前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的工业互联网应用方案主题范文,仅供参考,欢迎阅读并收藏。
以十三五规划落实为指引,全面部署落实全省信息化工作
召开一次全省信息化领导小组工作会议,回顾五年多来《浙江省信息化促进条例》贯彻实施情况,统筹研究全省信息化发展工作;
做好国家信息化顶层――《国家信息化发展战略纲要》和《“十三五”国家信息化规划》在浙江省的宣贯工作;
做好《浙江省信息化发展“十三五”规划(“数字浙江2.0”发展规划)》和《浙江省信息化和工业化深度融合国家示范区建设“十三五”规划(2016-2020年)》的实施工作,指导督促各地、各部门落实规划目标任务相关工作,推进全省信息化领域中重大工程、重大平台和重大项目的实施;
开展信息化发展水平考核评价和全省区域两化整合发展水平评估工作,继续做好对全省各市、县(市、区)信息化发展水平评价工作。进一步完善指标体系,优化工作流程,更加科学高效地开展区域两化融合水平评估工作,以评估为抓手,形成地区间比学赶超发展氛围。在此基础上,年度信息化发展和全省区域两化融合发展水平评估报告。
以制造业与互联网融合为主线,深入推进信息化与工业化深度融合国家示范区建设
深化“两化”深度融合国家示范试点区域建设。抓好26个“两化”深度融合国家示范区、6个试点区、160家两化融合综合示范试点企业建设,进一步按照示范区建设实施方案的内容加紧实施机联网、数字工厂、绿色制造等项目。加强对首批18个振兴实体经济(传统产业改造)财政专项激励的工业大县两化融合推进工作的指导,确定两化融合的相关考核内容,推动示范区开展制造业与互联网融合的相关示范试点工程。制定两化深度融合国家示范区验收管理办法,并对首批8个两化融合国家综合示范区和4个专项示范区开展检查验收工作。组织开展示范试点典型案例总结宣传推广。
积极推动制造业互联网“双创”平台建设。引导大型制造企业、互联网企业、电信运营商开放技术、人才、渠道等资源,构建基于互联网的制造业“双创”新生态,支持内外部创业创新。在全省创建20个制造业互联网“双创”示范平台,其中振兴实体经济(传统产业改造)财政专项激励的工业大县至少创建1个“双创”示范平台。引导龙头企业结合特色小镇、高新园区、开发区,建设“双创”空间,力争创建1个国家级制造业互联网“双创”示范平台。组织举办中国产业互联网“双创”大赛。
大力发展基于互联网的制造业新模式。引导制造业企业建立网络化制造资源协同平台,开展协同制造;推动传统生产模式向大规模个性定制转变,发展C2M个性化定制和柔性生产模式;推进企业运用互联网开展在线增值服务,鼓励企业发展面向智能产品和装备的产品全生命周期管理和服务。重点在服装、家电、家具等消费品行业和汽车、机床、叉车、船舶、电梯等装备制造行业培育100个个性化定制和一批协同制造、服务型制造等示范试点企业。鼓励企业申报国家有关基于互联网的制造新模式示范试点项目。
大力推进工业互联网、工业云和工业大数据应用。推进全省2000家重点工业企业开展工业互联网、工业云和工业大数据应用,发展智能制造。建成10个省级智能制造试点示范区,培育100家数字工厂(智能制造)示范企业。利用工业互联网、工业云、RFID(射频识别)与图像识别等智能识别技术,实现工厂内人与机器、机器与物料、机器与机器之间的互联和数据实时采集,运用大数据技术构建数据链,促进基于数据的生产、物流、仓储等环节高效协同,提升柔性化生产能力、精细化管控能力和智能化决策能力。
实施中小企业上云计划。聚焦中小企业云应用,依托产业集群和龙头企业,建设一批专业或行业性云平台,培育10万家上云企业。鼓励中小企业在研发、生产、管理、销售、服务等环节使用云技术,开展个性化定制、网络化协同制造、服务型制造和网上销售等活动,实现客户、供应商资源共享和产业链协同。发展工业电子商务,推进中小制造企业与电商企业、物流企业和金融企业的合作,基于电商云平台整合线上线下资源,打造制造、营销、物流和金融服务等高效协同的一体化新生态。组织召开云计算应用和产业推进大会,办好云栖大会,开展企业上云专项培训。
深入推进“机器换人”和智能装备发展。坚持“分类指导、典型示范、资金扶持、机制保障”的原则,大力推进机器换人、机器联网,推进30家机器换人行业试点,举办百场现场交流会,新增培育省级工程服务公司20家以上。落实“机器人+”行动计划,编制重点行业机器人应用指导意见,完成新增工业机器人1万台目标任务。推进感知互联的智能新产品新装备的研发,大力发展智能传感器、网络终端、工业机器人、数控装备、智能成套装等高端装备产业。
继续实施企业信息化“登高”计划。推动企业信息化从单向应用向综合集成、协同创新阶段登高,从内部纵向集成向企业之间横向集成和产业价值链端到端集成延伸,提升全产业链的要素资源配置效率。全省2000家重点工业企业资源计划普及率达到85%,制造执行系统普及率达到50%,机器联网率达到35%,供应链管理普及率达到70%,产品全生命周期管理系统普及率达到60%,装备数控化率达到50%,企业电子商务采购额和销售额占总采购额和总销售额的比例分别达到40%和55%以上,进入两化融合集成创新阶段的企业达到35%以上。
扎实推进两化融合管理体系贯标工作。重点抓好工信部批复的118家企业管理体系贯标试点,积极争取新增30家企业列入今年的工信部贯标试点。在振兴实体经济(传统产业改造)财政专项激励的工业大县、两化深度融合国家示范区,分别确定10家和5家贯标试点企业。贯标通过评定的企业数力争突破60家。加快培育互联网环境下的企业创新能力,依托两化融合咨服务平台,开展企业两化融合自评估、自诊断、自对标,力争在工信部的两化融合发展地图上有新突破。以两化融合管理体系标准为指导,推动企业业务流程再造和组织方式变革,提升企业管理能力。
以应用需求为引向,大力发展软件和信息技术服务业
提升两化融合的服务支撑能力。以提升行业系统解决方案设计、集成和应用能力为重点,支持重点行业工业互联网、信息物理系统(CPS)开发和应用试点。培育一批行业系统解决方案提供商,加快优秀解决方案的推广普及;培育一批服务于重点行业智能工厂建设的工业信息工程公司,新创建10家云工程云服务和工业信息工程省级重点企业研究院。加强两化融合产业链企业的合作,构建服务于两化融合的产业生态。发展集聚工业信息工程公司的产业互联网小镇。配合工信部召开全国两化融合系统解决方案现场会。
加快软件和信息技术服务业的创新发展。抓好《浙江省“十三五”软件和信息服务业发展规划》的实施,出台支持软件业发展的政策意见,落实好软件企业和软件产品税收优惠政策,完善产业统计制度。加快推进软件和信息服务业9个示范基地、10个特色基地和15个创业基地建设,提升杭州中国软件名城建设水平。加强工业软件支撑能力建设,开展工业技术软件化行动,重点发展以自动控制与感知技术、核心工业软硬件、工业互联网、工业云和智能服务平台“新四基”为核心的技术体系,推进人工智能、区块链、虚拟现实和增强现实等新兴产业的培育,全面提升制造业与互联网融合的有效供给能力。
培育大数据产业。贯彻落实《浙江省促进大数据发展实施计划》,扶持并培育一批大数据分析、大数据应用服务的龙头企业、一批创新型大数据应用类中小企业,加快形成协调发展的大数据产业体系。组织开展第二批大数据产业应用示范企业培育试点工作,建立一批大数据省级重点企业研究院,推动创建一批大数据应用示范工程,拓展大数据应用领域。培育数据资源交易市场试点。
加强工业控制信息安全保障。按照《工业控制系统信息安全防护指南》,指导企业做好工业控制系统信息安全防护,明确工业企业主体责任,提高安全防护意识,细化信息安全防护措施。加快完善网络与信息安全基础设施,研究建立面向工业领域的信息安全技术支撑、检查评估综合保障体系,开发并鼓励企业使用自主可控、安全可靠的工业控制系统。开展工业领域重点行业工业控制系统及相关信息系统安全检查和风险评估。
深化智慧城市建设与农业信息化发展
组织开展对20个省级智慧城市示范试点项目的检查验收及绩效评价工作。重点加快智慧政务、智慧高速、智慧交通、智慧车联网、智慧安防、智慧安监、智慧环保、智慧能源、智慧旅游、智慧健康服务、智慧物流、智慧消防等示范试点项目在全省推广与覆盖。
加快9个省级农业信息化示范试点建设,并筹备建O一批示范试点区。重点围绕农业产业集聚区与现代特色农业强镇建设,在温室大棚、畜禽养殖、大田生产、生态环境监控等重点领域与关键环节,推进信息技术应用。引导互联网企业建立一批农业销售服务平台,加强产销衔接。
强化城镇光网覆盖,城市全面具备100M以上接入能力。4G网络实现城乡全覆盖,争取5G试验网建设。实施农村海岛“扫盲除点”工程,基本具备50M以上接入能力。推进中国互联网络信息中心浙江分中心建设。细化落实省政府与中国电信、中国移动、中国联通和中国铁塔的战略合作协议,推进新技术产业应用示范项目,推进杭州国家互联网骨干直联点建设。全面推进全省三网融合。推进数据中心集约化绿色化,推广公众云计算和大数据服务。推进中小企业信息网络提速降费。
以营造发展氛围为目标,积极组织各类活动
牵头做好第四届世界互联网大会信息化工作部工作,组织筹备好大会期间的新技术新产品、浙江分论坛和互联网之光博览会、双创热土项目对接活动等重大活动;
筹办好中国产业互联网大会,充分发挥制造业和互联网双重基础优势,力争把大会打造为国内外有影响力的产业互联网新平台。
筹办好中国工业大数据(萧山)峰会等,通过活动平台制造业与互联网融合的前沿技术,推出一批典型企业和创新项目,宣传一批行业解决方案和商业新模式。
一、工业互联网的概念浅析
GE公司认为,“工业互联网”是两大革命中先进技术、产品与平台的结合,即工业革命中的机器、设施与网络和互联网革命中的计算、信息与通信。“工业互联网”是数字世界与机器世界的深度融合,其实质也是工业和信息化的融合。与工业4.0的基本理念相似,它同样倡导将人、数据和机器连接起来,形成开放而全球化的工业网络,其内涵已经超越制造过程以及制造业本身,跨越产品生命周期的整个价值链,涵盖航空、能源、交通、医疗等更多工业领域。
“智能”是工业互联网的关键词,GE正在飞机发动机上诠释“智能”的概念。飞机发动机上的各种传感器会收集发动机在空中飞行时的各种数据,这些数据传输到地面,经过智能软件系统分析,可以精确地检测发动机运行状况,甚至预测故障,提示进行预先维修等,以提升飞行安全性以及发动机使用寿命。
二、工业互联网的核心元素
工业互联网具备的三个核心元素是智能机器、先进分析方法以及工作中的人(或者称作“高知劳动力”)。GE认为尽管对工业互联网的讨论聚焦在机器和数据上,但工作中的人也同等重要,事实上,只有改变人们工作的方式,工业互联网才能实现上述价值。由于互联网从根本上降低了人们接触信息以及与其他人交互的难度,因此工业互联网将转变人们在工作场所利用信息和进行协同的方式。
智能机器
利用先进传感器、控制器和软件程序连接世界大量机器(机床)、设施、机队(车船)和网络。
先进分析方法
在材料科学、电子工程以及其它关键学科中利用基于物理的分析方法、主动算法、自动化和深域技术,理解机床和大系统如何运行。
工作中的人
随时连接在工业设施、办公室、医院或移动中工作的人们,支持更加智能的设计、操作、维修以及更高质量的服务与安全性。
对于工作中的人—高知劳动力来说,使其达到新的生产率和决策水平有一系列使能技术,包括:云计算、移动性、智能机器、存在与位置感知、协同和社交软件、虚拟现实与数据可视化以及可穿戴设备和机器人。这些技术在工业互联网中的越来越多地组合使用。
由于软件在智能制造中的突出地位,GE很早就开始重视软件的作用,跳出制造业的思维模式,致力于软件投入,构建自身的数据分析能力。“工业互联网”的这三个核心元素恰恰反映了这一点,因为它关注的更多的是“软”的部分,即机器中的传感与控制网络、分析与计算方法、以及人在新的智能环境下的智力因素。转型软性制造为GE全面参与智能制造硬件基础设施和软件基础结构建设打下基础。
三、工业互联网的革命特征
GE公司认为:工业互联网是200年来继工业革命和互联网革命之后的第三波创新与变革。第一波工业革命中,机器和工厂占据主角;第二波互联网革命中,计算能力和分布式信息网络占据主角;第三波工业互联网革命中,基于机器的分析方法所体现的智能占据主角,以智能设备、智能系统、智能决策这三大数字元素为显著特征。
(1)智能设备
为工业机床提供数字仪器是工业互联网革命的第一步,分布广泛的仪器是工业互联网兴起的一个必要条件。为了让机器(如机床)更加智能,必须降低部署成本、提升计算能力、开发先进分析方法。
理解智能设备产生的大量数据是工业互联网实施的关键之一,工业互联网可以想象成是数据流、软件流、硬件流和信息流及其交互。数据从智能设备和网络获取,使用大数据工具与分析工具存储、分析和可视化,得到“智能信息”用于决策。智能信息还可以在机床、网络、个人或集体之间共享,方便进行智能协同并做出更好的决策。智能信息还可以反馈回原始机床,其中包括加强机床、机队和大型系统运行或维修的扩展数据,这个信息反馈回路可以使机床“学习”经验,通过机上控制系统表现得更佳智能。
每个仪器设备都将产生大量数据,通过工业互联网传输到远程机床和用户分析或存储。工业互联网实施中的重要一环就是确定什么数据留在设备中,留在本地的数据规模是确保工业互联网安全的关键之一,创新技术可以允许敏感数据保留在机床上。这些数据流将慢慢成为运行和绩效历史,让操作员更好地理解工厂中关键机床的运行信息和条件。分析工具将这些信息与类似机床的运行历史进行比较,可以可靠地估算机床的故障情况。运行数据、主动分析方法以这种方式组合起来,避免计划外停工,降低维修成本。
(2)智能系统
智能系统包括许多传统的网络化系统,同时也包括在机队和网络间广泛部署且内置软件的机械装置的组合,随着加入工业互联网的机床和设备增加,机械装置在机队和网络间的协同效应就可以实现。智能系统有几种不同的形式:
网络优化形式
智能系统中的互连机床可以协同运行,实现网络级的运行效率。智能系统还适合在运输网络中进行路线优化,互连的运载器(如车辆)会知晓它们自己的位置和目的地,而且系统中的其它运载器也会得到提醒,从而实现进行路线优化,找到最高效的系统级解决方案。
维修优化形式
智能系统可以促进机队中进行最优的低成本机器维修。跨机器、组件和单个零件的总视图提供这些设备状态的可视信息,以便在正确时间、正确地点运送最适当的零件,这就降低了零件库存要求和维修成本,提升了机器可靠性水平。智能系统维修优化可以与网络学习和主动分析相结合,让工程人员实施预先维修程序。
系统恢复形式
智能系统建立系统范围的智能信息库,可以在遭受冲击后快速和高效地辅助系统恢复。比如,在发生自然灾害时,智能仪表、传感器以及其它智能设备与系统可用于快速探测并隔离最大的问题。地理信息和运行信息可以结合起来支持功能恢复工作。学习形式
网络学习效果是智能系统中机器互连的另一个好处。每台机器的运行经验可以集合到单个信息系统中,加速各台机器的学习。比如,从飞机上收集的带有位置和飞行历史的数据可以提供在各种环境下飞机性能的大量信息。数据挖掘结论可以用于让整个系统变得更智能,从而推动知识积累和结论实施的持续进行。
(3)智能决策
工业互联网的威力将在智能决策中实现。做出智能决策时,足够的信息从智能设备和系统中收集并促进以数据驱动的学习,使得部分机器和网络级运行职能从操作人员那里转移到可靠的数字系统。智能决策是工业互联网的长期愿景,它是工业互联网的元素按设备、按系统组合的过程中所收集知识的顶点。
上述三个数字元素有递进的意味,将其相互串起来的是智能信息。智能设备产生并交互智能信息,智能系统通过智能信息实现系统间智能设备的协同,具备知识学习功能的智能决策处理智能信息并实现整个智能系统的全方位优化。
四、工业互联网的现实意义
从创造价值的角度来看,工业互联网的价值可以从三方面体现:第一,提高能源的使用效率;第二,提高工业系统与设备的维修和修护效率;第三,优化并简化运营,提高运营效率。比如对于航空业来说,到2027年,工业互联网就能够助其实现节省300亿美元燃油成本的目标。
GE公司还为工业互联网描绘了美好的经济前景,据其2012年的预测,如果工业互联网能够使生产率每年提高1%-1.5%,那么未来20年,它将使美国人的平均收入比当前提高25%-40%;如果世界其它地区能确保实现美国生产率增长的一半,那么工业互联网在此期间会为全球GDP增加10万亿-15万亿美元。
回到智能制造上来说,“工业互联网”的意义在于提出了三大智能制造的数字元素:智能设备、智能系统、智能决策,并描绘了三者集成的未来。通过这些元素的集成,工业互联网将把“大数据”与基于机器的分析方法结合在一起。管理和分析高频实时数据的强大能力让系统对运行状态的洞悉上升到新台阶,基于机器的分析方法给分析过程带来新的维度,让先进分析与“大数据”工具集相结合,使工业互联网能够同时利用历史数据与实时数据。在数字的智能设备、系统和决策与物理的机器、设施、机队和网络完全结合之后,工业互联网将发挥最大威力,释放全部潜能。届时,生产率提高、成本降低和废物排放的减少所带来的效益将带动整个工业经济发展,所谓美国版“工业4.0”也将从这一点上助力美国实现智能制造的美好愿景。
GE与中国互联网+的联动
对于GE公司董事长兼首席执行官杰夫·伊梅尔特来说,虽然早在几年前就论断了工业互联网革命即将到来,但是机会从未像今天一样如此诱人。尤其在中国市场,面对互联网+和中国制造2025的风生水起,德国的工业4.0、美国的工业互联网都是中国学习和效仿的榜样,而GE获得的关注度也在剧增。在这样的情况下,杰夫·伊梅尔特亲临中国,要当互联网+“中国合伙人”,掀起GE在工业互联网领域与中国的一系列合作。
2015年7月7日,GE在中国举办“当智慧遇上机器——工业互联网中国峰会”,在这次峰会中,GE宣布与中国电信集团启动合作,GE工业互联网大数据软件平台与中国电信的电信基础设施和增值服务对接,形成工业互联网整体解决方案,推动工业互联网在航空、医疗、能源、工业制造和其他相关行业的应用。
根据合作协议,双方将探索利用GE公司的PredixTM软件服务平台及相关应用,和中国电信的电话、互联网接入及应用、移动通信、数据通信、视讯服务等多种类综合信息服务,为目标客户群提供应用解决方案。双方还将开展影像云储存、远程医疗应用、智能制造、云计算等领域的合作。
其实双方合作的目标行业也是GE工业互联网解决方案主推的行业,现在国内有多家企业与GE进行了合作,中国东方航空股份有限公司就是其中一家。据中国东方航空股份有限公司飞行安全技术应用研究院研究院谷剑介绍,通过与GE的合作,东方航空通过减推力使用的优化降低维修成本和提高在翼时间,预计双方的合作项目未来可以为东航集团每年节省496万美元。
迄今为止,GE已经在中国开展了12个工业互联网试点项目,逐步推动40多个大数据分析应用落地。以试点项目带来的效益核算,工业互联网将额外为中国航空、医疗和能源行业每年创造超过百亿元的增值。对于工业互联网概念的打造,GE公司于2012年提出并倡导工业互联网,依靠机器以及设备间的互联互通和分析软件,打造智能机器,实现人、机器和数据的无缝协作,开创机器与智慧、物理世界与数字世界的融合。从推行工业互联网概念至今,GE也在启动全行业生态系统建设进程,早在去年,GE就宣布其工业互联网软件平台Predix将于2015年向所有公司开放,为它们大规模快速开发自定义行业应用、提升资产管理绩效提供支持。杰夫·伊梅尔特强调:“数字化基础、大数据、智能工厂是提升制造业的三大机遇,我们正在开启下一个新工业时代,全球工业通过硬件与软件的结合正在重新发现增长机遇。工业互联网可以为中国基础设施产业升级提供更有效的路径,GE期待与中国政府和行业伙伴共同推动这一转型进程。”
无论互联网+还是中国制造2025,都是中国企业加快融合和创新发展的机遇所在。有机遇就有挑战,中国制造业还大而不强,中国中小企业面对挑战的应变能力还不足。
关键词:国外工业互联网;无线频谱;无线技术
1引言
工业互联网九大技术(超级计算终端、软件定义机器、知识工作自动化、跨企业的标准制定、工业互联网的系统安全、机器人改变工业流程、分布式的生产3D打印、人类意识与机器的融合、虚拟世界)是由GE公司在2012年首先提出的,无线技术在工业互联网中能够作为有线方式的重要补充,实现更为广泛复杂场景中的通信覆盖,德国和美国等国家在发展工业互联网过程中都非常重视无线技术的应用。2013年,德国提出“工业4.0研发白皮书”中指出,无线技术应用是其实现工业4.0网络通信技术创新的重要手段,计划在2018年实现5G标准化相关工作,为工业互联网提供更为灵活的广域覆盖,在2020年前后实现工业互联网工厂内无线局域网和近场通信等场景;美国工业互联网联盟也非常重视工业互联网无线技术应用,成立专门研究工作组,致力于典型工业无线网络技术的研究,对于工业互联网典型的Wi-Fi、NFC、ZigBee、2G/3G/4G等无线技术的具体应用场景和标准化时延、可靠性等进行统一规范的设定。对于工业互联网中的无线技术,从覆盖范围来看,可以包括工厂内无线技术和工厂外无线技术。工厂内无线通信技术主要应用于工厂内部短距离、低功耗无线网络通信需求,包括信息的采集、非实时控制和工厂内部信息化等,具体包括Wi-Fi、ZigBee、2G/3G/LTE、面向工业过程自动化的无线网络等技术。针对工厂外的广域通信应用场景,NB-IoT对于解决低功耗、广覆盖、大连接等工业信息采集和控制场景具有明显优势,同时伴随5G标准化工作的推进,作为低时延、高可靠的重要应用场景,3GPP等组织机构也开展利用5G技术实现工业控制的相关研究。
2国外工业互联网无线技术频率使用及研究进展
2.1工厂内无线技术频率使用及研究进展
目前,国际上相关组织或机构积极推进短距离无线通信技术应用,取得一系列成果。(1)2.4GHz/5GHz频段使用2.4GHz、5GHz频段的工业互联网短距离无线通信技术主要包括Wi-Fi技术、802.11p、蓝牙技术和ZigBee技术等。其中:Wi-Fi技术,主要是IEEE802.11系列,使用频率为2.4GHz、5GHz等,主要用于无线局域网络、掌上设备、智能家居等。802.11p技术,使用频率为5850~5950MHz频段,主要用于车联网。蓝牙低能耗(BLE)技术,工作频率为免许可授权的2.4GHz频段,低速、低功耗、低时延,可扩展至健康和健身、汽车和工业领域。ZigBee技术,属于IEEE802.15.4标准,使用频率包括868/915/2450MHz频段,是一种低吞吐量、低功耗和低成本的技术,最高达250kbit/s。网络拓扑结构可包括多达几千个节点,应用于工业、医疗、智能建筑和家庭自动化等场景。(2)1GHz以下频段国际电工委员会(IEC)研究了适合于1GHz以下频段所使用的近距离无线通信技术,包括RFID无线射频识别技术和NFC近场通信技术。RFID无线射频识别技术,属于ISO/IEC10536/14443/15693/18000系列,使用的频率包括13.56/27.12/433/860MHz等频段,主要应用于物流、制造业、医疗、交通、电子证照与电子门票等。NFC近场通信技术,属于ISO/IEC18092、21481系列,使用频率为13.56MHz,主要应用于零售、移动支付、身份识别等领域。(3)欧洲电信标准化协会(ETSI)推荐的其他频段欧盟早在2011年就开始研究工业互联网工厂内用频问题,通过分析典型的工厂应用场景,计算频谱需求约为76MHz,并结合本国频谱规划,提出了包括2360~2400MHz、2483.5~2500MHz、5150~5250MHz、5725~5925MHz在内的6段候选频段。
2.2工厂外无线技术频率研究及使用情况
(1)国外NB-IoT技术频率研究进展基于蜂窝的窄带物联网(NB-IoT)是解决工业互联网工厂外广域低功耗覆盖的重要技术,成为物联网的一个重要分支。各国际组织和地区对于NB-IoT的频率规划研究情况如下:3GPP近年来,3GPP一直致力于推动NB-IoT标准化工作。通过各国不懈努力,NB-IoT的3GPP标准核心部分在2016年6月冻结,并在2016年底完成了一致性测试。通过多次统筹协调,3GPP定义了NB-IoT的候选频段包括700、800、900、1800、1900和2100MHz等,为各国开展NB-IoT频谱配置,推进商用化进程提供有力指导。欧洲当前,欧洲大部分电信运营商都是基于900MHz频段基础上来开展NB-IoT试点和试验,另外有少部分采用的是800MHz频段。2016年9月,欧洲著名电信运营商沃达丰和中国华为公司开展合作,采用800MHz本国授权频段,在现实网络上实现了NB-IoT的第一次连接测试,这成为NB-IoT国际化商用推进过程中的一个重要里程碑事件。此外,沃达丰将基于前期的研究试验成果,在2017年第一季度开展NB-IoT主要欧洲市场推广工作,第一批网络试点包括西班牙、德国、爱尔兰和荷兰,后续还将继续扩展,预期在2020年实现NB-IoT的全球覆盖。2016年8月,法国的第二大移动运营商SFR也明确宣布,为优化原有2G/3G/4G网络性能,提高网络容量和频谱资源利用效率,正积极开展NB-IoT技术研究和相关试点试验。相比使用非授权频谱的SigFox或者LoRA等技术,NB-IoT作为使用授权频段的IoT技术,将更利于电信运营商基于原有网络的快速部署,得到很多电信、移动运营商的积极支持。(2)国外5G频率规划研究进展5G技术是实现未来宽带、高速移动、泛在覆盖的一项重要手段,是未来物联网产业的重要组成部分,在全球物联网产业的经济和战略竞争中扮演重要角色。欧美日韩等国都在积极推进,加快在技术、频谱、标准和产业化方面的研究和试点工作,提前进行规划布局,提升各自竞争力。作为5G标准化的核心问题之一,5G频谱规划也一直是各个国家持续关注和研究的议题,受到国际电联、各国政府和业界的高度重视。国际电信联盟(ITU)作为全球唯一负责管理和规划全球频谱资源的联合国机构,国际电信联盟(ITU)一直致力于研究和推进5G频谱的标准化。在2015年世界无线电通信大会(WRC-15)上,通过多方协调和统筹,正式将1427~1518MHz频段标识为未来移动通信新增加的全球统一频段,为5G频谱全球标准化奠定基础,其中1452~1492MHz频段被ITUI区的53个国家确定用于发展本国移动通信业务。同时,会议还通过讨论决议,明确3400~3600MHz频段成为ITUI区及II区国家未来移动通信业务的统一频率,3300~3400MHz频段作为全球45个国家发展未来移动通信业务资源。此外,4800~4990MHz频段、470~698MHz或其中部分频段、694~790MHz频段也被作为部分国家未来移动通信业务频率。其中,3400~3600MHz频段、3300~3400MHz频段及3600~3700MHz频段等,可以满足未来5G典型应用场景的宽带连续频谱需求,加快推进5G商用进程。同时,针对5G未来发展对于高频段资源的需求,WRC-15也明确了24.25~27.5GHz、37~40.5GHz、42.5~43.5GHz、45.5~47GHz、47.2~50.2GHz、50.4~52.6GHz、66~76GHz、81~86GHz、31.8~33.4GHz、40.5~42.5GHz、47~47.2GHz共11段候选频段,计划2019年进行最终决议,为各国积极开展5G高频技术和器件研发提供有利条件。欧盟欧盟一直致力于全球5G标准化的推进工作,因此积极提议协调5G全球统一频率,以实现顺利漫游,保证产业效益最大化。在5G频谱资源配置方面,欧盟采取低、中、高频段互为补充的方式,满足5G不同应用场景的频谱需求。2012年,“TheRadioSpectrumPolicyProgram”决议,统筹配置1200MHz频谱资源支持本国宽带战略(包括3400~4200MHz频段)。随后欧盟通过决议,确定3400~3800MHz频段用于发展未来移动通信业务,并同步开展其中部分频段的详细规划方案的论证工作。2013年,欧盟又提出3800~4200MHz频段作为未来5G密集大容量通信场景的候选频段,并开展相关业务共存研究和兼容性分析。2016年7月31日,欧盟完成5G频谱的公开征求意见,征求意见稿在低频段聚焦700MHz、3400~3800MHz,高频在24.5~27.5GHz、31.8~33.4GHz和40.5~43.5GHz。2016年9月14日,欧盟正式公布欧洲5G行动计划,明确提供1GHz以下、1~6GHz和6GHz以上的测试频率。2016年11月1日,欧盟正式公布5G频谱战略,为促进5G2020年的系统商用奠定坚实的基础,是欧盟5G技术发展的里程碑事件。战略规定对于1GHz以下的频谱资源,重点突出700MHz频段,解决5G技术的广覆盖应用;明确指出在2020年以前,5G系统部署使用的频段是3400~3800MHz频段。对于高频段频谱资源,明确24GHz以上频谱资源作为5G产业推进的重点备选频段;鼓励在24.25~27.5GHz频段开展5G相关先行和试点应用,推动5G与该频段现有卫星探测业务、卫星固定业务和无源保护等业务的共用技术及标准等方面的研究工作;提出31.8~33.4GHz、40.5~43.5GHz频段均可作为欧盟5G技术中、长期发展的候选频段。美国美国在5G频谱规划方面一直处于国际领先地位,例如为推动本国宽带业务发展,为其规划3550~3700MHz频段共150MHz频谱资源。在考虑本国高频器件产业优势、力争引导该产业国际化发展的基础上,美国联邦通信委员会(FCC)于2016年7月14日通过决议,明确将24GHz以上4段高频频谱,共计达11GHz的频段资源用于发展本国5G移动宽带业务,具体为28GHz、37GHz、39GHz和64~71GHz频段。这样美国率先成为采用高频段频谱发展未来移动宽带的国家,奠定在5G领域中高频段频谱的国际话语权。与此同时,规划方案还对未来移动宽带服务、卫星频谱和轨道资源以及政府专用频谱资源的协调进行了整体统筹,并规定了多种方式共存的频谱接入方式。例如,针对不同场景下需求,采用专用、共享接入和动态随机接入(非授权)等多种组合,最大化程度提高资源使用效率。以上新规则将为美国5G产业发展提供方向引导,对产业链各方都有重要作用。日本、韩国日本基于本国信息通信发展实际,计划在2020年实现5G的商用化进程。2014年,日本将3480~3600MHz频段分配给本国第四代移动通信应用;2016年7月15日,正式本国5G频谱策略,提出3.6~3.8GHz、4.4~4.9GHz和27.5~29.5GHz频段4段频段作为发展5G的候选频段,并开展相关具体规划方案的研究和论证工作。韩国借助本国承办平昌冬奥会的契机,积极推进5G技术频谱研究和试点工作。目前,通过统筹协调,明确26.5~29.5GHz频段作为本国5G的试验频段,引导产业链各方的研发投入。同时,通过研究论证,还提出20GHz、32GHz、50GHz、70GHz等候选频段,为本国5G发展作为频谱资源储备。
3对我国工业互联网频谱规划的启示
那么,到底什么是工业互联网?GE对它的定义是这样的:工业互联网就是把人、数据、机器连接起来,通过海量数据分析,找到改进方向,提高工作效率,降低运营成本,最终提升企业的核心竞争力。无论是医疗设备的运行、银行机构的协调维护,还是油气勘探和转运,都能从工业互联网运营当中获得巨大的价值。
工业互联网在中国已经蓄势待发
众所周知,工业互联网有三大要素:一是智能传感器和分布式计算的智能机器;二是基于云计算和大数据分析的高级分析能力;三是智慧的人。现如今的中国,已经把可持续发展提高到了国家战略,互联网和工业化的进程也为工业互联网打下了基础。因此,GE认为工业互联网在中国已经具备了蓄势待发的基础。
从GE和埃森哲公司联合做的一次深度市场调查可以看出工业互联网在中国和各行业有了深度结合。首先,工业互联网关注的是资产优化和运营优化,这两者恰好是目前中国大部分工业制造企业面临的一个巨大问题。第二,在从粗放型的生产转化成精益型管理的生产制造过程当中,人、产品、物料、生产线设备的紧密协同和互动需要借助工业互联网,通过人机互动和机器与机器互动实现流程优化、生产过程的可视化,基于大数据的分析实时决策,帮助在生产当中的人更好、更快速地做出决定。第三,工业互联网与工业产业的结合落地在整个业态和产业形态的转型,目前工业领域无论是能源、家电、航空、油气都需要一个新的市场格局,这就迫使企业需要有全新的视野,从生态链角度做布局决策。工业互联网不单单关注生产制造,而是一个整体生态链,从产品设计、制造加工、生产线、物流到销售市场、到服务,是一个闭环过程。它为企业提供全局的运营和创新框架,跳出传统的技术或者是局部创新,加入服务和业务模式的全局性创新。
GE布局中国市场
GE的工业互联网与中国国家战略《中国制造2025》在诸如全局性、前瞻性、数字和机器融合、绿色低碳制造、结构化调整,技术创新和业务创新等各方面都是高度融合的。
威胁与挑战与日俱增
2012年,信息安全在全球范围面临的威胁和挑战与日俱增,网络攻击的趋利性和敌对性愈发明显。
在我国,特定行业专用应用安全产品市场快速增长,随着行业信息化的全面应用和两化融合的深度推进,面向国民经济支柱产业如公安、金融、工业、医疗领域信息系统面临行业特定的安全标准和安全问题,以二代身份证、PBOC2.0金融IC卡、工业控制系统和电子病历为代表的特定行业专用应用安全产品市场快速增长。同时,随着云计算、物联网等新技术新应用的快速发展,面向云计算的应用安全、移动安全特别是移动终端安全需求增长成为产业新亮点。
2012年,随着国家在科技专项上的支持加大、用户需求扩大、企业产品逐步成熟和不断创新,信息安全产业依然处在快速成长阶段,产业规模达到216.40亿元,比2011年增长20.9%。信息安全产品主要包括以硬件为主的信息安全产品及解决方案、以软件为主的信息安全产品及解决方案以及安全服务。2012年信息安全硬件所占比例有所下降,但仍然占据最大比例,达到53.8%,信息安全软件和安全服务的比例分别为38.2%和8.0%(图1)。
未来3年,产业发展的驱动力仍然强劲,政府高度重视信息安全、用户法规遵从要求越来越高、企业实力逐步增强、产品更具自主创新性并且更加多元化。2015年,中国信息安全产业规模将达到385.59亿元,未来三年的年均复合增长率为21.2%。
展望未来趋势
在市场需求趋势方面,信息安全最大的特点及行业发展的核心驱动力就是“问题就是机会”,目前全球网络威胁有增无减,网络罪犯愈发趋于专业化,目的愈发商业化,行为愈发组织化,手段愈发多样化,罪背后的黑色产业链获利能力大幅提高,互联网的无国界性使得全球各国用户都避之不及,造成的损失也随着范围的扩散而快速增多。
面对严峻的安全形势,信息安全成了人们的迫切需求,政府、用户、厂商等各方对信息安全重视度逐渐提高。在产品和技术趋势方面,来自新兴应用领域的安全值得引起更多关注:
第一,云计算应用带来的安全威胁正在扩大。随着云计算的快速发展,安全变成云服务不可或缺的部分,计算和数据资源的集中化带来了应用安全和数据安全的新问题。云计算环境下,所有的应用和操作都是在网络上进行的。用户通过云计算操作系统将自己的数据从网络传输到“云”中,由“云”来提供服务。
因此,云计算应用的安全问题实质上涉及整个网络体系的安全性问题,但是又不同于传统网络,云计算应用引发了一系列新的安全问题。从云计算应用的服务对象来看,主要涉及公共云应用安全、私有云应用安全及混合云应用安全;从服务层次来看,主要涉及终端用户云应用安全和云端的安全,如基础设施即服务(IaaS)安全、平台即服务(PaaS)安全、软件即服务(SaaS)安全、虚拟化安全等。数据安全包括数据完整性、数据保密性和抗抵赖性等问题,风险不仅来自于数据丢失的隐患,还来自法规的冲突,例如法规要求对存储数据进行加密,但用户如何知道云计算服务提供商是否进行了加密,对于跨国界云服务应该适用哪种法规等。
第二,移动终端普及加速,移动安全市场将进入快速发展期。以智能手机、平板电脑为终端的移动计算,正在从个人消费市场逐步向企业应用市场推进。随着智能手机等移动终端的飞速增长,移动互联网日益普及,催生了各类移动应用的诞生,与此同时新的安全威胁也随之而来:垃圾短信、手机病毒、窃听软件等恶意程序对个人隐私、财务信息甚至企业商业机密构成威胁。使得移动互联网时代面临更多新的安全挑战。对用户而言,用户在移动终端上使用移动电子商务、移动办公、即时通信等应用,会有大量的重要数据流,黑客等信息窃取者将关注这一平台,安全问题成为重要话题。
对于移动互联网本身,作为定位于开放的信息承载网络,向固定用户和移动用户在内的所有用户提供IP电话、电子邮件、Web业务、FTP业务、电子商务等业务、WAP业务、基于位置信息的业务、短消息结合业务等具有移动特色的因特网服务,移动互联网自身的安全性越来越受到重视。移动互联网带来的通讯安全挑战包括垃圾短信、欺诈短信、骚扰电话、欺诈电话、响一声吸费电话、恶意网址、钓鱼网站、未经用户许可的联网访问等。
而从国家层面,通过移动终端多样化的获取敏感信息方式,再辅之于强后台的同步分析,很容易获取国家的社情民意、舆情动向。这就让中国对信息资源生产、传播和监管的能力面临严峻挑战。针对用户、网络和国家安全层面的移动信息安全技术必须要引起关注。
第三,移动云服务和大数据分析应用将凸显个人隐私问题根据。由于网络传播的广泛性,一旦个人信息泄露,将有可能造成非常严重的后果。与现实物理世界不同的是,虚拟世界每个人的身份是以数字代码的形式体现的,个人信息,包括能够对主体构成识别的各种信息,例如姓名、住址、出生日期、身份证号码、特征、指纹、婚姻、家庭、教育、职业、健康、病历、财务情况、社会活动、照片等等。
工业互联网可从逻辑上概括为“3+1”架构。
“3”指端、管、云三层级架构。首先是现场系统,即“端”,主要包括各类智能传感器、数据处理和通信设备、工业控制系统等共同组成的现场系统设备,其核心技术是物联网数据集成和工业控制自动化,主要解决工业数据的分布式采集、传递和实时反馈,并实现对设备的精准控制,难点在于需要提供成本经济、安全可靠,能够兼容多种传感、控制设备类型,并具备一定现场数据处理分析能力的数据采集、计算、通信、控制一体化工业控制系统。其次是通信网络,即“管”,主要包括网络基础架构、软件控制和网络安全等,其核心技术是工业控制系统网络技术,主要解决现场系统之间,以及现场系统与云端系统之间的信息交互,难点在于工业现场系统数量庞大、类型多样,需要专门设计的通信协议并发展专门的工业控制网络标识辨别系统。最后是云端系统,即“云”,包括工业互联网平台、业务支持中间件、大数据处理分析与应用以及其他增值应用服务等,其核心技术是工业大数据的分析和应用,难点在于需要建立数据表示的通用标准和接口,并在此基础上发展基于生产工艺和行业应用经验的知识图谱和数据模型。
“1”指系统管理。主要包括功能管理和安全管理,其核心技术是功能和信息安全,难点在于需要同时防范工业控制系统控制层遭攻击而带来的功能安全风险,以及工业控制系统应用层遭攻击而带来的信息安全风险。
为此,笔者认为应从多方面应对。首先是标准先行,协调各方力量形成发展合力。加快制定我国工业互联网相关标准体系,引导协调通信、工业控制、云计算、大数据等领域的各方力量在技术和解决方案上相互协同,加强在产品规划和技术标准等方面的全局协调和规划,尽快启动数据表示标准化工作,在产业链上下游之间统一数据结构和表示规范,为工业互联网发展扫清障碍。
其次是组织创新,促进产用结合实现协同发展。支持企业组建工业互联网联盟,建立产业协同机制,加强信息技术企业与工业企业的合作,优势互补,产用结合,面向工业应用需求,打造自主可控的工业互联网基础设施及应用服务生态体系。
[关键词] 物联网;移动互联网;人才培养
[中图分类号] G642.0 [文献标志码] A [文章编号] 1005-4634(2014)04-0080-04
网络工程专业是随互联网的发展壮大而兴起和发展的,自 1998年被教育部列入本科专业目录以来,全国已有近 300 所高校设置了该专业,为社会培养了大批网络专业技术人才[1]。我国大多数高校的网络工程专业以计算机科学与技术专业为基础开设,在专业建设过程中,各高校本着“培养高层次的网络规划建设、网络管理维护、网络应用人才”这一专业培养目标,通过增设通信原理、互联网工程建设与规划、网络管理、网络程序设计、网络安全等课程开展专业人才培养,与原有的计算机科学与技术专业培养模式相近[2,3]。由于教学体系、教学实践经验的不足以及硬件设备更新换代的滞后,使得学生分析问题、解决问题的能力和实践工程能力相对较弱,毕业生的专业特色和优势不够明显。近些年,由于低端网络人才市场趋于饱和,本科生就业市场上出现了“网络工程专业学生就业难、用人单位招聘不到合适人才”的普遍现象,导致部分应用型高校网络工程专业出现萎缩或停招。这足以说明,“传统”网络工程专业亟需在专业内涵、人才培养目标和培养模式等方面进行重大的改革创新。
1 “新互联网”时代大潮对网络工程专业 的影响
互联网技术经过40多年的长足发展,其产业变革席卷全球,颠覆传统行业的节奏也进一步加快。2014年1月8日,在钓鱼台国宾馆召开的“2014互联网产业年会”上,互联网产业各界人士一致认为:移动互联网、物联网必然将在工业应用中扮演更加深入和广泛的角色,促进工业全产业链、全信息链的信息共享和协同集成。思科首席执行官约翰钱伯斯(John Chambers)在拉斯维加斯举办的“CES2014展会”演讲中也对物联网的发展充满信心,表示:“这一转变已经开始,它(指物联网)将改变我们生活、工作和娱乐的方式……2014年将是物联网发生关键转变的一年,并且到2017年,物联网产生的影响,将比整个互联网更为深远”。
物联网和移动互联网等新网络技术的兴起给网络工程专业带来了新的契机和挑战,只有正视这种汹涌的“新互联网”时代大潮,不断丰富和发展网络工程专业的内涵、人才培养目标和培养模式,才能适应新网络时代的要求,培养面向企业需求的实践人才,焕发专业活力。本文分析总结大连工业大学网络工程专业的培养实践经验:“突出专业特色,彰显时代特点”、“优化专业层次结构,大类培养”、“加强实践,注重校企合作”,旨在探索一条适应新技术发展的面向物联网、移动互联网的网络工程实用型人才培养的新道路。
2 “新互联网”时代下网络工程专业的建 设思路
大连工业大学于2004年开设网络工程专业,经历了传统意义上的网络工程人才培养,迄今已毕业6届、300余名网络工程专业本科生。通过对本专业毕业生就业情况的跟踪统计可知,目前网络工程专业学生的就业方向主要有四个领域:传统互联网系统设计及应用、Web软件设计与开发、嵌入式系统应用和移动互联网软件开发。随着物联网、移动互联网技术的兴起和蓬勃发展,近几年嵌入式系统应用和移动互联网应用领域的就业比例逐年上升,已渐有超过传统互联网应用这一传统就业主体的趋势。根据这种现状,大连工业大学从2010年起着手改革新的网络工程专业人才培养模式,学生就业优势明显加强。
首先,拓展传统的网络工程专业内涵,突破传统的“互联网建网、管网、用网”领域,以时代需求为导向,引入物联网、移动互联网等技术知识,拓宽专业领域;在人才培养目标方面,既要培养传统互联网络系统设计与开发、网络工程规划与设计、网络管理与维护等层次的专业人才,也要培养物联网系统设计与开发、移动互联网系统设计与开发的多领域专业人才。
其次,在课程设置上优化专业层次结构,结合计算机科学与技术专业制定“宽口基础+特色方向”的课程体系,开展大类培养。
最后,网络工程专业作为一个跨学科、实用性强、服务面广的专业,要大力加强学生实践应用能力的培养。这既需要高校本身的努力,加大教师实践能力培养、加大硬件设备的更新换代,更需要社会、企业和学校的紧密配合,探索一条群策群力培养学生实践能力的切实可行的新模式。
3 拓展专业内涵,彰显时代特点
物联网技术是在互联网技术的基础上,结合射频标签和传感器网络等技术,实现人与物、物与物智能沟通和对话的网络信息技术[4]。近几年,国内申请增设物联网相关专业的高校数量众多,但在不同程度上都存在着物联网课程体系规划不完善、教材建设计划不完备、师资力量薄弱、实验室配套设备缺乏和实验方案标准有待规范等问题。
实际上,在培养目标和专业课程设置等方面,传统网络工程专业已涵盖了大多物联网知识领域,拥有物联网网络层的学科建设优势,具备应用层的基础知识,需要补充的主要是物联网感知层的相关课程[4]。显然,传统网络工程专业与物联网专业在知识结构上有很多共性,只要适当补充和调整网络工程专业的课程设置,即可培养具有物联网技术知识的专业人才。
物联网、移动互联网是“新互联网”时代两个最热点的技术领域和应用领域,根据新技术发展和企业岗位需求,大连工业大学网络工程专业重新定位了专业内涵,调整原有的专业课程体系,补充物联网和移动互联网技术相关知识,制定了新的网络工程专业培养方案,目的是培养面向工程的具有创新精神的应用型、复合型、技能型的“新”网络工程人才。新培养方案中将网络工程专业方向设定为4个方向:(1)传统互联网方向;(2)系统集成方向;(3)物联网及移动互联网方向;(4)Web软件开发。
4 优化专业层次结构,大类培养
《国家中长期教育改革和发展规划纲要(2010~2020年)》明确提出:“优化结构,办出特色……优化学科专业、类型、层次结构,促进多学科交叉和融合。重点扩大应用型、复合型、技能型人才培养规模。”
大连工业大学网络工程专业是以校计算机科学与技术专业为基础、依托校网络中心工程环境开展学生培养的,具有坚实的教学师资和教学资源基础。为优化网络工程专业的层次结构、培养“应用型、复合型、技能型”人才,网络工程专业采用与计算机科学与技术专业联合的交叉大类“2+2培养”模式:前两年教学内容与计算机专业保持一致,使学生具有扎实的计算机技术基础;后两年根据专业特色,按照行业技术发展和企业岗位需求,设立了“传统互联网应用”、“系统集成”、“Web软件开发”、“物联网及移动互联网应用”四个特色方向,形成合理、有时代特色的课程群体系(见表1),及有效的实践环节,从而保证学生在校学习内容和企业需求的有机接轨。
5 面向工程应用,优化实践教学模式
《国家中长期教育改革和发展规划纲要(2010~2020年)》同样明确提出:“提高人才培养质量……加强实验室、校内外实习基地、课程教材等基本建设……强化实践教学环节……创立高校与科研院所、行业、企业联合培养人才的新机制。”
网络工程专业对学生的实践能力要求较高,实践能力的提升是培养网络工程人才工作的重中之重。根据大连工业大学网络工程专业本身的特点,笔者采取“校内+校外”、“校企联合”的创新与实践教学模式开展对学生实践工程能力的培养。
5.1 实践教学体系
实践教学体系设置坚持“面向工程应用,优化实践教学模式”原则。具体划分为“四层次、七类别”实践教学体系,见图1。“四层次”是指学生应获取基础实验和认知能力、初步设计能力、综合实践能力、创新和工程能力等四个层次的能力;“七类别”是指课程实验、课程设计、专题训练、各类实习、毕业设计、参加创新和科研课题、职业培训等七个环节[5]。
根据大连工业大学网络工程专业自身特点,针对“课程群”系列课程,开设综合性较强的专题训练实践环节,既有利于提高学生的综合实践能力,又有利于与企业实训项目相结合、置换。例如,笔者将第七学期的“网络规划与设计专题训练”、“网络安全课程设计”和“生产实习――网络管理+Linux系统运维”三个实践环节组合成一个综合性专题训练模块,引进合作企业的生产实践项目,由学校教师和企业技术人员共同对学生进行综合实训,取得了非常好的效果。
5.2 “校内+校外”、“校企联合”的创新与实践教 学模式
根据专业培养目标,充分关注行业、企业需求,密切校企合作,建立了“校内+校外”、“校企联合”的创新与实践教学模式。
1)有效利用校内资源,将教学实践与实际生产环境有机融合。网络工程专业依托大连工业大学网络中心开展校级实践活动,将教学实践落实到生产现场,开展从校网络中心到教育网地区中心全方位的教学实践活动。在这个过程中,既可以引入网络中心具有丰富实践经验的教师承担认识实习、操作实习、毕业设计等实践教学任务,将网络中心技术人员的工程实践经验更好地融入到教学环节中,还可以引导学生参与勤工俭学,通过承担一定的网络维护开发等活动,有意识地引导学生参与专业实验室、学校网络的建设维护工作,提高学生的专业认知和动手能力。通过上述方式,将网络工程专业的教学实践融入实际的生产环境中,使学生学以致用,既深化了对专业理论的理解,也提高了学生的工程实践能力,突出了网络工程专业的工程特点。
2)扩大校企合作。根据行业、企业需求,结合学校实际,笔者重新定位网络工程专业方向,建立了“企业岗位定制”教学;同时,加强校企教师的双向培训机制,与企业在学生和师资培养等方面建立长期稳定的合作关系。在图1所示的四个层次实践课程体系中,强调培养过程中的企业参与,将企业的实际项目引入专题训练环节,实现学校和企业的无缝接轨。
3)支持学生参与创新科学研究,推行产学研联合培养的“导师制”。从大学一年级入学开始,即进行专业介绍和行业发展规划,逐步引导和培养学生的专业兴趣和方向,鼓励本科学生参与科技创新实践活动,建立“导师制”师生研究室。教师带领本科生积极开展科研创新实践活动,建立了课内与课外相结合的创新与实践教学模式。目前,网络工程专业学生已参加了多项国家级大学生创新与创业项目,科研实践能力大幅提升。
4)积极开展专业竞赛,以赛促学。引导学生积极参加各种专业竞赛,以优秀获奖学生为榜样,带动更多的学生积极向上、锐意进取。同时,通过联合开办的思科网络技术学院、红帽学院,鼓励学生考取思科认证网络工程师(CCNA)、思科认证网络高级工程师(CCNP)等行业国际资格认证,极大地调动了学生的积极性和学习热情,也增强了学生的就业竞争力。
6 结论
物联网和移动互联网技术的蓬勃发展为传统网络工程专业建设带来了新的机遇,本文讨论在“新互联网”时代背景下,以《物联网“十二五”发展规划》和《卓越工程师教育培养计划》为契机,将物联网技术、移动互联网技术与高校传统网络工程专业建设有机融合,通过整合教学资源、扩展专业内涵、优化教学体系、建立创新实践教学模式等一系列举措,大力加强学生实践能力的训练,探索了一条以行业需求为目标,培养基础扎实、实践能力强、富有创新精神和团队意识的复合型、应用型网络工程人才的新思路。
参考文献
[1]曹介男,徐明,蒋宗礼,陈明.网络工程专业方向设置与专业能力构成研究[J].中国大学教学,2012,(9):31-34.
[2]岳峰,王桢.浅谈高校网络工程专业学生实践能力的培养[J].教育与职业,2012,(21):126-127.
[3]张新有,曾华,窦军.就业导向的网络工程专业教学体系[J].高等工程教育研究,2010,(4):156-160.
今年两会期间,“互联网+”被写进政府工作报告,上升为国家发展战略。可以说,“互联网+”也成为与“一路一带”齐名的热门词汇。这着实让眼下一批互联网业界大佬们抓住下一个20年(从1994年中国正式接入国际互联网成为第77个成员国算起,恰好是传统互联网的黄金20年)的发展机遇而暗自高兴,也让一批传统行业企业翘楚们意识到了向互联网靠拢的意义。
但正所谓世事难料,当互联网上升到这样一个高度的时候,也就意味着将会吸引更多的关注力,这对于传统互联网而言,除了机遇,也是相当大的挑战。因此,对于一些传统互联网企业而言,“互联网+”恰恰也是一个自我救赎的命题。
传统互联网
本质上是“服务互联网”
根据国际上通行的产业分类的划分标准,通常分成三大产业,即第一产业(农业)、第二产业(工业)和第三产业(除农业和工业以外的其他产业,统称为服务业)。
从这个分类我们可以看到,传统的互联网行业按照小类被划分在服务业下的信息传输、计算机服务和软件业小类中。从目前已有的较好的商业模式来看,互联网主要是在服务业领域的应用,如电商相关的交通运输、仓储和邮政业、住宿和餐饮业、金融业、房地产业、租赁和商务服务业、文化、教育和娱乐业。前期主要是集中在娱乐业,而且主要靠野蛮式的方式进行,而后随着电商、教育等的兴起,才有了更多向细分行业的切入。
因此,从这个特点来看,传统互联网本质上是围绕第三产业服务业而不断创新颠覆的服务互联网。也正是这个特点,对第三产业在GDP的比重的贡献颇多。2014年第三产业增加值占GDP比重继续提升,达到48.2%,比上年提高1.3个百分点,高于第二产业5.6个百分点,这意味着服务型互联网对中国经济由工业主导向服务业主导加快转变将发挥越来越重要的作用。
“互联网+”
是围绕服务互联网做文章
腾讯研究院企鹅智酷5月份了150页的重磅“互联网+”报告,该报告分为九章,包括互联网+农业、互联网+政务民生、互联网+教育、互联网+医疗、互联网+生活服务、互联网+交通、互联网+金融。
在其深度报告之一《互联网+农业》中阐述的主要内容包括:
农村电商 截止2014年底,超过200个电商乡镇,涵盖网店7万多个,多家大型电商企业将进入农村,2016年预计农村网购规模超4600亿元,增幅超150%。所举案例为创业公司“一亩田”提供农产品价格信息搜索服务,以解决传统农贸中存在的供需信息不畅通问题。随后推出采购和供货服务,打通交易双方连接,形成完成商业链。
农村商贸物流 解决现有的农村物流服务不完善问题,与原有的强渠道资源的物流机构合作,建设县级服务中心、乡村配送站等,自营农村物流也将快速发展。京东已经在2014年第四季度开启以服务店和县级服务中心为主体的农村战略,服务和配送范围覆盖5000个村庄,在乡村招募5000名“乡村推广员”来帮助农民网购。
正规渠道农民贷款困难 导致农村地区民间借贷活动活跃,其中蕴含了新商机。农村分类信息网站村村乐推出村村贷、村村融理财产品,计划通过平台积累的60多万村庄覆盖和20余万“网络村官”资源解决产品落地问题。
大数据和云计算 在农业生产环节的应用,在农业生产中的选种、种植、收割等环节,同时用于对农产品加工过程中的信息记录和追踪,便于食品安全监督。基于大数据的气象预测和精细农业技术,减少25%因天气造成的作物损伤。为此,农业部科教司正在建立基于大数据和云计算的国家农业科技服务云平台,该平台首批将上线10万农技人员,为1000万农民提供农业信息咨询服务。此外,农村网络设施基础落后、农村公路交通、仓储等基础设施落后,农民文化水平等问题,也给相应的行业提供了巨大商机。
从以上情况来看,互联网+农业,在认知上其实仍然主要是互联网已经成熟的电商、金融等向广大的农村地区的有限度的逐步覆盖延伸,其实就是农、林、牧、渔服务业的互联网化。而在农业的基础生产环节,主要是政府机构为主。
同样,可以预计,在互联网+工业的相关研究中,暂时也是与互联网+农业类似的思路。这可以说是目前很多人对“互联网+”认识上的局限性,或者说是“互联网”的惯性。这也是很正常的情况,但也正是如此,其中也对传统互联网自身的升级发展带来潜在危机。
传统互联网企业
危机与自我救赎
关于“互联网+”概念的首创,此前还有一些小的争论,但是这些都不是关键。
关键在于“互联网+”被写进政府工作报告,既有新一届政府充分认识到互联网对社会发展的意义和对政府管理带来的改革价值一面,也有几个互联网大佬在各种场合极力推销的一面。其实也就是BAT几个巨头的大佬最为积极,包括腾讯研究院很快长篇的“互联网+”研究报告,这都侧面反应了一批传统老牌的互联网企业的危机感。
这种危机感,在个人看来,直接体现在两个方面:一是随着政府对互联网认识的提高,以及前20年对互联网的管理问题,互联网的一些负面问题将会被受到越来越严厉的监管,这对包括游戏、内容为主的娱乐类(主要靠广告盈利)互联网企业带来挑战,社交类也有同样的问题。二是包括BAT公司等在内,企业发展到一定阶段,下一个增长极的问题开始凸显,同时还面临着各更加垂直化方向的创新者的挑战。这种背景下,广大的三、四线城市和乡村,以及向第一、二产业的延伸是新的主战场。
从目前政府对电商的重视程度来看,包括与电商周边相关的服务企业,其他的一些互联网企业都面临压力。限于个人认识,具体哪些企业会有这样的问题,需要各自结合实际情况去判断。
“互联网+”的最主要场景都可以归结为“提供解决方案”,无论是对于农业来说还是对于工业来说,都是以提供解决方案为主。这对传统的以资讯内容等为主的娱乐服务型模式的企业是最大的挑战,这是这类企业的自我救赎方向。
而在具体操作层面,有的是选择发挥自己原有的业务长处,向+的领域延伸。有的是选择进一步的跨界,有的会发挥资本运作的优势,以资本股权为纽带进行更加深层次的合作。
近日,浪潮集团有限公司(以下简称浪潮)在京举办“中国制造2025@浪潮”战略会。浪潮集团执行总裁王兴山在会上表示:“未来三年,浪潮将巩固在大型企业云产品、方案和服务市场的持续领先地位,秉持中国制造2025@浪潮战略,改变中国管理软件市场竞争格局。”
为应对中国制造的重大机遇,浪潮将以混合云应用模式为主攻方向,以实现智能制造为目标,加速以数据为中心的企业云落地步伐,成为中国智能制造综合解决方案的厂商。
浪潮优势厚积薄发
众所周知,“互联网+”的核心是将互联网作为创新的原动力,实现强大的融合性和可扩展性。而“中国制造2025”的主攻方向则是智能制造,它需要顺应“互联网+”的发展趋势,深度融合互联网新技术与制造业,优化制造业的生产方式、投资方式、管理方式和商业模式等,改造提升中国制造业。
基于此,“中国制造2025@浪潮”战略清晰展现了互联和智能时代制造业企业信息化全景。浪潮认为,中国企业要实现智能制造,大致分为三个阶段:第一阶段是关键环节技术应用,以精细化提高质量和效益为主,关键环节实现外部互联;第二阶段是整体技术应用,从设计开发、生产计划到售后服务的全生命周期实现集成,企业内外部实现全面互联;第三阶段是智慧企业,智能优化决策为核心,以大数据驱动各种制造活动的执行,全面实现智能工厂、智能生产和智能产品。
六大平台五大举措
为支撑战略切实落地,浪潮规划了六大产品支撑平台,并制定了五大战略措施。六大产品支撑平台包括:精益运营管理平台、智能供应链平台、工业电商平台、智能制造集成平台、大数据服务平台、浪潮数据中心平台。
五大举措分别是:产品研发方面,成立浪潮智能制造工程技术中心,加强美国研发中心,新建德国研发中心,建立“海外-国内”协同研发机制,重点汲取德国工业4.0的理念精髓和实践经验;加强战略客户协同创新及应用示范,与战略客户协同创新,实现样板带动;建立浪潮、用户、咨询机构、ISV等乃至国外机构共同组成的智能制造信息化联盟,打造创新应用合作生态圈;通过国际化合作,建立完善人才引入、培养机制;利用浪潮集团资本优势,加快智能制造和“互联网+”方向的投资并购,完善浪潮产业链构成。