前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能的发展总结主题范文,仅供参考,欢迎阅读并收藏。
关键词:人工智能;异化;规范;生态文明观
中图分类号:TP18
文献标识码:A
一、人工智能技术的发展及其影响
人工智能技术研究开始于20世纪50年代中期,距今仅有60年的发展历程,但是其迅猛的发展速度,广泛的研究领域以及对人类产生的深远影响等令人惊叹。调查显示,77.45%的人认为现实生活中人工智能技术的影响较大,并且86.27%的人认为人工智能技术的发展对人类的影响利大于弊;认为人工智能技术对人类生活影响很小且弊大于利的人权占很小一部分。人工智能技术的发展和应用直接关系到人类社会生活,并且发挥着重要的作用。人工智能技术的发展方向和领域等由人类掌控着,所以人类应该尽可能地把人工智能技术的弊处降到最低以便更好地为人类造福。2016年3月份,围棋人工智能AlphaGo与韩国棋手李世h对弈,最终比分4∶1,人类惨败。4月份,中国科学技术大学正式了一款名为“佳佳”的机器人,据了解,机器人“佳佳”初步具备了人机对话理解、面部微表情、口型及躯体动作匹配、大范围动态环境自主定位导航和云服务等功能。而在这次正式亮相之前,“佳佳”就担纲主持了2016“首届全球华人机器人春晚”和“谁是棋王”半Q赛。人工智能技术确实给人类带来了诸多的便利,给人类生产生活带来便利;但是,人工智能技术的快速发展超乎人类的预测,引起了人类的恐慌和担忧。百度CEO李彦宏称,人工智能是“披着羊皮的狼”。毋庸置疑,科学技术是一把双刃剑,当人类醉心于科学技术所带来的福利中时,更应当注意其带来的负面作用。人类发明和创造科学技术最终是为了造福人类,而非受到科技的异化。
随着科技的发展,人工智能技术越来越成熟,在此整体趋势之下,不同的人群对人工智能技术的不断成熟与应用有着不同的看法。调查结果显示,在关于机器人会不会拥有人类的思维甚至超过人类的问题方面,27.45%的人认为机器人会拥有人类的思维和超过人类;而56.86%的人认为机器人不会拥有人类的思维和超过人类,小部分人对此不是很清楚。由于受到人工智能技术迅猛发展的冲击,如机器人保姆、AlphaGo围棋等智能产品对人类发展带来的威胁,一部分人仍然对人工智能技术的发展担忧甚至认为终有一天机器人将代替人类、征服人类、控制人类。但是,大部分的人在机器人是否能够超过人类方面,保持乐观积极的态度,认为机器人永远不会拥有人类的思维并且超越人类,因为人类是技术的主导者,人类掌握着技术的发展方向,技术终究是为了人类服务。这一看法肯定了人类的无止境的创新,然而,在人类醉心于技术创新的同时,应意识到某些创新确实超出了人类的预料,如AlphaGo与李世h围棋人机大战就是人类在技术面前失败的惨痛教训。因此,面对科技对人类的异化,人类要时刻保持警惕,适时地总结“技术异化”的缘由和解决对策。
二、人工智能技术发展面临的问题及其原因
随着技术的革新,人工智能技术的应用越来越广泛,与人们的日常生活联系也愈加密切。从智能手机的普及到自动驾驶汽车的研制成功,再到生产、建设、医疗等领域人工智能技术的应用,都表明了人工智能技术正悄无声息地改变着我们生活方式。诚然,人工智能技术使我们的生活更加丰富多彩,给我们带来了极大便利,但与此同时,人工智能技术也给社会带来了一系列不可忽视的问题:人工智能技术在社会生产领域的应用对劳动市场造成冲击;人工智能系统在收集、统计用户数据过程中个人隐私及信息安全方面的隐患;人类对人工智能产品的依赖引发的身心健康问题;人工智能引起的责任认定问题等。斯蒂芬・霍金在接受BBC采访时表示,“制造能够思考的机器无疑是对人类自身存在的巨大威胁。当人工智能发展完全,就是人类的末日。”表示同样担忧的还有特斯拉的创始人马斯克,他曾直言,“借助人工智能,我们将召唤出恶魔。在所有的故事里出现的拿着五芒星和圣水的家伙都确信他能够控制住恶魔,但事实上根本不行。”不可否认,人工智能技术是把双刃剑,有利亦有弊,争议从来就没有停止过,而最不容忽视的莫过于人工智能技术引发的一系列伦理困境,关于人工智能的伦理问题成了重中之重。
调查发现,47.55%的人认为人工智能所引发的伦理问题是因为人性的思考,占比较大;而22.55%的人认为是由于人们价值观念的改变;29.9%的人认为是利益分化与失衡以及一些其他的原因导致的。由此可以看出导致人工智能伦理困境的原因是多方面的。主要总结为以下几个方面。
第一,从技术层面来看,人工智能技术在现阶段仍然有很大的局限性。人工智能是对人脑的模仿,但人脑和机器还是存在本质区别的,人脑胜于人工智能的地方,就是具有逻辑思维、概念的抽象、辩证思维和形象思维。人工智能虽能进行大量的模仿,但由于不具备形象思维和逻辑思维,仅能放大人的悟性活动中的演绎方法,不可能真正具有智能,这决定了机器不能进行学习、思维、创造。此外,智能机器人也不具备情感智能,它们根本无法去判断自己行为的对错,也无法自动停止自己的某项行为,所以如果人工智能技术一旦被不法分子利用,后果不堪设想。可见,由于人工智能自身技术上的局限性导致的伦理问题已经影响到其未来发展。
第二,从规制层面来看,伦理规制的缺失和监督管理制度的不完善是导致伦理问题产生的重要原因。科技的发展目标是为人类谋求幸福,但我们必须认识到,无论是在科技的应用还是发展过程中总是存在一些难以控制的因素,倘若没有相应的伦理原则和伦理规制加以约束,后果难以想象。在目前人工智能领域,缺乏一套成体系的关于人工智能技术产品的从设计、研究、验收到投入使用的监督管理方案,也没有一个国际公认的权威性的规范及引导人工智能技术的发展及运用的组织或机构。现有的监督体制远远滞后于人工智能技术的发展速度,无法匹配技术发展的需要。缺乏相关监管制度的约束,人工智能技术就不可避免会被滥用,从而危害社会。
第三,从社会层面来看,公众对人工智能技术的误解也是原因之一。人工智能作为一门发展迅猛的新兴学科,属于人类研究领域的前沿。公众对人工智能技术的了解十分有限,调查显示,对人工智能技术只是了解水平较低的人较多,占62.75%,以致部分人在对人工智能技术没有真实了解的情况下,在接触到人工智能技术的负面新闻后就夸大其词,人云亦云,最终导致群众的恐慌心理,从而使得更多不了解人工智能技术的人开始害怕甚至排斥人工智能技术。我们必须清楚,人工智能是人脑的产物,虽然机器在某些领域会战胜人,但它们不具备主观能动性和创造思维,也不具备面对未知环境的反应能力,综合能力上,人工智能是无法超越人脑智能的。在李世h对弈AlphaGo的旷世之战中,尽管人工智能赢了棋,但人类赢得了未来。
三、人工智能技术的发展转向
人工智能技术的发展已经深入到人类社会生活的方方面面,其最终发展目标是为人类服务。但是,科学技术是把双刃剑,它在造福人类的同时,不可避免地会给人类带来灾难,因此,人类应该趋利避害,使人工智能和科学技术最大化地为人类服务。这就要求人类必须从主客体两个角度出发,为人工智能技术的健康发展找出路。
1.技术层面
(1)加强各个国家人工智能的对话交流与合作。人工智能自20世纪50年代被提出以来,尤其是近六十年来发展迅速,取得了许多丰硕的成果。如Deep Blue在国际象棋中击败了Garry Kasparov; Watson 战胜了Jeopardy的常胜冠军;AlphaGo 打败了顶尖围棋棋手李世h。从表面上看,人工智能取得了很大的进步,但深究这些人工智能战胜人类的案例,我们发现这些成功都是有限的,这些机器人的智能范围狭窄。造成这一现象的很大一部分原因就在于国际间人工智能技术的对话交流与合作还不够积极,所以加强各个国家人工智能的对话和交流迫在眉睫,同时也势在必行。
(2)跨学科交流,摆脱单一学科的局限性。从事人工智能这项工作的人必须懂得计算机知识、心理学和哲学。历史的经验告诉我们,一项科学要想走得长远就必须有正确的意识形态领域的指导思想的介入。在人工智能这项技术中,有些科学家们可能只关注经济利益而没有引进相应的伦理评价体系,最终使得技术预测不到位,没有哲学的介入,等真正出现问题时就晚了。所以要加强科学家与哲学家的沟通交流,令科学家能更多地思考伦理问题,提高哲学素养,在人工智能技术中融入更多的哲学思想,保证人工智能技术能朝着正确、健康方向发展。
(3)人工智能技术的发展,要与生态文明观相结合。在人工智能技术发展中,要注入更多的生态思想,这关系人民福祉、关乎民族未来的长远大计。在人工智能发展中,若是产生资源过度消耗、环境破坏、生态污染等全球性的环境问题时,人类必须制止并进行调整。人工智能技术要想发展得更好,前景更加明亮,前途更为平坦,就必须保持与生态文明观一致,与人类自身利益一致,为人类造福。
2.人类自身层面
(1)增强科学家道德责任感。科学技术本身并没有善恶性,而研发的科学家或是使用者有善恶性。人工智能将向何处发展,往往与研发人工智能的科学家息息相关。科学家应打破“个体化原理”,要融入社会中去,关注社会道德伦理问题,承担起道德责任,为自己、他人、社会负责,多去思考自己研发的技术可能带来的后果,并尽可能去避免,多多进行思考,严格履行科学家的道德责任。
(2)提高公众文化素养。调查发现,对人工智能技术了解水平较低的人较多,占62.75%;而非常了解的人较少,占4.41%;另外,对人工智能技术了解的人占21.08%,不了解的人占11.76%。由此可以看出,大部分的人对人工智能技术都能有所了解,但都不是很深入,而且仍有部分人对人工智能技术丝毫不了解,所以,人工智能技术对于个体的影响是比较微小的,其发展还没有深入到个人的日常生活中。特别是在一些关于人工智能的科幻电影的渲染,可能使那些对于人工智能技术并不了解或是一知半解的人产生偏见。在日常生活中,人工智能给人类带来了极大的便利。通过提高公众的文化素养,使公众正确认识人工智能技术,将是缓解甚至是解决人工智能技术某些伦理问题的重要途径之一。
(3)加大监督力度。人类需要通过建立一个完善的监督系统引导人工智能技术的发展。对于每项新的人工智能技术产品从产生到使用的各个环节,都要做好监督工作,以此来减少人工智能技术的负面影响,缓解甚至减少人工智能技术的伦理问题。
3.道德法律用
(1)通过立法规范人工智能技术的发展。调查发现,90.69%的人认为有必要对人工智能技术所引发的科技伦理问题实行法治,由此可以看出,要想保证科技的良好健康发展,必须要建立健全相关法律条例。然而我国在这一方面的法律还存在很大的漏洞,相关法律条文滞后于人工智能的发展,并未颁布一套完整的关于人工智能的法律体系。没有规矩不成方圆,在人工智能领域亦是如此。我们都无法预测将来人工智能将发展到何种地步,这时就需要人类预先加以适当的限制,利用法律法规加以正确引导,使其朝安全、为人类造福的方向发展。
(2)构建人工智能技术伦理准则并确立最高发展原则。要构建以为人类造福为最终目的的伦理准则。人工智能技术的伦理问题已经给人类造成了很多负面影响,而要防止其带来更多负面影响,构建合适的人工智能技术伦理准则势在必行。
此外,要确立以人为本的最高发展原则 。一切科学技术的发展都应把人的发展作为出发点。人工智能的发展也是如此,要将以人为本、为人类服务为出发点,并作为最高发展原则。
四、结语
科学技术是把双刃剑,人类只有消除人工智能技术的潜在威胁,发挥人工智能技术最大化效用,避免伦理困境重演,才能实现人机交互的良性发展,实现人工智能与人类的良性互动。
参考文献:
[1]王文杰,叶世伟.人工智能原理与应用[M].北京:人民邮电出版社,2004.
[2]甘绍平.人权伦理学[M].北京:中国发展出版社,2009.
[3]杨怀中.现代科技伦理学概论:高科技伦理研究[M].武汉:湖北人民出版社,2004.
[4]王志良.人工情感[M].北京:机械工业出版社,2009.
[5]邹 蕾,张先锋.人工智能及其发展应用[J].信息网络安全,2012(2).
[6]王 毅.基于仿人机器人的人机交互与合作研究[D].北京:北京科技大学,2015.
[7]田金萍.人工智能发展综述[J].科技广场,2007(1).
[8]郝勇胜.对人工智能研究的哲学反思[D].太原:太原科技大学,2012.
[9]龚 园.关于人工智能的哲学思考[D].武汉:武汉科技大学,2010.
关键词 机器人 人工智能 实时系统 挑战 展望
中图分类号:TP242 文献标识码:A
人工智能(Artificial Intelligence),英文简写是AI。它主要研究、发掘应用在延伸、模拟和扩展人的智能理论、技术、方法,以及应用系统的一门新科技。“人工智能”一词刚开始,由1956年美国计算机协会组织的达特莫学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。
1机器人、人工智能概述
人工智能学科的出现与发展不是偶然的、孤立的,它是与整个科学体系的演化和发展进程密切相关的。人工智能是自然智能(特别是人的智能)的模拟、延伸和扩展,即研究“机器智能”,也开发“智能机器”。如果把计算机看作是宝剑,那么人工智能就是高明灵巧的剑法。
1956年夏季,在美国达特摩斯大学,由麦卡赛、明斯基、香农等发起,由西蒙、塞缪尔、纽厄尔等参加,举行了关于“如何用机器模拟人的智能”的学术研讨会,第一次正式采用“人工智能”的术语。这次具有历史意义的、为期两个月之久的学术会议,标志着“人工智能”新学科的诞生。
人工智能在电子技术方面的应用可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。
2学科交叉带来的挑战
实时人工智能是实时系统和人工智能技术相互结合的一个新的研究领域。实时人工智能系统是一种在动态的环境中,能够利用有限的资源来可靠地完成关键性任务的系统。目前大多数人工智能规划和问题求解系统都试图产生一个完全的精确解,但是在资源限制的状态下, 快速地产生一个近似解将更有效。Anytime算法能够折衷解的质量和计算时间,是人工智能技术应用在实时环境中的有效技术。由基本的Anytime算法构成实时人工智能系统的关键之一是如何给基本算法分配时间, 从而可以获得系统的性能描述,实施有效的实时监控。时间分配算法,爬山算法仅能找到局部最优解,如果组织问题满足局部组织问题的条件,它能够找到最优解。对于不满足局部组织问题的条件的大型组织结构,爬山算法不能保证找到全局最优解。遗传算法适合于寻找全局解,但搜索效率取决于一些关键参数的确定和算子的操作机制选取。
智能主体是智能互联网中的生灵,它是一种智能的软件实体,能够在智能互联网中自由遨游,为用户提供各种智能服务。所谓网络智能软件是面向智能主体的研究方法所设计、开发的软件。网络智能软件技术是网络技术、人工智能技术、软件工程技术的结合。
3机器人、人工智能及实时系统的前景展望
人工智能的研究目标是认识与模拟人类智能行为。传统人工智能研究往往将研究重点集中于对人类单个智能品质如计算能力、推理能力、记忆能力、搜索能力、直觉能力等的研究与模拟。然而,由于人类智能行为是各种单个智能品质的综合体现,因此传统研究方法往往无法充分刻画或恰当模拟人类的智能行为。把人看成多种智能品质构成的有机整体――智能体(agent),综合考察智能体的各种智能行为与特征,是当前人工智能研究者共同的愿望。
人工智能作为一个整体的研究才刚刚开始,离我们的目标还很遥远。但人工智能在某些方面将会有较大的突破。
半个世纪以来,人工智能发展极其迅速,专家系统、智能控制在短短的10余年里就发展成熟。目前的焦点,如分布式和协同式多专家系统、机器学习(知识挖掘和知识发现)方法、硬软件一体化技术以及并行分布处理技术还有MAS的研究,也有望在下一个5年内也会成熟。根据AI目前的发展态势,以及现有的规划,将AI未来的发展必将越来越广泛,越来越深入,越来越快地,向着人类智能的方向逼近。
4总结
人工智能这门科目的出现、发展并非偶然,它和整个科学体系进化和发展进程有着紧密关联。21世纪会变成智能革命的时期,信息时代的特征分为三个方面:联结、符号和行为主义,在信息论启发下,达到统一和谐,在每个领域交互研究与发展中,一定会发生一场智能革命,真正意义达到人和机器一起协调思考的新时期。
[关键词]电气自动化控制;计算机技术;人工智能技术
[中图分类号]TM76;TP18[文献标识码]A[文章编号]1673-0194(2016)04-0082-01doi:10.3969/j.issn.1673-0194.2016.04.057
电气自动化控制主要研究电气工程学,保证电气工程系统正常运行,能对收集到的信息进行及时地处理分析。计算机技术的应用能更快地对试验结果进行总结,实现机械自动化。这种人工智能技术将会使人工操作与控制发生脱离,实现人工智能与电气自动化的结合。电气自动化控制是对人工智能技术应用最为直接的结果,同时也是电气自动化发展的必然趋势。电气自动化控制过程中应用人工智能技术将会不断提升生产效率。
1人工智能技术含义
通过应用计算机技术实现对人类活动的模拟,并且能对相似人类活动发出指令,还能解决传统科学中复杂的问题,这是人工智能技术最为突出的特点。人工智能技术融合了数学、哲学、工程学等学科,在计算机技术引导下综合运用了现代科技。在一定程度上可以表现为人工智能技术是对人类大脑的一种全新的模拟,在大脑的控制下由机械完成一系列的复杂反应。这样能提升工作效率,保证人类在工作过程中的安全性。人工智能技术将会对信息进行采集,在问题的处理上比人类大脑具有更加明显的优势。复杂性脑力活动在人工智能技术的影响下,将会降低人工成本,推动生产力的发展。
2电气自动化控制中人工智能技术的应用
随着人工智能技术的设计思路不断地扩展,人工智能产品丰富起来。人工智能技术的应用使人们能更好地解决人类不能直接面对的问题。电气自动化控制过程中会受到多种因素的影响,人工智能技术的应用能对因素进行合理化推断,并且提升对产品的保护,能更加全面地规划电气自动化控制效果,使生产效率不断的得到提升。
2.1优化产品设计
传统电气产品在设计时主要依靠设计经验与试验手段,设计出的产品在一定程度上技术含量较低,并且工作较为繁琐,不能够保证大规模的生产活动的开展,设计需要较高的时间,影响工作效率地提升。新时期我国经济快速发展,对科技生产建设不断投入,人工智能技术得到全面提升,在电气产品设计的过程中应用人工智能技术实现了智能化生产。人工智能技术的应用将会提升人工生产效率,并且在制作上更加精良,实现了企业生产经营效率水平的提升,保证了产品的质量,还能为企业生产活动的进一步开展提供充足的发展动力。
2.2及时发现问题进行预防处理
电气自动化控制过程中会出现运行设备故障等问题,这种情况在电气自动化控制过程中较为常见。因此,完善人工智能化将会有助于电气自动化控制的顺利进行,并且会根据设备运行故障制定相应的预防措施,这在电气自动化控制过程中能发挥较大的功能优势。变压器在运行的过程中发生故障,可以采用传统的分离方式对气体进行分析,并且根据分析的结果判断变压器发生故障的原因。但是采用传统的分析方式会在检修的过程中造成严重的浪费,人力资源没有得到合理的应用,并且在检修上花费更多的时间,同时还不能保证检修的正确率。这样很容易出现误诊情况,将会进一步影响到电气自动化控制效果。人工智能技术与传统方法相比优势体现在维修预防等方面,并且人工智能技术将会自动匹配专家技术进行指导,将类似的故障进行对比,并且根据产生的问题进行分析指导,找到其他的解决方式。采用人工智能技术对故障问题进行分析,能提升工作效率、降低维修时间、节约大量的资源。
2.3简化控制流程,提升运行效率
电气产品在生产操作过程中相比较其他产品过程较为复杂,并且生产环节都需要进行严格地控制,对于操作水平要求较高。电气产品内部结构较为繁琐,细部特征较为明显,不容易进行整体性把握,对于工作人员的经验要求较高。因此,在生产过程中出现一点小小的错误都会直接造成巨大的经济损失,严重时将会直接导致生产停工。为了能保证电气自动化控制的有效运行,工作人员在面对问题时需要利用人工智能化技术对电气自动化控制过程进行简化处理,保证操作的有效性。人工智能化相比较传统方式能快速地收集资料并进行必要地分析整理,在第一时间发现控制过程中存在的问题找出解决方案。在整个控制过程中会降低检修时间、保证成本的有效运用,能够更好地控制电气自动化的运行。
3结语
计算机技术使人工智能技术得到了完善,同时电气自动化控制在人工智能技术的影响下实现了更新进步。目前,人工智能技术在各个领域都得到了应用,并且受到各行业的认可。电气自动化控制应用人工智能技术将会提升工作效率、保证产品质量。笔者通过对电气自动化控制中人工智能技术的应用进行分析,认为在计算机技术发展的前提下,人工智能技术与电气自动化控制相互促进完美结合。
参考文献
[1]马仲雄.浅谈电气自动化控制中的人工智能技术[J].电子技术与软件工程,2014(11).
[2]贾刚,张萌.浅谈电气自动化控制中的人工智能技术[J].中小企业管理与科技,2011(27).
[3]丁望松.浅谈电气自动化控制中的人工智能技术[J].电子制作,2015(11).
随着改革开放进程的不断加速,我国人民的生活水平有了很大的提高,社会的各个方面都得到了很大的发展。人工智能是现代化建设中一个重要的发展方向,在电力系统中也得到了极其广泛的应用。人工智能在电力系统中的应用使得电力系统能够更加的智能化,提升了电力系统的工作效率,对电力系统的发展起到了极大的促进作用。笔者将在本文中对人工智能在电力系统中的应用进行分析,希望能够对相关的电力系统工作人员的工作有所帮助,同时也希望能够对其他学者在相关方面的研究有所启发。
【关键词】电力系统 人工智能 运行
随着现代化进程的不断推进,人们对电力系统的要求越来越高,要求电力系统要实现高效率,高安全性,智能化。在经过大量的研究之后,人们将人工智能和电力系统相融合,取得了很大的突破。所谓的人工智能,实际上就是一门综合的智能设计技术,人们设计相关的机器,使机器能够像人类一样进行一系列的思考、规划、设计等活动。在电力系统中的应用主要是集中在安全用电和简化操作的方面,实现简易化、智能化安全电力装置设计,比如保护继电器的设计,可以对电路进行有效的保护,以免对电力系统造成损失。从现在电力系统的发展趋势来看,人工智能在电力系统中的应用必将是未来电力系统发展的主要方向之一。我将在下文中从以下几个方面对人工智能在电力系统中的应用进行分析。
1 人工智能技术概述
人工智能是一门复杂的技术,集成了很多学科的知识,进行人工智能研究的研究人员必须要了解脑科学、神经学和信息技术等方面的知识,因为这三个方面的知识是人工智能最基础的知识。人们将这些知识实际应用到机器的设计之中,就能够对机器进行人工智能的设计,从而实现机器智能化的操作。
2 人工智能技术的种类
2.1 人工神经网络
人工神经网络在电力系统的应用解决了电力系统中很多非线性的问题,尤其在继电保护方面的效果最为出色,所以在电力系统的继电保护中得到了广泛的应用。所谓的人工神经网络,就是科学家们在对人的神经网络进行研究后,将其运用到系统的研究上而得出来的。在电力系统的工作中,能够对电力系统做实时的监测,同时能够对出现问题的地方做出快速的反应,有效的提升了电力系统的工作效率。
2.2 智能模糊逻辑
所谓的智能模糊逻辑,就是人们将模糊理论运用到一些实际的系统当中,使人们能够输入相应的参数,建立对应的数学模型,从而对系统进行很好的规划。在电力系统的应用过程中,人们主要将智能模糊逻辑应用到电力系统的规划和电力系统故障的诊断方面。
2.3 遗传算法
遗传算法就是人们基于对生殖遗传规律的研究,在遗传规律应用到实际的生活事件当中,使事件得到最优解。遗传算法能够很好的解决电力系统中一些比较难的问题。
2.4 混合技术
所谓的混合技术,就是将遗传算法、人工神经网络、智能模糊逻辑等几种技术合在一起,因为上面所说的几种方法有一定的局限性,甚至还有一些难以克服的缺陷。将这些技术合在一起,就能够更好地解决电力系统中的问题。
3 电力系统运行中人工智能的具体应用
电力系统中有很多非线性问题,里面的方程式也有一定复杂性和系统性,但是可以应用人工智能技术来解决这些问题。
3.1 人工神经网络在继电保护中的应用
对继电器的保护工作一直都是电力系统中非常重要的工作之一,随着社会的进步,科技的发展,人们对电力系统的要求越来越高,继电器的保护工作也不断在推进着,从开始的普通计算机的保护到人工神经网络的应用,都体现了电力系统的工作人员对继电器保护工作的不断努力。
3.2 人工智能算法在电力系统运行中的应用
人工智能算法主要的原理是无功优化,通过无功优化,能够提高电力运行效率,使电力传输达到一个最佳的状态。
人工智能算法采取记忆指导搜索的办法来提高搜索速度,从而使全局达到最优的状态。它还有禁忌搜索方法,这种方法在跳出局部方面有很大的优势。此外,它还能解决多变量、非线性、离散性的问题,而且操作手法简单,易于使用。
3.3 模糊理论在电力系统运行中的应用
模糊理论突破了经典集合中的一些概念,它采用的是模糊搜索的原理来对一些不明确、不精准的事情和现象进行分析。首先要在其中加入一些近似推理的模糊逻辑和引入语言变量,从而对事情和现象进行分析与描述。如今,这种模糊理论已经具有比较成熟的技术,它的应用已经相当广泛,遍及多个行业、多个领域。电力系统中有非线性,而线路通过非线性的时候,就会产生一些分量,这些分量能够重叠在故障上面,并且不会被消除掉。而模糊理论中的技术可以消除输电线路中互相影响的现象,使之相互独立。
3.4 专家系统在力系统运行中的应用
专家系统是人中智能系统重要的组成部分之一,尤其在电力系统中早在很多年之前就得到了广泛的应用,解决了电力系统中的很多问题,为电力系统的发展奠定了良好的基础,有效的提高了电力系统运行的效率。
4 总结与体会
从上文的分析中,我们对人工智能的概念有了清晰的认识,同时也了解了将人工智能应用在电力系统能够为电力系统带来的巨大发展。解决了电力系统目前存在的大量问题,为电力系统的发展提供了突破性发展的思路。但是我国人工智能的技术还不够成熟,与国外先进的人工智能技术相比较还有很大的差距,所以我国必须制定相应的方案促进我国人工智能的发展。首先,我国要在政策上对人工智能的企业进行优待,鼓励更多的企业投身到人工智能的发展之中,其次我国要加大人工智能的人才培养力度,从我国目前的人工智能发展现状来说,我国的人工智能的人才缺口比较大,很多专业的人才都是从国外引进的,花费了国家大量的资金,所以对人工智能的人才培养是我国未来促进人工智能的发展必须要做的任务,对于我国人工智能的可持续发展具有重大的意义。
参考文献
[1]田秀梅.人工智能在电力系统故障诊断中的应用[J].电子技术,2011,38(01):31-32.
[2]占才亮.人工智能技术在电力系统故障诊断中的应用[J].广东电力,2011,24(09):87-92.
关键词:人工智能;技术;电气工程;自动化
0引言
人工智能技术模拟了人脑的工作方式,并且在机器设计中加以运用,通过机器劳动代替人类工作,大大减少了人类的工作量。人工智能技术是计算机技术的一个重要分支,其借助于计算机得以快速发展,并且在电气工程自动化控制中广泛应用,其在各个方面的表现都非常突出,比如:电气试验分析、电气系统运行以及信息处理等,人工智能技术的突出优点是计算速度快、精度高,因此,其未来的发展趋势较好。
1人工智能技术的概念
早在1956年就已经提出了人工智能概念,人工智能技术经过了60多年的发展,在相关研究领域上取得了巨大成就。人工智能技术涉及的领域非常广,几乎可以涉及到各个领域。人工智能技术主要采用三种控制方式,专家系统控制、神经网络控制和模糊控制,其研究范围涉及到了对机器的感知、思维和行为方面。人工智能技术能够体现出人类对机器的控制,使电气自动化控制显得更加完善,人工智能终究是以人的智能作为基础的,其不可能超过人的智慧,需要在人类的控制下才能够切实发挥作用,实现对电气设备的智能控制。人工智能技术的应用,在于由电气设备代替人类,去进行一些复杂的工作,提高工作效率的同时,可以确保工作精度.
2人工智能技术的优势分析
人工智能控制器应用在电气自动化中,能够确保数据估计的一致性,即便使用特殊的驱动器输入一些未知数据,人工智能控制器依然能够进行判断,然后准确评估。该优势特点是使用简便,这是与传统控制器相比,其主要优点,是对于一些没有经过专业技术训练的工作人员,也能够以实际的语言、信息和数据作为基础,对人工智能控制器进行快速操作。此外,能够根据实际速度、响应时间等参数信息,对自身进行及时调整,以便提高自身性能。在控制对象方面,还能够有效处理动态方程,对电气工程自动化控制对象进行精确掌握,在实际控制过程中,无需提前准备被控制对象的基本模型。最后,人工智能技术应用在电气自动化中可以使电气设备对变压器、线路等依赖性降低,能够最大限度减少人力和物力投入。
3人工智能技术在电气工程自动化中的应用评价
3.1电气产品的优化设计
电气产品设计过程中,需要有机融合科学设计以及经验知识,才能够确保设计的产品更加科学实用。在计算机技术快速发展的背景下,电气产品设计采用人工智能技术,改变了传统设计方法,从人工设计向计算机辅助设计方式转变,使产品的设计周期大大缩短,提高了产品的设计质量,优化了产品性能。
3.2电气设备的故障诊断
电气设备一旦出现故障,或者是相关实际问题就很难解决,甚至于很难查找和判断,但是人工智能技术,可以有效解决传统电气设备维护方面存在的不足,人工智能技术普遍应用于电机和发电机的故障诊断方面。电气设备经常出现一些未知故障,通常故障问题比较复杂,使用传统的诊断方法,不仅效率低下,而且效果不明显,但是,人工智能技术能够大大提高电气设备故障诊断效率,提高故障诊断精度,主要原因在于其有效结合了专家系统和模糊理论。
3.3运行过程的智能控制
人工智能技术未来的发展前景一片看好,并且随着人们对自动化技术要求的提高,该项技术将在电气自动化中广泛应用。对电气设备进行控制需要综合运用各种专业知识,工作非常复杂,技术含量也很高。综合运用各种专业知识控制电气设备,要进行大量的数据计算和分析,应用人工智能技术可以将三种控制方式进行有效结合,例如:专家系统控制、模糊控制和神经网络控制。人工智能技术具有的突出优点是计算速度快、精度高,节省人力和物力资源。
4总结
综上所述,人工智能技术在电气工程控制中的得到广泛运用,提高了电气设备的运行效率,减小了电气设备工作存在的误差。人工智能技术在计算机技术快速发展的基础上得以快速发展,其涉及到的专业知识很广,技术含量较高,对其加以有效利用,不仅可以提高生产力,而且可以延长设备使用寿命,方便设备故障诊断,解决了传统电气设备故障诊断存在的问题,实现了电气设备运行方式的创新。
参考文献:
[1]QINJie,LINLiang-zhen,.ProgressofJournalAdvancedTechnologyofElectricalEngineeringandEnergy[J].电工电能新技术,2009(02).
[2]刘建廷.浅析智能化技术在电气工程自动化中的应用[J].科技致富向导,2014(21):188.
[3]张桂青,冯涛.可重构智能化电器硬件设计平台及其应用[J].电力自动化设备,2003(09).
[4]陈薇.人工智能在电气工程自动化中的应用分析[J].无线互联科技,2014(09):229.
人工智能(AI,即Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,企图了解智能的实质,并生产出一种新的能以人类智慧相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学和哲学。人工智能是涉及十分广泛的科学,它由不同的领域组成,如机器学习、计算机视觉等。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作,但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
变革时代的“下一件大事”
近日,EFI公司首席执行官Guy Gecht在拉斯维加斯召开的Connect 2017用户会议上主题演讲了“下一件大事”――人工智能(AI)。在业内还有谁能比Guy Gecht更好地了解人工智能?因为他工作于硅谷的EFI公司总部,离全球最大的IT技术工厂仅隔步行的距离。
自1980年以来,人类经历了3次大的技术革命:20世纪80年代产生的个人电脑供私人使用,起初只有大的IT集团公司有资格使用。互联网的出现恰好是10年后另一件出乎意料的事。Gecht回忆称:“这对于EFI决定把奇妙的网络世界与物理世界的精彩图像连接起来是重要的契机。”至今制造商们仍献身于这个目标,也正是这些发展对印刷工业产生了巨大的影响。但是,通过互联网产生的优点和可能性使Gecht占据优势,他说:“对于因互联网而消失或后退的受害者来说,应该更好地利用互联网带给我们的可能性,以便更强有力地构建成功的业务模式。”第三次革命可以说是从iPhone开始。当乔布斯推出第一台iPhone时,终于也在虚拟和移动世界之间划定了界限。无论在任何地方用一个小设备与另一个设备连接,就可以做买卖或进行交易。
按照Guy Gecht的观点,“下一件大事”就是人工智能。这个主题并不那么新,毕竟30多年前就有人研究过。1996年第一台超级计算机与当时的国际象棋冠军比赛,虽然第一次比赛输掉了,但是第二次试赛时赢了卡斯帕罗夫。计算机经过学习,分析俄国人的比赛,并得出相应的结论。Guy Gecht认为,人工智能的关键不在于让计算机像规定的那样运行,而是让它不断地改进。2011年,进行了另一场人与人工智能之间的对决,确切地说,是在美国晚间电视游戏节目“Jeopardy”:人们已经给人工智能输入一般的知识,因此,达到下一个阶段的发展。可以说,确保最近几年人工智能如此快速向前发展的关键因素是:大数据和数据存取。
目前,对该领域印象最深的是自动驾驶的汽车。Gecht说,自动驾驶的汽车首先跟人的驾驶员“学习”。“如果在纽约有这种汽车在行驶,那会有什么影响?”Gecht问道。也许会减少交通事故,因为汽车不会疲劳,而且人有更多时间干其他工作。所以人工智能是好事。
Guy Gecht想通过简要的在线调查证实他的设想。人工智能对世界有利吗?结果表明,人们首先是对它担心。即使是技术先驱者,如特斯拉电动汽车公司的Elon Musk、物理学家Stephen Hawking和比尔盖茨都对此表示怀疑。Gecht得出结论称:“主要问题是,机器比人类更聪明,人类怀有这种害怕心理,比如会担心机器会夺走自己的工作岗位。”尽管受到怀疑和担心,但人工智能的确可以提高企业的经济效益。
人工智能是福还是祸?
国际电影业很乐于研究人工智能主题,但是描绘的场景大多是阴暗的,最终在场景中人与机器相互搏斗。如今,人工智能在某种程度上已经来到现实世界,但庆幸并不是在由好莱坞上演的那种形式。那么,人工智能到底是福还是祸?
是福?如果一个软件不再只按照编程的规则行事,而是学会自我优化,那么实际上如何?能收集信息、评价信息和得出适当的措施吗?其实印刷工业也可以从这样的发展中受益。实际上,EFI早已致力于研发类似于人工智能那样从收集的数据中学习的软件,该软件可以在个性化的生产环境中帮助用户编制印刷作业计划。另一个主题是智能印刷工厂,EFI将主要焦点放在预防性诊断上,即在用户发现之前率先了解问题所在,从而提高机器的可用性或减少维修时间和成本,保持机器的高度可用性和生产能力。
人工智能是一门综合了生理学、语言学、计算机科学等的学科,具有综合性、挑战性等特点,其主要目的便是赋予机器人工智能的功能,使其能够替代人去完成一些危险性与复杂性较高的工作,进而确保人们的安全,促进工作效率的提高[1]。因此,人工智能也被称为机器智能。相比于自然智能与人类智能而言,人工智能属于一项全新智能,其通过将设备、系统等来模拟人类各项智能活动,从而完成命令。作为一项结合多门学科的应用技术,人工智能的发展与其组建学科的关系十分紧密,特别是计算机技术的发展方向,其对人工智能的应用具有决定性作用。此外,人工智能技术也极大程度上促进了计算机网络技术的发展,计算机为从单纯数据计算转变为知识处理,就离不开人工智能技术的支持。人工智能的作用与优势具体如下:其一,可处理不确定信息,实时了解系统资源表现出来的局部及全局状态,并对状态变化情况进行追踪,通过技术处理获取的信息,从而为用户实时提供所需信息护具。其二,具有较高的写作能力,可科学、有效整合获得的资源,进而将各用户之间的资源进行传输与共享,通过有机结合网络管理与众多写作分布式人工智能的思想,可充分促进网络管理相关工作效率及效益的提高。其三,其在网络智能化护理中具有显著优势,主要表现在其学习、推理能力方面。在网络管理工作中应用人工智能,可将信息处理的准确性及效率进行提升,同时,通过利用人工智能技术的记忆功能,可在存储信息过程中建立完善的信息库,并将其作为综合、解释、总结信息的平台,在产生出更为准确及科学的高级信息的基础上,实现网络管理水平的全面提升。
2计算机网络技术的问题
目前,随着计算机技术的广泛应用,人们愈发重视有关网络信息安全问题。在网络管理系统的应用过程中,用户最为关注的功能便是网络监视与网络控制,其中,为正常发挥网络监视及网络控制这两大功能,就需要对信息急性及时获取与准确处理。网络传输的数据通常是不连续、不规则的,而在早期阶段,计算机只具备逻辑化分析及处理数据的功能,难以准确判断出数据的真实性,因此,为从大量繁复的信息中,挑选出有效的信息,实现计算机网络技术的智能化具有非常重要的意义[2]。计算机的应用日益广泛与深入,这使得用户需要通过网络安全管理来为其信息安全提供保障,而网络犯罪现象的增多,使得计算机必须具备灵敏的观察能力及迅速的反应能力否则便难以对侵犯用户信息的各种违法犯罪行为进行有效遏制。为促进网络安全管理的实现,就需要将以人工智能技术为基础而建立起来的智能化管理系统作为有效手段,自动收集信息数据,及时诊断运行故障,并在线分析趋势及性能等,从而确保计算机发生网络故障时,可做出快速、准确的反应,并采取有效措施来恢复计算机的网络系统。由此可知,针对计算机网络中存在的问题,就需要应用人工智能技术,在其内部建立完善的网络管理及防御系统,从而为用户信息安全提供充分保障。
3计算机网络技术中人工智能的应用分析
在计算机网络技术中应用人工智能,可极大程度满足人们对计算机提供人性化及智能化服务的需求。其中,计算机网络技术智能化服务主要指的是智能化的人机界面、信息服务、系统开发及支撑的环境这几个方面,与此同时,这些需求进一步促进了人工智能在计算机网络技术,尤其是在智能人机界面、网络安全及系统管理评价等方面的应用进程。
3.1人工智能在计算机网络安全管理中的应用。在计算机网络技术中,人工智能得到了极为广泛的应用。在计算机网络安全管理中,人工智能的应用主要表现在智能防火墙、入侵检测、智能型反垃圾邮件系统这三个方面。相比于其他防御系统,智能防火墙系统采用的是智能化识别技术,例如,通过概率、统计、记忆、决策等方法,来识别并处理有关信息数据,不但有效减少了计算机匹配检查过程中的庞大计算,而且大大提高了发现网络有害行为的效率,从而实现了限制访问及拦截有害信息的功能;此外,与传统防御软件相比,智能防火墙系统具有更高的安检效率,从而将拒绝服务共计这一普通防御软件普遍发生的问题进行有效解决,实现了高级应用的入侵及病毒传播的有效遏制[3]。作为计算机网络技术安全管理的一项重要环节,入侵检测起着保证网络安全的关键作用,同时也是防火墙技术的核心部分。计算机系统资源的保密性、完整性、安全性等均与网络系统入侵检测功能的有效发挥有着紧密联系。入侵检测技术通过采集、筛选、分类、处理信息数据,在形成最终报告的基础上,将当前计算机网络系统的安全状态及时反映给用户。现阶段,人工智能在模糊识别、专家及人工神经网络等系统入侵检测中,得到了非常广泛的应用。计算机网络安全管理中的智能型反垃圾邮件系统,是一项以人工智能技术为基础而研发出来的防护技术,其针对的对象为垃圾邮件。此项技术可在不对用户信息安全造成影响的前提下,有效监测用户的邮件,并在完成邮箱内垃圾邮件的开启式扫面后,将垃圾邮件分类信息提供给用户,提醒其对可能对自身不利或对系统造成危害的信息进行尽早处理,进而确保整个邮箱的安全性,
3.2人工智能在计算机网络系统管理及评价中的应用。计算机网络管理的智能化发展,离不开人工智能技术及电信技术的发展。除了应用在计算机网络安全管理中,人工智能技术中的问题求解技术及专家知识库等,均可促进计算机网络综合管理的实现。由于网络具有瞬变性及动态性的特点,因而给计算机网络管理工作增加了一定的难度,这同时也使得现代化网络管理工作朝着智能化的方向发展。其中,以人工智能理论为发展基础的专家级决策及支持方法,在信息系统的管理工作中得到了广泛应用。作为一项智能计算机程序,专家系统可累积尽可能多的专家经验与知识,并通过进行归纳与总结,在形成资源录入系统的基础上,利用这一汇集了多位特定领域中的专家经验的系统,对此领域中相似的其他问题进行解决。因此,对于计算机网络管理及其系统评价,可通过众多专家系统来开展计算机网络管理及系统评价等大量工作。
4结数语
关键字:机械电子工程 人工智能信息处理
中图分类号: P756.6 文献标识码: A 文章编号:
传统的机械工程一般分为两大类,包括动力和制造。制造类工程包括机械加工、毛坯制造和装配等生产工程,而动力类工程包括各式发电机。电子工程与传统的机械工程相比而言,是比较新的学科,电子工程是传统工程的革新,两者于上世纪逐渐结合在一起。随着人工智能技术的不断发展 ,机械电子工程的能量连接、动能连接逐步发展为信息连接 ,使得机械电子工程具有了一定的人工智能。这种高效的智能化技术减少了繁重的机械生产,提高产量和经济效益,使我们市场进入智能化。
一、传统机械电子工程
1、机械电子工程的发展情况
机械电子工程是由机械工程与电子工程、信息技术、智能技术、管理技术相结合而成的新的理论体系和发展领域。随着科学技术的不断发展机械电子工程也变得日益复杂。
机械电子工程的发展可以分为三个阶段 :第一阶段是以手工加工为主要生产力的萌芽阶段 ,这一时期生产力低下 ,人力资源的匮乏严重制约了生产力的发展 ,科学家们不得不穷极思变 ,引导了机械工业的发展。第二阶段则是以流水线生产为标志的标准件生产阶段 ,这种生产模式极大程度上提高了生产力 ,大批量的生产开始涌现 ,但是由于对标准件的要求较高 ,导致生产缺乏灵活性 ,不能适应不断变化的社会需求。第三阶段是现在我们常见的现代机械电子产业阶段,而以机械电子工程为核心的柔性制造系统正是这一阶段的产物。
2、机械电子工程的特点
1)设计上的不同。机械电子工程并非是一门独立学科 ,而是一种包含有各类学科精华的综合性学科。在设计时 ,以机械工程、电子工程和计算机技术为核心的机械电子工程会依据系统配置和目标的不同结合其他技术。工程师在设计时将利用自顶向下的策略使得各模块紧密结合 ,以完成设计 ;
2)产品特征不同。机械电子产品的结构相对简单 ,没有过多的运动部件或元件。它的内部结构极为复杂 ,但却缩小了物理体积 ,抛弃了传统的笨重型机械面貌 ,但却提高了产品性能。
二、 人工智能
1、 人工智能的概念分析
人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的交叉学科 ,是 21 世纪最伟大的三大学科之一。 但是至今为止,人工智能没有一个统一的定义。笔者认为 ,人工智能是研究通过计算机延伸、扩展、模拟人的智能的一门科学技术。
2、 人工智能的发展史
1)人工智能的初期阶段
17 世纪的法国科学家 B.Pascal 发明了世界上第一部能进行机械加法的计算器轰动世界 ,从此之后 ,世界各国的科学家们开始热衷于完善这一计算器 ,直到冯诺依曼发明第一台计算机。人工智能在这一时期发展缓慢 ,但是却积累了丰富的实践经验 ,为下一阶段的发展奠定了坚实的基础。
2)第一个成长阶段
在 1956 年举办的“侃谈会”上 ,美国人第一次使用了“人工智能”这一术语。这一阶段的人工智能主要以翻译、证明、博弈等为主要研究任务 , LISP 语言就是这一阶段的佼佼者。人工智能在这一阶段的飞速发展使人们相信只要通过科学研究就可以总结人类的逻辑思维方式并创造一个万能的机器进行模仿。
3)比较困难的阶段
60 年代中至 70 年代初期 ,当人们深入研究人工智能的工作机理后却发现 ,用机器模仿人类的思维是一件非常困难的事 ,许多科学发现并未逃离出简单映射的方法 ,更无逻辑思维可言。但是 整理,仍有许多科学家前赴后继的进行着科学创新 ,在自然语言理解、计算机视觉、机器人、专家系统等方面取得了卓尔有效的成就。1972 年 ,法国科学家发现了 Prolog 语言 ,成为继 LISP 语言之后的最主要的人工智能语言。
4)中期平稳阶段
以 1977 年第五届国际人工智能联合会议为转折点 ,人工智能进入到以知识为基础的发展阶段 ,知识工程很快渗透于人工智能的各个领域 ,并促使人工智能走向实际应用。不久以后,人工智能在商业化道路上取得了卓越的成就,展示出了顽强的生命力与广阔的前景。在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。
5)平稳成长阶段
由于国际互联网技术的普及 ,人工智能逐渐由单个主体向分布式主体方向发展 ,直到今天 ,人工智能已经演变的复杂而实用 ,可以面向多个智能主体的多个目标进行求解。
最近五十年间 ,网络的普及给信息传递带来了新的生命 ,人类进入到了信息社会 ,而信息社会的发展离不开人工智能技术的发展。不论是模型的建立与控制 ,还是故障诊断 ,人工智能在机械电子工程当中都起着处理信息的作用。
由于机械电子系统与生俱来的不稳定性 ,描述机械电子系统的输入与输出关系就变得困难重重 ,传统上的描述方法有以下几种 :1)推导数学方程的方法 ;2)建设规则库的方法 ;3)学习并生成知识的方法。传统的解析数学的方法严密、精确 ,但是只能适用于相对简单的系统。现代社会所需求的系统日益复杂 ,经常会同时处理几种不同类型的信息。由于人工智能处理信息时的不确定性、复杂性 ,以知识为基础的人工智能信息处理方式成为解析数学方式的替代手段。
通过人工智能建立的系统一般使用两类方法 :神经网络系统和模糊推理系统。神经网络系统可以模拟人脑的结构 ,分析数字信号并给出参考数值 ;而模糊推理系统是通过模拟人脑的功能来分析语言信号。两者在处理输入输出的关系上有相同之处也有不同之处:神经网络系统物理意义不明确 ,而模糊推理系统有明确的物理意义 ;神经网络系统运用点到点的
映射方式 ,而模糊推理系统运用域到域的映射方式 ;神经网络系统以分布式的方式储存信息 ,而模糊推理系统则以规则的方式储存信息 ;神经网络系统输入时由于每个神经元之间都有固定联系 ,计算量大 ,而模糊推理系统由于连接不固定 ,计算量较小 ;神经网络系统输入输出时精度较高 ,呈光滑曲面 ,而模糊推理系统精度较低 ,呈台阶状。
随着社会的不断发展,单纯的一种人工智能方法已经不能满足日益增长的社会需要,许多科学家开始研究综合性的人工智能系统。综合性的人工智能系统采用神经网络系统与模糊推理系统相结合的方法,取长补短,以获得更全面的描述方式,模糊神经网络系统便是一成功范例。模糊神经网络系统做到了两者功能的最大融合 ,使信息在网络各层当中找到一个最适合的完全表达空间。逻辑推理规则能够对增强节点函数 ,为神经网络系统提供函数连结 ,使两者的功能达到最大化。
三、 结论
21世纪的科学技术发展的越来越快,智能化已经大范围覆盖了国际市场,不论工业中还是电子商务,都以及成为经济快速运行的动力。为国家提供高技术的便利,为其注入新的概念,使其更为广泛的应用。着实做到了作业内外一体化,数据搜集自动化,系统智能化。人工智能与机械电子相结合能够促进生产力的快速发展,把我国的相关经济产业链带动了起来。在这新兴科技的引领下,我国的经济将迈向更高的阶梯。
参考文献
[1]傅丽凌.杨平.机械专业综合型试验平台的建设[J].电子科技大学学报社科版,2005,7(增刊).
[2]陈庆霞.人工智能研究纲领的发展历程和前景[J].科技信息,2009,33.
[3]史忠植.高整理级人工智能[M].科学出版社,2006.
关键词:人工智能 情感 约束
中图分类号:TP18 文献标识码:A 文章编号:1007-3973(2013)001-085-03
1引言
人工智能(Artificial Intelligence,AI)自从20世纪50年代产生,经过长期发展,已经有了长足的进步,并且已经深入到社会生活的诸多领域,如语言处理、智能数据检索系统、视觉系统、自动定理证明、智能计算、问题求解、人工智能程序语言以及自动程序设计等。随着科学技术的不断发展,现在的人工智能已经不再是仅仅具有简单的模仿与逻辑思维能力,人们也越来越期待人工智能能够帮助或者替代人类从事各种复杂的工作,加强人的思维功能、行为功能或是感知功能。这就要求人工智能具有更强的情感识别、情感表达以及情感理解能力。通俗的说,为了使得人工智能对外界的变化适应性更强,需要给它们赋予相应的情感从而能够应对这个难以预测的世界。
在赋予人工智能“情感”的过程中,面临着许多的问题,有科技层面上的,也有社会学层面的。本文在这里只讨论其中一个比较基本的社会学问题:“人工智能情感约束问题”,即关注于如何约束赋予给人工智能的情感,不至于使其“情感泛滥”。情感指的是一种特殊的思维方式,人工智能具有了情感后的问题是:人工智能的情感是人类赋予的,人工智能自身并不会创造或者控制自己的情感。如果赋予人工智能的情感种类不合理,或者是赋予的情感程度不恰当,都有可能造成“情感泛滥”并导致一些灾难性的后果。例如,当人工智能具有了情感之后,如果人类自身管理不恰当,有可能导致人工智能反过来伤害人类。尽管目前我们只能在一些科幻作品中看到这种情况发生,但谁也不能保证未来有一天会不会真的出现这种悲剧。
本文第二章对人工智能情感研究进行了概要性回顾,第三章对如何约束人工智能情感进行了尝试性探讨,最后一章对全文进行了总结。
2人工情感发展情况概述
随着科学家对人类大脑及精神系统深入的研究,已经愈来愈肯定情感是智能的一部分。人工情感是以人类自然情感理论为基础,结合人工智能、机器人学等学科,对人类情感过程进行建模,以期获得用单纯理性思维难以达到的智能水平和自主性的一种研究方向。目前,研究者的研究方向主要是人工情感建模、自然情感机器识别与表达、人工情感机理等四个方面的内容。其中,尤以人工情感机理的研究困难最大,研究者也最少。
目前人工情感在很多领域得到了应用和发展,比较典型的是在教育教学、保健护理、家庭助理、服务等行业领域。在教育教学方面比较典型的例子是德国人工智能研究中心发展的三个方案:在虚拟剧场、虚拟市场和对话Agent中引入情感模型和个性特征来帮助开发儿童的想象力及创造力。在保健护理方面比较典型的是家庭保健与护理方向,如Lisetti等人研制的一个用于远程家庭保健的智能情感界面,用多模态情感识别手段来识别病人的情感状态,并输入不同媒体和编码模型进行处理,从而为医生提供关于病人简明而有价值的情感信息以便于进行有效的护理。服务型机器人的典型例子是卡内基梅隆大学发明的一个机器人接待员Valerie。Valerie的面孔形象的出现在一个能够转动方向的移动屏幕上时可以向访问者提供一些天气和方位方面的信息,还可以接电话、解答一些问题;并且Valerie有自己的性格和爱好,情感表达较为丰富。当然这些只是人工情感应用领域中的几个典型的例子,人工智能情感的潜力仍然是巨大的。
尽管关于人工情感的研究已经取得了一定的成果,给我们带来了很多惊喜和利益,但由于情绪表现出的无限纷繁以及它与行为之间的复杂联系,人们对它的运行机理了解的还不成熟,以致使得目前人工情感的研究仍面临着诸如评价标准、情感道德约束等多方面问题。所以必须清楚的认识到我们目前对于人工情感的计算乃至控制机制并没有一个成熟的体系。
3对人工智能的情感约束
正如上文所述,如果放任人工智能“情感泛滥”,很有可能会造成严重的后果。为了使人工智能技术更好的发展,使智能与情感恰到好处的结合起来,我们有必要思考如何对赋予人工智能情感进行引导或者约束。
3.1根据级别赋予情感
可以根据人工智能级别来赋予其情感,如低级别人工智能不赋予情感、高级别人工智能赋予其适当的情感。众所周知,人工智能是一门交叉科学科,要正确认识和掌握人工智能的相关技术的人至少必须同时懂得计算机学、心理学和哲学。首先需要树立这样的一个观点:人工智能的起点不是计算机学而是人的智能本身,也就是说技术不是最重要的,在这之前必须得先解决思想问题。而人工智能由于这方面没有一个严格的或是量度上的控制而容易出现问题。从哲学的角度来说,量变最终会导致质变。现在是科学技术飞速发展的时代,不能排除这个量变导致质变时代的人工智能机器人的到来,而到那个时候后果则不堪设想。因此,在现阶段我们就应该对人工智能的情感赋予程度进行一个约束。
根据维纳的反馈理论,人工智能可以被分成高低两个层次。低层次的是智能型的人工智能,主要具备适应环境和自我优化的能力。高层次的是情感型的人工智能,它的输入过程主要是模仿人的感觉方式,输出过程则是模仿人的反应情绪。据此我们可分别将机器人分为一般用途机器人和高级用途机器人两种。一般用途机器人是指不具有情感,只具有一般编程能力和操作功能的机器人。那么对于一般用途的机器人我们完全可以严格的用程序去控制它的行为而没必要去给他赋予情感。而对于高级层面的情感机器人来说,我们就适当的赋予一些情感。但即使是这样一部分高层次的情感机器人,在赋予人工情感仍然需要考虑到可能会带来的某些潜在的危害,要慎之又慎。
3.2根据角色赋予情感
同样也可以根据人工智能机器人角色的不同选择性的赋予其不同类型的情感。人类与机器合作起来比任何一方单独工作都更为强大。正因为如此,人类就要善于与人工智能机器合作,充分发挥人机合作的最大优势。由于计算机硬件、无线网络与蜂窝数据网络的高速发展,目前的这个时代是人工智能发展的极佳时期,使人工智能机器人处理许多以前无法完成的任务,并使一些全新的应用不再禁锢于研究实验室,可以在公共渠道上为所有人服务,人机合作也将成为一种大的趋势,而他们会以不同的角色与我们进行合作。或作为工具、顾问、工人、宠物、伴侣亦或是其他角色。总之,我们应该和这些机器建立一种合作互助的关系,然后共同完任务。这当然是一种很理想的状态,要做到这样,首先需要我们人类转变自身现有的思维模式:这些机器不再是一种工具,而是平等的服务提供人。
举例来说,当机器人照顾老人或是小孩的时候,我们应该赋予它更多的正面情绪,而不要去赋予负面情绪,否则如果机器人的负向情绪被激发了,对于这些老人或者小孩来说危险性是极大的;但是,如果机器人是作为看门的保安,我们对这种角色的机器人就可以适当的赋予一些负向的情绪,那么对于那些不按规则的来访者或是小偷就有一定的威慑力。总之,在我们赋予这些智能机器人情感前必须要周到的考虑这些情感的程度和种类,不要没有顾忌的想当然的去赋予,而是按分工、作用赋予限制性的情感约束,达到安全的目的。
3.3对赋予人进行约束
对人工智能情感赋予者进行约束,提高赋予者的自身素质,并定期考核,并为每一被赋予情感的人工智能制定责任人。
纵观人工智能技术发展史,我们可以发现很多的事故都是因为人为因素导致的。比如,首起机器人杀人案:1978年9月的一天,在日本广岛,一台机器人正在切割钢板,突然电脑系统出现故障,机器人伸出巨臂,把一名工人活生生地送到钢刀下,切成肉片。
另外,某些研究者也许会因为利益的诱惑,而将人工智能运用在不正当领域,或者人工智能技术落入犯罪分子的手中,被他们用来进行反对人类和危害社会的犯罪活动。也就是用于所谓的“智能犯罪”。任何新技术的最大危险莫过于人类对它失去控制,或者是它落入那些企图利用新技术反对人类的人的手中。
因此为了减少这些由于人而导致的悲剧,我们需要对这些研究者本身进行约束。比如通过相应的培训或是定期的思想政治教育、或是理论知识的学习并制定定期的考核制度来保证这些专家自身的素质,又或者加强对人工智能事故的追究机制,发生问题能立即查询到事故方等等,通过这样一系列强有力的硬性指标达到减少由于人为因素导致悲剧的目的。
3.4制定相应的规章制度来管理人工智能情感的发展
目前世界上并未出台任何一项通用的法律来规范人工智能的发展。不过在1939 年,出生在俄国的美籍作家阿西莫夫在他的小说中描绘了工程师们在设计和制造机器人时通过加入保险除恶装置使机器人有效地被主人控制的情景。这就从技术上提出了预防机器人犯罪的思路。几年后, 他又为这种技术装置提出了伦理学准则的道德三律:(1)机器人不得伤害人类,或看到人类受到伤害而袖手旁观;(2)在不违反第一定律的前提下,机器人必须绝对服从人类给与的任何命令;(3)在不违反第一定律和第二定律的前提下,机器人必须尽力保护自己。这一“机器人道德三律”表现了一种在道德忧思的基础上,对如何解决人工智能中有害人类因素所提出的道德原则,虽然得到很多人的指责,但其首创性还是得到公认的。尽管这个定律只是小说家提出来的,但是也代表了很多人的心声,也是值得借鉴的。
那么对于人工智能情感的约束呢?显然,更加没有相应的法律法规来规范。那么,我们就只能在赋予人工智能情感的道理上更加的小心翼翼。比如,我们可以制定一些应急方案来防止可能导致的某些后果,也即出现了问题如何及时的处理之。另外我们在操作和管理上应更加慎重的去对待。也希望随着科学技术的发展,能够在不久的将来出台一部相应的规章制度来规范人工智能情感的管理,使之更加精确化、合理化。
4结束语
人工智能的情感研究目的就是探索利用情感在生物体中所扮演的一些角色、发展技术和方法来增强计算机或机器人的自治性、适应能力和社会交互的能力。但是现阶段对这方面的研究虽然在技术上可能已经很成熟,但是人工智能情感毕竟是模拟人的情感,是个很复杂的过程,本文尝试性的在人工智能发展中可能遇到的问题进行了有益的探讨。但是不可否认仍然有很长的道路要走,但是对于人工智能的发展劲头我们不可否认,将来“百分百情感机器人”的问世也许是迟早的事情。
参考文献:
[1] 赵玉鹏,刘则渊.情感、机器、认知――斯洛曼的人工智能哲学思想探析[J].自然辩证法通讯,2009,31(2):94-99.
[2] 王国江,王志良,杨国亮,等.人工情感研究综述[J].计算机应用研究,2006,23(11):7-11.
[3] 祝宇虹,魏金海,毛俊鑫.人工情感研究综述[J].江南大学学报(自然科学版),2012,11(04):497-504.
[4] Christine Lisett,i Cynthia Lerouge.Affective Computing in Tele-home Health[C].Proceedings of the 37th IEEE Hawaii International Conference on System Sciences,2004.
[5] Valerie.The Roboceptionist[EB/OL].http://.
[6] 张显峰,程宇婕.情感机器人:技术与伦理的双重困境[N].科技日报,2009-4-21(005).
[7] 张晓丽.跟机器人谈伦理道德为时尚早[N].辽宁日报,2011-11-04(007).
[8] Peter Norvig.人工智能:机器会“思考”[J].IT经理世界,2012(Z1):331-332.
[9] McCarthy J.Ascribing Mental Qualities to Machines1A2. In Ringle M,editor,Philosophical Perspectives in Artificial Intelligence1C2,Humanities Press Atlantic Highlands,NJ,1979:161-195.