公务员期刊网 精选范文 能源动力工程概论范文

能源动力工程概论精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的能源动力工程概论主题范文,仅供参考,欢迎阅读并收藏。

能源动力工程概论

第1篇:能源动力工程概论范文

关键词:热能;动力;锅炉

中图分类号: R151 文献标识码: A

一、热能动力工程

热能动力工程顾名思义主要研究热能与动力方面,其包括热力发动机,热能工程,流体机械及流体工程,热能工程与动力机械,制冷与低温技术,能源工程,工程热物理,水利电动力工程,冷冻冷藏工程等九个方面,其中锅炉的运行方面主要运用热力发动机,热能工程,动力机械,能源工程以及工程热物理等部分专业技术。热能动力工程主要研究方面为热能与动力之间的转换问题,其研究方面横跨机械工程、工程热物理等多种科学领域。其发展方向多为电厂热能工程以及自动化方向、工程物理过程以及其自动控制方向、流体机械及其自动控制方向、空调制冷方向、锅炉热能转换方向等,热能动力工程是现代动力工程的基础。热能动力工程主要需要解决的问题是能源方面的问题,作为热能源的主要利用工程,热能动力工程对于我国的国民经济的发展中具有很高的地位。

二、我国的热能动力工程发展情况

随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求, 1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教育的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代动力工程的基础。

三、热能动力工程在锅炉风机方面需要解决的问题

风机主要作用为气体的压缩和气体的输送,其原理是吧旋转的机械能转换为气体压力能和动能,将气体输送到特定的地点的机械,风机经常用于锅炉中,随着对于能源的需求越来越大,锅炉中的风机在工作中经常会烧坏电机的事故,对于工厂的经济产生巨大损失,严重危害工作人员的人身安全,因此,正确运用热能动力工程技术不断改进风机,对于风机和锅炉的安全性提出更高的要求势在必行。

四、热能动力工程中锅炉及工业炉的发展

1872 年第一台锅炉在英国被制造,随着锅炉的产生,蒸汽机时代出现,1796 年瓦特发明了分离冷凝器,代表着锅炉的完整运作体系的初步确立,工业炉和锅炉原理类似,从某些方面来讲,锅炉也是工业炉的一种,工业炉是指在工厂的工业生产过程中通过燃料的燃烧进行热量的转换,对材料进行加热的设备,工业炉产生于中国商代,主要的工作方式是通过加热提炼铜器,春秋时期产生了铸铁技术,这证明着工业炉的温度控制正在进步。1794 年熔炼铸铁的高炉出现,1864 年马丁建造了气体燃料加热的平炉,随着现代化科技的进步,计算机逐渐代替了人工进行对锅炉系统的控制,推钢式炉和步进式炉成为吸纳带连续加热炉的两种基本类型,两者只有运输燃料的方式有所不同而已。

五、热能动力工程炉内燃烧控制技术运用

锅炉的燃烧控制是调整能量转换幅度的核心技术,在当今社会,锅炉由人力向锅炉内填充燃料逐渐转型为步进式的自动控制填充燃料所代替,更加先进的锅炉甚至使用全自动燃烧控制,根据其运用热能动力自动控制技术的不同,锅炉的燃烧控制分为以下几种:

1、以烧嘴、燃烧控制器、电动蝶阀、热电偶、比例阀、流量计、气体分析装置以及PLC 等部件组成的空燃比里连续控制系统。这种燃烧控制系统是由热电偶检测出数据传送至PLC 与其本身设定的数值进行比较,偏差值通过使用比例积分及微分运算输出电信号同时分别对比例阀门以及电动蝶阀的开放程度进行调节,从而达到控制空气与燃料比例调节锅炉内温度的目的,此种方式温度控制并不十分精确,需要仔细确认额定数值。

2、由烧嘴、燃烧控制器、流量阀、流量计、热电偶几个部分组成的双交叉先付控制系统,其工作原理主要是通过温度传感器热电偶吧需要进行精确测量的温度变成电信号,这个电信号即是用来代表测量点的实际温度,此测量点温度期望给定值是由预先存贮在上位机中的工艺曲线自动给定的,并根据两者数据之间的偏差值的大小,由PLC 自动调整燃料与空气流量阀门的开合程度,通过电动的方式运行机构的定位以及空气和燃料的控制比例,并接住孔板和差压变送器测量空气的流量,燃料的控制也通过一个专用的质量控制装置来测量,是温度精确的控制在必要的数值上。这种燃烧控制优点在于方式节省部件,并且温度控制精确。

六、仿真锅炉风机翼型叶片

锅炉的内部的叶轮机械内部流畅需要带有十分强烈的非定常特征,并且其内部构造十分复杂,不容易进行十分细致的测量实验,并且到目前为止,仍然没有可以解释流动分离、失速和喘振等流动现象的完善的流体力学原理,因此要了解机械内部流动的本质需要更加可靠详细的流动实验和数值模拟实验,通过使用软件二维数值模拟锅炉风机翼型叶片,对空气以不同方向吹入翼型叶片造成流动分离进行模拟,并根据模拟的数值创建而未模型,进行网格的划分,设定边界条件和区域,最后输出网格,在使用求解器求解,这样才可以对不同的气流攻角的流动进行二维数值模拟,,达到模拟的目的,同时可以根据模拟不同攻角下所得到的速度矢量制成矢量图进行比较和分析,最后得出锅炉风机翼型边界层分离和攻角的关系。

七、热能动力工程的发展方向

1、热能动力及控制工程方向(含能源环境工程方向)主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

2、热力发动机及汽车工程方向掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。

3、制冷低温工程与流体机械方向掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。

4、水利水电动力工程方向掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

结束语

热能动力工程的迅速发展使得热力发动机专业方向,其中包括热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制等行业的发展都到了提速。热动能的发展为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才,若能将这些理论知识转换成实际的运用,我国的能源压力将大大降低。

参考文献

第2篇:能源动力工程概论范文

关键词:实践教学;卓越工程师;教学体系

中图分类号:G642.423      文献标识码:A     文章编号:1007-0079(2014)17-0103-03

卓越工程师教育培养计划是教育部着力实施的高等工程教育改革措施之一,旨在为未来工程领域培养面向工业、面向未来、面向世界的优秀工程技术人才。热能与动力工程专业涵盖的产业领域十分广泛,能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一;热能与动力工程专业的学生毕业后,可以在事业单位和企业单位从事能源利用的教学、研究、设计、生产及管理工作,涉及的行业有能源、建筑、机械、电力、钢铁、化工、航空航天、环保等。随着国家工业化进程的发展,在能源与动力方面的人才需求将会急剧增加;目前国家对能源利用、环保等工作十分重视,能源方面的人才也是供不应求。南昌大学热能与动力工程专业一直坚持采用应用型人才培养模式,近几年在教学改革和特色专业建设方面做了大量工作与改革尝试,根据热能与动力工程专业卓越人才培养目标及针对应用型人才应该具有的素质和能力,构建了“校企深度融合”分层次热能与动力工程专业实践教学体系。在教学实践中强化学生动手能力培养与学生创新素质训练,逐步提高学生的实践动手能力及创新意识等综合素质,在“江铃卓越工程师实验班”及“吉利汽车卓越工程师实验班”试点实践工作中,取得了良好的教学效果。

一、卓越工程师应具备的素质与能力

工程实践能力就是能够理论联系实际,将所学知识应用于设计、制造、试验、运行、管理、营销或其他工程实践环节,并且综合考虑技术、经济、文化、法律、环境等诸多因素,为社会创造和提供目的在于使用的系统、产品、工艺流程或技术服务或其他解决现实工程问题的能力。

1.动手操作能力

所谓的动手操作能力,是指通过用手而且按照一定的程序和技术要求进行活动的能力。动手操作能力又可分为三种:一是操纵使用工具的能力;二是加工制作产品的能力;三是科学实验研究能力。

2.综合运用知识能力

学习知识的目的在于运用。大学教育的核心目标就是使学生将四年所学到的知识应用于工作实际中,为经济社会的发展作出贡献。在工程实践中,无论是设计水平的高低,还是施工质量的好坏,反映出来的都是综合运用知识能力的强弱。

3.工程设计能力

工程设计能力是指对工程实践活动进行组织谋划的能力。任何工程实践活动都包括实践目的、实践条件和手段、实践过程、实践结果等因素,只有把这些因素组织谋划好,才能使实践活动顺利进行且有成效,这就需要工程设计能力。

4.分析和解决问题的能力

由于工程实践活动中充满着许多可预测和不可预测的问题,要把工程实践活动做好,必须具备善于分析和解决问题的能力。

5.人际交往实践能力

现代工程就像一个大的舞台,需要许多人的参与才能完成一台大戏的演出。从一定程度上说反映的是与他人的沟通、交流和合作能力。进入21世纪以来,工程的相关利益者队伍将扩大到许多学科的团队、全球范围内的多样化成员、世界性顾客群等,这就进一步提高了对工程技术人员人际交往能力的要求。人际交往中的实践能力包括表达能力、合作能力、沟通能力、组织管理能力等。[1]

为实现上述能力的培养,切实提高学生的工程实践能力,必须在重视理论基础教育的同时,拓展学生的知识面,面向社会,面向工程实际,实行开放式办学。同时,要注重教学内容和方法的改革,强化实验和实践教学环节,加强实践能力培养。

二、面向企业需求、构建“校企深度融合”分层次培养实践教学体系

自南昌大学热能与动力工程专业实施“卓越计划”试点以来,加强对应用型卓越工程师培养规格和培养标准的研究,进一步明确人才培养目标,深入实施学生工程实践能力培养的工程文化教育,营造培养卓越工程师的良好氛围;围绕卓越计划展开实践教学改革,使整个实践教学贯穿大学四年,极大地提高了学生的实践动手能力,有力地保证了培养目标的实现。

南昌大学热能与动力工程专业一直是以大专业、小方向、模块化培养学生为主,开设了三个专业方向:内燃机、制冷与空调、能源工程。根据三个方向的培养计划,面向企业构建了以创新人才培养为目标的“校企深度融合”分层次培养实践教学体系。整个实践教学体系是在一个基本目标下,根据认知性训练、基本技能训练、专业综合能力训练、创新能力训练四个层面开展基础型、专业型、综合型、创新型和应用型五个层次的实践内容。训练内容由浅入深,能力培养逐级提高,保证学生在掌握扎实的理论基础上,强化对学生实践能力和创新能力的培养,构建渐进式、贯通式的实践能力培养体系。

1.专业认知实践层

在新生入学阶段或是即将进入专业课学习的前期,利用校内外实习专业认识实习,可开展各类参观实习和体验实习。校内外实习基地能较直观、形象、生动地展示各种专业技术,能增强学生的感性认识,使他们了解专业发展的现状,培养学生对专业的兴趣,为今后的专业课学习奠定一定的基础。

2.专业实践层

学生进入专业课学习阶段,可结合专业课的需要,开设校内外实践项目,如某课程的课程设计、专业实习、生产实习等。进一步培养学生的专业技能和工程实践能力,使学生在掌握理论知识的同时,锻炼动手能力,学会运用理论知识解决实际生产中的问题。

3.综合实践层

在学生专业课学习的后期,可设计难度较大、过程较复杂的实践项目,综合多门专业课的知识,通过实践把所学知识串联起来,培养学生的综合运用能力。另外,综合型实践可训练学生的逻辑思维能力,提高学生的系统分析能力。综合型实践的形式有综合性专业实验、综合性课程设计等。

4.创新实践层

在学生的课外活动中,可利用校内实习基地开展各类科技竞赛和课外科研实践,组织学生参加各类专业竞赛活动,有利于培养学生独立思考问题的能力与创新精神。

5.应用实践层

学生在企业实习培养阶段,综合应用学校所学知识,从而提高学生理论和实践相结合以及应用知识的能力。表现形式是做企业真题的毕业设计、定岗实习或参与产品开发研究。

这五个层次互为补充,实现学生在大学四年每一个阶段综合实践能力和创新实践能力培养不断线。

三、实践教学体系实施运行的教学实践

“校企深度融合”分层次培养实践教学体系成功实施必须依靠相应教学改革、实践教学条件的配套提升,其中实践基地建设是必要的硬件条件,是实践教学的保证。根据热能与动力工程专业特点和资源配置条件,进一步加强了校内、校外实践基地建设。校外实践基地的开拓是以校企合作为途径,在已有和企业合作的基础上通过建立有效的产学研合作模式,提高企业与高校合作的积极性,完善校外实践基地建设;校内实践基地的建设重点是加强实验室基础教学实验训练平台和教学实习基地的建设,通过双管齐下共同确保五个实践层面的工程实践能力的培养。

1.调整和优化课程体系,使理论教学与实践教学相互融合

由于教育部2012年对本专业名称变更,由热能与动力工程变更为能源与动力工程,为体现新专业学科特色,删减部分机械类课程,如“公差”“控制工程基础”等;增加能源类课程,如“能源工程概论”“节能原理与技术”“合同能源管理”等。融合专业方向课程,减少专业方向选修课数量,开设“能源与动力装置基础”课程,该课程包括内燃机、压缩机、空调与制冷机、锅炉、汽轮机、热力发电厂、换热器等的构造及工作原理。

整合不同专业方向课程的实验项目,组成综合性实验课程:“内燃机实验”“制冷空调实验”“热与流体综合实验”等。为了配合实验课程的整合,学校加大对实验设备购买经费的投入,完善综合性实验设备的建设,力争尽量多的实验项目对学生开出。

2.创新实践教学模式,改革实践教学内容和教学手段

为了构建重在强化学生实践动手能力的“3+1”人才培养模式,在原有培养计划的基础上,加大力度培养学生的工程实践能力,增加专业实训和实践课程,提高实践学分比例,授予学位要求总学分为164分,实践环节学分为50分,实践环节学分占总学分的比例为31%。在实践教学内容上,以创新能力培养为核心和目的,对热能与动力工程专业实践内容进行改造和优化,改变传统的演示性、单一性的实践训练内容,创新实践项目;积极融入大热能学科的新知识、新技术,凸现教学内容的先进性、科学性;用综合性实验、设计性实验取代传统的验证性实验,以培养学生的专业综合能力;同时,不断将教师最新的科研成果应用到教学中,丰富了教学内容。在教学手段上,采用案例教学法来改变传统的实践教学方式,最大限度发掘学生的学习主动性和学习兴趣,培养学生综合运用知识和解决工程项目的创新能力;通过大量的实践项目,每个专业方向都增加了一个综合性的大型课程设计,使学生直接进行详细的实际操作训练,从而在较短的时间内掌握专业技能;进一步加大实践教学考核力度,改革考核方式,从而客观评价实践教学效果和学生实践操作能力与水平。

3.以学生科技竞赛为基础,推动学生创新能力的培养

制定学生科技训练计划,组织学生组队参与校级、省级、国家级的科技竞赛,参与教师科研课题研究,主持各类本科生科技创新项目,培养学生的应用能力和创新意识;扶持学生创新团队,孵化创新项目,培养学生的创新能力和提高学生的综合素质。

三年来,先后建立了校内学生开放实验室和校外实习基地,为大学生构筑了良好的科技创新硬件平台;进行“开放式”实践创新改革,鼓励学生申请各级各类大学生科技创新项目,参加各种创新和专业科技与设计大赛,由专业教师组成创新能力培养指导小组,并且给予学生科技创新经费上的支持。低年级的学生以参加各种大学生创新大赛及学校组织的各种学科竞赛为主,高年级学生以参加省级及国家级的专业竞赛为主。对学生开放专业的实训技能操作实验室,学生课余时间可以到实验室完成各种实训训练及创新项目的模型制作,如学生可以在制冷空调实训实验室完成切割铜管、弯管、焊接、抽真空、充制冷剂等制冷空调专业的基本操作,也可以在实验室内完成各种参赛的实际模型制作。

有些全国性的专业科技比赛只允许每所学校派一个参赛队参加,为了提高学生参与科技竞赛的积极性,首先在学校本专业开展校级比赛,在初选赛的基础上选出几个小组,经过一个学期的培育,再进行学校的决赛,从而选出参加国家比赛的团队,代表学校参加国家比赛。经过该过程,只要参加了比赛的学生都能得到全面的锻炼。正是基于这样的选拔和培育,南昌大学于2012年、2013年连续两年派队参加了由国家制冷工业协会组织开展的“全国大学生制冷空调科技大赛”,南昌大学代表队在华中赛区比赛中成绩突出:2012年获二等奖,2013年获一等奖。为了让学生参加全国性的设计大赛,在毕业设计中积极组织学生参加,认真指导学生按照比赛要求完成设计,用毕业设计作品直接送去参赛。2012年,南昌大学有二位学生获中国制冷学会主办的“美的杯空调设计大赛”优秀设计奖;该举措极大地提高了学生做毕业设计的积极性,使学生努力了解企业的产品,把企业新型的节能产品应用到毕业设计实际项目中去。如“空调调节”课程就是在课程开始就把课程设计的题目布置给学生,让学生带着问题学习,极大地提高了学生学习的主动性,历年都有大三学生参加各种空调设计大赛。

4.校企深度融合是推动卓越计划成功实施的关键

学校教育实质上是把教与学对象的知识与技能从工作现场中剥离,从实际运用的情景中抽象出来,以教材、教科书等形式独立存在,由此造成了理论与实践的明显脱节。在教育部卓越工程师计划中,“3+1”培养模式中的“1”是要求在企业完成的,这就需要企业积极参与。南昌大学以实施“卓越工程师教育培养计划”为契机,以社会需求为导向,大力加强校企合作,南昌大学与江铃汽车股份有限公司本着优势互补、互相支持、平等互利、共同发展的原则,于2011年6月签署战略合作协议,共建教育部“卓越工程师”培养计划“江铃实验班”,旨在培养适应汽车产业发展需要、系统掌握工程基础理论及应用知识、具有创新能力和国际竞争力的高素质、实用型、复合型高级工程人才。同时,江铃汽车股份有限公司将每年出资16万设立“南昌大学江铃汽车奖学奖教金”,用于奖励南昌大学品学兼优的优秀学生和优秀教师;企业作为实施“卓越计划”的主体之一,担负着至少一年的“卓越工程师”培养任务,并直接参与全部专业培养方案的制定,重点是负责企业阶段培养方案的制定、管理和实施,保证企业阶段教学任务的完成。南昌大学与江铃股份有限公司联合成立江铃实验班教学指导委员会,构建学校与企业共同负责与管理的教学管理机制。在委员会指导下以强化实践动手能力和创新能力为突破口,依据培养卓越工程师的目标制定新的培养方案。根据行业发展要求及发展趋势,积极开发反映社会需求和学科发展的新课程,将行业与产业发展形成的新知识、新成果、新技术引入教学内容,制定出了南昌大学合作“3+1”培训方案,实验班按照制定的培养方案对学生进行培养实习。

“江铃实验班”至今已经开办三期,正是基于校企良好的合作,南昌大学与江铃股份有限公司合作于2012年共同申报成功教育部“国家级工程实践教育中心”,该国家级工程实践教育中心将为南昌大学“卓越计划”的全面实施提供强有利的实践条件保障。另外,还积极开展大学生校外实践教育基地的建设工作,南昌大学与浙江吉利控股集团有限公司的子公司浙江吉利动力总成有限公司合作联合建立了大学生校外实践教育基地,每年有15名学生到浙江吉利动力总成有限公司进行卓越工程师培养,2014年已经是第二年进行“吉利卓越工程师”试点工作。学生在企业为期一年实习,分别进行了岗位知识培训、制图软件培训、下线实习、拆装实习、定岗实习等。下线实习让学生分别在公司的模具厂、合资总厂、全顺厂的生产线上跟随生产一线的工人师傅学习不同岗位的技能,从而达到能够顶岗的要求。与此同时,学生还在企业完成了毕业设计任务。除此之外,学生还要学会如何与线上工人师傅沟通交流,如何认真做好自己分内的工作,如何进行团队之间的配合,理解团队的重要性。

四、结束语

工程教育必须回归工程,实践教学是工程教育的重要组成部分,是培养学生理论联系实际、充分运用所学基本知识进行工程设计、加强能力培养的重要环节,也是培养学生创造能力、开发能力、独立分析问题和解决问题能力,全面提高学生综合素质的重要教学环节,实践教学的效果如何,对提高教学质量、实现培养目标有着至关重要的作用。因此构建有利于学生卓越工程师能力培养的实践教学体系十分必要,且要在实践探索过程中不断加以完善。

参考文献:

[1]林健.卓越工程师创新能力的培养[J].高等工程教育研究,

2012,(5).