前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的光纤通信发展趋势主题范文,仅供参考,欢迎阅读并收藏。
在互联网技术高速发展以及通信需求不断增长的今天,对通信行业提出的服务要求也越来越高,其中光纤通信技术在我国已经经历了超过30年的研究以及应用历程,该通信技术的诞生以及发展属于电信行业的一次革命性发展,这种通信技术能够优化信息传输质量,同时减少可能出现的串扰问题,可以获得非常理想的实用效果。现阶段,光纤通信技术的应用范围越来越广泛,从电信通信行业逐渐推广应用到电视传输、军事、工业生产过程中的现场监视、电力以及交通监控和有线电视网等领域。本文主要对光纤通信技术的实际应用和未来发展趋势进行探讨,提出笔者的思考和建议,仅供参考。
【关键词】
光纤通信技术;应用发展趋势
光纤通信技术应用方面主要有:将光波当做信息载体实现传播功能;将光纤当做延续传播介质。现阶段,在信息通信来说,光纤通信属于第四代通信方式。具有的特点主要为:质量轻、传播速度快、损耗不大以及体积小,同时其传输频带非常宽,能够有效抵抗大多数电磁干扰。其所具有的这些优势使光纤通信慢慢变成了社会主流。现在,我国大多数通信领域都架设有光纤,同时相关业务依然在继续拓展,得到了越来越多生产以及服务领域的认可。深入了解以及研究这种通信技术的具体应用,可以促进我国信息化的发展。
1光纤通信技术
所谓光纤通信,就是光导纤维通信,通过光导纤维来有效传输信号,从而达到信息传递目的的通信方式,我们可以将这种光纤通信当做以光导纤维为媒介的一种光通信方法[1]。其中光纤主要组成部分有:涂层、纤芯以及包层,而内芯通常只有几十微米或者是几微米,其直径比发丝还小;包层就是中间层,利用纤芯以及包层具体折射率的差异,让光信号可以在纤芯里面进行全反射,即传输光信号;其中涂层主要就是为了提升光纤所具有的韧性,从而保护光纤不受损害。光纤通信系统里面的光线并不是只有一根,而是由大量光纤一起聚集成的光缆,这种由大量光纤构成的光缆之所以可以在单位时间里面传送庞大的信息,主要是因为这种光缆的光波频率非常高,并且光纤传输频带非常宽,所以其传输容量相对较大。这种光纤通信技术所具有的优点包括:体积比较小,重量非常轻,采用的金属材料非常少,具有较强抗电磁干扰性能以及抗辐射性能,具有非常好的保密性,可以防窃听、频带比较宽以及抗干扰性能很好,价格比较便宜等,同时其所采用的光线材料来源非常丰富,能够减少很多有色金属的应用,直径非常小,也不重。
2光纤通信技术的具体应用
2.1在通信方面的应用
现阶段,在通信领域里面,光纤通信技术利用光导纤维当做传播介质的这种光纤通信起着非常重要的作用。特别是在城域通信、本地通信以及国际通信等通信行业中,光纤通信技术得到了非常广泛的应用[2]。同时,光纤通信技术正在不断扩展,变成了通信领域里面非常关键的一项技术,有效促进了整个通信行业的进一步发展。
2.2电力通信方面的应用
目前,现代化社会所具有的主要标准包括电气化,在所有生活能源中,电力所占比例已经大于70%,在我国现代化发展程度不断提升以及经济迅猛发展的条件下,国家电网需要承受的负荷也在不断增加[3]。电力系统传统远程通信结合人工调节的通信方式已经脱离了现代化社会的具体发展需求,引进并且有效使用电气自动化技术的前提之一就是对电力系统里面的通信网络进行不断的完善。安全稳定以及高效的通信网络能够保证在智能系统协助下的这种电气自动化设备投入正常运行,所以,光纤通信技术是非常理想的一个选择。现阶段,我国大部分电力系统里面的主干线以及各区域里面的接入网络均采用了光纤通信,这种通信技术不仅能够有效提升电网所具有的稳定性以及可靠性,同时也能够减少大量资金成本,降低额外花费。
2.3在传媒行业的具体应用
对传媒行业来说,其主要包含有无线信号接受终端、广播以及电视等,而输出产品大部分都是声音以及图像,所以其对信号稳定性以及传播速度方面的要求非常高[4]。而光纤通信技术就同时具有非常强的抗干扰性、稳定性以及高效性,能够确保电视信号以及电波信号在远距离传播过程中不发生损耗,以此来确保画面质量以及声音品质。现阶段,很多大型媒体单位均开始投资建设采用了光纤技术的相应信号设备,从而保证给社会带来品质非常高的音频以及视频。
2.4在互联网中的具体应用
最具有代表性的是光纤通信以及互联网的嫁接,由于其本身所具有的特性,使得用户上网速度提升了很多,同时因为其传播形式主要是光信号,不会产生很多损耗,因此在转化数字信号的时候就更加清晰,弥补了传统通信方式这方面的不足。此外,光纤通信用在居民家庭,能够提升上网速度以及有效促进我国互联网的发展,其中主要包含有物流、电子商务以及网上银行等。网上用户通过电脑就能够快速进行下单以及支付,同时利用网络可以快速跟踪产品具体物流情况。
2.5在军事方面的具体应用
对于现代化战争以及国防事业来说,先进军事装备所具有的信息化程度也逐渐在提升,世界各国都在深入研究信息战争[5]。对于保密措施,因为光纤通信能够降低信号泄漏率,很难被窃听,并且能够提升其所具有的可靠性以及稳定性,因此,现阶段其在世界各国军事方面的应用非常广。此外,光纤传输具有非常大的容量,能够满足各种要求。
3光纤通信技术的发展趋势
尽管光纤通信技术已经越来越实用化,同时可以有效满足现代社会各方面的需要,可是依然没有将光纤通信所拥有的全部潜力充分发挥出来,目前只应用了其全部潜力的大约1‰[6]。在现今光纤通信技术不断趋于完善以及电信市场慢慢改革的条件下,相关人员应该深入研究以及应用光纤通信在不同方向的发展,结合数字化和具体网络化要求,对通信网络建设进行进一步改善,现阶段,光纤通信技术未来发展趋势为:
3.1通信信道容量持续增大,实现超大容量
实际应用光纤通信技术的时候,各项技术和各种使用设备已经出现了明显转变,特别对于系统核心技术。现阶段,采用了光纤通信技术的那种l0Gbps系统开始装备庞大的网络系统,这一系统对光缆产生的极化模色散非常敏感,从而可以显著提高光纤通信信息传输效果。然而现今光纤电缆以及10Gbps系统依然有很多互相不匹配的地方,如果进一步优化上述内容,就能够提高光纤通信传输速度和信息容量。同时,最近几年有效应用了一种波分复用技术,其可以显著提升光纤通信传输速度和信息容量,在以后的通信传输系统里面的应用前景非常具广阔。
3.2光孤子通信
进行超大容量传输的时候,这种孤子传输技术能够显著改善色散给容量和信息传输距离带来的影响,可以从根本上对信息传输质量进行有效的改善,这对通信建设来说有着非常重要的意义。孤子传输技术里面的孤子具有非常强的抗干扰性,可以对极化模色散产生抑制作用,同时能够通过光纤非线性来平衡色散,加大无中继具体传输距离。尽管孤子技术依然有很多技术难题需要攻克,可是在人们的努力下,孤子技术一定在以后的大容量、长距离以及高速全光通信里面,尤其是在未来海底光通信系统里面,有着非常大的发展空间。
3.3实现全光网络
可以说,全光网属于光纤通信的未来。这种全光网络通过光节点代替原来的电节点,并且节点间也均为全光化,需要传送的信息通过光的形式实现传输以及交换,而交换机处理具体用户信息的时候,不再依据比特,是按照其波长来选择路由。现阶段,该课题受到了广泛的关注,尽管依然处于发展初期,可是已经明确知道了全光网的巨大发展前景。克服电光瓶颈是未来光通信有效发展的一种必然选择,同时也属于未来信息网络的一个核心。
4结束语
对于光纤通信技术来说,其主要通过光导纤维进行信息传递,实际应用中应用的是大量光纤维构成的光缆,组成一种光纤通信系统。这种光纤通信技术的优点非常多,使得其在社会各个领域的应用越来越广泛。光纤通信技术以后的发展方向主要是:超大容量、高速以及低价。在光纤通信发展过程中,应该不断投入科技人才,勇于创新,进行不断的突破,让光纤通信技术不断为社会的有效发展做出贡献,这样才能迎来全光网时代。
作者:陈学锋 单位:国网福建省电力有限公司信息通信分公司
参考文献
[1]李岩.探讨光纤通信技术的应用及未来发展趋势[J].城市建设理论研究,2014(15):48~49.
[2]王维平,赵旭.光纤通信技术的发展及趋势[J].河南科技,2013(17):2.
[3]王晓波.论光纤通信技术的发展及应用[J].电子制作,2015(10):162.
[4]白建春.光纤通信技术的发展及其应用[J].中国新技术新产品,2010(3):34.
[论文关键词]光纤通信技术;趋势;光纤到户;全光网络
[论文摘要]由于光纤通信具有损耗低、传榆频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业內人士青睐,发展非常迅速,文章概述光纤通信技术的发展现状,并展望其发展趋势。
一、前言
1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham),预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门,引起了人们的重视。1970年,美国康宁公司首次研制成功损耗为20dB/km的光纤,光纤通信时代由此开始。光纤通信是以很高频率(1014Hz数量级)的光波作为载波、以光纤作为传输介质的通信。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年增加了近1万倍,传输速度在过去的10年中大约提高了100倍。
二、光纤通信技术的发展现状
为了适应网络发展和传输流量提高的需求,传输系统供应商都在技术开发上不懈努力。富士通公司在150km、1.3μm零色散光纤上进行了55x20Gbit/s传输的研究,实现了1.1Tbit/s的传输。NEC公司进行了132x20Gbit/s、120km传输的研究,实现了2.64Thit/s的传输。NTT公司实现了3Thit/s的传输。目前,以日本为代表的发达国家,在光纤传输方面实现了10.96Thit/s(274xGbit/s)的实验系统,对超长距离的传输已达到4000km无电中继的技术水平。在光网络方面,光网技术合作计划(ONTC)、多波长光网络(MONET)、泛欧光子传送重叠网(PHOTON)、泛欧光网络(OPEN)、光通信网管理(MOON)、光城域通信网(MTON)、波长捷变光传送和接入网(WOTAN)等一系列研究项目的相继启动、实施与完成,为下一代宽带信息网络,尤其为承载未来IP业务的下一代光通信网络奠定了良好的基础。
(一)复用技术
光传输系统中,要提高光纤带宽的利用率,必须依靠多信道系统。常用的复用方式有:时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、空分复用(SDM)和码分复用(CDM)。目前的光通信领域中,WDM技术比较成熟,它能几十倍上百倍地提高传输容量。
(二)宽带放大器技术
掺饵光纤放大器(EDFA)是WDM技术实用化的关键,它具有对偏振不敏感、无串扰、噪声接近量子噪声极限等优点。但是普通的EDFA放大带宽较窄,约有35nm(1530~1565nm),这就限制了能容纳的波长信道数。进一步提高传输容量、增大光放大器带宽的方法有:(1)掺饵氟化物光纤放大器(EDFFA),它可实现75nm的放大带宽;(2)碲化物光纤放大器,它可实现76nm的放大带宽;(3)控制掺饵光纤放大器与普通的EDFA组合起来,可放大带宽约80nm;(4)拉曼光纤放大器(RFA),它可在任何波长处提供增益,将拉曼放大器与EDFA结合起来,可放大带宽大于100nm。
(三)色散补偿技术
对高速信道来说,在1550nm波段约18ps(mmokm)的色散将导致脉冲展宽而引起误码,限制高速信号长距离传输。对采用常规光纤的10Gbit/s系统来说,色散限制仅仅为50km。因此,长距离传输中必须采用色散补偿技术。
(四)孤子WDM传输技术
超大容量传输系统中,色散是限制传输距离和容量的一个主要因素。在高速光纤通信系统中,使用孤子传输技术的好处是可以利用光纤本身的非线性来平衡光纤的色散,因而可以显著增加无中继传输距离。孤子还有抗干扰能力强、能抑制极化模色散等优点。色散管理和孤子技术的结合,凸出了以往孤子只在长距离传输上具有的优势,继而向高速、宽带、长距离方向发展。
(五)光纤接入技术
随着通信业务量的增加,业务种类更加丰富。人们不仅需要语音业务,而且高速数据、高保真音乐、互动视频等多媒体业务也已得到用户青睐。这些业务不仅要有宽带的主干传输网络,用户接人部分更是关键。传统的接入方式已经满足不了需求,只有带宽能力强的光纤接人才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。光纤接入中极有优势的PON技术早就出现了,它可与多种技术相结合,例如ATM、SDH、以太网等,分别产生APON、GPON和EPON。由于ATM技术受到IP技术的挑战等问题,APON发展基本上停滞不前,甚至走下坡路。但有报道指出由于ATM交换在美国广泛应用,APON将用于实现FITH方案。GPON对电路交换性的业务支持最有优势,又可充分利用现有的SDH,但是技术比较复杂,成本偏高。EPON继承了以太网的优势,成本相对较低,但对TDM类业务的支持难度相对较大。所谓EPON就是把全部数据装在以太网帧内传送的网络技术。现今95%的局域网都使用以太网,所以选择以太网技术应用于对IP数据最佳的接入网是很合乎逻辑的,并且原有的以太网只限于局域网,而且MAC技术是点对点的连接,在和光传输技术相结合后的EPON不再只限于局域网,还可扩展到城域网,甚至广域网,EPON众多的MAC技术是点对多点的连接。另外光纤到户也采用EPON技术。
三、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量、超长距离一直都是人们追求的目标,光纤到户和全光网络也是人们追求的梦想。
(一)光纤到户
现在移动通信发展速度惊人,因其带宽有限,终端体积不可能太大,显示屏幕受限等因素,人们依然追求陸能相对占优的固定终端,希望实现光纤到户。光纤到户的魅力在于它有极大的带宽,它是解决从互联网主干网到用户桌面的“最后一公里”瓶颈现象的最佳方案。随着技术的更新换代,光纤到户的成本大大降低,不久可降到与DSL和HFC网相当,这使FITH的实用化成为可能。据报道,1997年日本NTT公司就开始发展FTTH,2000年后由于成本降低而使用户数量大增。美国在2002年前后的12个月中,FTTH的安装数量增加了200%以上。在我国,光纤到户也是势在必行,光纤到户的实验网已在武汉、成都等市开展,预计2012年前后,我国从沿海到内地将兴起光纤到户建设。可以说光纤到户是光纤通信的一个亮点,伴随着相应技术的成熟与实用化,成本降低到能承受的水平时,FTTH的大趋势是不可阻挡的。
(二)全光网络
传统的光网络实现了节点间的全光化,但在网络结点处仍用电器件,限制了目前通信网干线总容量的提高,因此真正的全光网络成为非常重要的课题。全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然全光网络的发展并不可能独立于众多通信技术,它必须要与因特网、ATM网、移动通信网等相融合。目前全光网络的发展仍处于初期阶段,但已显示出良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
关键词:光纤通信核心网接入网光孤子通信全光网络
光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
1 我国光纤光缆发展的现状
1.1 普通光纤
普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。
1.2 核心网光缆
我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
1.3 接入网光缆
接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
1.4 室内光缆
室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。
1.5 电力线路中的通信光缆
光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。
2 光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
(1) 超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。
仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。
(2) 光孤子通信
光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。
光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。
(3) 全光网络
未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。
全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。
目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
3 结语
光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。
参考文献
关键词:光纤通信技术特点发展趋势光纤链路现场测试
一、光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。
二、光纤通信技术的特点
2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。
2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。
2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。
2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。
三、不断发展的光纤通信技术
3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。
3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。
3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。
3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。
3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。
综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。
四、光纤链路的现场测试
4.1现场测试的目的
对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。
4.2现场测试标准
目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。
①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。
②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。
4.3光纤链路现场测试
光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。
4.4现场测试工具
①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。
②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。
虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).
关键词:光纤通信核心网接入网光孤子通信全光网络
光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
1 我国光纤光缆发展的现状
1.1 普通光纤
普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。
1.2 核心网光缆
我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
1.3 接入网光缆
接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
1.4 室内光缆
室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。
1.5 电力线路中的通信光缆
光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。
2 光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
(1) 超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。
仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。
关键词:通信;光纤;应用;
中图分类号:[TN913.7]文献标识码: A
前言:光纤与传统的传输媒介带宽相比,光纤的带宽远比传统的大。在只有一个单波长的光纤通信系统中,由于存在终端设备的制约,使得光纤带宽大的优点不能够充分的发挥。通过采用光纤数据传输技术,能够将这个问题解决。频带宽对于传输各种宽频带信息具有十分重要的意义,否则,不能够满足未来宽带综合业务数字网发展的需要。光纤通信系统是以光纤为传输介质,以光为载波信号传递信息的通信系统。整个系统由电端机、光端机、光缆和中继器构成。常用的光纤为单模和多模光纤,多模光纤就是传输多个光波模式,而单模光纤只传输一个光波模式。单模光纤比多模光纤传输距离长。光纤MODEM可完成光信号与数字信号之间的相互转换。光纤MODEM一般有一个 以上的数据口用以传递同步或异步信号。
1 光纤通信技术特点
光纤通信是利用光作为信息载体、以光纤作为传输介质,由于光波频率远高于电波的频率,同时作为传输介质的光纤的损耗又远低于其它传输介质,所以光纤通信技术拥有频带宽,通信容量大、损耗低,中继距离长、抗电磁干扰能力强、保密性能好等特点。
1.1 频带宽、损耗低
以目前的技术而言,我们发现传输的最好载体依然是光,所以我们只有充分利用光谱才能带给我们充裕的带宽,只有利用光作为传输介质才能给我们带来更低的损耗更远的中继距离。以单模光纤为例,当它位于1550nm窗口时,衰减仅为0.19~0.25dB/km,色散系数为15~20ps/(nm.km)。由于光纤传输损耗低,所以其中继距离达到几十公里至上百公里。近些年来,人们为了获得更大的带宽,一般常用以下几种方式来增加光纤传输容量,空分复用(SDM)、电的时分复用(TDM)、波分复用(WDM)、光的频分复用(OFDM)、光的时分复用(OTDM)和光孤子技术(So liton)。基于实用性,只对TDM和WDM两种扩容方式作简要介绍。时分复用技术(TDM)TDM技术是一种对信号进行时分复用的技术,是一种传统的扩容方式。随着复用速率的提高,例如达到10Gbit/s时已接近硅和砷化技术的极限,TDM技术已经没有太多的潜力可挖。波分复用技术(WDM)采用波分复用器(合波器)在发送端将不同规定波长的信号光载波合并起来并送入一根光纤进行传输。在接收端再由一个波分复用器(分波器)将这些不同波长承载不同信号的光载波分开来。光纤高速传输技术现正沿着扩大单一波长传输容量、超长距离传输和密集波分复用(DWDM)系统三个方向在发展。
1.2 抗干扰强、便于铺设
光纤是绝缘体材料,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受电气化铁路馈电线和高压设备等工业电器的干扰,还可以与高压输电线平行架设或与电力导体复合构成复合光缆。这一特性在军事领域和电气领域有很大的用途。
1.3 无串音干扰,保密性好
传统的通信系统中,载体所携带的信息很容易被窃听,并且泄露出去,所以传统的通信系统在对信息的保密工作上做得不好。光波在光缆中传输,干扰的现象不会发生,很难从光纤中泄漏出去,即使在转弯处,弯曲半径很小时,漏出的光波也十分微弱,若在光纤或光缆的表面涂上一层消光剂效果更好,这样,即使光缆内光纤总数很多,也可实现无串音干扰,在光缆外面,也无法窃听到光纤中传输的信息。
2、光纤通信的发展与应用
1. 光纤通信的应用
光纤通信传输技术的综合应用的表现有单纤双向的传输功能的实现。单纤双向的传输技术是和双纤的传输技术相对应的一种信息传输技术,双纤传输的技术是利用两条光纤实现光信号的往返传输,而单纤双向的传输技术是信号在一条光纤内的传输。依据现代光纤通信传输技术的相关理论,光纤所具有的传输容量是非常庞大的,但在实际的应用过程中受到来自传输设备等方面的影响,光纤的传输容量并未达到最理想的状态,在我国的通信领域内普遍采用的是双纤式传输技术,这在一定程度上增加了光纤资源的使用量,如果单纤双向的传输技术能在通信领域中获取更大的应用,对于较为庞大的现代光纤通信传输系统可节省大量的光纤资源。目前单纤双向的传输技术多应用于光纤末端的接入设备上,如PON无源光网络中以及单纤光收发器等。
现代光纤通信传输技术的综合应用的表现还有光纤的到户接入。高质量的视频通信技术及高速度的通信技术的发展,推动了光纤传输技术在现代化的宽带业务领域内的应用研究。用户就光纤通信传输技术的要求,使得宽带领域内不仅要具备相应的宽带上组建的主干式的传输网络,还要配合相应的光纤到户的接入技术,光纤到户的接入技术是在全社会范围内实现信息高速传输的重要技术。相关学者曾经提出信息的入网连接是信息高速公路组建中的最后阶段,也为信息通信指出了该领域急需面对和解决的瓶颈问题。
2、实现光联网
上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。
3.光纤通信的发展方案
光纤通信的组网方式非常灵活,可以构架成星型、链型、树状、网状、单纤网、双纤网、环上多分支、多环相交、多环相切等各种拓扑结构的网络。
根据配电自动化系统的特点,光纤网通常需组成环型网,并与局域网连接,实现数据共享。
实际工程设计中,充分考虑到电力通信专网拓扑结构的复杂性,SDH传输系统可以采用多达126个E1(2M口)全交叉连接和双主光环+多光分支的设计思想。基本构架为1~3个SDH/STM-1双纤自愈环相交或相切,而且在需要时,可通过更换光卡的方式在线升级为SDH/STM-4。如果局调度中心局域网位于网络地理中心,建议设计为相切环,以调度中心为切点,;如果局调度中心局域网偏离网络地理中心,建议设计为相交环,由于调度中心不在交点,为了环间可靠转接,各环相交至少两点,互为保护路由。
1)光孤子通信
光孤子通信是以光孤子这种特殊ps数量级的超短光脉冲为信息载体,在经过光纤长距离传输的过程中,其波形和速度均保持不变,可以实现零误码信息传递的通信方式。未来光孤子通信技术的发展前景是:采用再生、定时技术或通过减少ASE的方式增大传输距离时,光学滤波会将传输距离增加到100000km以上;通过超长距离的高速通信、超短脉冲的应用技术以及时域和频域的超短脉冲控制技术提高传输速度时,会使光波的传输速率提高到100Gbit/s以上。尽管光孤子通信有许多的技术难题未攻破,但在超长距离、高速、大容量的全光通信中,光孤子通信的发展前景仍十分光明。
2) 全光网络
全光网络是光纤通信技术发展的理想阶段,也是未来高速信息通信网络发展的必然趋势。全光网络以光节点替代电节点,节点间以全光化的形式存在,信息的传输和交换也几乎以光的形式进行,同时按照其波长来决定路由,并对用户信息进行有效处理。目前,全光网络的发展处于初期阶段,尽管传统的光网络已完现了节点间的全光化,但由于网络结点处仍以电器件为主,这在一定程度上制约了通信网干线总容量的增加,因此,建立一个真正的、以WDM技术与光交换技术为主的全光网络已成为一个极为重要的探究课题。
因此:光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。它首先要在发射端将需传送的电话、电报、图像和数据等信号进行光电转换,即将电信号变成光信号,再经光纤传输到接收端,接收端将接接收到的光信号转变成电信号,最后还原成原信号。
参考文献
[1]周全仁。《电力通信技术标准[M]》北京:中国电力出版社,2000
关键词:光纤通信技术应用发展
光纤通信是利用光作为信息载体、以光纤作为传输媒介的通信方式。具有频带极宽,通信容量大;损耗低,中继距离长;抗电磁干扰能力强;无串音干扰,保密性好;体积小重量轻,易于敷设;原材料资源丰富,可节约金属材料,成本低等独特优点,决定了它在通信技术里的主导地位。但任何一种技术体系都必须不断的发展,来满足用户不断的需求,光纤通信技术也不例外。有人认为:光纤通信的传输能力已经达到10Tbps,几乎用不完,而且现在大干线已经建设得差不多,埋地的剩余光纤还很多,光纤通信技术不需要更多的发展,但我认为它还具有很大的发展空间,会有很大的需求和市场。主要体现在:单纤双向传输技术、 光纤到户(FTTH)接入技术、骨干节点的光交换技术和研发集成光电子器件等方面。
1单纤双向传输技术
单纤双向传输技术是相对于双纤双向传输来讲的,双纤传输时,收发信号分别在不同的两根光纤里传输,而单纤传输时,收发信号被调制在不同的波段后在同一根光纤里传输。以前为了节约光纤资源,我们不断在光纤传输容量上下工夫,从PDH的8M,34M,140M 到 SDH 的 155M,622M,2.5G,10G 再到 WDM 的320G,1600G等,光纤的传输容量不断增大,从理论上讲光纤的传输容量是无限的,但受到设备器件的限制,传输容量大大降低,达不到理论效果。目前光纤通信传送网都是通过双纤双向传输的,假如改用单纤双向传输技术就可以节约一半的光纤资源。对于现存的无数个庞大的光纤通信传送网来说,可以节约的光纤资源是可想而知的。研发出成熟的单纤双向传输技术具有划时代意义。目前单纤双向传输技术已有实用,但主要用在光纤末端接入设备:PON无源光网络、单纤光收发器等设备,骨干传送网上暂时还没有用到这个技术。从这个方面来讲,这也是光纤通信技术发展的一个方向。
2光纤到户(FTTH)接入技术
根据社会发展形势,HDTV高清数字电视是将来的主流业务,怎么实现,就要靠带宽丰富的FTTH技术。FTTH是一种全透明全光纤的光接入网,适用于引进新业务,对传输制式、带宽和波长等基本上没有限制,并且ONU安装在用户处,供电、维护、升级更新都比较方便。可以认为HDTV是FTTH的主要推动力,即HDTV业务到来时,非FTTH不可。而且在FTTH建成后可以逐步实现三网合一,即宽带上网接入、有线电视接入和传统固定电话接入。
FTTH的解决方案通常有P2P点对点或点对多点和PON无源光网络两大类。
P2P方案――优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置一个汇总用户的有源节点。
PON方案――优点:无源网络维护简单;原则上可以节省光电子器件和光纤。缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。(2)BPON:即宽带的PON。(3) OPON:采用通用帧处理的OFP-PON。(4)EPON:采用以太网技术的PON,GEPON是千兆毕以太网的PON。(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。
值得一提的是,近来,无线接入技术发展迅速。可用作WLAN的IEEE802.11协议,传输带宽可达54Mbps,覆盖范围达100米以上,目前已商用。如果采用无线接入WLAN作用户的数据传输,包括:上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEE802.11是可以满足的。而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。这就形成“光纤到户+无线接入”(FTTH+无线接入)的家庭网络。这种家庭网络,如果采用PON,就特别简单,因为此PON无上行信号,就不需要测距的电子模块,成本大大降低,维护简单。如果,所属PON的用户群体,被无线城域网覆盖而可利用,那么可不必建设专用的WLAN,只需靠密布于用户临近的光纤网来支撑就可实现,与FTTH相差无几。FTTH+无线接入也是未来的发展方向。
3骨干节点的光交换技术
光交换实际上可表示为:光纤通信传输+交换。
光纤只是解决传输问题,还需要解决光信号交换问题。过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号,而交换的还是电信号。真正合理的方法应该采用光交换的。但目前,由于光开关器件不成熟,只能采用的是 “光―电―光“方式来解决光网的交换,即把光信号变成电信号,待电子交换后,再变换成光信号。显然这是不合理的办法,效率不高且不经济。现在正在开发大容量的光开关器件,用来实现光交换网络,具有代表性的是ASON-自动交换光网络。
通常在光网络里传输的信息,一般速度都是高速的,电子开关不能胜任,只能在低次群中实现电子交换。而光交换可实现高速信号的交换。当然,也不是说,一切都要用光交换,特别是低速,颗粒小的信号的交换,应采用成熟的电子交换技术,没有必要采用不成熟的大容量的光交换技术。当前,在数据网中,信号以 “包”的形式出现,采用所谓“包交换”。包的颗粒比较小,可采用电子交换。然而,在一些骨干节点,它们承担的是业务汇聚任务,信号速率高,应该考虑采用容量大的光交换。
目前,少通道大容量的光交换已有实用。如用于保护、下路和小量通路调度等,一般采用机械光开关、热光开关来实现。由于这些光开关的体积、功耗和集成度的限制,通路数一般在8―16个。
电子交换一般有“空分” 和“时分”方式,在光交换中有“空分”“时分”和“波长交换”方式。光纤通信很少采用光时分交换。
光空分交换:采用光开关把光信号从某一光纤转到另一光纤。空分的光开关有机械的、半导体的和热光开关等。近来,采用集成技术,开发出MEM微电机光开关,其体积小到mm。已开发出1296x1296MEM光交换机(Lucent),但属于试验性质的。
光波长交换:是对各交换对象赋于一个特定的波长。于是,发送某一特定波长就可与某特定对象进行通信。实现光波长交换的关键是需要开发实用化的可变波长的光源,光滤波器和集成的低功耗的可靠的光开关阵列等。现已开发出640x640半导体光开关+AWG的空分与波长相结合的交叉连接试验系统(corning) 。采用光空分和光波分可构成非常灵活的光交换网。
技术成熟的自动交换的光网络ASON,是光纤通信技术进一步发展的方向。
4研发集成光电子器件
如同电子器件那样,光电子器件也要走向集成化。虽然不是所有的光电子器件都要集成,但会有相当的一部分是需要而且是可以集成的。目前正在发展的PLC-平面光波导线路,如同一块印刷电路板,可以把光电子器件,如DFB和DBR半导体激光器、量子阱半导体激光器、波长可调谐半导体激光器、波长可调谐光器、光开关器件、无源光器件、光逻辑器件等需要的器件组装于其上,也可以直接集成为一个光电子器件。
日本NTT采用PLO技术研制出16x16热光开关;1x128热光开关阵列;用集成和混合集成工艺把32通路的AWG+可变光衰减器+光功率监测集成在一起;8波长每波速率为10Gbps的WDM的复用和去复用分别集成在一块芯片上,尺寸仅15x7mm 。NTT采用以上集成器件构成32通路的OADM 其中有些已经商用。近几年,集成光电子器件有比较大的改进。
我国的集成光电子器件也有一定进展。集成的小通道光开关和属于PLO技术的AWG有所突破。但与发达国家尚有较大差距。如果我们不迎头赶上,就会重复如同微电子落后的被动局面。要实现单纤双向传输也好,FTTH也好,ASON也好,都需要有新的、体积小的、廉价的、集成化的光电子器件来支撑,集成光器件的研发成为光纤通信技术发展必不可少的环节。
5结束语
事实证明光纤通信技术不仅应用在通信的主干线路中,还可以应用在电力通信控制系统中进行监测、控制等,而且在军事领域的用途也越来越广泛。为了能在这些领域发挥出其更出色的作用,我们的光纤通信技术就要不断的更新发展,研究出更经济、更实用、更方便的光纤通信技术。
参考文献:
【关键词】光纤技术;发展趋势;光孤子通信
1.我国光纤发展的现状
目前我国最常用的是普通单模光纤,随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化。接入网中的光缆具有距离短、分支多、分插频繁的特点,为了增加网的容量,通常是增加光纤芯数。接入网通常使用G.652普通单模光纤和G.652.C低水峰单模光纤这两种,低水峰单模光纤适合于密集波分复用,在我国已有少量的使用。而全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构两种。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。
2.光纤技术发展的特点
2.1 网络的发展对光纤提出新的要求
(1)扩大单一波长的传输容量。单一波长的传输容量已达到40Gbi
ts,并已开始进行160 Gbits的研究。(2)实现超长距离传输。目前有的公司已能够采用色散齐理技术,实现2000~5000km的无电中继传输。有的公司正进一步改善光纤指标,采用拉曼光放大技术,可以更大地延长光传输的距离。(3)适应DWDM技术的运用。32×2.5Gbits DWDM系统已经在实际运用,64×2.5Gbits及32×10Gbits系统已在开发并取得很好的进展。DWDM系统的大量使用,对光纤的非线性指标提出了更高的要求。
2.2 光纤标准的细分促进了光纤的准确应用
世界电信标准大会批准将原G.652光纤重新分为G.652.A、G.652.8和G.652.C 三类光纤;G.655光纤重新分为G.655.A和G.655.B两类光纤。这种光纤标准的细分促进了光纤的准确使用,细化标准的同时也提高了一些光纤的指标要求,明确了对不同的网络层次和不同的传输系统中使用的光纤的不同指标要求(如PMD值的规定),并提出了一些新的指标概念,对合理使用光纤取得了很好的作用。
2.3 新型光纤在不断出现
2.3.1用于长途通信的新型大容量长距离光纤
主要是一些大有效面积、低色散维护的新型G.655光纤,其PMD值极低,可以使现有传输系统的容量方便地升级至10~40Gbits,并便于在光纤上采用分布式拉曼效应放大,使光信号的传输距离大大延长。如康宁公司推出的Pure Mode PM系列新型光纤利用了偏振传输和复合包层,用于10 Gbits以上的DWDM系统中,据称很适合于拉曼放大器的开发与应用。还有一些公司开发负色散大有效面积的光纤,提高非线性指标的要求的同时也简化了色散补偿的方案。在长距离无再生的传输中表现出很好的性能,在海底光缆的长距离通信中效果也很好。
2.3.2用于城域网通信的新型低水峰光纤
城域网设计中需要考虑简化设备和降低成本,还需要考虑非波分复用技术(CWDM)应用的可能性。低水峰光纤在1360~1460nm的延伸波段大大扩展宽带、优化了CWDM系统,也增大了传输信道和传输距离。一些城域网的设计可能不仅要求光纤的水峰低,还要求光纤具有负色散值。既能抵消光源光器件的正色散,又能组合运用这种负色散光纤与G.652光纤或G.655标准光纤,利用它来做色散补偿,可以降低复杂的色散补偿设计的成本。
2.3.3用于局域网的新型多模光纤
大量的综合布线系统采用了多模光纤来代替数字电缆,多模光纤的市场份额逐渐加大。虽然多模光纤比单模光纤价格贵50%~100%,但它所配套的光器件可选用发光二极管,价格则比激光管便宜很多,而且多模光纤有较大的芯径与数值孔径,容易连接与耦合,相应的连接器、耦合器等元器件价格也低得多。对于50125μm的标准型多模光纤,其芯径较小、耦合与连接相应困难一些。有的公司针对这些问题,研制出新型的50125μm光纤渐变型(G1)光纤,区别于传统的50125μm光纤纤芯的梯度折射率分布,它将带宽的正态分布进行了调整,以配合850nm和1300nm两个窗口的运用。
3.光纤通信技术的趋势及展望
3.1向超大容量WDM系统的演进
目前光纤的200nm可用带宽资源的利用率低,还有99%的资源尚待发掘。若将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量。波分复用系统发展十分迅速,目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。
3.2实现光联网
光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,光联网成为了继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对国家下一世纪的信息产业和国民经济的腾飞有极其重要的意义。
3.3开发新时代的光纤
为了适应干线网和城域网的不同发展需要,已出现非零色散光和无水吸收峰光纤这两种不同的新型光纤。全波光纤将是以后开发的重点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向。但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络还有较长的发展过程。
3.4光接入网
现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统,但不久后将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络。,为了能从根本上彻底解决两者在技术上存在巨大的反差这一问题,必须大力发展光接入网技术。因为光接入网能减少维护管理费用和故障率,配合本地网络结构的调整,减少节点、扩大覆盖。
3.5 光孤子通信
光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能 EDFA 方面是获得低噪声高输出EDFA。当然实际的光孤子通信存在许多技术难题,但光孤子通信在超长距离、高速及大容量的全光通信中有着光明的发展前景。
4.结语
由于我国光纤通信起步较晚,在光纤的研究、生产以及核心技术等方面,与国外相比还存在一定差距。所以光纤行业的重点企业和龙头企业应该加大技术研发,力争在光纤生产的关键领域取得突破,形成一批拥有自主知识产权的产品,造就出具有民族特色的自己的光纤通信产业。 [科]
【参考文献】
关键词:通信技术;现状;发展趋势
中图分类号: E271 文献标识码: A
引言
在我国现阶段,光千通信已在我们的生活中得到了广泛的应用,光纤通信技术有高速度、长距离、大容量的特点,它已经成为现代社会信息传输的重要手段,光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术在通信技术中得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
一、通信技术的概述
本文主要介绍光纤通信技术,以下主要对其进行介绍:
(一)光纤通信技术
以光为信息载体,利用光导纤维传输信号实现信息传递的通信方式我们叫做光纤通信,光纤通信以光纤纤维为传播媒介,其重要的组成部分为光纤纤芯、涂层和包层,光纤通信利用包层和纤芯的折射率不同,实现光信号在纤芯内的全反射也就是光信号的传输。
(二)光纤通信技术的特点
1.光纤直径小、占有空间小
为通信系统的施工带来减轻任务量和减少占用空间的好处,也为通信系统的小型化、集成化发展提供了有利条件。对于后期维护来说,占用体积小的光纤在各种管道中容易被识别和检修,缓解了地下管线的复杂性,为检修和维护简约了时间成本。此外,光纤的稳定性好、寿命长,加上一系列传统通信技术无法企及的优势,使得光纤通信技术在全球范围内普遍应用。
2.无串音干扰,保密性好
传统的电波通信在信号传输的过程中,非常容易发生电波泄漏和串扰进而造成信号被截获,也就是窃听,其信息传输的保密性非常差。而光纤通信技术的优势是光波在传输途中既不会发生串扰,也不会泄漏,能够有效地保护传输的内容。因此,在传输质量上光纤通信既不会发生串音,在通信安全上光纤也有极强的保密性。
3.光纤具有良好的抗干扰能力
光纤通信中使用的石英光纤除了上述的电气绝缘性的特质,还有较好的耐腐蚀能力。但是石英光纤得以广泛应用的秘密在于其抵抗其他电磁干扰的能力非常强,不论是自然界的太阳黑子活动带来的电磁干扰,还是人为的如高压电线释放的电磁信号,都不能干扰光纤的信号传输。所以,光纤通信技术除了在民用方面应用广泛,在军事应用方面也得到了大量的发展。
4.通信容量大,传输速度快
光纤通信技术的载体是光,光纤通信技术的传输信号是非常细的光导纤维,光纤通信技术信息传递的最终实现是光电交换的结果。而且一根细细的光纤可以承载很多个光信息,因此,光纤通信的容量大,且传输速度非常快、传输距离也长。
5.光纤损耗低、非常有利于降低施工成本
现今普遍采用石英光纤作为常用光纤,因为石英光纤比起其他光纤显示出损耗低、成本低的优势。加上玻璃材质特殊的电气性质,在使用石英光纤进行施工时由于其绝缘性可以不用安装接地和回路等设施,有效地降低了成本。从理论上讲,石英光纤的传输损耗还能降低,这将通过不断发展的技术水平在未来的某一天实现。
二、通信技术的现状
(一)普通光纤
普通单模光纤是最常用的一种光纤通信技术。随着光纤通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤通信的性能还可以进一步的优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤通信的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤通信和符合G.653光纤通信规定的色散位移单模光纤通信实现了这样的改进。
(二)电力线路中的通信光缆
在电力线路中的通信光缆中,光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。全介质自承式光缆因其可以单独布放,适应范围比较广,在我国当前电力输电系统改造中得到了广泛的应用。国内已能生产多种全介质自承式光缆满足市场需要。但在产品性能和结构方面,还需要进一步完善,保证产品的质量。全介质自承式光缆在在我国光纤通信中的需求量较大,是我国目前使用最多的一种产品。
(三)接入网光缆
在我国的光纤通信中,接入网中的分插频繁、光缆距离短、分支多,为了增加接入网的容量,通常是增加光纤芯数。特别是在室内接入网管道中,由于室内接入网管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前这种光纤在我国已经很少使用了。
(四)室内光缆
室内光缆往往需要同时用于数据、话音和视频信号的传输。并目室内光缆还可能用于传感器与遥测。国际电工委员会(IEC)在光缆分类中所指的室内光缆,至少应包括综合布线用光缆和局内光缆两大部分。室内光缆局用光缆布放在中心局或其他电信机房内,布放的位置相对固定并且紧密有序。综合布线光缆布放在用户端的室内,主要由用户使用,因此对室内光缆易损性应比局用光缆有更严格的考虑。
(五)核心网光缆
我国已在干线上全面采用光缆,其中干线上多模光纤已被淘汰,全部采用单模光纤,单模光纤包括G.652光纤和G.655光纤。单模光纤G.653光纤虽然在我国曾经采用过,但今后在我国不会在发展。单模光纤G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中基本上没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的骨架式结构和紧套层绞式,目前在我国已停止使用。
三、光纤通信技术的前景探究
光纤通信技术虽然在现阶段已经取得了较大的发展,也广泛的应用到了人们的日常生活与工作当中,同时也为实现人类的网络化做出了巨大的贡献。随着社会的不断向前发展,光纤通信技术在今后将会得到更加广泛的应用,这就要求光纤通信技术继续向前发展。为了更好的认识与了解光纤通信技术,我们有必要对光纤通信技术未来的发展趋势进行深入的分析。
(一)光纤通信技术将朝着波分复用技术发展
波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器,将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立,从而在一根光纤中可实现多路光信号的复用传输。
(二)光纤通信技术将朝着光孤子通信的方向发展
光孤子主要指的就是一种特殊PS数量级超短光脉冲在光纤通信技术当中的应用。光孤子在光纤通信技术当中的应用,可以在很大程度上平衡非线性效应以及群速度色散,这主要就是因为光纤的反常色散区在其中发挥了相当重要的作用。光纤通信技术应用光孤子进行通信之后,也可以有效的保证波形以及传输速度。
(三)光纤通信技术将朝着全光网络的方向发展
全光网是网络化发展的最大阶段,也是人们一直努力的方向。现阶段,全光化已经在节点之间得到了应用,但是网络结点还没有将其运用到其中而是还采用着一些比较传统的电器元件。因此上述情况的存在在很大的程度上限制了网络容量的不断提高。为了克服上述问题以及最大限度的提高网络的容量,我们必须将光纤通信技术朝着全光网络的方向发展。全光网络的发展趋势已经成为光纤通信技术领域的一个非常重要的课题。电节点被全光节点替代是全光网络的一个突出的特点,也就实现了节点之间的全光化。全光网络的发展可以使得网络的信号传输以光的形式进行转换与传输,极大的改善了信号的传输环境。交换机对用户的处理传统的方法是按照比特的方式来进行的,如果全光网络能够得以实现,那么可以通过波长来对路由进行有效的控制。因此,全光网络的发展已经成为光纤通信技术的一个发展趋势。
结束语
综上所述,光纤通信技术的发展是推动我国通信技术的快速发展的动力,在未来的社会中会起到至关重要的作用,从现在的发展趋势来看,光纤通信技术必将成为未来通信技术发展的主流。
参考文献:
[1]辛化梅,李忠.论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003.
[2]焦燕.激光通信技术的现状及未来发展趋势[J].信息通信,2012.