前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的工程热力学概念主题范文,仅供参考,欢迎阅读并收藏。
工程热力学是研究热能与机械能相互转换的一门课程,它是以热能利用为背景而发展起来的一门学科,随着科学技术的不断进步已经深入到冶金、环境、机械、交通运输、航空航天、电子信息、化学工程等领域。因此,学习能量在热力设备中的转换规律,对经济可持续发展和环境保护有重要意义。然而,由于本身的特点,工程热力学这门课程存在教师难教、学生难学的问题,如何提高工程热力学的教学质量,教师需要进行深入的思考。本文从工程热力学课程教学现状出发,探讨提高工程热力学教学质量的方法。
一、工程热力学的课程特点
在工程热力学的基本定律和定义中出现了很多概念,而且这些概念学生容易混淆。如热容的概念,有体积热容、质量热容、摩尔热容、比定压热容、比定容热容等。系统的分类有闭口系统、开口系统、稳定流动系统、简单可压缩系统等。压力有绝对压力、表压力、当地大气压等,这些概念之间既有联系又有区别,对概念的准确把握是继续学习的基础。
本课程公式多,每一个公式都是为了解决某一具体问题而推导出来的,所以有很大的针对性。换句话说,公式都有相应的使用条件,如果公式和使用条件不匹配,就会得到错误的结果。因此要求学生不仅要记公式,还要记相应的使用条件,这就增加了学习难度。即使是同一个公式,在不同情况下,也有着不同的表达形式。比如热力学第二定律,既克劳修斯积分不等式,又有熵方程,还有熵增原理。
二、工程热力学的教学现状
由于目前我们处于一个知识快速更新的时代,大学的教学计划和人才培养方案也随之不断变化,越来越多的新课程加入到教学内容当中,这就使得每门课程的学时不断减少,就以我校的过程控制与装备专业为例,工程热力学只有34学时,学时少与教学内容多且难产生了巨大的矛盾,这对教师和学生都是不小的挑战。
工程热力学是一门理论性很强的学科,需要运用物理和数学的知识解决工程上的问题,所以学好这门课需要较好的数学和物理基础。而目前由于高校扩招,二本院校的学生都是经一本院校筛选后的生源,学生基础较差,物理和数学的基本功都不扎实,学生学起来很吃力,很容易导致学生产生厌学情绪,这给课程教学带来一定困难。
工程热力学不仅理论性强,而且和实践联系紧密,课程内容本身就是从实践中总结出来并去指导实践的,但是由于目前学时限制和学校条件限制,学校并没有开设工程实践课,理论与实际脱节,不利于学生对知识的理解与消化,难以与实际相结合。
三、教学方法的改进
1.多媒体与板书相结合,提高教学效果。多媒体教学和传统的板书教学各有利弊,在教学中不能完全采用某一种教学方式,而应该将两者有机结合起来。多媒体教学的优点是可以展示工程上常用的一些设备及其内部构造以及工作过程,可以适当弥补实践环节的缺陷。学生不仅可以看到这些设备的外观,还可以看到设备的内部构造,以动画的方式演示设备的工作过程。这些内容用传统的板书是无法进行说明的,只能用多媒体的方式进行教学。因此,必须采用多媒体与板书相结合的教学方式,将重要的公式推导和概念以及每节课的重点难点,在黑板上表达清楚。
2.注重理论联系实际,激发学生学习兴趣。兴趣是最好的老师。要想让学生学好一门课程,首先要激发学生的学习兴趣。而工程热力学比较抽象,如果只讲理论而不联系实际,很容易让学生失去学习兴趣。如果在课堂上多举生产及生活中的实例,让学生能够用所学的知识解决实际问题,则会激发学生兴趣,吸引学生去探索未知的知识领域。工程热力学是一门从实践中总结出来的学科,和实践联系非常紧密。比如热力学第一、第二定律,就是人们长期实践的总结;讲述热能与机械能的相互转换时,可以举内燃机、汽轮机、火力发电、燃气轮机的例子,这些是与生产和生活密切相关的实例,很容易引起学生的好奇心,从而提高教学效果。
3.用图解决一些问题,使问题化繁为简。工程热力学经常用图的方式解决问题。工程热力学基本的图有两个,分别是p-v图和T-s图,p-v图为示功图,T-s图为示热图。在分析热力过程和热力循环时,图是很有力工具。如在分析热力过程时,将不同的热力基本过程画在图上,很直观地就可以分析出各个过程功与热之间的大小关系;在分析热力循环和制冷循环时,如果用公式分析影响循环效率的因素有哪些,以及提高循环效率的途径是什么,将进行大量的计算,而如果用图进行分析,就很直观,省略了大量的计算,所以在教学时要灌输给学生用图解决问题的思想。
针对工程热力学特点,需要我们及时调整工程热力学的教学内容,改善教学方法,提高教学质量,使学生能够通过学习真正掌握工程热力学的精髓,为专业课的学习打下良好的基础,并且在学习知识的同时,各方面的能力也得到相应的培养和提升。
工程热力学是动力工程、机械工程、能源工程等专业的一门传统的技术基础课程,是资源利用率最大化的一种技术,是我们国家高等教育的重要组成版块。目前,我们国家对能源利用率的要求越来越高,对环境保护质量也相对提高,工程热力学课程教学改革对提高能源的利用效率起着至关重要的影响作用。尤其是面对未来生产的发展对能源动力需求迅速增加的趋势,许多相关联的热力工程技术、环境保护技术都需要工程热力学作为其研究的理论基础。工程热力学是一门综合性比较强的学科,并且在实际的生产与生活中其应用价值极高。在课程教学与实践过程中教师不容易清晰明了的讲授清楚工程热力学的相关理论知识,学生也不易掌握基本的公式、概念与相关方面的条件。不仅如此,在实践活动中学生不能够灵活的运用所学的课堂教学知识进行实验,这就大大降低了工程热力学的实际运用价值,削弱了工程热力学的课程教学质量。工程热力学是一门比较基础的课程,也是建筑环境与设备工程等相关专业学生应当掌握的基础学科,同时也是学生进行研究创新的基本前提。工程热力学是研究动能、机械能与热能的基本学科,也是研究三者之间关系的重要理论知识,主要讲述三者之间能量的转换趋势与规律。
建筑、机械与其他工业产业利用工程热力学来提高生产效率,提高资源利用率,以此实现降低成本得目标,这也是经济可持续发展的重要保证。目前我们国家的工程热力学的教学质量亟待提高,教学方式与课程教学内容急需改革,并且其实践过程中的运用效率偏低,这就需要我们针对工程热力学的特征与现状进行课程教学改革,提高其实践效率。课程教学改革是指在教育体制改革的背景下,课程内容与课程教学方式也应当发生相应的变化。课程改革的重点应当放在课程实施工作之上,课程的实施依赖课程的教学质量,因此我们必须充分重视课程教学改革的重要性。随着我国新一轮基础教育课程改革的推进,如何在新课程理念的指导下改革工程热力学课堂教学,把先进的教学理念融入到日常的教学行为之中,已日益成为工程热力学教师和教学研究人员关注和探讨的热点问题。工程热力学课程教学实践是指教师在讲授工程热力学知识的时候应当充分的结合其实际情况,将实践活动与课堂理论知识讲授充分的融合,这样才能够提高学生的课程学习质量,帮助学生掌握更加丰富的工程热力学知识。课程教学实践是提高学生实际操作能力的平台,也是提高工程热力学课程教学质量的重要基础,关系到教学质量与国民经济的发展速度。实践是检验真理的唯一标准,因此在工程热力学课程教学改革过程中应当将其改革的内容付诸实践,这有这样才能够检验其改革的内容是否符合教育体制改革发展的总目标。在实际的课程教学过程中,教师、研究者与学生应当提高实践活动的强度,改善当前的现状,为提高工程热力学课程教学改革质量奠定基础。
2工程热力学课程教学改革与实践的过程中存在的主要问题
当前我们国家的高等院校和高职院校对工程热力学课程教学的重要性认识不足,没有充分的认识到工程热力学教学质量与工业生产、环境保护、资源利用率提高等之间的关系。工程热力学对学生综合能力的提高有着不可或缺的作用,因此我们必须充分的探析在工程热力学课程教学改革与实践过程中存在的主要问题,这样才能够详细的了解其改革现状,为提高课程改革质量奠定良好的基础。
(1)国家教育部门与高等院校、高职院校等教育机构对工程热力学课程教学改革与实践工作的重视程度偏低,没有充分的认识到工程热力学课程教学改革与实践对提高教学质量、促进教育体制改革进程、提高经济发展质量与速度之间的关系。工程热力学是一门综合性比较强的学科,并且也是建筑专业、环境保护与机械设计等专业的基础课程,关系到这些工程热力学相关专业的发展前景。相关的教育部门与组织在资金投入、技术支持、人才引进等方面相对短缺,严重的影响了工程热力学课程教学改革与实践的进程,没有投入更多的基础设备让学生参与实践。这样下去就会严重的泯灭学生的学习积极性和创新性,不利于提高工程热力学课程教学改革的质量与效率。
(2)在工程热力学课程教学改革过程中重点不明确,相关方面的制度和政策不够完善。虽然我们国家正在实行新一轮课程改革,在教育体制改革方面的力度比较大,但是仍然没有彻底改变当前应试教育的局面,没有完全的实现从应试教育向素质教育过渡的目标。在课程教学改革的过程中教师没有积极创新,对课程教学改革与实践认识不清,导致在理论教学与实践教学时教学方式不当,没能完全激发学生的潜力,这为后来的工程热力学改革埋下隐患。不仅如此,相关的教育部门与学校在课程设置方面没有考虑市场的发展需要,在课时、教学内容、教学形式以及考核方式等方面存在着严重的问题。
(3)工程热力学课程教学改革过程中的教学方法不符合实际的情况,不能够很好的提高课程教学改革与实践的质量。许多教师仍然沿用传统的教学方式,在教学内容上没有较大的突破与创新,被陈旧与古板的方式与内容所束缚。在改革的过程中,其课程改革教学目标不够明确,与工程热力学相关的课程体系不够完善与健全。不仅如此,在工程热力学课程设置等方面没有突出课程的专业特色与个性,不利于提高工程热力学的地位与重要性。这样学生的学习积极性与热情会大大降低,无益于实现课程教学改革的目标。
3提高工程热力学课程教学改革与实践质量的相关对策
(1)国家教育部门与高等院校、高职院校等教育机构要不断提高对工程热力学课程教学改革与实践工作的重视程度,充分的认识到工程热力学课程教学改革与实践对提高教学质量、促进教育体制改革进程、提高经济发展质量与速度之间的关系。相关方面的教育部门与教育组织要加强政策支持与资金支持,为提高工程热力学课程教学改革提供良好的条件,引进先进的设备与基础设施为开展实践活动提供良好的平台,从而提高学生的理论知识水平与实践操作能力。目前人们对生活与生产的要求越来越高,对环境的保护意识也越来越深厚,因此我们必须加强相关方面的教学质量,培养全面型与综合型的人才,以此来适应经济社会的发展趋势。伴随着社会现代化进程的加快,社会各界对人才的素质和质量标准也越来越高,因此教育制度改革迫在眉睫。
(2)明确工程热力学课程教学改革的重点,逐渐完善与健全相关方面的课程教学改革体制,为高等院校和高职院校的课程教学改革与实践提供指导性方案。相关的教育部门与学校在课程设置方面要充分考虑市场的发展需要,在课时、教学内容、教学形式以及考核方式等方面要积极创新。保持学科基本理论的严密性和系统性,逐渐强化工程热力学相关专业所必须的教学内容,不断的优化课程教学的内容。在教学的时候要让学生充分的理解相关的工程热力学的理论知识、公式与条件等等,这样学生才能够有足够的理论知识进行实践操作。不仅如此,还要培养学生查图、查表的能力,要求学生学会用抽象、简化和假设的热力学方法去求解制冷、供暖等实际问题。
(3)工程热力学课程教学改革过程中的教学方法要不断适应市场的发展需要,这样才能够逐渐提高课程教学改革与实践的质量。工程热力学课程教学的相关教师和研究者应当积极创新,改变传统的教学方法,摒弃陈旧的教学方式,提高工程热力学课程教学改革与实践的质量。不仅如此,教学研究者还要积极改变教学方式,教师应当根据课堂教学情况与学生的学习情况来改进教学方式,以此来激发学生的学习热情。因为工程热力学属于一种理论性比较强的学科,学生在学习的过程中容易产生消极情绪,这样就会严重阻碍课程教学改革的进展,不利于全面提高学生的综合实力。教师要注重诱导式教学方式,提高学生的发散思维能力,贯彻创新意识。教师要根据课程教学内容和学生的差异性来帮助学生树立正确的学习观念,让学生掌握符合自己实际情况的学习方式。这样学生在学习工程热力学知识的时候就会比较容易上手,在理解相关概念和理论知识的时候也会更加容易。教师在讲解理论知识与进行实践操作教学的过程中要灵活运用比较式指导方法,将相关的理论知识进行比对,加深学生的理解程度。同时也要积极使用相关方面的图表,让学生快速的理解抽象理论知识。教师在教学的过程中要积极采用多媒体教学与网络教学,这也是充分利用教学资源的体现。由于学科本身具有的特性决定了工程热力学的理论知识、定义、概念、公式等比较复杂抽象,学生不易理解,利用多媒体能够帮助学生理解记忆,加深对工程热力学原理的理解。网络教学能够促进学生与教师之间的交流,提高课程教学改革的质量。
4结论
关键词:系统节能原理;课程改革;教学实践;石化特色
作者简介:马利敏(1978-),女,辽宁西丰人,中国石油大学(北京)机械与储运工程学院,讲师;姬忠礼(1963-),男,山东汶上人,中国石油大学(北京)机械与储运工程学院,教授。(北京 102249)
基金项目:本文系“2010年中国石油大学(北京)校级重点教学改革项目”及“2012年中国石油大学(北京)青年教师专项培养基金”(项目编号:KYJJ20120415)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)35-0106-02
一、系统节能原理课程改革的背景
在强调节能、注重环保的今天,使从事与能源开发、利用与转化紧密相关工作的学生掌握系统节能原理的精髓并能够学以致用有着非常重要的社会意义。系统节能原理是中国石油大学(以下简称“我校”)能源与动力工程专业一门重要专业课,32学时。其基础理论部分,以工程热力学基本定律为基础。工程热力学重点讲授热力学第一定律和热力学第二定律的熵分析法,引入分析法。在本课程中,上述内容仍是重点,需重复介绍。基础理论是晦涩与枯燥的,如只是重复介绍,不易激发学生学习兴趣,难以获得满意的教学效果。因此,研究如何组织教学工作,使本课程与工程热力学做好衔接,激发学生学习兴趣,帮助其加深对基础理论的理解,提高解决实际问题的能力,是十分必要的。同时,本课程还缺乏适合的教材,需要编写课程讲义。目前,缺乏能够同时将经典及新兴能量分析法进行全面介绍的教材,而在能量分析法的应用部分,也需要结合我校行业特点、毕业生就业去向,针对石油石化领域工程应用背景设置教学案例。我校于2010年批准了该课程的教学改革计划,经过近几年的努力,该教改计划已经初步完成。
二、课程教学内容体系建设
教学内容改革是教学改革最核心、最基本的问题。教学内容主要由热力学第一定律、热力学第二定律熵分析法和分析、新的能量系统分析评价方法介绍组成。其中,根据教学目的与任务有效组织教学内容,要与基础课程工程热力学第一定律、第二定律知识点的学习有机结合,既避免教学内容的简单重复,又要使学生通过本课程的学习对第一定律、第二定律有更为深刻的认知,并使学生能够利用两个热力学基本定律熟练进行能量系统分析与评价、以及高效学习和应用新的分析、评价与优化方法。
1.热力学第一定律
热力学第一定律是工程热力学教学内容的重点,主要讲授闭口系统与稳流开口系的热力学第一定律能量方程式的表达式及应用。在本课程中,进一步强调热力学第一定律的一般表达式即:“进入系统的能量-离开系统的能量=系统总储存能的变化”的正确灵活应用,重点介绍如何分析、列出非稳态充、放气热力过程的能量方程式,帮助学生进一步增强利用第一定律进行能量分析的能力。同时,通过对节流、自由膨胀、混合、换热、可逆定温放热压缩等热力过程分析来帮助同学们对第一定律的局限性有更为深入的理解。
2.热力学第二定律熵分析法
热力学第二定律是工程热力学教学内容的重点与难点,主要讲授热力学第二定律的数学表达式,具体包括:卡诺循环+卡诺定理、克劳修斯积分不等式、闭口系及开口系统熵方程、孤立系统熵增原理。在本课程中,考虑到判断一个热力循环是否可行、可逆的数学判据容易理解而且是热力过程的特例,故重点讲述闭口系及开口系熵方程、孤立系统熵增原理。
在该部分从以下四个方面进行介绍:对于状态参数熵的辨析:辨析熵是状态参数与过程无关,强调判断一个热力过程能否进行、可逆的参量不是过程熵变而是过程熵产,引出后面由熵方程及孤立系统熵增原理计算过程熵产的知识点;重点讲授熵方程的一般表达式,即:“进入系统的熵-离开系统的熵+过程熵产=系统熵变化”,通过典型例题帮助同学能够利用熵方程列出闭口及开口系熵方程,并求取过程熵产;重点解析孤立系统熵增原理的实质及解题特点,并通过典型例题帮助学生认识到孤立系统熵增原理与熵方程的一致性:孤立系统熵增即熵方程中的熵产;作功能力损失方面除了介绍计算公式、通过计算热力过程熵产及作功能力损失,还着重结合对节流、自由膨胀、混合、换热、可逆定温放热压缩等具体热力过程分析让学生体会第一定律与第二定律之间的联系及第二定律的独有贡献。
3.热力学第二定律分析法
由于学时有限并且概念抽象难以理解,分析法在工程热力学中属于选讲内容,即便讲授,也多是简要介绍。本课程中,分析法是授课重点,从以下四个方面进行讲授:第一,概念及计算公式,包括机械、热量(冷量)、内能、焓和化学。第二,重点讲授方程的一般表达式“进入系统的-离开系统的-过程损=系统变化”,通过典型例题帮助同学能够利用方程列出闭口及开口系方程,并求取过程损。同时,在分析典型例题时,引导学生同时用熵分析法来计算过程的作功能力损失,让学生自觉地认识到分析法中所得到的损失即熵分析法中计算的作功能力损失、体会两种分析法的一致性及分析法的优势。第三,效率、损系数的概念及公式,以及在典型热力设备、过程及热力循环中的计算。第四,针对本学科领域典型的火力发电装置、燃气轮机发电装置和低温制冷装置、LNG液化装置、天然气净化装置、油田联合站等,设置工程背景很强的案例,教师与同学们一起分析循环装置及各组成设备的效率、损失及损系数等,让同学们认识到分析法在进行系统能量分析时的重要性及提高利用该方法解决实际工程问题的能力。
4.新发展起来的能量系统分析与优化方法
介绍能级分析法、经济学、夹点技术、全生命周期分析法、能值理论等新发展起来的能量系统分析与优化方法的基本理论及应用,鼓励学生查阅相关文献获取更多知识。这部分内容与留给学生的学习报告紧密相关,将在下文介绍。
目前还没有适合于本专业本科教学的系统节能方面的教材,本课程教学内容主要参考自沈维道等[1]主编《工程热力学》、朱明善等[2]编著《工程热力学》、傅秦生[3]编著《能量系统的热力学分析方法》和冯霄[4]编著《化工节能原理与技术》、何雅玲[5]主编《工程热力学精要分析典型题解》等教材及专著,结合教学团队多年来收集整理的工程案例编写成讲义供教师及学生使用。
三、教学方式改革
教学中的主体是学生,调动学生学习主动性,提高其学习兴趣和学习效果是教学方式改革的目的。学生们对于国际上最新的、与未来工作紧密相关及实用性强的知识以及确实能提高自身素质与能力的教学环节更感兴趣。
1.采用多媒体与板书有机结合的教学模式
充分利用多媒体教学信息量大,图像、视频生动形象的特点,同时结合传统板书讲解复杂推导更容易被学生掌握的优点以提升教学效果。这种授课方式既可以增大授课信息量、有效吸引学生注意力,同时又能使学生通过与老师一起板书推导对所学重点、难点有更为深刻的认知。
2.提高课堂教学吸引力
通过针对每一个重要概念及知识点设计的系列典型例题、思考题吸引学生注意力,激发学生学习兴趣,引导其积极参与到教学中来。而且教学团队经过多年的教学和科研积累,收集并提炼出与石化工程紧密关联的工程案例,通过案例的讨论和分析,增强学生学习理论知识的兴趣,提升课堂教学的互动效果,增强学生运用理论知识分析并解决工程实际问题的能力。
3.布置作业形式灵活多样
对于重要的基本概念,以读书笔记的作业形式激发学生学习兴趣。本课程涉及众多抽象概念和公式,追溯热量、温度、熵、热力学第二定律、等重要基本概念的由来、发展历程,可使学生在搜集资料的过程中对这些概念有一个直接的感性认知,同时也有助于学生认识到这些知识在本学科发展中的重要作用。
要求学生组成2~3人的学习小组,除常规课下作业外,课上作业以小组为单位完成。课上作业为教师针对每次课的重点和难点内容设计的多为填空、选择和问答形式的练习题,课前打印好分发给每个学习小组。在讲课过程中,留出适合时间让学生及时完成。教学实践表明课上作业非常利于学生把握住和消化吸收重难点知识,且能提高学生学习的注意力,达到良好的教学效果。
四、课程考核方式的教学改革
本课程考试采用闭卷+学习报告的形式。在闭卷考试中,只有一种类型题,即计算题。本课程一个重要教学目的就是使学生能够熟练、正确应用第一、第二定律尤其是分析法分析实际装置的用能情况,所以考查学生的学习效果应用型计算题是较为合适的。
学习报告要求每个学习小组(2~3人组成)围绕与本学科紧密相关的实际装置进行国内外能量分析与优化方面的调研,提交1份不少于4000字、有5篇以上参考文献的学习报告,并根据报告内容制作ppt,每小组选派1名学生进行报告,汇报10分钟,讨论5分钟。报告题目凭学生兴趣自选。学习报告这种考核形式不仅促使学生自主学习,开阔视野,加深认知,而且可以锻炼和提高学生多方面的能力。学生们自选的题目有:超临界及超超临界蒸汽动力装置;燃气轮机装置;燃气蒸汽联合循环装置;冷热电三联供装置;地源热泵装置;低温磁制冷装置;煤制油装置;燃料电池;低温地热发电装置;天然气压气站燃气轮机余热利用;天然气净化装置;油田联合站;LNG接收站冷能利用等等。
近4年的教学实践也表明学生们非常接受和欢迎这种考核形式,并且每一年都会有让教师感到惊喜的学习报告,这也说明要想学生切实提高学习能力、扎实掌握专业知识确实也需要教师有意识地去创造机会及科学引导。
五、教学效果
经过近4年的教学实践,团队通过对历年学生评教、学生考试成绩分析以及学生在本科毕业设计及成为本校研究生后所选与系统节能原理相关方向课题的表现等进行了调研,证明该课程改革是卓有成效的。学生对工程热力学及系统节能知识的接受能力增强,学习兴趣明显提高。灵活适宜的授课方式、作业形式以及考试方式受到学生的普遍欢迎。总之,通过课程建设与教学实践,使学生在学习过程中发挥了主体作用,激发了学生学习兴趣,提高了学生的综合能力,教学效果良好,达到了既定教学目标。
参考文献:
[1] 沈维道,童钧耕. 工程热力学[M]. 第四版.北京:高等教育出版社,2007.
[2] 朱明善,刘颖,林兆庄,等.工程热力学[M]. 第二版.北京:清华大学出版社,2011.
[3] 傅秦生. 能量系统的热力学分析方法[M]. 西安:西安交通大学出版社,2005.
关键词:化工热力学;CDIO;大工程教育;教学改革;方案
中图分类号:G712文献标识码:A文章编号:1672-5727(2012)06-0159-02
化工热力学作为化学工程的基础性学科,在研究化学工程以及解决化工生产实际问题中都起着非常重要的作用。同时,它也是化学工程与工艺专业本科生及研究生必修的重点专业课程之一。然而,由于课程中的概念抽象难懂,公式数量多且推导复杂,历届本科学生都感到难以理解和掌握。虽然尝试过各种改革,探索过新的教学方法,但收效甚微,学生掌握到的理论常常疲于应付考试,没有真正解决实际问题的能力,更不用说会作“工程”了。为了迎合“大工程教育”的背景,在2009年,我校开始尝试将CDIO的教育理念应用于化工热力学课程教学中,取得了一定的成效。
CDIO教育理念是近年来国际工程教育改革的最新成果,这种全新的教育模式将构思(Conceiving)、设计(Designing)、实现(Implementing)与运作(Operating)结合在一起,形成一个连贯而完整的流程。学生从参加产品研发到产品运行的生命周期当中,可以亲身体验到“以产品为导向”CDIO教学模式所带来的不同于传统教学模式的参与感。这种以学生为主体,实现了“做中学”的全新教育理念,对于提高学生能力,激发学习兴趣,促进化工热力学课程建设等各个方面都具有非常重要的意义。
化工热力学教学现状分析
教学内容与实际脱节随着近年来工业体系的不断进步和化工行业的快速发展,化工热力学作为一门体系较为完善的课程,其教学内容与实际的化工技术相比已显得比较滞后。这种滞后不但使教学与工程脱节,并且由于课程模式长期固定,在某种意义上限制了教师的思维方式,进而对学生的创新及发散思维也造成影响。同时,也造成了大学与社会之间的脱离。这也是为什么学生掌握了知识,却不能在毕业以后派上用场的原因。
忽略了学生作为主体的角色在从事化工热力学教学的十余年中,如何解决教与学之间存在的矛盾,也是一直困扰着笔者的一个问题。为何在经历了数次改革之后,我们的教学却并没有发生实质的改变?其原因在于忽略了“在教育过程中,学生才是主体”的这一事实。一直以来,无论运用何种创新式的教学方法,总是离不开以教师作为主体的讲授,总是去研究如何将知识更快速准确的灌输给作为客体的学生,如何将枯燥的理论讲授变得生动有趣,让学生在愉快的氛围中掌握知识,在一次一次的教学改革中,教师历练成了“优秀的演员”,而学生充其量也就是一个“文明的观众”并没有成为一名“优秀的演员”。在这种教育方式下,培养出来的学生,实际上是被剥夺了自主学习的机会,其思维模式也会变得僵化,重理论,轻实践。在具体问题的处理上往往拘泥于唯一的“正确方案”,按照教师或书本上所讲述的步骤给出解答,这就达到了我们所说的“掌握”的基本要求。学生并不会从一个实际的工程问题中,发现相关的热力学问题和定义热力学问题。比如,在讲授流体的 “PVT”关系时,我们会定义好两个变量(温度T,压力P)让学生去求体积(V),学生都可以很好的根据热力学方程解出体积,但如果让学生去求解某工艺流程中输送流体的管径时(生产能力即流体的质量流量已知),学生就常常束手无措。他们不会根据输送流体的工艺条件(即温度、压力)用学过的热力学知识来求出流体的摩尔体积,将其换算成流体的密度后,再根据流体的质量流量解出体积流量结合管路中的允许的流体流速去求管径。可是如果将这种求管径的问题放在化工原理的课程中,学生又可以很好的解决。因为,在化工原理的课程中,流体的密度常常都是作为已知量出现在例题中的,而在实际的工程设计和计算中,这些问题都是需要靠学生自己去发现、定义并解决的。学生这种今后最需要能力,在我们多年的教学中却被忽略了。
总之,无论是在教学内容上,还是在教学模式上,现有的化工热力学教学当中都存在着很多问题,已经逐渐无法满足社会对高等人才培养的需要。而CDIO的教学理念则为我们解决这一问题提供了一项新的可能性。通过将热力学课程与CDIO教学理念相结合,让学生在“做中学”的过程中更好地掌握知识,提高能力,通过一个个真实的工程案例,去研究问题、发现问题。这样,学生才能具有获取相关知识去解决问题的动力。在此过程中,重要的不是解决了一个具体的问题并由此掌握了相关的知识,而是在于学会如何发现问题、定义问题、分析问题并获取相应的知识解决问题,总结新知识,同时,加强与人沟通的能力以及团队合作的能力。那么,究竟如何进行化工热力学课程的改革呢?
基于CDIO理念下热力学教学改革方案
针对化工热力学教学上的种种问题,我们确定了以“产品为导向”的教学模式改革。就是让学生通过“产品工艺的工程设计”真正学到工程设计中的热力学知识。热力学是从工程中来,最终还要回到工程中去,为工程服务。因此,确定了以产品制造为目标,将学生感兴趣的产品“工业化”,学生扮演一个“工程师”主持一个“产品与过程”的工程设计工作。在工程项目的设计中,学生必然会碰到相关的热力学问题。如工艺条件下流体密度(流体的PVT关系)、换热器和功设备的负荷计算(流体的热力学性质:焓、熵与PVT的关系)、分离塔的计算(流体的相平衡)等等,在设计过程中,学生遇到问题时,教师加以适当的指导并结合课堂所讲授的热力学内容解决实际工程中的问题,最终完成一个工程设计报告。学生只凭上课听讲是不可能将项目设计好的。必须通过自己看书、查阅大量的文献与资料,与同组同学研究讨论,才可能将项目完成。在这个过程中,强化了化工热力学在工程中的应用,让学生真正体会到热力学不是虚无飘渺的理论,而是实实在在的技能。为此,我们制定的具体改革方案如下:
将学生按班级分组。原则上每班两大组,也可根据个人兴趣自成一组。选择一个学生感兴趣的化工产品,围绕如何实现该产品的工业化完成以下内容:(1)市场调研报告。包括:产品的国内外发展现状、市场前景、简单的经济分析及相关的工艺流程的了解(开课后第1~4周完成)。(2)对产品多套工艺流程方案进行可行性及经济分析,确定小组详细的工艺流程路线及详细的工艺条件,完成简单的工艺流程图(开课后第5~8周完成)。(3)根据学生选定的工艺过程,完成简单的工艺流程图,教师指定与工艺流程相关的热力学计算,通过计算体会热力学在工程中的应用(开课后第9~12周完成)。(4)将以上三部分合成一个完整的报告期末上交,报告成绩占期末总成绩的30%。每一小步的工作要求完成的功课都要按时上交,并按教师的批改意见修改完善自己的报告内容(开课后第13~16周完成)。(5)最后,选择优秀的项目报告作讲演(第17周完成)。
由于选题是学生根据自己的兴趣确定的工业产品,因此,项目类型与涉及的学科面应该是很复杂的。教师不可能事先知道结果,这就要求教师需要具有相对扎实的工程实际和理论的背景知识,指导学生在课题初期尽快进入课题角色,随着课题的进展,学生要自己获取更多的相关知识,并进行深入的研究,应用知识去解决问题。在此过程中,教师要做好“导演”,侧重对学生的方法和能力方面进行指导。学生在整个过程中一定会投入大量的时间和精力,因为是以小组为单位,所以,最后的项目一定是集中了整个团队的才智,一定会有所收获。
通过两年的实践,使用以上方法取得了较好的教学效果,在加强学生学习热力学课程积极性的同时,使学生在学习期间就能受到未来职场环境的熏陶,只有叫他们了解自己将来的用武之地,造就他们成为合格的化工专业人才,满足产业和社会的需要。
然而,在改革中还存在一些问题,如学生的合作还存在欠缺,各组同学中都有“坐车”的现象,如何对这部分不积极参与的学生进行评价,使所有学生都能积极动起来,将是我们未来改革中亟待解决的问题。
结语
化工热力学课程从2009年开始进行了CDIO工程教育培养模式的理论与实践探索,并取得初步成效,我们将不断努力探索,使这一教育模式趋于科学、有效。积极推进CDIO人才培养的培养方案改革和教学方法创新,开展适应于学生研究性学习的教学方法创新,在传统的案例式、启发式、交流式教学方法改革中推进体验式、研究式、讨论式教学方法,利用具体工程项目的实施,引导学生“做中学”,通过营造工程环境,实现师生间、学生间对话式学习和合作式学习,形成教学相长的生动学习局面。在教学过程中融入最新的化工工程技术成果和工艺方案,启迪学生的工程意识和利用科技成果的创业意识,开拓学生的创新思维和创业精神,构筑“创新创业”应用型人才培养的知识新体系和课程新体系。
参考文献:
[1]杨泽慧,邵丹凤,洪晓波.应用化工热力学教学改革与实践[J].宁波工程学院学报,(19):2,75-78.
[2]王晋黄,李忠铭,林俊杰.化工热力学课程教学改革与实践[J].化工高等教育,2005,(4):19-22.
[3]常贺英,马沛生.论化工热力学在化工类课程体系中的核心作用[J].化工高等教育,2005,(4):28-30.
[4]蒋丽红,李沪萍.化工热力学教学改革研究与实践[J].化工高等教育,2005,(3):33-36.
[5]冯新,陆小华,吉远辉.化工热力学中从生活中来到生产中去的实例[J].化工高等教育,2009,(1):42-46.
[6]查建中,何永汕.中国工程教育改革三大战略[M].北京:北京理工大学出版社,2009.
作者简介:
徐新(1967—),硕士,北京石油化工学院副教授,研究方向为化工。
关键词:实验教学;工程热力学;教学改革
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)17-0263-02
实验教学是高等学校实践教学环节的基本内容,是培养基础实、知识宽、能力强、素质高的创新型人才的主阵地,实验教学对于提高学生的综合素质、培养学生的创新精神与实践能力具有重要的作用。通过实验,增强学生的感性认识,使学生获得一定的综合分析能力,培养学生分析问题解决问题的能力。工程热力学是研究热能有效利用以及热能和机械能等其他能量转换规律及其应用的工程技术学科。工程热力学概念多、内容抽象难懂、系统性和工程性强等特点,学生普遍学习感觉较难。为了促进学生的学习兴趣和提高课堂教学质量,需要重视工程热力学实验教学在工程热力学教学中过程中的重要性。笔者以工程热力学实验教学中的制冷循环为例,探讨了实验教学对工程热力学的脾补助益。
一、制冷循环实验
1.基本热力过程。在工程热力学实验教学中,通常开展蒸汽压缩制冷循环实验。这个实验的主要目的为:掌握蒸汽压缩制冷循环系统的工作过程及原理;了解制冷压缩机、节流膨胀装置、蒸发器和冷凝器的结构和组成;掌握蒸汽压缩制冷循环制冷系数的计算方法及提高制冷系数可采用的方法。该制冷循环中采用F12制冷剂,以毛细管为节流膨胀b置,冷凝器为自然对流式,蒸发器亦为自然对流式。在制冷系统中,蒸发器、冷凝器、压缩机和节流膨胀装置是制冷系统必不可少的四大件,其中蒸发器是输送冷量的设备,制冷剂在其中吸收被冷却的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放热设备,节流阀对制冷剂起节流降压作用。
其工作过程为:首先制冷工质经过压缩机压缩至高温高压状态,即1―2;高温高压的工质在冷凝器中将热量释放出去,即2―4;制冷工质经毛细管膨胀,压力温度降低,即4―5;低温低压的工质在蒸发器中吸收热量,即5―1。由此完成一个完整的制冷循环,见图1。对应于热力学压焓图见图2,1―2在压缩机中的压缩过程,为等熵压缩;2―4在冷凝器中的放热过程,为定压放热;4―5在毛细管中的膨胀过程,为节流过程(节流前后焓相等);5―1在蒸发器中的吸热过程,为定压吸热。
2.实验中的参数测定。主要完成制冷系数和制冷量的计算。
二、实验环节与课堂教学的统一
通过实验环节,学生认识了制冷系统的基本组成和运行过程,了解了制冷系统部件在工作过程中的基本特点,能够领会教师在课堂教学中对制冷系统的叙述和描绘。同时,经过实验教学,学生能够主动对制冷循环的工作过程提出自己的看法,寻找提高系统制冷效果的途径。例如:教师以前在课堂上介绍完制冷循环后,提到如何改进或提高系统制冷量,夏天在高温时,不要将室内空调温度设定过低。学生在理解时,总是先去回想制冷系数的计算公式,然后才去认可,经过实验教学后,学生能够较好地理解这一原因。同时对制冷循环热力过程图中的定熵压缩、定压吸放热以及节流过程有了更好的理解和体会。在此基础上,教师将前面可逆过程、平衡态以及理想过程回串,学生将会对热力学中的相关概念有着更深入的认识,提高了教学质量和教学效果。
通过对实验内容及方式进行合理组织,鼓励学生自己动手进行实验组装、调试试验台,在实验过程中,与学生讨论确定实验方案、实验测定参数以及实验后的自我评议,进一步激发学生的学习兴趣和创造力,提升学生分析问题、解决问题的能力。同时在课堂教学中注意与实验教学中的统一、衔接,加深学生对所学知识的理解和掌握。
三、改进实验教学方法和体系
工程热力学作为一门专业基础课,与工程实际密切相关。在教学过程中,需要有很多的工程问题作为背景。以教科书为单一内容的PPT演示,并不能满足课堂学生学习的需要。笔者根据多年的教学心得,主要建议如下:(1)根据专业培养的需要,制定一些具有典型性的热力学实验,如制冷循环实验、工质热物性测定、绝热节流效应测定等。(2)改进实验组织模式。鼓励学生自己动手开展目标性实验,并进行实验自我评议,发挥学生的主观能动性,激发学生的学习兴趣。(3)更新教学实验设备,增添新的测试仪器和设备,不断满足学生对热力学学习的要求。(4)构建虚拟实验中心,随着计算机及互联网技术的不断发展,同时为了解决实验设备少,实验时间受限的问题,建立远程与虚拟实验中心,可以满足学生课后随时学习、探索的需要。
参考文献:
摘要:
通过建立一个基于非平衡态热力学的岩石黏G弹G塑性本构模型,用以分析岩石的蠕变变形和蠕变失稳问题.该模型不同于经典弹G塑性模型,从可逆、不可逆能量过程及能量的涨落出发,推导得到了可统一描述岩石黏G弹G塑的本构关系,无需屈服面、流动法则等概念.它通过将应力划分为弹性应力和黏滞应力来描述岩石的黏G弹,而通过耗散流和涨落运动的概念来描述岩石的黏G塑.分析表明,该模型可以反映岩石在高围压下延性破坏、在低围压下脆性破坏的特征,同时也可较好地预测岩石的蠕变变形和蠕变失稳规律,并可较好地阐述其中的物理机制.
关键词:
岩石蠕变;黏G弹G塑性本构;蠕变失稳;砂岩
岩石蠕变行为对地下巷道、高边坡等工程结构的长期稳定性有着非常重要的影响[1G2],是岩土工程中的重要研究内容.在这些工程领域中,岩土结构的失稳破坏往往与岩体尤其是岩体软弱夹层或断层间软岩的蠕变息息相关.因此,建立合理的岩石蠕变本构模型具有重要的理论价值和工程意义.目前,岩石蠕变本构模型主要可分为如下3种类型:1)直接定义关于应变和时间的拟合曲线,并根据实测蠕变曲线标定拟合参数[3G4].这种方法得到的蠕变本构关系往往仅适应于特定岩土体在特定路径下的蠕变行为,不具备普适性和理论性;2)将代表岩土体不同力学性质(如弹性、塑性和黏性)的元件进行串并联组合,得到相应形式的蠕变本构模型,如Maxwell模型、Kelvin模型、Burgers模型和Bingham模型等[5].这些模型一般适应于对岩石蠕变变形初期或者稳定蠕变变形的模拟,不能反映岩石在复杂应力路径下的加速蠕变,即蠕变失稳破坏行为,学者们往往通过在这些模型中引入非线性元件来解决这个问题[6G7],但这增大了模型参数数量和模型的复杂性,且相应的元件模型和参数多直接通过实测曲线拟合,缺乏对蠕变物理机制的解释,因而在描述岩体不同类型蠕变行为时欠缺统一性;3)基于内时理论和损伤理论等建立的蠕变本构模型[8G9],此类模型具有较为明确的理论背景,通过相应的理论推导得到流变元件的本构关系,是对元件模型的有益补充,但实质上仍然属于元件模型.与上述模型不同,本文基于经典非平衡态热力学[10G11],通过对岩体的弹性能量和不可逆能量耗散的热力学描述,给出了一个考虑稳定蠕变和加速蠕变行为的统一本构模型,并给出相应的物理机制解释.该模型所采用的理论框架已经被成功应用于对黏土和砂土等岩土材料的本构建模[12G15],由此得到的本构模型无需屈服面和塑性势等概念,可统一解决岩土材料的诸多力学问题.基于此模型,本文对岩石的蠕变变形、蠕变失稳及长期强度展开了模拟和讨论.
1岩石蠕变的热力学理论框架
1.1能量的热力学描述对于岩石材料,外部输入的能量将转化为材料内部的弹性势能和能量耗散,并可分别采用弹性应变和熵作为热力学状态量来描述.同时,岩石内部微观结构单元(如晶格和微裂隙结构面)之间会产生相对滑移、张合等运动.这说明岩石内部存在一个偏离宏观平均运动场、介于宏观尺度和分子尺度之间的运动场,也称之为涨落[16](对应的运动能称为涨落能),它具备随机性和不规则性.此外,由于微观结构单元之间的非弹性相互作用,涨落能最终将随着时间转化为宏观的能量耗散.因此,它即不同于能量耗散,也不同于宏观的弹性能量.注意到涨落能与熵定义上的相似性,可通过定义一个与熵类似的变量来描述它.在颗粒固体力学中,这种“熵”通常称为颗粒熵[12G16],并给出了定量的热力学描述.由于热力学理论的普适性,可认为颗粒熵的定义和定量方法同样也适应于岩石材料;为方便起见,本文也沿用颗粒熵的概念.
1.2黏G弹G塑性本构模型式(1b)所示能量演化规律必须满足能量守恒定律.不考虑热传导及孔隙水的作用.可见,黏G塑性蠕变和应力松弛在本质上是等效的,均为岩石内部微观结构的滑移、裂隙的张合等作用的时间效应所引起.这在本模型中,表现为颗粒温度并不随着应力或应变加载的停止而即刻消失,而是随着时间发生衰减(对于应力松弛和稳定蠕变变形)或者持续增长(对于加速蠕变或蠕变失稳),继而伴随着非弹性变形(黏G塑性蠕变)或应力值的减小.
2岩石黏G弹G塑分析
本文模型共有9个参数,按照其作用分为3个类型:弹G塑性、黏G弹性和黏G塑性参数.表1为中砂岩的模型参数列表,文中模拟所用的模型参数均见于表1.下文将分别给出基于上述模型的岩石弹G塑性、黏G弹性和黏G塑模拟,并给出相应的参数分析.图3a为在p=1MPa和不同水平剪应力作用下中砂岩的黏G弹性蠕变响应模拟结果,图3b为相应的应力状态点及由式(9)所确定的破坏线(弹性失稳线).显见,当应力状态处于破坏线以下时,黏G弹性应变最终将趋于稳定.而当应力状态达到或超过破坏线时,黏G弹性应变的发展在经历所谓的初始阶段、等速阶段后,将进入加速增长阶段,即加速蠕变.因此,岩石蠕变失稳的物理机制是:在蠕变变形作用下,弹性失稳被激发,弹性应力(式12a左端的第1部分)无法达到稳定状态,促使黏滞应力(式12b左端第2部分)继续甚至加速增长.
3结论
一、 加强学科的逻辑性教学
教师在教学学生时,很多学生也是很用功的,但是在学习的能力上显得很差劲,学习效果不好。其关键是对于科间的沟通与衔接差,教师没有起到科学组织教学作用。化工热力学是一门专业基础课程,其中涉及到热力学基本定律和热力学函数。如焓、熵、内能、自由能、自由焓、流体P-V-T关系的状态方程等等知识,对于这些知识有很强的理论性、应用性,而且知识又具有强烈的过渡性,而且这些知识大多是物理化学中所学习过的,现在需要在化工热力学中进一步深化与应用,这就需要做好逻辑性的过渡,而往往很多教师只是单纯的就课本而教书,导致很多学生学不好,这里就需要改革。
做好数学学科的沟通,起到穿针引线的作用,因为化工热力学课程中涉及到很多计算公式,如流体的P-V-T关系计算公式、热力学性质的计算公式、化工过程能量分析计算公式、相平衡计算公式、化学反应平衡计算公式等方面。这就要求数学知识功底的厚实了,学校在开展化工热力学课教学时,应该加强与相关的专业基础课程及专业课程的横向联系,使得理论联系实际,从而放开思路,使得学生不觉得化工热力学理论太深,难以学习的目的。
二、 合理设置教学内容
教师应该根据学生的实际情况,根据教材的内容合理调整教材的结构,使之具有合理性、实用性,达到理论与实践相结合 。为了更好的制定教学大纲和选择教学内容,可以 将热力学知识体系分为两个板块:一是流体的P-V-T性质及计算、流体热力学性质以及应用。让学生深刻的认识到气体和液体的P-V-T性质及计算、流体的热力学性质计算。并且能够熟练掌握常用的流体状态方程和应用计算,还有要求学生学会计算的思路、步骤和方法;具备利用状态方程和热容数据计算流体的热力学性质的方法,绘制热力学图表的能力。二是溶液理论、相平衡和应用。教师应采取循序渐进、先易后难的方法进行逐步讲解和学习,最后达到融会贯通。并根据超额吉布氏自由能与活度系数的关系,和结合模型方程计算混合溶液的活度系数;同时掌握相平衡理论在不同条件下的方程表达式及其应用,和超临界流体在分离中的应用功能。
三、 化工热力学方面的多媒体教学
多媒体教学是指教师在教学过程中,根据教学目标和教学对象的特点,以此通过教学设计,合理选择和运用现代教学媒体,并与传统教学手段有机组合,共同参与教学全过程,以多种媒体信息作用于学生,形成合理的教学过程结构,达到最优化的教学效果。而化工热力学抽象、难懂,而且学习也很枯燥,很多学生很厌恶学习,学校教师也感到很头疼,不论教师在讲台上怎样的手舞足蹈,怎样的卖力讲价,往往也收不到很大的效果。学校应改变现有的教学手段,引进多媒体教学,把这种高科技的东西应用到学生的学习中去,使学生的学习效率能够事半功倍。因为多媒体是将计算机、电视机、录像机、录音机和游戏机等技术融为一体的一种技术,能够接收外部图像、声音、录像及各种媒体信息,经计算机加工处理后以图片、文字、声音、动画等多种方式输出,实现输入输出方式的多元化,改变了计算机只能输入输出文字、数据的局限。这样形象、生动、直观的教学,学生在学习中就会感到一种有如身临其境的感觉。从而加深学生对问题的理解,并大大增加了课堂信息量,和教学效率。如教师在讲解化工热力学中混合物汽液相平衡计算和状态方程法计算组成、温度以及压力时,如果按照传统的教学方法,教师要在讲台上花很多功夫,而且是非常复杂而且容易出错,迭代步骤繁多,计算费时费力,最终收到的效果还很差。假设利于用多媒体技术进行教学,教师就可以形象生动地展示计算框图,在程序中采用循环语句,而其中的变动,重复演示等方面,也只需要输入初始的条件,变能很快的得到一种结果。使学生也更能容易接受知识。同时也免除教师上课时写板书的劳累。所以开展多媒体教学是很有必要的一件事情。
【关键词】准静态过程可逆过程
【中图分类号】O414.1【文献标识码】A【文章编号】1006-9682(2009)12-0069-02
准静态过程和可逆过程是热力学中的两个很重要的概念。目前国内很多教材对这两个概念并不加以明显的区分,很多文献直接冠以准静态过程的功、热量的说法。对这两个热力学过程,笔者有一些自己的看法,在这里和同行们进行共同的探讨。
一、准静态过程的定义
就热力系本身而言,热力学仅对平衡状态进行描述,“平衡”就意味着宏观是静止的;而要实现能量的转换,热力系又必须通过状态的变化即过程来完成,“过程”就意味着变化,意味着平衡被破坏。“平衡”和“过程”这两个矛盾的概念怎样统一起来呢?这就需要引入准平衡过程。[1]
《中国大百科全书》(物理卷)中这样定义准静态过程:[2]准静态过程是“热力学系统在变化时经历的一种理想过程,准静态过程的每一个中间状态都处于平衡态”。或者可以更明确的定义:热力学系统状态发生变化时,经历的每一中间状态都无穷接近于平衡态的热力过程称为准静态过程。
尽管实际的热力过程都是在有限的温差和压差下进行的,都是不平衡过程。但如果和弛豫时间相比,热力过程进行的足够缓慢的话,那么系统在实际过程中所经历的状态都十分接近于平衡态,以至我们可用无穷多个势差为无穷小,前后相继的平衡态来描述系统实际经过的热力过程。显然,这是一种理想化了的过程,但是这种与实际偏离、被理想化了的方法,为经典热力学描述系统经历的实际变化过程提供了可能,使得状态变化能够在热力性质图上用热力过程曲线来描述。因此,准静态过程是经典热力中一类极为重要的过程。[3]
二、可逆过程的定义
可逆过程是热力学中从另一个角度定义的一类理想过程。《中国大百科全书》(物理卷)对其这样定义:“一个系统由某个状态出发经过某一过程达到另一状态,如果存在另一过程,能使系统回到原来的状态,同时消除了原来的过程对外界所引起的一切影响,则原来的过程就称为可逆过程”。
上述定义实际上包含了两方面的意义。因为定义中的初态和终态是任意的,所以定义的第一个意义是系统经历一个可逆过程后,可以严格地按照原来的途径返回到最初的状态,因此可逆过程必然是准静态过程。该定义的另外一个意义是,可逆过程中不存在任何的耗散损失,因此,在按其反过程返回初态后,没有给外界留下任何的痕迹。
引入可逆过程这个概念后,系统与外界功量和热量的交换能用系统的参数来计算,而无需考虑不知道情况的外界参数,从而使问题简化,而只需要把注意力放在系统,即系统内工质的状态及状态的变化描述上,这正是可逆过程的突出优点;可逆过程进行的结果不会产生任何能量损失,因而可逆过程可以作为实际过程中能量转换效果比较的标准和极限;实际过程或多或少地存在着各种不可逆因素,所以实际过程都是不可逆的,为简便起见常把实际过程当作可逆过程进行分析计算,然后再用一些经验系数加以修正,这是可逆过程引入的实际意义所在。
三、准静态过程和可逆过程联系和区别
准静态过程和可逆过程既有区别又有联系,这要从两者的实现条件谈起。我们说,准静态过程中,物系要随时具有力、热和化学的平衡,即处于完全平衡中,这样才能保证准静态过程的实现。而可逆过程的实现则要求过程没有任何不可逆损失。不可逆损失可分为非平衡损失和耗散损失两大类,非平衡损失是由物系的非平衡态所引起的,其中包括力、热的和化学的不平衡损失。从这里可以看出,准静态过程没有不平衡损失。而耗散损失是因为机械摩擦阻力、流体粘性阻力以及电阻、磁阻等的作用产生的不可逆损失。对于不涉及电磁等其它现象的热功转换而言,最重要的不可逆损失是物系做宏观运动时产生的粘性摩擦生热。就热力学而言,耗散损失是一种和物质性质有关的不可逆损失。有无非平衡损失取决于系统的状态是否平衡,而有无耗散损失,损失的大小则视物性而定。
综上所述,如既无非平衡损失又无耗散损失,过程就是可逆的。准静态过程没有非平衡损失,因此是实现可逆过程的前提条件,但准静态过程并不一定就是可逆过程。比如化学纯气体在喷管内做绝热稳定流动时,垂直于流动方向的各截面上气体的压力和温度均匀一致,过程中气体状态随时处于平衡,此时流动是准静态过程,不会有非平衡损失出现。但同一截面上气体的流速并不相等,流束中心的流速大于临近管壁处的流速,因而会有流体的宏观相对运动。由于流体的粘性作用,将使气体的宏观动能一部分转化为热能而产生粘性摩擦生热的损失。这时这个流动过程是准静态过程,而不是可逆过程。反过来说,可逆过程则一定是准静态过程。
准静态过程和可逆过程的区别还在于,准静态过程的引入只是为了对系统的热力过程进行描述,并没有涉及到系统与外界功量和热量的交换。也就是说,尽管所有准静态过程都可以在热力图上表示出来,但准静态过程在p-v上过程曲线下的面积∫pdv并不代表功,把它称之为准静态过程的功是没有意义的。[4]那么,可以从理想气体的两种绝热膨胀过程进行分析。一是理想气体经过绝热的准静态的膨胀,但存在耗散损失;另外一种是理想气体经过绝热可逆膨胀。在这两个过程中,理想气体初态相同,在前一个过程中因为存在耗散,因此将有部分的机械能转化为理想气体的内能,因此其终态温度要高于第二种情况,表现在图上则如图1所示,2′点的温度要高于2点的温度。如果准静态过程曲线下面的面积代表功的话,在这样的情况下,准静态过程的功要大于可逆过程的功(图1中12′3′′31的面积大于123′31的面积),我们说,这是不符合热力学的规律的,因此,准静态过程曲线下面的面积∫pdv并不恒代表功,只有可逆过程曲线下面的面积∫pdv才代表功。这是因为准静态概念的提出侧重于描述过程,并没有涉及功热转换,而可逆过程用于分析外部条件对能量转换的影响。
图1准静态过程和可逆过程绝热过程线
四、结束语
准静态过程和可逆过程是经典热力中两个重要的概念,搞清楚两者之间的真正关系,不仅有助于对热力中两个基本概念的准确理解,澄清涉及这两个概念的一些不正确的习惯观点,而且能明确揭示不平衡自发趋于平衡现象与熵增现象之间的必然联系,对我们用热力学理论解决实际问题有很大的帮助。
参考文献
1 苏长荪.高等工程热力学[M].高等教育出版社,1996:32
2 杨本洛.经典热力学中若干基本概念的探讨[M].科学出版社,1996:104~105
关键词:过程装备与控制工程;力学课程;内容优化;教学方法
作者简介:孙铜生(1981-),男,安徽天长人,安徽工程大学机械与汽车工程学院,副教授。(安徽 芜湖 241000)
基金项目:本文系安徽工程大学教学研究项目“过程装备与控制工程专业力学基础课程教学研究与探索”(项目编号:2011xjy32)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)14-0110-02
我国的过程装备与控制工程专业始建于20世纪50年代,前身为化工设备与机械专业,由于其应用于加工制造流程性材料产品即过程工业中,且随着自动控制技术在化工机械中得到越来越广泛的应用,1998年经过教育部批准更名为过程装备与控制工程。该专业目标是培养从事过程装备与控制工程领域的工程设计、安装、检修与科研的应用型高级专门人才,专业基础课及专业主干课主要有:理论力学、材料力学、机械设计、机械原理、电工技术、电子技术、工程流体力学、工程热力学、化工原理、流体机械、化工设备设计、化工容器设计、过程装备控制技术、过程装备制造与检测、控制工程基础等,可见力学类课程在专业学习中起着重要的作用。
一、力学课程在过程装备与控制工程专业中的地位
过程装备根据制造方法不同可分为两类:一类以焊接为主要的制造手段,如塔器、换热器、锅炉等,称为过程设备;另一类以机械加工为主要的制造手段,如压缩机、离心机、泵等,称为过程机器。[1]过程设备一般都承受高温、高压,承压部件的设计与制造是过程设备的关键问题,故过程设备又是压力容器,压力容器又分为低压容器(0.1MPa≤p<1.6MPa)、中压容器(1.6MPa≤p<10MPa)、高压容器(10MPa≤p<100MPa)、超高压容器(p≥100MPa)。为了过程装备能够正常工作,需要其具有一定强度、刚度及稳定性,如果装备的结构设计不合理或选材不当,就不能保证装备的正常及安全运行,同时还要满足经济性要求,这就对理论力学及材料力学提出了更高的要求。过程装备中既有以流体能量为原动力的动力机械如蒸汽轮机、内燃机等,又有以流体作为工作介质的工作机械比如泵、各种塔器、换热器、压缩机等,这些过程装备都是以流体静力学、运动学及动力学为基础的,故工程流体力学对过程装备的设计尤为重要。过程装备的主要目的是为了获得产品,从原材料到产品要经历一系列物理的或化学的反应,这些反应伴随着能量的转换,特别是热能与机械能的转换,而工程热力学的研究内容就是能量的转换规律、提高能量转化效率的途径及能源利用的经济性,故工程热力学是过程装备与控制工程专业的一门基础性课程。可见,力学类课程可为学生学习专业知识和从事本专业的科研、生产工作奠定必备的理论基础。
二、力学课程教学问题及内容优化
1.课程存在的问题
通过对开设过程装备与控制工程专业的部分院校走访及对各力学教材的分析,发现目前专业力学课程存在的主要问题有:
(1)基础课程和专业课程的衔接不好。比如在工程流体力学里讲述了流体动力学方程式及管中流动等,而在流体机械中这些基础知识重复出现;工程热力学中的压气机热力过程及制冷循环在流体机械中也有重复;理论力学中的摩擦在机械设计中也有相关内容,材料力学中的平板弯曲分析理论与过程设备设计中有关内容重复等;工程流体力学中的流体静力学基本方程式、流体在管中流体的连续方程式和能量方程式、流体粘性和牛顿定律、层流及湍流、流体流动的沿程阻力及局部阻力等内容均在化工原理中出现。
(2)力学课程之间也存在内容交叉。比如工程流体力学和工程热力学中都有关于气体和蒸汽的流动、定熵和绝热气流的基本方程式的章节,工程流体力学中的流体状态参数和工程热力学的工质状态参数内容重复;理论力学中的动量矩定理在工程流体力学中重复出现。
综上可见,目前力学基础课停留于教学计划中的自身建设,课程规划缺乏有机协调,课程结构需要进一步优化,避免重复建设和教学资源的浪费。
2.课程内容优化
由于理论力学是学习材料力学的基础,可将将理论力学和材料力学合并为工程力学,工程流体力学及工程热力学单独开设,将专业课中所需要的理论知识全部归并到力学课程中进行讲解,力学课程中的交叉内容按照先上课程先安排的规则进行调整,优化后的主要教学内容有:
(1)工程力学。[2]平面汇交力系;平面力偶系;平面一般力系;空间力系;点的运动及合成运动;钢体的基本运动和平面运动;质点的运动微分方程;刚体转动的微分方程;质点及质点系的动能定理;刚体的惯性力系;动量定理与动量矩定理;虚位移法;轴向拉伸与压缩;剪切的计算;圆轴的扭转;梁的弯曲内力、弯曲应力及弯曲变形的计算;第一、二、三、四强度理论;组合变形及强度计算;压杆稳定性计算。
(2)工程流体力学。[3]流体的基本参数及粘性;流体平衡的微分方程式;重力场中的流体平衡及流体的相对平衡;流体静压强的计算与测量;流体运动的连续方程式;流体运动的微分方程式;伯努利方程式;层流及湍流;管路的沿程阻力及局部阻力计算;薄壁孔出口流;厚壁孔出口流;平面缝隙流体;环形缝隙流动。
(3)工程热力学。[4]热力系统与热力学状态;功和热的概念;热力学第一定律;开口和闭口系统能量方程式;气体和蒸汽的比热容、热力学能、焓和熵;气体和蒸汽的基本热力过程;热力学第二定律;卡诺循环与卡诺定理;孤立系统熵增原理;压气机的热力过程;制冷循环;气体动力循环;蒸汽动力装置循环;实际气体性质及热力学表达式。
三、力学课程教学方法探索
1.理解记忆教学法
教学中发现学生学习过程中存在以下两个问题:
(1)部分同学觉得力学课程太难,书上随便哪一页都可以看到公式,一本书学下来接触的公式基本上都在几百个,便放弃了课程学习。
(2)部分同学认为既然力学就是公式的组合,那么平时上课不需要听讲,考试前把公式背一遍就可以了。其实这两种态度都是不可取的,力学课的公式虽多,但大多数公式都是基于一些基本的定理推导来的,只要理解这些定理的实质就能灵活应用,大多数的公式都可以通过简单的推理得来,所以在教学中要特别注意基本定理的讲解。比如工程热力学课程内容基本是建立在热力学第一定律和第二定律的基础上,在进行热力学第一定律讲解时,首先应从能量守恒原理讲起,能量不生不灭,热力系统存储能量的增量等于进入系统能量与离开系统能量的差值,而热力系统又分为开口系统和闭口系统,因此第一定律表达式有两种形式,难点在于开口系统表达式的推导,只要逐次分析进入系统的能量的组成、离开系统的能量组成及系统储存能量组成并用表达式表示,那么开口系统能量表达式就不难理解了。再如,工程力学中讲解如何提高梁抗弯能力的措施时,结合梁弯曲时的正应力强度条件。因此,不难理解如下措施:第一,选用合理的截面:由正应力强度条件可知,梁的抗弯能力还取决于抗弯截面系数。而材料的重量又取决于梁的截面积,因此可把抗弯截面系数除梁截面积作为一个衡量指标,以达到既提高强度,又节省材料的目的。第二,采用变截面梁:从正应力强度条件可以看出,横力弯曲时,梁的弯矩是随截面位置而变化的,位置不同弯矩的大小不同,在某个截面处弯矩最大,若设计成等截面的梁,只有最大弯矩所在截面处正应力达到许用应力值,材料强度得不到充分发挥。为了减少材料消耗、减轻重量,可把梁制成截面随截面位置变化的变截面梁。第三,适当布置载荷和支座位置:从正应力强度条件可以看出,在抗弯截面模量不变的情况下,最大弯矩越小,梁的承载能力越高,应合理地安排梁的支承及加载方式以降低最大弯矩值。
2.工程实践教学法
力学课程主要任务在于:通过对课程的学习,可提高学生力学基础理论水平,培养学生分析和处理问题的抽象能力和逻辑思维能力,为学生从事过程装备本专业的设计工作奠定必备的理论基础,同时可训练学生在实际工程中的理论联系实际的能力。因此在力学课程讲解过程中,要注重将力学知识和工程实例结合起来进行讲解。[5,6]一方面可以加深同学们对课程的认识,训练并提高从事设备设计工作的实践能力;另一方面可激发同学们的学习兴趣,从枯燥的公式推理中解脱出来,提高学习效率。例如,在进行逆向卡诺循环讲解时,逆向卡诺循环又分为制冷循环和热泵循环,通过理解记忆教学法推出制冷系数和供暖系数分别为:
(1)
(2)
这里,q1为工质向高温热源的放热量,q2为工质从低温热源的吸热量,T1为高温热源温度,T2为低温热源温度。这四个参数在理解时往往会混淆,为什么会从低温热源吸热向高温热源放热?为什么在同一个循环下会有制冷和供暖两种效应?为什么制冷系数用从低温热源的吸热量除循环净功而供暖系数却用向高温热源的放热量除循环净功呢?这里就可以引入空调的实例,夏天时把模式调到制冷上,空调就会吹出凉风,冬天时把模式调到供暖时,空调就会吹出暖风。夏天,室外比室内温度高,室外就是高温热源,室内是低温热源,制冷的原因就在于把室内(低温热源)的热量排向室外(高温热源),这就实现了从低温热源吸热向高温热源放热,同时室内制冷效果就在于从室内吸收的热量的多少,因此制冷系数把q2作为分子。冬天,室内比室外的温度高,室外就是低温热源,室内是高温热源,供暖的原因在于把室外(低温热源)的热量排向了室内(低温热源),同样实现了从低温热源吸热向高温热源放热,室内供暖的效果在于从室外吸收的热量的多少,所以供暖系数把q1作为分子。
3.知识串联教学法
过程装备的设计过程中往往需要把所学力学课程的知识进行综合,在一门力学授课课程中不能与其他力学课程独立,要注意将力学课程知识进行衔接,使同学们对力学课程形成一个整体思维,以便在今后能灵活应用并有机结合力学基本原理来解决工程实际问题。
例如,在工程流体力学中讲解流体静压强的方向性时,可将其与工程力学中的空间汇交力系知识进行串联,先分别把作用在微元四面体上的力向三个坐标方向进行投影,写出表面力方程为:
(3)
而微元体上的质量力为:
(4)
再根据空间汇交力系的平衡方程,表面力和质量力的合力在三个坐标方向的投影都为零,从而可得出在三个坐标方向的压强相等,也即流体静压强无方向性的结论。
四、结束语
力学课程在过程装备与控制工程专业建设中要引起足够重视,教学内容优化可避免重复教学,使学生在有限的课堂中能学习更多的专业知识,在教学过程中要不断探索教学方法,提高教学效果,营造良好的教学气氛,全面提高学生的综合素质。
参考文献:
[1]邹广华,刘强.过程装备制造与检测[M].北京:化学工业出版社,
2012.
[2]北京科技大学,东北大学.工程力学[M].北京:高等教育出版社,2010.
[3]张也影.流体力学[M].北京:高等教育出版社,2005.
[4]沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2010.