际的意识和能力。结合课程的学习,势必要学生开展一定的工程训练,以加强学生的工程观念,让学生做到实践与理论相结合,以及理论与实践相结合。
2过程流体机械课程教学存在的问题
鉴于传统教学的陋习和目前本科教学改革的深入,导致目前过程流体机械教学方法的弊病不断暴露出来。基础知识欠缺不可否认的是,随着教学改革的推进,一些非常重要的基础课程(如工程热力学和传热学)由于学时短缺而被逐渐砍掉。有的课程(如流体力学)虽在开设,但由于学时短或为选修课程,得不到足够的重视,学习效果不理想,导致学习过程流体机械课程时,学生连最基本的概念(如内能、焓、熵等)都不知道,当涉及一些运用基础课程知识点来理解工程问题时感到非常吃力。这就导致以讲授为主的传统教学方法很难适应目前的教学形势,而且教学效果不佳,出现死记硬背、不善于理解应用的学习局面。实践教学环节薄弱实践教学环节薄弱似乎是工程教学的通病[7]。实践教学主要包括实验、实习、实训、课程设计、毕业论文(设计)等环节,是培养工科专业学生的必备环节,对学生工程意识与能力的培养至关重要。对于工程性极强的过程流体机械课程而言,实践环节尤为重要。然而目前普遍存在一些问题。1)实习与实验教学环节需要加强。就本专业的实习而言,目前主要集中于化工设备制造厂和化工产品生产车间的参观和学习,基本上忽略了有关流体机械制造厂的参观和学习,导致学生对流体机械没有感官认识。而且实验学时在不断缩减,目前仅开设往复压缩机示功图测试和高速转子静平衡两个实验。离心泵汽蚀实验被砍掉,导致学生对离心泵主要性能得不到很好的理解。2)毕业设计环节需要加强。鉴于一系列原因(比如工程热力学知识的欠缺、有关流体机械书籍和标准的缺乏),目前绝大多数毕业课题仅局限于化工设备设计,基本上很少布置有关流体机械课程方面的毕业课题。这严重限制了学生对流体机械课程的进一步理解和工程应用能力的锻炼。课程评价存在问题由于课程学时的缩减,目前过程流体机械课程评价基本上是“一锤定音”——期末考试,忽略了大作业的训练和热点研究方向文献的阅读和总结。这种考核方式不能实事求是地反映学生对知识点的掌握和理解,更谈不上运用所学知识分析和解决工程实际问题的能力。因此,教师也很难及时对教学存在的问题给予修正和弥补。
3过程流体机械课程教法改革思路
众所周知,教学方法并不是一成不变的,它随着社会的进步和科技的发展不断地发展和演变。工程教育也是如此。大约二战时期,工程教育从工程实际技术教育过渡到工程科学教育,这就要求涉及工程教育的教学方法也必须进行相应的调整和改革。传统的教学方法是单向性的,类似“学徒式”的教育,即以教师的“教”为主,学生只是被动地接受教学内容。这种教育方式仅适用于以技术教育为主的工程教育,很难适应以科学教育为主的工程教育方式。为此,发展了以学生为中心,积极主动的、学习式的教学方法,即将学生视为教师的角色[8]。学生能够从教学活动过程中隐性地获取知识,而教师主要的任务是开展有效的指导。教师和学生的角色界限模糊,二者有效地完成自身的任务,即教师良好的教学任务、学生有效的学习任务。过程流体机械课程教学方法的改革正是沿着该思路进行的。针对过程流体机械课程教学存在的问题,同时为了适应现阶段工程教育的目的,下面从课程的准备、课程的讲授和课程效果评价三个阶段提出相应的改革措施。课程准备首先,为了有效地完成教学任务,教师必须全面深入地理解教学内容。这必然要求教师大量查阅和学习与教学内容相关的资料(如与过程流体机械有关的国内外专著和书籍),弥补所选教材的缺点。查阅资料时,教师必须注意角色的转换,查阅资料是为了更有效、更准确、更生动地给学生讲解,而不是为了个人学习。教师通过大量地阅读文献,将教学内容给予重新组织和编排,以最合理的顺序将教学内容呈现给学生,便于学生理解接受,而不是照本宣科。其次,教师备课时要充分了解学生前期课程的学习情况,从而合理安排教学内容,弥补存在的问题,避免影响学生对本课程知识点的理解;同时教师要了解学生个体在前期课程学习上存在的差异,这样分组讨论学习时便于优良搭配,学生之间互相学习,克服个人因前期课程学习不足而对本课程知识点理解带来的障碍。再次,鉴于当前的教学方法,以引导和启发学生自主学习和讨论为主,教师的讲解和订正为辅。这就要求教师在备课时要制订引导学生开展自主学习的教学方案。对教师备课提出更高的要求,教师课前要告知学生:1)每节课要学的教学知识点;2)理解知识点需具备的基础知识;3)学生需要查阅的书籍和准备的内容;4)本节课内容在课程中和工程实际中的重要程度。可以说,备课是否充分直接决定了教学是否成功,因此,备课必须要做到备内容、备学生和备方法。课堂学习课堂学习是教学的关键环节,直接决定了教学效果的好坏。课堂教学,不是以教师单向传输为主的教学,而是教师根据备课时制订的教学方案,引导学生积极主动地讨论教学内容,避免学生消极被动地思考教师到底在讲或者要讲什么内容。教师通过学生对教学内容积极主动地讨论,发现和记录教学存在的不足,便于课后进一步的思考、改进和反馈。教师上课时应做到:1)上课时,教师首先要给出本节课主要的学习内容、重点和难点;2)教师要给出每节课的“引子”,提出问题,并组织学生讨论,评价每组学生给出的讨论结果;3)最后教师要给出总结,要评价本节课程内容在工程实际应用中的重要性;4)对于难以理解的、抽象的概念,教师要引导学生与日常生活联系起来,使之形象化,便于学生理解。比如“余隙容积”这个概念,如果仅是书上给出的解释“活塞行至终端止点时气缸剩余的容积”,学生很难理解,很难想象这部分空间是怎么回事;但如果将其与盖房子用到的“公摊面积”类比的话,就很容易理解:二者对于用户来讲都是有害的,但是必须具备的,只能尽力减小,却不能避免。课程评价教学活动的最终环节是评价学生的学习效果。通过教学评价,教师一方面可以了解每个学生对知识点的理解程度,发现和思考教学存在的问题,便于及时反馈;另一方面能够了解学生运用所学知识解决实际问题的情况。为了保证教学质量,及时了解学生对知识点的掌握情况和对所学知识的应用情况,课程的评价应从多个角度出发,绝不能是仅以考试为基准“一锤定音”。为此,教师应从两个方面对学生的学习效果进行评价。1)对知识点理解的评价。通过课堂上观察学生的一系列反应,如面部表情、提出的问题,及时了解学生存在的问题,并给予及时的解释和补充;另一方面通过作业、课程考试来综合评价学生对知识的掌握程度和理解情况,便于教师在以后的教学中调整和弥补不足的地方和存在的问题。特别是学生提出的问题非常重要,一方面,可以测试教师对内容的理解程度;另一方面,教师可以了解学生存在的困惑,明白师生间对知识点理解存在的偏差和分歧。教师应对学生的问题积极反思,对教学内容给予重新编排和阐释,以便改进教师本身对基础知识的理解。2)对学生运用所学知识解决实际问题能力的评价,可以通过实训、大作业、课程设计乃至毕业设计的形式进行,并将存在的问题汇总和分析,弥补教学存在的问题。总之,教学评价是个连续的过程,合理的教学评价是为了保证教学质量和促进教学改革,而不仅仅是为了给学生一个“成绩”。
4教学改革对工程教育的促进
简单的讲,通过上述教学方法的运用和实施,学生获得的技能基本能满足工程教育的要求。具体体现在:1)通过对所学内容的思考、提问和讨论,学生获得了良好的交流技术;2)通过对教学内容的准备和讲解,学生具备了一定的职业责任感;3)通过对教学内容和大作业的分组准备和讨论,教学在团队内相互进行,学生改进和具备了一定的团队合作精神;4)通过“教”这一环节,学生对所学内容进行精选和重组,增加了学生对知识的理解程度,拓宽了学生的视野;5)通过一定的工程训练,学生对待工程的态度和信心发生积极的变化,增加了对工程设计过程的理解;6)通过学生自己对知识的准备和理解,学生掌握了学习方法,具备了终身学习的素养。
5结束语
关键词 工程力学 理论研究 发展现状
中图分类号:TB121 文献标识码:A
1绪论
工程力学是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。
在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。在这样的背景条件下,促使了工程力学的建立。工程力学之所以出现,一方面是迫切要求能有一种有效地手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。
总的来说,工程力学具有现代工程与理论相结合的特点,有很大的知识面和灵活性,对国家现代化建设具有重大意义。
2工程力学的发展
2.1工程力学的特点
工程力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。工程力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。
工程力学注重从微观到宏观,以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而工程力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是工程力学建立的主导思想和根本目的。
虽然工程力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。工程力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。
2.2研究内容和方向
工程力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,工程力学主要借助统计力学的方法。
工程力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。
工程力学研究方向主要有:非线性力学与工程、工程稳定性分析及控制技术、应力与变形测量理论和破坏检测技术、数值分析方法与工程应用、工程材料物理力学性质、工程动力学与爆破。
3工程力学的应用
3.1材料力学
材料力学在生活中的应用十分广泛。大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。
生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。
利用材料力学中卸载与在加载规律得出冷作硬化现象,工程中常利用其原理以提高材料的承载能力,例如建筑用的钢筋与起重的链条,但冷作硬化使材料变硬、变脆,是加工发生困难,且易产生裂纹,这时应采用退火处理,部分或全部地材料的冷作硬化效应。
3.2固体力学
自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计都应用了固体力学的原理。
固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。
长期受师范类教学模式影响,对工科类课程不够重视,化工基础实验开设个数较少,实验基本上属于演示性和验证性实验,缺少综合性和设计性实验.开设方式主要是教师按实验程序,对实验目的、原理、过程讲解后,学生在教师带领下对实验进行完成,通常是多个学生一组,大部分学生做实验就是看,记实验数据,写实验报告.这样导致学生不能主动去探索和研究实验,限制了学生对知识的理解和创新思维的形成.化工基础实验成绩评定方式不能反应出学生对实验的掌握情况.成绩评定方式主要是实验报告加考勤,且实验成绩最终按较小比例与化工基础理论课程成绩合在一起,录入教务系统,总成绩不能反应出学生对化工基础实验的掌握情况.化工基础实验课程没有与现代教学手段结合,学生难以理解复杂仪器的工作原理和流程,导致整个实验过程变的枯燥乏味.学生的实验过程也变成走过场,应付学习任务.
2化工基础实验教学改革措施
2.1教学内容改革
2.1.1增加综合型和设计型实验
将一些化工单元操作和“三传一反”相关内容组合在一起开展一些综合性实验,即训练了学生综合运用基础知识的能力,还可以克服教学学时和仪器设备不足等困难.比如“流体力学综合实验”包括了直管阻力、局部阻力的测定及离心泵特性曲线的测定等内容,集成了流体流动和流体输送机械两个单元操作的实验内容,通过该实验的开设使学生熟悉组成管路的各种管件、阀门和学会压差计、流量计等的使用方法,同时使学生认识了离心泵的特性与结构和学会了离心泵的操作,建立了化工设备的工程化概念;“串联流动反应器停留时间分布的测定”包括电导率测定停留时间分布和微机系统数据采集处理等内容.通过该实验的开设让学生学会用电导率测定停留时间分布的方法和停留时间分布的统计特征值的计算以及了解微机系统数据采集的方法.另外为培养学生灵活运用知识的能力,可适当增加设计型实验.教师可以根据现有设备条件,提出实验目的,由学生根据自己所学的理论知识,找出实验原理,查阅文献,自行制定实验方案和分析处理实验数据.在“填料塔吸收传质系数的测定”过程中,让学生根据实验原理和仪器结构自行设计实验参数,比如进液量,空气和吸收气体进气量的体积比,以及测量气体成分色谱仪的条件等,通过Origin等软件处理数据和分析结果.通过设计性实验的开设提高了学生的动手能力和增强了学生独立思考问题、处理问题的能力.
2.1.2增加化工新技术实验
在倡导绿色化工和可持续发展大背景下,新材料工业、绿色化学工业等前沿学科飞速发展.将一些反应化学理论和化工技术共同发展的前沿学科引入到化工基础实验中,可以拓宽学生知识面.比如开展“含盐废液的反渗透分离实验”、“微滤膜分离实验”等,让学生通过学习膜通量和截留率的计算方法,了解不同压力下的膜通量和截留率的变化规律,掌握膜分离技术相关工艺过程.各学校根据实际条件,还可以开展渗透蒸发、超临界干燥、超临界流体萃取、离子交换与吸附等相关内容的实验.增设化工新技术实验可使学生更全面理解化工学科的理论和精髓,对培养应用型人才具有重要意义.改革实施开放实验教学开放化工基础实验室,有利于调动学生学习的积极性.比如让学生自行研究离心泵的结构,设计方案,测定泵的扬程(H)、轴功率(N)以及效率(η)与泵的流量(Q)之间的关系,从而掌握离心泵的特性曲线的测定方法;对于精馏塔实验,学生依据物质挥发度差异自己配制混合液,设置不同回流比测定精馏塔当量高度,研究回流比对精馏塔分离效率的影响和掌握精馏过程的操作方法.通过开放实验室让学生根据自己对化工知识的掌握情况,有针对性学习化工过程的操作和仪器的使用,提高了学生学习的积极性.
2.2引入现代教学手段
对于比较复杂的仪器设备,通过语言讲解难以让学生认清它的结构和工作原理,但多媒体教学能够形象展示复杂仪器的内部结构和工作原理,让学生更易接收.利用多媒体辅助教学,不仅可以形象直观地把实验内容、仪器构造讲解给学生,还可以节约实验时间,提高实验教学效率.开展化工仿真实验化工基础实验仪器一般体积较大,价格较贵,实验室一般购买的种类和数量有限,基本上不能满足让每个学生亲自操作仪器,独立完成实验.化工仿真实验是在电脑上利用化工仿真软件模拟化工过程进行的实验,具有成本低,操作简单,节约教学时间,直观逼真等特点.学生只需要在流程图上操作开关、阀门、调节器就可以训练开车、停车、参数调整等实验步骤.对于贵州地方师范院校仪器设备相对缺乏的情况,可以通过化工仿真实验替代部分实验设备,部分综合性实验和设计性实验也可结合化工仿真软件开设.通过让每个学生利用仿真软件独立模拟实验,提高学生的操作能力和分析问题的能力.
2.3改善实验考核评分体系
为克服以前化工基础实验课程成绩评定“实验报告加考勤”的弊端,新的实验课程考核评分细则包括实验预习报告占10%,实验报告占50%(其中验证性和演示性实验占20%,综合性实验占20%,设计性实验占10%),实验考试占40%(笔试占20%,操作占20%).单个实验报告成绩采用累计评分制,包括实验目的和原理10分,仪器的使用和试剂的配制20分,实验步骤20分,数据纪录与处理30分,结果与讨论20分.预习报告和实验报告在每次实验后进行评定.实验操作考试包括操作是否正确,遇到困难是否积极思考.通过以上各方面评定,给出学生的成绩才能较公正客观地反应出学生对化工基础实验的掌握情况.通过完善评分体系,调动了学生学习的积极性,活跃了课堂气氛,提高了学生的实验操作技能,同时每次实验从预习报告的书写,到实验报告的完成,质量上都有了很大提高.