前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的能源与动力工程的方向主题范文,仅供参考,欢迎阅读并收藏。
关键词:热能;动力;锅炉
中图分类号:TK223文献标识码: A 文章编号:
一、热能动力工程
热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能与动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。
二、我国的热能动力工程发展情况
随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求, 1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。
三、热能动力工程在锅炉风机方面需要解决的问题
风机主要作用为气体的压缩和气体的输送,其原理是吧旋转的机械能转换为气体压力能和动能,将气体输送到特定的地点的机械,风机经常用于锅炉中,随着对于能源的需求越来越大,锅炉中的风机在工作中经常会烧坏电机的事故,对于工厂的经济产生巨大损失,严重危害工作人员的人身安全,因此,正确运用热能动力工程技术不断改进风机,对于风机和锅炉的安全性提出更高的要求势在必行。
四、热能动力工程中锅炉及工业炉的发展
1872 年第一台锅炉在英国被制造,随着锅炉的产生,蒸汽机时代出现,1796 年瓦特发明了分离冷凝器,代表着锅炉的完整运作体系的初步确立,工业炉和锅炉原理类似,从某些方面来讲,锅炉也是工业炉的一种,工业炉是指在工厂的工业生产过程中通过燃料的燃烧进行热量的转换,对材料进行加热的设备,工业炉产生于中国商代,主要的工作方式是通过加热提炼铜器,春秋时期产生了铸铁技术,这证明着工业炉的温度控制正在进步。1794 年熔炼铸铁的高炉出现,1864 年马丁建造了气体燃料加热的平炉,随着现代化科技的进步,计算机逐渐代替了人工进行对锅炉系统的控制,推钢式炉和步进式炉成为吸纳带连续加热炉的两种基本类型,两者只有运输燃料的方式有所不同而已。
五、热能动力工程炉内燃烧控制技术运用
锅炉的燃烧控制是调整能量转换幅度的核心技术,在当今社会,锅炉由人力向锅炉内填充燃料逐渐转型为步进式的自动控制填充燃料所代替,更加先进的锅炉甚至使用全自动燃烧控制,根据其运用热能动力自动控制技术的不同,锅炉的燃烧控制分为以下几种:
1、以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及PLC 等部件组成的空燃比里连续控制系统。这种燃烧控制系统是由热电偶检测出数据传送至PLC 与其本身设定的数值进行比较,偏差值通过使用比例积分及微分运算输出电信号同时分别对比例阀门以及电动蝶阀的开放程度进行调节,从而达到控制空气与燃料比例调节锅炉内温度的目的,此种方式温度控制并不十分精确,需要仔细确认额定数值。
2、由烧嘴、燃烧控制器、流量阀、流量计、热电偶几个部分组成的双交叉先付控制系统,其工作原理主要是通过温度传感器热电偶吧需要进行精确测量的温度变成电信号,这个电信号即是用来代表测量点的实际温度,此测量点温度期望给定值是由预先存贮在上位机中的工艺曲线自动给定的,并根据两者数据之间的偏差值的大小,由PLC 自动调整燃料与空气流量阀门的开合程度,通过电动的方式运行机构的定位以及空气和燃料的控制比例,并接住孔板和差压变送器测量空气的流量,燃料的控制也通过一个专用的质量控制装置来测量,是温度精确的控制在必要的数值上。这种燃烧控制优点在于方式节省部件,并且温度控制精确。
六、仿真锅炉风机翼型叶片
锅炉的内部的叶轮机械内部流畅需要带有十分强烈的非定常特征,并且其内部构造十分复杂,不容易进行十分细致的测量实验,并且到目前为止,仍然没有可以解释流动分离、失速和喘振等流动现象的完善的流体力学原理,因此要了解机械内部流动的本质需要更加可靠详细的流动实验和数值模拟实验,通过使用软件二维数值模拟锅炉风机翼型叶片,对空气以不同方向吹入翼型叶片造成流动分离进行模拟,并根据模拟的数值创建而未模型,进行网格的划分,设定边界条件和区域,最后输出网格,在使用求解器求解,这样才可以对不同的气流攻角的流动进行二维数值模拟,,达到模拟的目的,同时可以根据模拟不同攻角下所得到的速度矢量制成矢量图进行比较和分析,最后得出锅炉风机翼型边界层分离和攻角的关系。
七、热能动力工程的发展方向
1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。
4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。
结束语
热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。
参考文献
关键词:能源动力;专业特色;人才培养
作者简介:李嘉薇(1979-),女,安徽萧县人,中国矿业大学电力工程学院,讲师。(江苏 徐州 221116)
基金项目:本文系江苏省“青蓝工程”项目、国家自然科学基金项目(项目编号:50504014)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)22-0073-02
随着改革开放的推进,我国国民经济体制发生很大的变化,社会对人才的培养提出了新的要求。为适应这种要求,1993年7月国家教委颁布的普通高等学校本科专业目录,将之前能源动力类几十个小专业压缩为9个专业。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。2003年,随着能源动力科学技术的飞速发展和新问题的提出,浙江大学率先将热能与动力工程专业改造成能源与环境系统工程专业。2004年,清华大学将热能与动力工程专业改造成能源动力系统及自动化专业。西安交通大学也将热能与动力工程专业改成能源与动力工程专业。
为适应时展要求,经过教育改革,本专业人才培养口径大大拓宽,学生基本知识面得到拓展,对市场需求的适应性大大加强。目前设置本专业的重点高校51所,普通本科63所,三本及民办本科15所,但因专业定位、地域分布、历史传承和社会和国家需求等具体情况不同,本专业形成了各高校间课程设置、专业重点各有特色和培养模式多样化的态势。[1,2]
一、各高校能源动力类专业特色
1.华北电力大学
动力工程和工程热物理是华北电力大学的优势学科,主要侧重于发电侧的研究。[3]开展的研究方向主要有:节能理论技术及热经济学;新能源和新能量转换方式;节能技术;脱硫脱氮技术;燃料电池;大机组设备安全性及可靠性评估;大机组调峰特性及寿命管理;机电一体化;流体机械;大型汽轮发电机组轴系振动;电站锅炉燃烧技术与仿真;纳米及表面技术;设备状态监测与设备维修等。
2.西安交通大学
西安交通大学的动力工程专业是一个宽口径大类专业,其专业地位与综合实力不仅在全国处于领先地位,而且在国际上也具有较高声誉。在2007年国家一级学科评估中,西安交通大学“动力工程及工程热物理”一级学科最终评分位列全国第一,同时被认定为首批一级学科国家重点学科。培养具备扎实的热工理论基础和能源动力工程知识、计算机应用及开发能力,并且能够从事常规能源及新能源开发、能源的转换与利用、电力自动化生产、内燃机动力系统以及汽车工程、流体机械、制冷低温工程等研究、设计及管理的复合型人才是西安交通大学的动力工程专业主要培养目标。
3.浙江大学
该校本专业称为能源与环境系统工程,分两个专业方向:能源与环境工程及自动化、制冷与人工环境。能源与环境工程及自动化方向依托热能工程、热工与动力系统研究所,建有能源清洁利用国家重点实验室、国家水煤浆工程中心燃烧技术研究所,是我国能源高效和清洁利用、能源环境控制工程等领域的重要研究和人才培养基地之一。制冷与人工环境方向依托浙江大学制冷与低温研究所,是我国高等院校中最早创办的制冷与低温专业之一,是国家重点学科,在全国学科评估中连续多年名列前三名,为我国制冷、低温、空调、低温生物等领域培养了大批的高级专门人才。另外单独设有新能源科学与工程专业,学生主要学习新能源、能源低碳利用、新能源利用过程中节能减排的基本理论和技术,涵盖内容包括太阳能、风能、生物质能以及低碳能源利用等方面。
4.东南大学
该专业包含电厂热能动力及其自动化、建筑环境与设备工程、新能源与新发电技术三个专业方向。电厂热能动力及其自动化方向着重培养集现代信息技术和热能动力工程知识为一体的高级工程技术人才和管理人才。制冷与低温技术方向培养学生系统地掌握现代制冷与低温技术领域内的基础理论和专业知识、计算机应用技能。新能源与新发电技术方向是教育部批准设立的战略性新兴产业相关本科专业方向。培养学生掌握新能源与新发电技术方面的基础理论和专业应用知识,使学生具有开发利用核能、太阳能、生物质能、风能等新型绿色能源和可再生能源方面研究、规划、设计、监测、管理和运行等综合能力,为国家新能源利用领域输送急需的高级工程技术和管理人才。
5.华中科技大学
该专业着重培养集能源与动力工程知识与现代信息技术为一体的高级专门技术人才和管理人才。毕业生在电力系统、制冷低温系统、空调调节、汽车、船舶、电子信息、冶金、流体机械、铁路、医药、化工等部门从事能源动力工程及自动化和相关方面的教学、研究、设计、开发、营销和管理等工作。以能源、环境、动力为工程背景,以热流体科学为基础,兼顾装备制造、过程控制和信息技术,体现出集热、机、电为一体的培养特色。
二、能源动力类专业的发展趋势
现今,能源及环境问题是世界各国所面临的重大的社会问题。我国现有能源利用效率很低,尤其是在能源综合高效利用以及环境保护方面,与发达国家存在着较大的差距。在对环境要求越来越高的大形势下,实施能源的可持续发展战略,必将对能源发展提出更高的要求。[4]长期以来,在能源发展方面,我国一直走的是粗放型的增长方式,日益加剧了能源发展与保护环境、资源之间的矛盾。能源动力行业发展趋势如下。
1.发展新能源和可再生能源
我国能源发展的布局主要有两个重点:一是节能减排,二是发展新能源和可再生能源。相对来说,节能减排技术较为成熟,而在发展新能源和可再生能源这方面,很多技术、政策以及市场尚都处于研究摸索阶段,不够成熟。所以在人才培养方面,高校应加强研究生的培养与教育,在管理型人才、高端研究型人才(如政策和战略研究、项目管理、国际合作等方面)的培养与输送上多做工作。[3]
2.专业发展与环境的密切相关性
只有对能源动力生产过程中的环境问题进行完善控制和处理,才能保证人类的生存和经济的可持续发展。如今环境问题已经成为能源动力技术研究中的重要组成部分,在专业课程的教学中必须有所体现。正是基于该原因,浙江大学将原来的热能与动力工程专业改名为现在的能源与环境系统工程专业。
3.不同学科间的高度交叉性
能源动力学科的专业基础课程和专业技术课程涉及到众多学科领域的知识,如力学、热学、自动控制及计算机、机械制造、化学等学科。为适应21世纪我国能源学科发展的需要,在各专业课程的设置中,应当适当安排有关学科的知识。
4.核电的大力发展
核能工程专业取得了长足的发展。在20世纪70-80年代,国家在核能发电上投资的新建项目少之又少,使得我国各高校招收不到足够的学生。随着国家开始大力发展核电,情况发生了巨大的变化,以至于需要核能专业毕业生的数目超过了可分配毕业生的人数。
5.绿色能源意识的培养
节能是我国能源发展战略的重要组成部分,关于节能的知识不仅能源动力学科的学生应当掌握,也是几乎所有工科学生应当掌握的内容。这就要求高校不仅要做好本学科专业人才的培养,而且也要承担起向所有工程专业的学生进行节能技术教学的任务。教师要注重对学生进行“节能减排”思想的灌输和熏陶,潜移默化地培养学生的节能素养和新能源观念。[5]
三、结束语
为适应国家经济、科技、社会发展对高素质人才的需求,各高校的能源动力类专业根据自己办学定位和发展目标、自身优势,形成了各自的专业特色。通过优化专业结构,提高人才培养质量,办出专业水平和特色,为国家培养更多能源与动力领域的优秀人才。
参考文献:
[1]战洪仁.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,(1):19-21.
[2]李俊瑞,王艳,田禾.基于社会需求的能源动力专业人才培养探索与实践[J].中国电力教育,2011,(33):22.
[3]非言.中国绿色力量“摇篮”——访华北电力大学可再生能源学院徐进良院长[J].太阳能,2011,(14):23
当前各国家关注及面对的首要问题,就是环境和能源动力问题,而且,我国国家经济发展以及人们生活水平的主要物质保障就是能源动力工程,是我国实现四个现代化的前提。加之社会经济的不断深入,电气化机械化自动化的水平逐渐加强,对能源的需求越来越多。总体来说,国家生产总值和能源消耗量是成正比的。能源亦动能产品生产得越多,能源就需要得更多,从而带动社会经济的发展,实现民众生活水平的提高和国家的富裕。并且,在世界上我国属于煤炭生产消费大国,其主要能源动力供给就是煤炭。因此,污染我国大气的主要因素即未能充分燃烧的煤炭,再加上我国不可再生资源的开采程度及年限有限。所以,在能源动力及环境保护双重任务下,我国还面临着能源利用不充分,匮乏优质能源,及开发力度不足等问题。随着我国依赖国际能源的程度不断提高,能源安全迎来了新的挑战,须知,一个国家经济发展的动力命脉是能源。因能源问题导致的国家战争,而带来的领土问题更是数不胜数。因此,能源动力工程关系着国家安全、人们实际生活这两方面。众所周知,我国是人口大国总人口数占世界人口的五分之一,要落实解决民众生活问题,就必须加强农业发展力度,而农业发展就必须生产,其生产过程利用的电气化、机械化、水利化和化学化设备需要更多的能源支撑。那么,农业生产要提量还需投入大量能源,也可以说棉花、粮食的增产皆是能源换来的。并且,能源为日常生活换来了更多用品,如:纤维材质的衣服、建筑材质、调节温度及家用电气和照明设备等,都需要能源来支撑,由此可见,没有能源就什么也做不了。此外,国家国防中的各种武器设备使用也需要能源,比如坦克飞机、战舰潜艇等,一旦匮乏能源,就保障不了国家的安全,其经济建设自然难以平稳发展。所以,能源动力工程直接关系着国民经济和人们日常生活,要发展社会提高人们生活,确保人们生活物质和精神两项文明的双丰收,以及实现我国四个现代化,能源将占据这重要的地位,对提高国民经济及民众生活水平和确保国家安全有着巨大现实意义。
2当前能源动力工程的发展方向
2.1能源动力工程思路方向
基于当前国情,要加大传统能源开发利用程度。众所周知,我国现实国情即能源资源少利用效率不足,因此,还需要专业人士对如何提高传统能源开发利用效率程度加以研究,也是我国今后能源动力工程研究工作的重中之重;同时,要重视新型可再生能源的开发。石油煤炭等不可再生能源,其开采受程度和年限制约,由此可见,未来能源市场主战场将转向可再生能源的开发利用,且不能因匮乏资源而放慢经济发展的脚步,所以专业人士千万不能止步不前,要注重新型可再生能源的开发,从而确保我国工业能长期持久的发展;第三,实践理论要并行。由于不同于其他专业,能源开发利用将直接作用国家经济发展与环境保护,可转化为直观的工业产品和经济成果,所以专业人士在校学习时,就要做到理论实践并行,既要专研书本知识,又要进行科学探究和工业时间,促使得出实际结合理论的科技理论成果,从而促进能源的发展经济的腾飞。
2.2能源动力工程环保方向
环境污染不仅威胁着人类的生活,更制约了经济建设社会发展,若没有良好生活环境及可长期利用的能源,那么社会将止步不前,人类也会失去确保发展生存的基础。为实现我国四个现代化,和中国特色社会主义国家的建设,最首要关注的问题便是环境与能源,遏制为发展而先污染后治理现象;同时,要加强环境管理力度,但凡改建扩建新建、建设经济开发区等,都必须遵循环境评价标准,坚持使用环保建设设备及建筑工程主体共同施工设计投产制度;再次,经济发展方式要积极改进,要淘汰陈旧设备选用先进的机械设备,严格禁止污染严重能源消耗多的产品生产;最后,环保资金的投入力度要大,健全完善环保法制制度,严格按国家规定排放标准执行,确保环境保护是在法制下进行。
2.3煤炭清洁技术的利用
(1)净化处理燃烧前煤炭,其流程为:清洗选取煤炭,将煤炭中的灰分等杂质清除减去,洗选处理效率务必要达95%以上;民用煤炭加工,将粉煤与低品位煤炭用机械设备制成相应形状的煤炭产品。(2)净化处理燃烧后煤炭,以湿式或干式脱硫法,确保使用率达到90%左右;以静电除尘方式处理大型电厂燃烧后煤炭,保证除尘率在90%左右。
3结语
【关键词】热能动力工程;锅炉
一、关于热能动力工程
热能动力工程就是“热能”与“工程”之间关系的引发的相关应用实体机械与工程。热能动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。目前,国内热能动力工程的主要应用与热电厂、空调制冷方向以及部分流程的自动化方向,未来的发展趋势也将立足于这些具体的应用来进一步解决相关能源应用的问题。从上述我们可以看出,热能动力工程主要解决我国工业生产生活中的最根本的动力问题,由此热能动力工程的相关发展与国民经济的进一步发展息息相关,热能动力工程的改革将对于我国可持续发展道路起到重要的作用。
目前,热能动力工程的应用范围非常普遍,部分企业引入了热能发电机作为企业的供电设备。本文中所探讨的锅炉,其主要涉及了热力发电机、相关的热能转换动力机械等方面的技术。
二、关于锅炉的相关构成
锅炉根据其功能的不同和燃烧材料的不同可以分为很多种类,不同种类的锅炉为了满足不同的生产生活需要,在构成方面存在一定的差异。但是,其主要的外壳以及核心的前期控制部分是不变的。锅炉的外壳对于整个锅炉来讲是一个“外表”,锅炉在工作过程中利用这个“外表”对自身进行固定,并且防风防灰尘的袭扰。 锅炉的组成由煤粉制备系统、燃烧器、受热面、空气预热器等主要部分组成,锅炉的受热面还用于固定锅炉的燃烧部分,也就是燃烧器,煤粉燃烧器是将煤粉送入炉膛进行燃烧的设备。燃烧器分为两种:
1、旋流式燃烧器:携带煤粉的一次风和不带煤粉的二次风分别用不同管道与燃烧器连接。煤粉与空气能充分混合并形成回流区。每台锅炉可配置4~48只燃烧器。
2、直流式燃烧器:喷口成狭窄形,其一、二次风在燃烧器中都不旋转。煤粉在其中能完全燃烧。
受热面分蒸发受热面和过热受热面。现代大、中型锅炉均以水冷壁构成炉膛,由此水冷壁(即受热面)吸收炉内辐射热使水蒸发成饱和蒸汽。为不增加炉膛容积而增加辐射受热面,大型锅炉可采用双面曝光的水冷壁。过热受热面可分为布置于炉膛上部的屏式过热器受热面和布置于对流烟道内的对流过热器受热面。前者吸收炉内辐射热;后者吸收对流热。
空气预热器装于锅炉烟道尾部,用以回收烟气余热,提高助燃空气的温度。高参数、大容量的锅炉为提高热风温度(>300℃),常需使空气预热器与省煤器分级交叉布置。
锅炉中还有一个很重要的部分就是其电器控制器。电气控制器对于锅炉来说就相当于“大脑”,通过“大脑”来控制锅炉内部的主要活动。随着科技的不断发展,锅炉的电气控制器已经与信息产业相结合,产生了微电脑控制的自动控制模式,一改传统的人力操作,在温度的精确程度、恒温性方面得到了很大的改善。
三、在锅炉使用方面存在的问题
目前,锅炉方面存在的问题主要集中在锅炉的风机。风机是锅炉进行热能与动能转换不可缺少的一部分,主要是利用风机的旋转,来提升锅炉内部的大气压力,由此压缩后的气体运送到企业安装制定的机械中,气压恢复正常时原本被压缩的膨胀,进而形成机械运作的动力。风机的工作地点主要是在锅炉的内部,但是由于企业生产压力的增加,往往锅炉都是超负荷的运转,由此风机经常出现烧坏电机的情况。烧坏电机不仅仅直接造成了企业的经济损失,对于操作人员的人身安全也造成了极大的威胁。因此,对于风机的改造就需要利用热能动力工程的相关技术,提高锅炉的安全性、避免出现安全问题刻不容缓。
四、热能动力工程炉内燃烧控制技术运用
在实际的操作过程中,对于能量转换环节的控制时工业炉或锅炉对于动力燃料燃烧控制技术的核心。随着时代的进步,传统的人力添加燃料的模式已经无法满足实际工厂生产的需要,由此自动填充模式成为了主流。部分大企业引入的国外设备已经能够实现整个流程的全自动化,微电脑操作系统完全实现了对于燃烧的控制。根据控制技术的不同,目前将锅炉的燃烧控制系统主要分为了一下两种。
(1)以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及 PLC等部件组成的空燃比里连续控制系统。这种燃烧控制系统是由热电偶检测出数据传送至 PLC与其本身设定的数值进行比较,偏差值通过使用比例积分及微分运算输出电信号同时分别对比例阀门以及电动蝶阀的开放程度进行调节,从而达到控制空气与燃料比例调节锅炉内温度的目的。目前,空燃比里连续控制系统主要是利用锅炉内部相关燃烧数据的分析传入可编程的逻辑控制器,通过逻辑控制器对于向比例阀传输电子信号,对其开放程度进行调控,由此来控制锅炉内部的温度。但是,受到科技发展的局限性,目前利用空燃比里的连续控制系统在具体操作过程中,其对于温度控制的准确度没有达到预想的目标,还是需要专业技术人员的操作干涉。
(2)由烧嘴、燃烧控制器、流量阀、流量计、热电偶几个部分组成的双交叉先付控制系统,其工作原理主要是通过温度传感器热电偶把需要进行精确测量的温度变成电信号,这个电信号即是用来代表测量点的实际温度,此测量点温度期望给定值是由预先存贮在上位机中的工艺曲线自动给定的,并根据两者数据之间的偏差值的大小,由 PLC自动调整燃料与空气流量阀门的开合程度,通过电动的方式运行机构的定位以及空气和燃料的控制比例,并接住孔板和差压变送器测量空气的流量,燃料的控制也通过一个专用的质量控制装置来测量,是温度精确的控制在必要的数值上。这种燃烧控制优点在于方式节省部件,并且温度控制精确。
(3)软件仿真锅炉风机翼型叶片 。由于锅炉叶轮机械内部流场非常复杂,并带有强烈的非定常特征,进行细致的实验测量非常困难,目前尚没有完善的流体力学理论解释诸如流动分离、失速和喘振等流动现象,这就迫切需要可靠详细的流动实验和数值模拟工作来了解机械内部流动本质。将利用软件对锅炉风机翼型叶片进行二维的数值模拟,研究空气以不同的方向流入翼型叶片入口所造成的流动分离。根据数值模拟的一般步骤:创建二维模型,进行网格划分,设定边界条件和区域,输出网格,再利用求解器求解,对不同空气来流攻角角下的流动进行二维数值模拟。在得到模拟结果后,对不同攻角下模拟所得到的速度矢量图进行比较分析,得出锅炉风机翼型边界层分离和攻角的关系。
五、结束语
随着科学技术的不断发展和进步,使得热能动力工程也有了进一步的发展,同时也促进了我国热力发动机行业的发展以及一些新兴行业的发展。另外,热能动力工程在能源和锅炉中的应用,也因为经济的发展和技术的进步得到了广泛的应用。随着热能动力工程对日常生活的重要作用,希望相关的研究者更加的努力,继续在能源和锅炉的应用中发掘新的功能,进一步的满足人类的需求。
参考文献
[1]王强.浅谈热力动力工程在锅炉和能源方面的发展状况[J].科技致富向导,2014,18:87.
关键词:需求驱动;人才培养;节能;能源管理
作者简介:朱群志(1972-),男,浙江台州人,上海电力学院能源与机械工程学院,教授;任建兴(1961-),男,江苏海门人,上海电力学院能源与机械工程学院,教授。(上海 200090)
基金项目:本文系上海电力学院教改项目(项目编号:20111407)、上海高校本科重点教学改革项目(项目编号:20115901)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)10-0021-02
一、节能与能源管理人才培养的必要性和紧迫性
我国是能源消耗大国。近年来国内经济的快速增长对能源供给的压力很大,重要能源资源短缺对经济发展的制约进一步加剧。我国的能源利用效率与世界先进水平相比存在较大差距,不少地方存在粗放式使用的情况,很多能源没有得到有效利用而造成浪费。这种能源消费方式使能源供给进一步恶化,对人类居住环境也造成了严重污染。节约能源是我国建设节约型社会的首要措施。[1]
培养从事节能与能源管理工作的人才是我国经济可持续性发展的需要。从1979年开始,我国就有计划、有组织地开展了节能工作,但30年来节能事业起伏不定。这种状况固然与国家的经济发展战略、能源供需形势等因素有关,但节能与能源管理人才的缺乏也是一个重要因素。缺少一支精通节能技术、熟悉节能管理、事业心强的高素质人才队伍是我国开展节能工作的软肋,也是实现我国节能目标的瓶颈问题。[2]
培养从事节能与能源管理工作的人才是国民经济各行业发展的需要。各类工厂是我国能源消耗的大户,工业能源消耗占全国能源消耗总量的70%左右。节能与能源管理领域的专门人才可以促进企业加强内部的能源计量和管理,开展节能降耗工作。1998年1月起施行、2007年10月修订的《中华人民共和国节约能源法》明确规定:重点用能单位应当设立能源管理岗位。重点用能单位包括两类:年综合能源消费总量1万吨标准煤以上的用能单位;国务院有关部门或者省、自治区、直辖市人民政府管理节能工作的部门指定的年综合能源消费总量5000吨以上不满1万吨标准煤的用能单位。2007年国务院颁布的《节能减排综合性工作方案》中明确要求重点耗能企业建立能源管理师制度。之后天津和山东等地开展了能源管理师的试点工作。2011年国务院颁布的《“十二五”节能减排综合性工作方案》中要求扩大能源管理师试点。
社会对节能人才的需求很大。根据对用能单位的调查,我国专业节能人才的需求量在数10万人以上。目前我国从事节能与能源管理工作的专业人才极度匮乏,很多企业没有专职的能源管理人员;即使有专职人员的企业,也存在能源管理人员节能意识不高、专业技能欠缺以及人员配置偏少等问题。这些原因导致企业对能源的控制和管理薄弱,严重阻碍了节能工作的开展和能源使用效率的提高。要解决这些问题,必须在科学方法的指导下充分挖掘企业节能潜力,以技术手段和管理手段促进能源利用效率的提高。因此,适应社会需求,培养专业的节能与能源管理专门人才显得十分迫切。
我国高校在节能专业人才培养方面起步较晚,虽然有一些高校在能源教育方面做了一些尝试,[3,4]但至今还没有形成健全的节能人才培育机制,面向节能服务人才培养的专业设置和学科建设都比较薄弱。[5]针对高校培养人才不足的现状,一些社会办学机构纷纷提供短期的能源管理师课程对一些在岗人员进行培训。然而,这种培训班短则几天,长则一周;培训项目时间短,很难对学员提供系统的知识和技能训练。作为人才培养的主要基地,高校应根据我国经济结构调整和战略性新兴产业发展的需求,为我国节能产业的发展培养高素质的节能与能源管理专门人才。高校可对现有专业进行改革,通过调整一些相关专业的培养方案、增补部分课程,为社会培养毕业后从事“能源管理师”岗位的人才。
二、节能与能源管理人才培养的探索
节能涉及的领域多,学科背景广。从技术角度分析,主要涉及“热”和“电”。本项目主要探索在热能与动力工程专业上进行改革,适应社会对节能与能源管理人才的需求。热能与动力工程专业的相近专业包括能源动力系统及自动化、能源与环境系统工程等。由于各个专业的背景不同,侧重点也不同。有的偏向动力机械,有的偏向制冷与空调,有的侧重能源高效和清洁利用。电力高校中的热能与动力工程专业往往偏向电厂热能动力工程和电厂集控运行。本文针对的是上海电力学院的国家特色专业——热能与动力工程专业。该专业办学历史比较悠久,并具有明显的行业背景。
1.制定了“节能与能源管理”专业方向培养方案
通过对热能与动力工程专业进行改革,设立“节能与能源管理”专业方向。热能与动力工程学科还是这个专业方向的核心,因此,专业方向与所依托专业在专业基础课和专业核心课程的设置上基本相同。专业基础课及专业课程主要包括工程热力学、工程流体力学、传热学、锅炉原理、汽轮机原理、泵与风机、热力发电厂等。
与常规热能与动力工程专业的区别在于增加了特别针对节能与能源管理的课程模块。该模块包含6门课程,共计9个学分。课程包括节能技术概论、空气调节、制冷原理与设备、热网技术、技术经济学以及能源管理与审计等。这些课程有的侧重技术层面,有的侧重能源管理与技术经济分析层面。除了节能与能源管理专业方向的选修课程之外,学生还可以从其他专业方向中选修一些课程,例如热能工程测量技术、可再生能源发电技术等。
2.教学内容契合复合型应用人才培养
节能人才不仅要掌握各种通用节能技术,而且也需要懂得一些技术经济分析、工程管理等方面的知识,是技术和管理结合的复合型人才。[6]因此,专业选修课程的教学内容应该根据节能与能源管理人才的知识和技能要求来设计。例如,“节能技术概论”课程的主要内容包括热电联产节能技术、锅炉和加热器节能技术、热管及热管换热器节能技术、热泵节能技术、余热回收节能技术、电力行业节能措施与案例等。“热网技术”课程的主要内容包括集中供热系统、热负荷及管网水力计算、供热管道敷设、热源配置等。“能源管理与审计”课程的主要内容包括能源政策、能源工程管理、合同能源管理、企业能源审计、企业能源平衡等。
3.在实践环节中提高学生的应用能力和创新能力
实践环节中除了一般的认知实习和专业实习外,还包括课程实验、专业方向课程设计以及毕业设计等。这些环节主要是培养学生应用课程所学知识的能力。结合课堂教学内容,增加了常用节能技术的实验。例如,在“泵与风机”课程中增设了泵与风机的变频调节实验。通过开展这些实验加深学生对变频技术的原理、方法和效果的认识。专业方向课程设计是一个新增的、有特色的实践环节,训练学生综合应用专业选修课的相关知识,并不局限于特定的选修课程。尝试将一家医院的供能系统作为课程设计的对象,要求学生结合参考资料对医院的用能及供能系统进行设计。提供给学生的资料包括工程扩初说明、各类冷热电设备性能参数表、非电空调选型设计手册等。
通过与学校基本建设工程、科研实验平台相结合,建成了一些学生实践基地。由于在项目设计阶段就提前介入,这些基本建设工程和科研平台在建设中充分考虑了学生实践能力培养的功能需求。已经建成的实践基地有:节能生态艺术厅、大学生活动中心节能建筑示范基地、多类型能源的分布式能源实验系统、校园能耗监管平台等。节能生态艺术厅可以开展的实验有中央空调性能测试、室内温度场测试、太阳能热水器性能测试等。大学生活动中心节能建筑示范基地可进行太阳能光伏发电实验、风光发电互补实验和建筑能耗按户计量实验等。分布式能源实验系统可提供燃气轮机性能试验、内燃机性能试验、气水换热器性能试验等。而校园能耗监管平台则能够提供全校每幢建筑的用水、用电数据,这些数据是学生开展能耗分析和节能诊断的生动素材。
4.人才培养情况
节能与能源管理专业方向于2008年开始按方向招生,招生规模为1个班。2012年首届学生毕业,学生就业情况优良。学生的就业单位除了传统的电力行业发电企业、设计院、电厂建设企业以外,也有节能服务公司等。节能与能源管理专业方向的设立为这些学生提供了必要的基础知识和技能,有利于他们进入单位后尽快适应工作岗位。
开设的选修课程得到了热能与动力工程其他专业方向学生的欢迎。“节能技术概论”、“能源管理与审计”、“热网技术”等选修课程每个教学班的人数都接近80人,其中节能与能源管理专业方向的学生只占一半。对于热能与动力工程专业的学生,这些课程有利于拓展学生的知识面。
学生的节能意识增强了,对节能工作的兴趣提高了。学生积极参与节能减排方面的科创项目,这些学生既有来自热动专业又有来自机械专业、管理专业等。管理专业的学生与热动专业的学生联合组队,参加了第五届全国大学生节能减排社会实践与科技竞赛等活动,并获得较好成绩。这些科创活动一方面提高了学生的应用能力和创新能力,另一方面也有利于激发学生的学习兴趣。
三、结束语
上海电力学院根据国家能源发展战略需求和社会对人才的需求对高校培养节能与能源管理人才进行了探索。在热能与动力工程专业上设立了节能与能源管理专业方向,制定了专业方向培养方案,开设了兼顾技术和管理层面的专业选修课程,依托校园基本建设和科研项目建立了校内实践基地。所开设的课程得到了学生的欢迎,加强了学生的节能意识,拓展了学生的就业面,为热动专业毕业生从事节能与能源管理工作提供了基础。
由于节能的领域多,范围广,涉及学科多,因此节能人才的培养中存在不少困难。企业所需的节能人才最好是多面手,既懂“热”,又懂“电”,还懂能源管理。但是,作为一个本科专业,需要有一个相对完整的知识体系。另外,各个行业有不同的生产流程,培养一个通用的节能人才也是不现实的。因此,如何适应社会需求、进一步加强节能人才的培养是一个需要不断探索和持续关注的问题。高校是培养人才的主要基地,相关专业可以和企业紧密结合,结合专业的学科背景和依托行业的特点进一步探索节能专业人才的培养模式和途径。
参考文献:
[1]吴志功,王伟,郭炜煜.大力发展能源教育建设低碳社会[J].北京教育:高教版,2010,(7):10-13.
[2]刘显法.节能降耗的人才保障[J].中国人才,2007,(2):27-28.
[3]左远志,杨晓西.大学开展能源教育的新视角[J].东莞理工学院学报,2012,(1):100-103.
[4]桑丽霞,王景甫.对我国大学开展能源教育的思考[J].北京工业大学学报(社会科学版),2009,(6):72-74.
[5]尹健.节能服务产业人才培养问题与对策[J].中国校外教育,
关键词 船舶动力装置设计 海洋工程与船舶装备 教学改革
中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkz.2016.08.046
Abstract Based on the training objectives of energy and power engineering in Dalian Ocean University, the 2013 edition of the training program is set up in the direction of ocean engineering and ship equipment. Proposed series curriculum system of ocean engineering and ship equipment direction, respectively from the aspects of reforming the teaching contents, reform the teaching methods and means, practice teaching reform research, and summarizes the teaching reform of the preliminary results.
Key words ship power plant design; Marine Engineering and Ship Equipment; teaching reform
能源与动力工程专业(原名热能与动力工程专业),作为我国高等教育工科门类中的一个重要专业,全国上百所大学均有设置,只是不同院校的热能与动力工程专业各有特色,表现在不同专业方向服务于不同的工程技术领域。①我校的能源与动力工程专业,面向地方经济和船舶及动力行业发展趋势,经过多年的积淀,特别是近些年的就业走向,已初步形成了具有船舶和动力特色的、体现第一线工程师思想的应用型人才培养的办学模式。
结合2012版《普通高等学校本科专业目录》的专业调整,我校制定了2013版能源与动力工程专业的培养方案。为了适应海洋开发步伐的加快和造船工业的产品结构调整升级,将本专业方向由2012版的“船舶动力装置”方向修订为“海洋工程与船舶装备”方向。因此,有必要按照新的人才培养模式、知识及能力结构的要求,进行海洋工程与船舶装备系列课程的教学改革。
1 构建海洋工程与船舶装备系列课程体系
海洋工程与船舶装备方向课程包括:海洋工程原理(2.0学分)、船舶动力装置设计(2.0学分)、船舶辅机(3.0学分)、轮机建造工艺(2.0学分)和船舶管系(2.0学分)以及与这些课程相关的实践教学环节(包括船舶动力装置课程设计、专业认识实习、毕业实习和毕业设计)。
根据系列课程的内容差别,我们构建了海洋工程与船舶装备系列课程系统,该课程体系知识结构如图1所示。将海洋工程与船舶装备系列课程分为:
设计类课程和工艺类课程。设计类课程包括海洋工程原理、船舶动力装置设计和船舶辅机。工艺类课程包括轮机建造工艺和船舶管系。本系列课程体系改革就是要适应船舶和动力特色应用型人才培养模式的需要,建立以船舶动力装置相关的理论及方法为基础,以设计和工艺为主线,侧重学生的工程素质、综合应用和创新能力培养的系列课程新体系。
2 海洋工程与船舶装备系列课程的教学内容改革
长期以来,各门课程始终“自成系统、自我完善与发展”,有些内容门门都讲,有些内容哪门课都不涉及。②课程内容较为陈旧,与先修课程在内容上存在不必要的重复,课程之间的分工与接口不明确,与工程实际联系不够等。尤其,我校的能源与动力工程专业,学生的就业方向主要是各大船厂,而由于造船工业技术的发展,新材料的采用和新型船舶的出现,课程内容远远落后于船厂的实际,学生就业后很难在短时间内适应船厂的工作。因而,根据海洋工程与船舶装备系列课程体系,进行课程之间教学内容的整合、协调和优化,使课程内容体现出既加强船舶和动力方面基础理论、知识、方法及基本技能的掌握,又拓宽专业知识面,注重工程实践能力和创新能力的培养。
船舶动力装置设计是本课程体系中的重点,在掌握船舶动力装置原理的基础上,注重学生“船舶设计规范”观念的培养和设计方法的掌握;船舶辅机以各种船舶辅助机械的工作原理和性能特点为主线,精选典型船用泵的原理、结构及维护,与船舶动力装置和船舶管系在内容上相互渗透;海洋工程原理则以拓宽学生专业知识面的目的,加强学生对海洋平台设计原理和方法的了解。轮机建造工艺是以机械制造工艺为基础,以船舶动力装置制造和安装工艺为主线,注重学生对“船舶建造规范”的熟悉和掌握;船舶管系则是以管系的加工制作和安装工艺为主线,强调学生的动手能力培养和船厂工作环境的了解。
结合教师的教研和科研成果,以及船厂的工程实际,及时更新授课内容。例如,在船舶管系介绍过程中引入“船舶压载水带来的生物入侵问题”、“节能环保和低碳经济问题”等等,学生都非常感兴趣。同时,迫切需要编写一套海洋工程与船舶装备方向系列课程新教材,目前已经出版了教材《船舶管系》。
3 海洋工程与船舶装备系列课程的教学方法和手段改革
采用传统的教学方法――黑板和挂图,学生很难从静态的平面图上真正理解立体运动的主机、辅机、轴系和管系等的结构和工作情况。多媒体教学将文本、图形、声音、动画和视频等媒体有机结合,拟补了传统教学方式的直观性、立体感和动态感等方面的不足。但是,多媒体课件也有一些负面影响,课件的容量多,播放速度快,导致学生思维跟不上;缺少师生间的教学互动,难以发挥教师在课堂上的主导作用和学生的主体作用。③因此,根据授课内容的不同,选择性使用多媒体课件,辅以黑板教学,以启发式教学与案例式教学为主,并辅以讨论式教学,条件与时间允许适当安排实验室现场教学。设计类课程,适合多媒体课件和黑板教学相结合;工艺类课程,则尽可能多安排实验师现场教学。
根据我校的本科教学大纲,专业方向课均为考试课,平时成绩和期末成绩分别占一定的比例,这种评价方式显然比较死板,学生只需临近考试时突击复习应付,便可以取得好成绩。因此,为了真正注重学生能力的培养以及对所学知识的掌握和运用,应该采用灵活多变的考核方式。设计类课程,重点考核学生对原理、设计方法的掌握和运用,编写程序、撰写文献综述以及案例分析等等都是很好的考核方式;工艺类课程,重点是实际动手能力的测试,而不是对书本上公式的记忆。
4 海洋工程与船舶装备系列课程的教学实践环节改革
通过对本学院的动力工程实验室和机械工程实验室以及十九个功能室进行重组和资源整合,进一步加大校内实习基地的建设力度;聘请相关行业的技术人员参与学生的毕业设计环节,使学生和教师能尽早地了解企业的实际工作流程;在维护好现有专业实习基地的基础上,积极与企业、科研院所进行广泛的合作,进一步加大校外实习基地的建设力度。
增设船舶动力装置拆装实验室。由于我校的办学理念是培养具有第一线工程师思想的应用型人才,实践性教学环节显得尤为重要。通过船舶动力装置的拆装实验,学生才能够将教科书上零部件的原理剖面图与实物相对应起来,了解其内部构造,才能胜任未来的船舶动力装置制造、维修、装配调试及操作等工作岗位。
组建船舶动力装置仿真实验室。实践证明,采用仿真实验的方法可以较好地解决实验设备不足的问题。通过对船舶动力装置多种运行工况下的模拟仿真,使学生对主机、轴系和管系等的工作原理、工作状态有更直观的了解,提高学生对船舶动力装置设计的兴趣和效果。仿真实验与传统实验的配合使用可以保证实验教学的灵活性和有效性。合理地运用多媒体设施,在多媒体课件的基础上开发模拟实验软件,通过多媒体手段将实验教学和课堂教学有机地结合起来,部分地取代实验教学,是目前比较有效的解决办法。
5 总结
为了适应我校能源与动力工程专业的人才培养目标,分别从教学内容、教学方法和手段、教学实践环节等几个方面,探讨了海洋工程与船舶装备方向系列课程的教学改革与实践。依托我校机械与动力工程学院在船舶设计与建造、渔业机械和船舶辅机等方面的经验积累和技术储备,本专业已经形成了具有船舶和动力特色的应用型人才培养模式。通过教学改革,进一步探索具有本专业特色的教学模式和教学体系,并结合本校实际情况予以实施。
注释
① 宋文武,符杰,李庆刚等.关于构建“热能与动力工程”大专业多方向课程体系的思考.高等教育研究,2011.28(4):44-48.
关键词:卓越工程师 能源 培养计划 校企合作
中图分类号:G642 文献标识码:A 文章编号:1673-9795(2013)09(a)-0067-02
华中科技大学能源与动力工程学院作为首批入选实施“卓越工程师教育培养计划”的院系之一,通过依托学科和专业优势,积极利用现有资源条件,充分挖掘专业潜力,对“卓越工程师教育培养计划”的实施层次和目标、工作思路、组织管理、培养体系、培养标准、培养模式、师资队伍建设等进行了系统的探索与实践,致力于培养具备能源动力素质的卓越工程师。
1 明确能源卓越工程师的培养标准
能源卓越工程师的培养遵从“教授为主导,学生为主体,质量为主线”科学客观的教育理念,重视和强化“知识、能力、素质”同步培养机制,倡导个性化培养,注重卓越,所以能源卓越工程师是复合型高素质,科学技术基础理论雄厚,设计一流,富于创新,擅长管理,抱负远大,学风严谨,道德品质高尚,法纪严明,行业政策、技术标准熟悉,睿智进取,具备能源动力素质,具有国际视野,科学发展战略思维及跨文化环境下的交流、竞争与合作能力,在重大科技领域和大型工程项目中能发挥领军作用的拔尖的科技人才。
能源卓越工程师应具有独特的能源动力专业人格素质,即明确国家能源行业需求与责任,总体了解世界能源格局,深刻认识国家能源策略,具备节能意识、知识与技能,具有环境与生态保护意识与基本理念以及大工程与技术经济分析能力。
2 制定完善能源卓越工程师的培养方案
能源卓越工程师培养实行本、硕、博“4+2+3”三段式培养模式,即本科阶段四年,硕士阶段二年,博士阶段三年,每个阶段均具有明确的培养目标,阶段间建立了相应的考试与推荐相结合的优胜劣汰分流和衔接机制,并实行校企联合、双导师制,对本、硕、博进行培养。
能源与动力工程学院根据当前科学技术的发展和社会对人的需求以及学生的个性、特长、爱好,制定了针对本专业不同行业方向的卓越工程师课程培养方案,并对课程体系和大纲进行了全面修订,明晰了主要课程和主要教学环节的教学基本要求,其中校外课程目录见表1。修订后的课程体系和大纲重视和强化“知识、能力、素质”同步,能够更好的培养有能源动力素养、满足包括国家需求、社会需求、学生需求在内多元化需求的卓越工程师人才。
3 创新教育体系,整合课程内容
能源与动力工程学院立足卓越工程师培养计划,创新并实践了全程全方位教授引导式多资源共建能源卓越工程师教育体系(见图1)。
该教育体系立足卓越工程师计划,凝练教育理念,建立和实践了“与国际结合、与企业结合、与高水平科研结合”本科教学模式;重视和强化“知识、能力、素质”同步培养机制;调动和发挥了教授治学的引领作用;实行和落实了教授全程主导本科教学的施教举措,给予学生充分自主的探索空间,提供学生焕发潜能的一切机会;倡导个性化培养,注重卓越,培养有能源动力素养、满足包括国家需求、社会需求、学生需求在内多元化需求的人才。
在改革教育体系的思想指导下,学院进行了课程改革和整合。(1)建设了国际共建课程,教学内容、教学方法和教学质量与国际接轨;(2)更新课程教学内容,建立了多门校企共建课程,加强了工程素质教育,提高了师生的工程与实践能力;(3)按专业方向组建实验课程,注重学生理论知识掌握和实践技能提高同步;(4)共建各类专业平台课程,争创各级精品课程,发挥示范带头作用;(5)共建系列研讨型课程,根据专业特色和学生实际情况,教授全程跟踪和引导。
4 立足国家工程实践中心,校企合作进行实践教学
依托获批的9个国家实践教学中心,实行本硕博贯通培养的工程实践教育:
(1)本科阶段实施计划:本科阶段大约3年为通识教育和专业教育时间,大约1年在中心开展实践训练,并完成毕业设计论文。对学生应明确其校内指导老师和企业指导老师,由指导老师对本科阶段的企业培养计划进行整体规划和指导,本科阶段毕业设计论文题目由学校导师和企业导师共同商讨后确定,可结合硕士阶段的方向设置企业实践的重点和应达到的具体指标。表2给出了本学院某方向在企业阶段的实践学习内容。(见表2)
(2)研究生阶段实施计划:中心教学基地作为研究课题的协助单位,为课题研究提供现场运行数据和资料,以及进行试验或验证的机会。学生下企业的具体时间根据课题研究的需要灵活确定,并保证硕士阶段至少有三个月的时间下到现场。中心要求导师要严格把关,以解决工程实际问题为出发点,确定研究课题。注重培养实践研究和创新能力,课程设置以实际应用为导向,以职业需求为目标。教学内容强调理论性和应用性课程的有机结合,突出案例分析和实践研究;教学过程重视运用团队学习、案例分析、现场研究、模拟训练等方法。同时,加大实践环节的学时数和学分比例,研究生要提交实践学习计划,撰写实践学结报告。
能源与动力工程学院围绕卓越工程师人才培养目标,依托卓越工程师培养计划,通过加强校企的紧密合作,进行卓越工程师人才培养实践,不仅推进了卓越工程师教育改革发展,而且为满足我国工业化和现代化建设的人才培养需求进行了有益探索。
参考文献
关键词:节能降耗;热能与动力工程;运用;影响;措施
环境污染及资源消耗已经成为我国在发展过程中的固有问题,这也在一定程度上限制了我国可持续发展的进程,为此在生产活动中如何进行节能降耗已经成为社会中的热点话题。在现今社会生产及生活中离不开电能的应用,为此电厂的建设一直在不断的扩张,同时电厂也是资源消耗及环境污染的主要因素之一,因此更要注重引导电厂向着节能降耗的方向发展。目前在对电力生产过程的研究中发现,热能与动力工程的应用可以有效地降低能源消耗量,其可以应用余热发电的特点有效地降低废气的排放量,达到能源的高效转化,使整发电过程具有节能减排的作用。
1 热能与动力工程在电厂发电中的作用
1.1 热能与动力工程发电概述
热能与动力工程所需要遵循的为能量守恒定律,其在运用中主要是根据这一原理将热能转化为动能,又从动能转化为电能。而在电厂进行生产活动的过程中主要是在能源燃烧反应中释放出足够的热量,这部分热量通过蒸发器及高压水泵的作用而产生大量的水蒸气,之后水蒸气推动了汽轮机,之后利用汽轮机的运转来带动发电机组产生电能,这部分电能则通过电力装置传输出来,由变电站进行电能的分配使用。
1.2 利用热能与动力工程进行节能降耗的作用
根据以上的介绍可以初步了解在热能与动力工程的应用中的特点,其对整个生产环节产生了一定的主导作用,因此在电力工程中需要对热能与动力工程进行着重研究,并在此条件下探讨如何将热能与力学进行全面的结合。目前在我国经济发展的过程中电厂作为我国重要的支柱型产业之一在未来必定还会不断的建设及发展,因此为了在最大限度上保证可以产生一定的环境效益,必须要掌握其在生产中的核心内容,热能与动力工程就是直接关系着电厂运行的部分,并且在热能与动力工程中需要注意开发出其能源工程及热力发动机排放与环境工程的作用,研究如何降低能源消耗,从而提高发电效率和能源利用率,最终达到节能减排的目的。
2 影响电厂电能生产的主要因素
2.1 锅炉运行情况
目前在电力生产过程中多数是应用锅炉进行能源的燃烧,之后将其燃烧所得热能转化为动能进行发电工作,但是此种发电方式本身就是依靠机械设备来进行的,因此其存有的故障、风险等因素也较多,尤其是在故障隐患问题处理不及时的情况下极易造成电能生产效率低下的问题。作为特种设备的锅炉在生产应用中需要对其运行情况重点进行关注,锅炉在运行的过程中其燃烧及热能的释放并不是以固定的形式进行运行作业的,在实际中受到多种因素的影响,在释放热能上的效率也有一定的变化。为此,在实际中可以说锅炉在特定的环境下其热能的释放决定了锅炉的运行效率,也决定了电厂的生产效率。因此在提高锅炉热能运行效率上需要注重对锅炉性能进行改造,并在运行工况的调节做到更精准、细致。
2.2 电厂设备的选择及热能损失
在电力生产的过程中,设备运行工况直接影响热能的利用,利用率低将导致热能损失增加,因此在实际中多数电厂所选用的设备在节能降耗上没有取得进展,存在设备配比不足,热能损失难以控制。虽然目前在电厂中有一些设备采用变频调节,有了一定功效,但是在实际中这些设备存在着成本高、技术可靠性差、技术要求高等特点,这些都是节能降耗所需要面对的主要问题。
2.3 凝汽装置的工况不稳定
在发电的过程中,凝汽装置关系着在生产过程中的热效率问题,也是发电生产活动中的核心装置之一。根据凝汽式汽轮机的特点,其结构在实际中非常复杂,因此在实际运行中存在的不稳定因素也较多,同时汽轮机在生产使用中还较为容易受外界因素的影响出现运行上的问题,造成装置施工效率得不到良好的保障,再加上受外界环境及工作气压产生的一定影响,汽轮机在使用中的状态波动过大,无法稳定的依据理想设计要求进行生产运行,降低了整体的发电效率。
3 热能与动力工程在电厂中的合理运用
3.1 选择合理的调频方案
热能与动力工程能量间转化是相辅相成的,动力工程的效率促进了热能的转化率,热能的利用率也促进了动力工程的合理化进程,热能与动力工程有效运用在电厂装置和设置中,保证电能的生产过程和生产流程更加符合相关规范,减弱了电能的损耗和消耗。由于用电系统也是存在变化的,外界的自然干预使得用电负荷处于变数变化中,故而电网频率也是存在波峰波谷的动态变化状态的。所以,合理的调频方案可以实现热能与动力工程的良好配合,发挥合理的作用并运用在电厂中,具体结合实际的负荷电网频率,并网运行机组时时刻刻根据频率调节自身的动态运行性能,自行接受外部负荷并承受的外界负荷,维系电网工作频率的正常化。
并网运行机组一般被称为一次调频,根据外部环境负荷功率是一次调频的工作负荷频率的变化的主要依据,而后平衡调速器的工作状态,实现快速的频率调节选择一次调频方案就能够解决这个问题。适当的对调频方案改进改造,有选择性的进行二次调频,尤其是在发电机组运行过程中,可以手动调频和自动调频两种相结合的两种方式,如果一次调频解决问题不彻底,可以采用二次手动调频的方式解决问题,促进发电机的运行功率效率提高。
3.2 采用调配选择及工况变动的方法
为了保证汽轮机可以得到高效利用,可以采用调配选择来使热能与动力工程可以在电厂中得到高效利用,同时利用调配选择还可以有效的提高发电过程中的可靠性,使发电计划更具有可行意义。在此种条件下需要注意对凝汽装置性能进行提升,从而保证在实际中具有良好的使用效率,主要通过增加辅助装置来提高汽轮机的利用效率,使其在实际中具有较好的热效率。并且在调配选择的作用下可以使装置根据电厂的实际工作状况的变化进行汽轮机工作负荷的调节,避免在实际中出现工作负荷过大而造成汽轮机应用受到影响或是汽轮机负荷过小热效率不足的情况。并且在调配选择中还需要注意对阀门情况进行监控,由于汽轮机会进行工况变动,为此阀门全开时系统可能无法承载其施加的作业压力,为此必须要由工作人员进行调控,避免在短时间内峰值陡然增高,进而保证汽轮机可以对能量进行高效转化。
3.3 有效利用多级汽轮机的重热现象
汽轮机在使用中具有重热现象,因此为了可以使能源得到高效利用需要对此部分能量进行回收利用。在电厂中增加汽轮机的数量,并根据其实际的发电情况对汽轮机进行重新布置,通过对汽轮机的排布布局来使其重热得到利用。其排布状况通常是以上下级的形式分布,这样可以使汽轮机在出现热损耗时这部分的热能可以被其他汽轮机进行回收利用,多重汽轮机重热回收可以有效的对此部分热损耗进行重新利用,使热能与动力工程融入到热损耗回收利用中,保证可用能源的高效利用,体现出其节能降耗的作用。一般情况下,汽轮机最佳的重热系数应该控制在0.04-0.08,由于其机组的差异性不同必然也是一个界定的范围内,不能完全固化为特定的数值。
4 结束语
目前在电厂电能生产活动中存在着较为严重的资源浪费情况,再加上电厂生产关系着人们的日常生产活动,为此在每日生产中造成的资源浪费会带来极大的损失,并且未燃烧充分的废气直接排放到大气中造成了空气受到严重的污染。为此,在现今电厂生产中开始注重节能技术及环保技术的使用。例如通过烟气及余热进行二次发电作业,或是在烟气排放的过程中进行脱硫脱硝处理。虽然在节能降耗上许多电厂已经开始应用相关技术,但是在大多数电厂中仍然存有资源消耗量过大的情况,为此更要注重对热能和动力工程中的专业理念进行应用,为我国电力行业的良好正常发展打下基础。
参考文献
[1]王标.浅谈节能降耗中热能与动力工程的实际运用[J].中国新技术新产品,2016(10):84-85.
[2]王舟宇.浅谈节能降耗中热能与动力工程的实际运用[J].商品与质量,2016(39):84-85.
关键词:热能与动力、锅炉、应用
前言:热能动力工程因其环保、热能高而得到了很多的重视,热能动力工程在锅炉方面的应用尤为广泛。
一、热能与动力工程的概述
众所周知,热能与动力工程是一门综合类学科,包括对热能技术的研究、以及各种能量与动力之间的转化的研究。热能与动力工程在锅炉应用中的最主要功能是实现热能与动力之间的转化,通过分析能源的产生过程和使用过程,从而方便我们更好地对能源进行有效利用。热能与动力工程涉及的范围十分广泛,应用起来十分广泛,结合当前经济发展,我们可以看出热能与动力工程的应用在解决实际能源录用方面具有十分重要的地位,它直接关系着我国电力企业的发展方向以及经济效益的实现情况。并且热能与动力工程充分利用了各个学科之间的相互关系,有效的支持了各种能量之间的转化,为社会经济的发展奠定了良好的基础。
从热能与动力工程的专业角度来看,研究热能与动力工程的同时,还要注意对机械能力、物理能量的研究,把热能与机械能量之间的转化作为重中之重。并且随着科学技术的不断发展,热能与动力工程也逐渐朝着自动化化和智能化发展。我国能顺应这种发展的人才相对较少,要想实现热能与动力工程在锅炉中的良好应用,就必须进一步加强对专业人才的培养,进一步提高能源的利用效率,发挥热能与动力工程在能源使用方面的重要作用,促进我国国民经济的可持续健康发展。
二、基于锅炉结构的分析
锅炉作为能够实现各种能量之间转化的设备,不仅能够将燃料中的热能转化为化学能、光能、电能等,还是工业生产中的重要设备,直接决定着工业技术的发展。根据锅炉的外形、用途等,可以将锅炉分为若干种类。按照锅炉的使用属性来看,都是一样的,都是为了实现能源之间的转化。另外,可以将使用的锅炉分为工业锅炉和电站锅炉两种,工业锅炉应用范围较广,在众多行业中都得以应用。电站锅炉则应用范围较窄,主要应用于发电厂。
锅炉主要是有锅炉外壳和电气控制两部分组成。锅炉外壳又分为底壳部分和面壳部分,锅炉每个部分有不同的作用,锅炉底壳负责对燃料进行燃烧,完成燃烧任务,并且底壳有热能交换器和电控盒两个部件,通过对底壳的连接形成一个完整的锅炉设备,从而保证锅炉底壳能够实现与其他部分进行连接。锅炉的面壳主要作用是为了防止灰尘等进入锅炉内,进而更好地保护锅炉,延长锅炉的使用年限。对于锅炉内电气控制部位来说,它是锅炉组成部位的重要部分,控制着锅炉的燃烧情况,对锅炉其他工作的顺利进行有着十分重要的作用。如今,大多数锅炉的控制都实现了自动化,这样就十分有效的控制了锅炉燃烧效率以及热能利用率和转化率,节约了资源的同时,保护了环境。
三、影响锅炉热能效率的因素分析
3.1锅炉热能效率分析
火电厂的蒸汽动力循环是将水由水泵送入锅炉被加热汽化,直至成为过热蒸汽后,进入汽轮机膨胀做功,做功后的低压蒸汽进入冷凝器被冷却凝结成水,然后回到水泵中,完成一个循环。从整个动力装置的角度来说,评价整个动力装置的指标是动力装置效率,即装置输出的净功与燃料放出的热量的比值。显然,煤价越高,电厂的生产成本越高;发电机组效率越高,生产成本越低。生产成本和煤价成正比,和发电机组效率成反比。提高发电机组效率,减小单位发电耗煤量的很大一部分节能潜力是提高锅炉热效率。锅炉是吸收燃料经燃烧发出的热量而生产蒸汽的设备,它的热平衡主要是燃料的热量收支平衡。
3.2锅炉热能效率影响因素
首先,影响锅炉有效吸收热量最主要的因素是排烟热损失,约占燃料有效放热量的5-7%,主要因素还有以飞灰和灰渣中未燃碳为主计算得到的固体未完全燃烧损失。相对于排烟热损失和固体未完全燃烧损失,其余热损失量均为小量。其次,固体未完全燃烧损失是影响锅炉运行热效率的第二大热损失,飞灰中的未燃碳和灰渣中的未燃碳是固体的主要组成部分。飞灰含碳量的增大显示了燃料燃烧的不完全,不仅会导致固体未完全燃烧损失的增大,锅炉运行热效率的降低,还会导致锅炉尾部烟气的静电除尘效率降低,排入大气的污染物增多。
四、热能与动力工程在锅炉中的具体应用
4.1锅炉风机监控中的应用
要想实现锅炉的良好运转,必不可少的装置便是风机的安装,风机将外界含有氧气的气体传送到锅炉内,实现燃料的有效燃烧。然而现阶段对能源的需求逐渐增加,风机运行的压力越来越大。因为风机的运行过程中会产生很大的热量,锅炉整体与风机的距离较近,风机得不到降温,就会产生工作负荷,导致风机被烧坏,这种情况不仅没有实现增加能源供应的目的,还严重影响了锅炉的正常运转。然而锅炉风机装备结构较复杂,采用常规的测量方式很难测到风机的温度,它需要采用高科技对温度进行智能监控。目前我们还没有找到解决这种问题的技术对策。现阶段,采取的是应用热能与动力工程研发出相应的软件,从而对风机的温度进行有效计算。
4.2吹灰技术调整中的应用
首先,改善汽温。在确保受热面无严重结渣、运行安全的情况下,可适当减少一级过热器、三级过热器和二级过热器的吹灰频率,降低其换热系数,效果相当于减少过热器受热面,从而提高了再热器受热面的入口烟温,增加了换热温差,改善其汽温状况。同时,可以增加再热器的吹灰频率,使其受热面保持较为干净的状态,从而换热系数得以提升,其效果相当于增加了再热器受热面。其次,改善偏差。从有些电厂的运行情况看,再热器出口汽温偏差较大,导致在再热器出口蒸汽总体欠温的情况下还需要进行喷水解决部分受热面的超温问题。因此如果改善烟气侧偏差,其欠温情况将有所缓解,燃烧调整是一种方式,另外还可以通过修改吹灰策略进行优化。
具体操作是,不对二级再热器靠左右炉墙附近的受热面吹灰以减少其吸热,而对二级再热器处于炉膛中间的受热面进行吹灰,增加其吸热能力,使其受热面吸热偏差适应烟气偏差,缓解由于烟气残余动量造成的温度中间低,四周高的情况。另外对一级再热器增加左右墙附近的受热面的吹灰,减少炉膛中间的受热面吹灰。在确保受热面安全性的前提下加大一级再热器靠炉墙四周的受热面与炉膛中间的受热面的烟气侧偏差。由于其高温部分(外侧)交叉进入二级再热器的低烟温区域(内侧),从而可改善二级再热器出口汽温偏差。
4.3锅炉燃烧控制中的应用
锅炉的燃烧控制的主要功能是对各种能量之间的转化幅度进行调节。随着社会的发展,锅炉燃烧逐渐由人为的填加燃料到自动化向锅炉填加燃料。根据热能与动力工程在锅炉燃烧中的控制技术不同,可以将燃烧控制分为连续控制和双交叉限幅控制。连续控制是通过对比例阀和电动阀的调节,达到对有氧空气和燃料的比例控制,从而调节锅炉内的温度。这种方式也存在一定的缺陷,控制的温度并不是十分精确。双交叉限幅控制是通过温度传感器和热电偶将精确计量的温度变为信号,这个信号的温度就是锅炉的实际温度,测量点的温度是通过自动化装备自动给出的。这样,锅炉的实际温度和测量温度存在一定程度的误差。
结语:
目前热能与动力工程在众多领域得以广泛应用,想要提高热能与动力工程在锅炉领域的应用,需要提高锅炉燃烧能源的利用率和燃烧水平。
参考文献:
[1]满正鑫.锅炉领域中热能与动力工程的有效运用策略探究[J].黑龙江科技信息.2015(29):104.