前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的应用题教学主题范文,仅供参考,欢迎阅读并收藏。
关键词:现实生活;解决问题;合作意识
一、创设情境,丰富学生的感性认识
数学来源于生活。小学阶段的应用题大多与现实生活之间存在着密切的联系。可是学生却很难找到应用题和现实生活的连接点,面对非常现实的问题束手无策。有这样一道题:甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行40千米,两车在离A点120千米处相遇,相遇后两车继续以原速前行,各自到达目的地后立即返回,在离地40千米处第二次相遇,问两地相距多少千米?学生拿到题目后无从下手,在这种情况下没有直接告诉学生,而是让学生耐心地把题目读懂,然后让学生上台表演,表演之前,让学生说说谁走得快些,,谁走得慢些,第一次相遇时两人走的路程与两地相距的路程有何关系,然后按题意继续前行,到达目的地后立即返回,直到第二次相遇,让全体学生分析一下,这两个学生所走的路程之和与总路程有何关系,学生豁然开朗,知道了原来两位同学所走的路程之和是AB总路程的3倍。那么甲所走的路程也是第一次相遇时所走路程的3倍,乙所走的路程也是第一次相遇时所走路程的3倍,让学生在真切的情境中,丰富了感性认识。同时也找到了学习数学的乐趣,激发了学习数学的积极性。
二、变换条件,强化学生的理解能力
当涉及数学训练时,力争让学生根据一道题会做一批题,思考一类题,由此不断延伸、拓展。在教学分数应用题时,如学校田径组原来有女生人数占三分之一,后来又有6名女生参加进来。这样女生就占田径组总人数的4/9。现在田径组有女生多少人?这道题对一般的学生来说还是有难度的,引导学生把题中的条件换一种说法,有的学生说:我们可以根据原来女生占1/3,想到女生占男生的1/2,还可以根据女生占田径组总人数的4/9,想到这时女生占男生的4/5,这样可以得到后参加的6名女生占男生人数的3/10,这样就可以求出男生人数。学生在变换条件的同时理解了问题,增强了综合运用所学知识的技能和解决问题的能力,发展了应用意识。
三、合作交流,培养学生的合作意识
例如,在教学六年级百分数应用题中,有这样一道题,拖拉机厂上半年生产拖拉机510台,完成全年计划的3/5。照这样计算,可以提前几个月完成全年计划?教学时,考虑到学生一般都能用常规解法进行解答。即12-510÷3/5÷(510÷6)=2(个月)。让学生通过合作学习小组讨论交流,在小组讨论中发表不同的思路,不同的解题方法,使所有的学生能在小组讨论中大胆设想、大胆思考、大胆探索,学生在分组讨论时,我深入小组,认真听取学生的自由发言,当学生在讨论过程中遇到障碍时,进行恰当的点拨,积极引导和启发探究知识。
四、趣题引领,激发学生的学习兴趣
在平时的练习设计中,注意结合学生的生活实际,训练有意义的富有挑战性的内容。在学生学习了行程类应用题之后,有这样一道题:甲、乙两人同时从相距1200米的两地同时出发,相向而行,甲每分走90米,乙每分走130米,出发时还带了一只小狗,在甲、乙两人相遇之前,小狗一直在他们之间往返跑,问当甲、乙两人相遇时,小狗跑了多少米?这样的习题对于学生来说既能激发探索欲望,又能让学生真切地感受到学以致用。在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
应用题的教学策略是在解决问题的过程中逐步形成和发展起来的。策略的形成需要学生对解题方法反复进行感悟、优化、抽象与概括,对解决问题的经验不断进行积淀、内化、总结与升华。应用题教学过程是数学思想转化为具体解决问题过程的桥梁。
参考文献:
【关键词】小学数学 应用题 教学方法
应用题是小学数学教学的重要内容。解答应用题能使学生把认数和计算中所掌握的基础知识以及基本数量关系运用于实际,加深对四则运算意义的理解,既培养学生分析问题、解答问题的能力,发展学生的逻辑思维能力,又可以使他们受到思想品德教育。简单应用题是复合应用题的基础,它在低年级数学教材中占有非常重要的地位。现就简单应用题的教学方法谈几点意见。
一、直观图示,建立表象
在数的认识与简单的计算教学中,教材安排了一定的题图和插图,这正是进行应用题启蒙教学的好材料。例如:在"7的认识"这一节教学中,有一幅小朋友喂鸡的题图:1只公鸡,7只母鸡;2只黄母鸡,5只其他鸡。这幅图的作用,无疑是为"7的认识"和"7的组成"服务的,但其中也蕴含了部分数和总数关系的求和应用题的雏形。因此,教学中既要利用图使学生掌握"7的组成",又要有意识地引导学生建立这样的表象:已知两个部分数求总数,就是把两个部分数合并起来。
在简单的计算教学中,教师通过直观演示,或通过"看图列式"和"说图意列式计算"教学内容,使学生初步了解加、减法的意义,并有意识地训练学生逐渐会用"三句话"讲清图意。
例如:在教学3-2=1这道算式之前,教师先在贴绒板上并列贴上3只燕子,然后拿起其中两只贴到"空中"。接着要求学生根据教师的动态演示过程回答下列问题:(1)原来有几只燕子?(2)飞走了几只?(3)还剩下几只?之后,再请学生把刚才的三个问题连起来,用"三句话"说一说,教师引导学生及时抽象概括出:3-2=1,使具体的实物图示与抽象概括的数量关系相沟通,并能从教师演示的全过程中体会到:从一个数里去掉一部分,求剩下多少,用减法计算。
二、抓住关键词语解题
在复习"走进生活,解决实际问题"的教学中,要强调学生抓住题中关键词、重点字,如:"中点"和"终点","增加了"和"增加到","比计划多"和"比计划少"等这些容易混淆的词语进行分析,培养学生数学阅读的分析和理解能力。
三、适当渗透,早期孕伏
对一年级小学生来说,应用题的启蒙教学是指在数学教学中对应用题进行适当渗透,早期孕伏。其任务是实现看图说话和看图计算图画表示的应用题有图有文字的应用题文字应用题的过渡,并逐步使学生了解应用题的结构,懂得应用题中条件和问题间的关系,掌握思考方法和解答步骤。一般可分为三个阶段。
1、是孕伏阶段,即看图说话和看图计算。在这个阶段,教师要善于诱导,循序渐进,有意识地提前起步。一般可从"准备课"起就训练说一句完整的话,而后再逐步训练学生说两句话、三句话。在此基础上,可结合具体题目引导学生试着将第三句话改说成疑问句,逐步熟悉题目中的数量关系。
2、是准备阶段,即教学图画表示的应用题。在这个阶段,可采取如下步骤训练:1.理解题意并了解题目中告诉了什么、求什么,初步孕伏应用题的结构;2.引导学生根据加、减法含义确定算法;3.列式计算。
3、是过渡阶段,即教学有图有文字的应用题。要引导学生懂得"条件"和"问题"等术语,进一步了解应用题的结构,并能根据条件和问题间的关系,联系加、减法含义确定算法,从而为文字应用题的学习打好基础。
四、寻找隐藏条件
例如:工程队修一段公路,第一天修了45千米,第二天修全长的40%,还剩一半没修,这段公路有多少千米?
这道应用题的数量较隐蔽,从"还剩一半没修"中挖掘隐蔽条件就是前二天已修的也占一半,求出第一天修的分率,再求单位"1"的量。总之解分数应用题,不论题中量率如何变化,条件如何隐蔽,只要教会学生解题的方法,就能使其较顺利地克服思维过程中的种种障碍,达到解决实际问题的目的。
五、强化整体,理清思路
简单应用题从数量关系来说可以归结为和、差、积、商四种,大体可以分为四组。同一组应用题之间有着密切的联系。例如,第二册的相差关系应用题包括三种情况,其数量关系是相同的,只不过是已知和未知发生了变化。如果弄不清这一点,就会产生干扰,以至于数量关系混淆不清,分析时无从下手。因而弄清这类应用题的异同,对于正确分析数量关系是至关重要的。通过对已知和未知的分析,学生对两种应用题的认识更加清晰。再如,教科书第五册第52页例10是将三种倍数关系的应用题进行对比,使学生进一步明确它们的联系和区别,更好地掌握解题思路和解答方法。教学中,应以三量关系为核心,帮助学生从整体上把握倍数关系应用题的基本结构和数量关系分析方法,从而使知识融会贯通,形成知识系统,提高解题能力。为此,可采取如下步骤。
1.学生独立解答后围绕三量关系进行讨论:这三道题的不同点是什么?使学生明确:这三道题表示的均是同一种数量关系,只不过是已知和未知发生了变化而已。
2.从解题思路和运算方法上进行研究,促使学生结合乘、除法含义理解算理:(1)题求排球的个数是足球的多少倍就是求18里包含着几个6;(2)题求有多少个排球就是求3个6是多少;(3)题求有多少个足球就是求把18平均分成3份求一份是多少。
六、注重训练,培养能力
学生解题能力的提高决不是一朝一夕的事情,这需要有一个过程,为此可采取不同的形式进行训练。除了一般性的常规形式外,还可采用如下方式:
1.填条件提问题的练习;
2.一题多变的练习,如改变其中的一个条件或问题等;
3.用简缩的数学语言进行表述,如求有多少朵红花就是求比5多3的数是多少;
能力是什么?能力是与活动联系在一起的,从事任何活动都必须具备相应的能力。每一种活动都对人的心理过程、分析的能力、反应的速度、个性的特征提出某些要求。能力就是人的这些心理特征,符合于相应活动的要求,并且是顺利地、高质量地完成这种活动的条件。我在改革教材的基础上,对应用题的教学,突出地抓住了数学能力的培养。在培养能力方面,主要有三个特点:
(1)抓住特殊能力――数学能力的培养。
近十年来,许多教师对教学进行改革,重视能力的培养,注意培养学生的观察能力、思维能力、想象能力、记忆能力等。我觉得这些能力属于一般能力。而学生的学习活动是分学科进行的,不同学科还有不同的特殊能力。如语文能力、数学能力、生物能力、音乐能力等等。我们要使培养能力的教学改革深入下去,取得更好的成效,就不能停留在培养一般能力,而要深入到学科,根据学科本身的特点,研究如何培养学科的能力。这是培养能力如何深入的一个重要问题。我注重抓住特殊能力――数学能力的培养。我根据小学生智力发展的特点,主要培养掌握数学问题结构的能力、逻辑思维能力,思维的灵活性和数学概括能力。以掌握数学问题结构的能力为例。什么叫数学问题结构?通常人们在解答一个问题前,必须先了解这个问题,分析这个问题,找出问题的已知条件和要求,这就要进行分析、综合研究条件之间的关系,条件与问题之间的关系,然后把这些成分综合成一个整体,抓住问题中具有本质意义的那些关系。这就是抓住了数学问题的结构。“能力强的学生拿到一道数学题时,一眼就看出了问题的结构,就能把已知条件联系起来,而数学能力平常的学生遇到一类新问题时,一般说来,他们只是感知问题孤立的数学成分,并不理解这个问题。对于平常的学生来说,特别重要的是要能通过分析和综合过程把问题的各种成分联系起来。”(克鲁切茨基《中小学生数学能力心理学》252、254页)我在教一步应用题时,就着重地抓了数学问题结构的训练。如画线段图的训练,补充问题与条件的训练,题意不变改变叙述方法的训练,自编应用题的训练,根据问题说出所需条件的训练,对比训练等。在讲两步应用题时,重点上了两步应用题的“结构课”,同时进行变直接条件为间接条件,变换问法,让学生扩题、缩题、拆题,看问题要条件等四个方面的训练。讲多步复杂应用题时,又进行了多步应用题的“发散思维课”及相应的各种训练。通过一系列的教学和训练,使每个学生都掌握了应用题结构的能力。
(2)重视解题思路的训练。
应用题之所以难学,问题本身一般比较复杂是一个原因,但从教学法来说,更重要的是解题思路(思维过程的顺序、步骤与方法)缺乏应有的训练,使许多学生感到问题无从下手,不知道怎样去想。对于这一点,我们只要把它同计算题作一比较,就清楚了。如做计算题时,学生对运算法则、运算顺序和步骤,都是清清楚楚的。学生的思维过程同运算顺序是一致的。计算的每一步都在式子里反映出来,看得见、摸得着,学生计算得对与错一目了然。计算题通过训练学生容易掌握。而解应用题就不同了,学生要了解题意,分析条件与条件之间,条件与问题之间的各种数量关系,要通过分析、综合,找到解题的途径和方法。从审题到列出式子,思维过程少则也有几步,都是用内部言语的形式进行的。这种用内部言语进行的思维过程,教师既难以知道学生的思维是否合理、正确,有无错误,更难以进行有针对性地训练。对于这样的问题,我根据学生智力活动的形成是从外部言语到内部言语这个特点,在应用题教学中设计了一套教学方法,使学生的解题思维过程化,有计划有步骤地训练学生的解题思路。下面是我的训练方法:
①读题。通过读题使学生理解题中的情节和事理,知道题中讲的是什么事;已知条件中,哪个是直接条件,哪个是间接条件,条件与条件、条件与问题是什么关系。读题的过程,就是了解题意的过程。
②画批。就是把题中的重点词、句和思维分析、判断的结果,用文字、符号(箭头、着重点、圆圈、横直线、曲线等)划出来,主要目的是为了了解每个数量的意义及数量间的内在关系。
③画图。就是画线段图,用线段把题中所讲的各个数量及其相互关系表示出来,直观地、形象地反映应用题的数量关系。
④说理。说理就是在分析解答应用题的过程中,让学生用清晰、简洁、准确的语言,说出自己分析解答应用题的思维过程及相应的道理。
通过上述读、画、说,学生把解题的内在思维过程,变为外在的表现形式,这就非常有利于训练、培养学生解题过程中思维的有序性和合理性,有利于培养学生逻辑思维的能力,解决了应用题教学中的一大难点。
(3)以培养数学能力为中心,进行系统的训练。
我在应用题教学中,改变了那种一类一类问题地教、一个一个例题地讲的教学方法,以培养数学能力为中心,重新设计编排一套练习,反复地系统地进行训练。这种训练的目的不是停留在一问一答单纯解题式的技能训练,而是着眼于培养举一反三和思维的灵活性,形成数学能力。因此,在我的重新编排的练习题中,不仅有问题的解答训练,而更多的是各种思维训练:有扩题、缩题、拆题、编题的训陈,还有发散思维训练,对比训练,一题多变训练,一题多解的训练,系统思维训练等。为了进行这些训练,我采用了“结构课”、“思维分析课”、“变式课”、“发散思维课”等形式的教学结构和一系列培养能力的教学方法。下面,以两步应用题的“变式课”为例,说明我是怎样进行思维训练的。
“变式课”的教学,有五种基本做法。
①改变叙述方法。就是题意不变,仅改变题中某些词、句的叙述方法。
②改变重点词语。重点词语是连接条件与条件,条件与问题的纽带。它是引导学生理解题意,分析数量关系,寻求解题方法的主要线索。
③改变条件。就是把直接条件改变成间接条件,把间接条件改变成直接条件,应用题的问题不变。
④改变问题。就是条件不变,只改变应用题的问题。改变应用题的问题,不仅使题意发生了变化,而且使解题的思路和具体方法都随之发生了变化。
⑤改变条件和问题。就是把应用题中的条件(直接条件或间接条件)改变成问题,把问题改变成条件(直接条件或间接条件),使题意大变。从而导致分析方法、解题方法的改变。
1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的.
2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力.
3.培养学生认真负责的态度和良好的学习习惯.
教学重点
能够掌握复合应用题的结构,正确解答复合应用题.
教学难点
使学生掌握复合应用题的关系.
教学过程
一、基本训练.
1.口算.
2.5×4127+280.37+1.688÷16
3.37+6.638.4÷0.70.125×81.02-0.43
1.25+1÷×16
2.要求下面的问题需要知道哪两个条件?
(1)实际每天比原计划多种多少棵?
(2)桃树的棵数是梨树棵数的多少倍?
(3)五年级平均每人捐款多少元?
(4)这堆煤实际烧了多少天?
(5)剩下的书还需要多少小时能够装订完?
(6)小明几分钟可以从家走到学校?
教师总结:
应用已经学过的数量关系,根据题目中的问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键.
二、归纳整理.
揭示课题:这节课,我们复习复合应用题(板书课题).
(一)教学例2:
a.学生夏令营组织行军训练,原计划每小时走3.75千米;实际每小时走4.5千米.实际比原计划每小时多走多少千米?
b.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际每小时走了4.5千米.实际比原计划平均每小时多走多少千米?
c.学校夏令营组织行军训练,原计划3小时走完11.25千米;实际2.5小时走完原定路程.实际比原计划平均每小时多走多少千米?
1.指名读题,学生独立解答.(学生板演)
2.小组讨论:这三道题都有什么联系?这三道题有什么区别?
联系:这三道题说的是同一件事,要求的问题也相同,都是求“实际比原计划平均每小时多走多少千米?”要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数.
区别:
a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;
b、实际每小时走的千米数是已知的.原计划每小时走的千米数是未知的,需要两步计算;
c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算.
3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题.
4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的.在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止.
5.检验应用题的方法.
我们想知道此题目做的对不对,你有什么好办法吗?
(1)按照题意进行计算;
(2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意.
三、巩固反馈.
1.解答并且比较下面两道应用题,说说它们之间有什么区别?
(1)时新手表厂原计划25天生产手表1000只,实际每天生产50只.实际比原计划提前几天完成任务?
(2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务.实际每天生产手表多少只?
2.判断:下面列式哪一种是正确的?
(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?
A:2100-240×5÷3B:(2100-240)÷3
C:(2100-240×5)÷3
(2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?
A:(2640-240)÷240
B:2640÷(240÷3)
C:(2640-240)÷(240÷3)
(3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天,照这样计算,再耕13.6公顷棉田,一共需要用多少天?
A:13.6÷(6.8÷4)B:13.6÷(6.8÷4)÷4
C:(13.6+6.8)÷(6.8÷4)
(4)一个筑路队铺一段铁路,原计划每天铺路3.2千米,15天铺完,实际每天比原计划多铺路0.8千米,实际多少天能够铺完这段路?
A:3.2×15÷0.8B:3.2×15÷(3.2-0.8)
C:3.2×15÷(3.2+0.8)
(5)某化工厂采用新技术后,每天用原料14吨.这样,原来用7天的原料,现在可以用10天.这个厂现在比过去每天节约多少吨原料?
A:14×7÷10-14B:14×10÷7-14
C:14-14×10÷7D:14-14×7÷10
四、课堂总结.
通过今天的学习你有什么收获?
五、课后作业.
1.丰收农具厂制造一批镰刀,原计划每天制造360把,18天完成,实际每天多制造72把.照这样计算,多少天能完成任务?
2.边防战士巡逻,共行26千米.前2.5小时在平路上行走,平均每小时行5千米;后来在山地行走,平均每小时行3千米.在山地行走了多少小时?
【关键词】基础薄弱;应试教育;过程教学
一、应用题教学的重要性
运用数学知识解决现实中的实际问题是我们学数学的重要目的之一,初中数学大纲中指出:“要学生会应用所学知识解决简单的实际问题,能适应社会日常生活和生产劳动的基本需要。”可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本内容和重要途径,因为应用题反映了周围环境中常见的数量关系,需要用不同的数学知识把实际生活和一些简单科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。此外,应用题教学有利于培养学生学数学的兴趣,使学生感到数学是有用的,数学离我们并不遥远;还可以发展学生的逻辑思维能力,分析问题的能力,培养学生良好的思维品质和良好的道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民必须具备的能力和品质。
二、当前应用题教学的现状
1学生的应用题基础薄弱;长久以来,传统的教育模式导致了学生重课本、轻生活,因而生活阅历有限,对应用题的背景和情境不熟,教师们常常在教学中抱怨“学生应用题的阅读理解能力差”。实际上,很多时候并不是学生的阅读理解能力差,而是学生阅历不足造成的。另外,很多学生遇到文字比较长的应用题不知道怎样去分析,去寻找题中的数量关系,不知道怎样把实际问题化成一个数学问题,建立数学模型。
2传统教学方式和旧教材的影响;学生解应用题的能力弱,与老师的教学不无关系。长期以来,我们的老师都比较重视知识的传授和解题,不太重视实践性活动的开展和教学,而且旧教材在这方面也比较缺乏,没有实践性活动的专题,而且一些应用题的素材也比较陈旧,根本不能跟当今的现实生活相联系,使学生感到数学枯燥无味,没有用,老师又不注意引导,以致影响了应用题的教学效果,甚至对整个数学科都产生不利影响。
3学生接受应用题训练的机会较少;受应试教育思想的影响,一些教师认为应用题文字叙述长,分析起来繁琐费时,课堂效率不高,而应用题的解题能力又无法在短期内形成,在以往考试中所占的分数比重也不高,所以教学中分析探索过程往往一笔带过,更是很少作为一个专题进行学法指导。所以学生接受训练的机会少,自然解应用题的能力只能一直处于低水平的状态。
三、优化应用题教学的策略
1从基础入手,树立学生学应用题的信心;从前面调查的结果看来,大多数学生对解应用题存在畏难情绪,信心不足,不知道怎样去分析,去寻找题中的数量关系。要解决好这一问题,还是要先从基础抓起,从简单的应用题开始。简单的应用题背景较简单,语言较直接,容易使学生领会如何进行审题,理顺数量关系,容易建立数学模型,为解复杂一点的应用题打下基础,又能带给学生成功解题的体验,增强学应用题的信心。学生列方程解应用题的一般思维过程:弄清问题――找等量关系――设未知数――列出方程。
2教学过程中及时渗透应用题的教学;要提高学生解应用题的能力,一定要在课堂上多渗透应用题的教学,要善于结合教学内容,加强数学知识应用的渗透,适时地切入应用题的教学,使学生有更多的接触应用题训练的机会。其实,我们现在用的“华东师大版”教材,已经很好地注意到了数学的应用性,在讲每一个知识点之前,都先结合现实应用提出问题,也就是先以应用题开头提出问题,引出悬念,然后才讲新知识。其实这就给我们提供了训练解应用题能力的一个很好的机会,教师一定要注意在这一教学内容上的引导。
这虽然是一道较简单的应用题,一般学生很快就设出未知数列出方程,但这也是一个训练的机会,而且当学生发现所列出的方程跟以前所学过的不一样时,更激发了他们学习这一章新知识的兴趣。但是以应用题的形式引出要学的新知识切忌提出的问题太复杂,让人很难理清头绪,这样既达不到训练的目的,更谈不上有引起学习新内容的兴趣了。总之,选题要遵循循序渐进的原则,围绕各种数学知识的应用,从简单到综合,逐步深入。
3重视过程教学,培养“建模能力”;“把实际问题化成一个数学问题,建立数学模型,这个过程称为数学建模”。建模能力是数学应用能力的核心,学生的应用题能力差,最根本还是建模能力不强,怎样提高学生的建模能力呢?这就要求教师在平时教学中不可只展示结果,更应重视展示思维过程,引导学生分析探索问题,教会学生思考,例题的教学是关键。
4培养数学兴趣,让学生觉得有动力;兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就要培养学生的数学兴趣。在教学中我做到了以下几点:1.加强基础知识的教学,使学生能接近数学。数学并不神秘,数学就在我们周围,我们时时刻刻都离不开数学。2.重视数学的应用教学,提高学生对数学的认识。许多人认为,学那么多数学有什么用?日常生活中根本用不到。事实上,数学的应用充斥在生活的每个角落。以往的教材是和生活实践是脱节的,新教材在这方面有了很大改进,这也是向数学应用迈出的一大步,比如线性规划问题就是二元一次不等式组的一个应用。教学中重视数学的应用教学,能让学生充分感受到数学的作用和魅力,从而热爱数学。3.引入数学实验,让学生感受到数学的直观。让学生以研究者的身份,参与包括探索、发现在内的获得知识的全过程,使其体会到通过自己的努力取得成功的快乐,从而产生浓厚的兴趣和求知欲。4.鼓励攻克数学,使其在发现和创造中享受成功的喜悦。数学之所以能吸引一代又一代人为之拼搏,很大程度上是因为数学研究的过程中,充满了成功和欢乐。孔子说:知之者不如好之者,好之者不如乐之者,学生们学习乐在其中,才能培养出学生不断探索的欲望。
【关键词】 认识;重视;思路;训练
一、认识和概括数量关系,从感性到理性,从具体到抽象
数学应用题里都含有一定的数量关系,而数量关系都是带有一定抽象性的。要使学生对数量关系真正理解和掌握,在教学引导中必须密切注意学生的思维特点。小学生的思维特点是以具体形象思维为主,而抽象逻辑思维有待于在学习中发展和提高。因此,在教学中按照应用题的文字叙述形式给学生概括出怎样的应用题用加、减法或乘、除法等是十分不可取的;而应该在教学时选择接近学生实际生活的、或熟悉的事物作为应用题的内容,在指导他们解题时也要尽量利用直观教具,或创设情境使他们能够用实物或看图进行数一数、摆一摆等让学生通过自己的操作在大脑中形成表象,使题目的内容成为他们可以感知的。再从具体的题目,具体的数量中发现一些具有共同特征的东西,在教师的引导和帮助下让学生尝试概括一些数量关系。例如探讨“工作效率×工作时间=工作总量”这一数量关系时,先让学生理解:“工作效率就是指每天(每小时、每分、每秒)所完成的工作”,“工作时间是指一共用了几小时(几天、几分、几秒)”,“工作总量是指在这几小时(几天里、几分里、几秒里)一共完成了多少工作任务”。最后总结出关系式:工作效率×工作时间=工作总量。总结出关系式后,学生的认识还是不深的,为此,在巩固练习这一环节里,还要设计一定数量的相关习题。先让学生指出各习题里哪个数量是“工作效率”,哪个数量是“工作时间”,哪句话是指“工作总量”。然后让学生说说已知“工作效率”和“工作时间”怎样求工作总量。最后再让学生动手计算、解答。这样通过说、练的训练,学生既掌握了知识,又培养了学生的说理辨析能力。
二、重视解题思路的训练
应用题之所以难教难学,问题本身一般比较复杂是一个原因,但从教学方法来说,更重要的是解题思路缺乏应有的训练,使许多学生感到无从下手,不知道怎样去想。对于这一点,我们只要把它同计算题作一比较,就清楚了。如:做计算题时,学生对运算法则、运算顺序和步骤,都是清清楚楚的。学生的思维过程同运算顺序是一致的。计算的每一步都在式子里反映出来,看得见,摸得着,学生计算得对与错一目了然。计算题通过训练学生容易掌握。而解决应用题就不同了,学生首先要了解题意,分析条件与条件之间,条件与问题之间的各种数量关系,通过分析、综合,找到解题的途径和方法。从审题到列出式子,思维过程要有几步,都是用内部言语的形式进行的。这种用内部语言进行的思维过程,教师既难以知道学生的思维是否更合理、正确,有无错误,更难以进行有针对性地训练。对于这样的问题,根据学生智力活动的形成是从外部言语到内部言语这个特点,在应用题教学中设计了一套教学方法,使学生的解题思维过程化,有计划有步骤地训练学生的解题思路。训练方法有:
1.读题。通过读题使学生理解题中的数量关系,理解题意。
2.画批。把题中的重点词、句和思维分析、判断的结果,用文字、符号(波浪线、直线、着重点等)划出来,以利于分析数量间的内在关系。也可以画线段图,把题中的各个数量及其相互关系表示出来,直观、形象地反映应用题的数量关系。
3.说理。说理就是在分析解答应用题的过程中,让学生用清晰、简洁、准确的语言,说出自己分析解答用题的思维过程及相应的道理。
通过上述读、画、说,学生把解题的内在思维过程,变为外在表现形式,有利于训练、培养学生解题过程中思维的有序性和合理性。有利于培养学生的逻辑思维能力,解决了应用题教学中的一大难点。
三、多种形式的应用题基本训练
(一)将生活问题带入课堂
数学与学生的生活有着很密切的联系,也是学生学好其他各理科科目的重要基础,现在的新高考中也对于学生应用数学知识解决生活问题有着要求。因此在平时的教学中要注意将生活问题带入到应用题的教学中。
例如在教学基本不等式的时候引入这样的一个题目“某种汽车,购车费是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元。问这种汽车使用多少年时,它的年平均费用是多少?”现在买车的人比较多,这种题与学生的生活有着密切的关系,不仅仅能够激发学生们的学习兴趣,同时还能够给让学生们知道数学知识对于解决生活中的问题十分有效。
例如在教学概率的时候引入这样的一个问题:“‘三个臭皮匠顶个诸葛亮’是对大众智慧的一种肯定,但是可以用数学知识来证明其中所蕴含的数学机智吗?”然后带着学生学习概率相关知识,课后让学生自己去证明其中所蕴含的数学机智,并思考生活中是否还有更多的类似的例子。
(二)帮助学生扫清语言障碍
很多学生在解应用题时出错都是因为语言理解能力不足的情况,因此,在平时的教学过程中要把帮助学生解决语言障碍问题作为一项重要的项目。首先要让学生在面对应用题的时候能够给保持冷静,能够有一个清醒的头脑对题目进行分析。其次是让学生学会理清题目中的主次关系。新高考中的应用题包含了数量关系、情景设置等,就像是一个“五脏俱全”的小短文,因此学生必须学会有目的的对题目进行分析,分析清楚其中所要考察的知识点,已知条件等。最后是帮助学生扫除专业术语障碍。近年来的高考应用题中经常出现各种各样的专业术语和生活术语,这些专业术语和生活术语中有很多都是学生所不了解的。但是很多时候这些术语对解题没有什么影响,因此要让学生学会解题的时候不能够试图“全线突破”,而应该是“重点攻破”。
(三)加强学生的数学建模能力
将生活问题引入到课堂中是为了让学生能够对数学学习产生兴趣,让学生能够认识到数学对于生活的重要性,同时也是为了让学生对于考试中所出现的与生活相关的问题不在感到陌生、恐惧。帮助学生解决语言障碍是为了让学生能够更加准确的把握题意。但是最关键的还是要让学生在理解题意的基础上将各种文字语言、符号语言、图标语言等转换为数学语言。数学建模是将现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。因此,必须要加强学生数学建模的能力的培养。
培养学生的数学建模能力可以从以下几个方面入手。第一是以教学内容与学科交叉点为切入点,培养学生的数学角膜能力。教师在教学的时候要从课本内容出发,与实际进行联系,以教材为载体,从而提高学生的数学建模能力。教师要鼓励学生大胆的提出自己的构想。第二是以社会生活为切入点,培养学生的建模能力。前面已经提到过要将生活问题带入课堂,那么何不利用生活问题为切入点来对学生的数学建模能力进行培养呢?以生活问题为切入点可以有效的激发出学生的学习兴趣,如下例:
例:建筑学中窗户面积与房间面积之比称为采光率,采光率越高,房间越明亮.试问现将窗户与房间同时增大相同的面积,则房间变亮还是变暗?
分析这道题比较简单,但是却具有一定的代表性。解此题时,学生必须要从题中弄动什么是采光率,然后进行解题。将窗户的面积设为a,房间面积设为b,增大的面积为m,原采光率为 ,窗户与房间同时增加面积m后的采光率为 ,问题的本质是将原采光率与面积增大后的采光率进行对比,以此来判断房间是变亮还是变暗。建立数学模型已知a、b、m都是正数,且a<b,比较 与 的大小。
关键词:初中数学 课程改革 教学策略
一、应用题教学的重要性
运用数学知识解决现实中的实际问题是我们学数学的重要目的之一,初中数学大纲中指出:“要学生会应用所学知识解决简单的实际问题,能适应社会日常生活和生产劳动的基本需要。”可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本内容和重要途径,因为应用题反映了周围环境中常见的数量关系,需要用不同的数学知识把实际生活和一些简单科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。此外,应用题教学有利于培养学生学数学的兴趣,使学生感到数学是有用的,数学离我们并不遥远;还可以发展学生的逻辑思维能力,分析问题的能力,培养学生良好的思维品质和良好的道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民必须具备的能力和品质。
二、当前应用题教学的现状
(一)学生的应用题基础薄弱
长久以来,传统的教育模式导致了学生重课本、轻生活,因而生活阅历有限,对应用题的背景和情境不熟,教师们常常在教学中抱怨“学生应用题的阅读理解能力差”。实际上,很多时候并不是学生的阅读理解能力差,而是学生阅历不足造成的。另外,很多学生遇到文字比较长的应用题不知道怎样去分析,去寻找题中的数量关系,不知道怎样把实际问题化成一个数学问题,建立数学模型。我曾做过一次调查,针对所教的初一两个班的学生,入学后的第一次期中考试应用题的得分情况是这样的:
(二)传统教学方式和旧教材的影响
学生解应用题的能力弱,与老师的教学不无关系。长期以来,我们的老师都比较重视知识的传授和解题,不太重视实践性活动的开展和教学,而且旧教材在这方面也比较缺乏,没有实践性活动的专题,而且一些应用题的素材也比较陈旧,根本不能跟当今的现实生活相联系,使学生感到数学枯燥无味,没有用,老师又不注意引导,以致影响了应用题的教学效果,甚至对整个数学科都产生不利影响。
(三)学生接受应用题训练的机会较少
受应试教育思想的影响,一些教师认为应用题文字叙述长,分析起来繁琐费时,课堂效率不高,而应用题的解题能力又无法在短期内形成,在以往考试中所占的分数比重也不高,所以教学中分析探索过程往往一笔带过,更是很少作为一个专题进行学法指导。所以学生接受训练的机会少,自然解应用题的能力只能一直处于低水平的状态。
三、优化应用题教学的策略
(一)从基础入手,树立学生学应用题的信心
从前面调查的结果看来,大多数学生对解应用题存在畏难情绪,信心不足,不知道怎样去分析,去寻找题中的数量关系。要解决好这一问题,还是要先从基础抓起,从简单的应用题开始。简单的应用题背景较简单,语言较直接,容易使学生领会如何进行审题,理顺数量关系,容易建立数学模型,为解复杂一点的应用题打下基础,又能带给学生成功解题的体验,增强学应用题的信心。学生列方程解应用题的一般思维过程:弄清问题――找等量关系――设未知数――列出方程。
(二)教学过程中及时渗透应用题的教学
要提高学生解应用题的能力,一定要在课堂上多渗透应用题的教学,要善于结合教学内容,加强数学知识应用的渗透,适时地切入应用题的教学,使学生有更多的接触应用题训练的机会。
(三)重视过程教学,培养“建模能力”
“把实际问题化成一个数学问题,建立数学模型,这个过程称为数学建模”。建模能力是数学应用能力的核心,学生的应用题能力差,最根本还是建模能力不强,怎样提高学生的建模能力呢?这就要求教师在平时教学中不可只展示结果,更应重视展示思维过程,引导学生分析探索问题,教会学生思考,例题的教学是关键。在初中阶段,常见的数学应用题模型有下面几个:建立方程(组)模型、建立不等式(组)模型、建立直角坐标系、建立函数模型、统计型问题、建立三角模型、建立几何模型。教师可以分别进行专门练习,特别是在初三复习时,进行系统复结很有必要。
然而,在日常教学中,不少学生害怕解应用题,甚至闻之色变,见之就躲。这主要是由于以下原因。
1. 不会审题,读不懂题意
有的学生对题目中出现的一些新名词不理解,如“增长率”“打折”“利率”等,导致无法理解题意,因而无法找出题目中的已知量和未知量,更无法确定已知量和未知量之间的数量关系,在这种情况下学生就无法进行应用题的解答。
2. 解题方法单一、生硬
在解题时,有的学生没有真正掌握解决应用题的有效途径,生搬硬套,只按照老师讲过的方法求解,不会灵活地处理相应问题,思维过于僵硬。同时由于学生缺乏转换能力,解题时容易就题论题,往往被出题者牵着鼻子走,不能跳出题外去思考,找不准出题者的意图。
3. 对应用题基本方法、基本解题思想的教学与训练重视不够
应用题的常规教学思路应是:将实际问题抽象、概括、转化为数学问题,通过找相等关系、列方程、求解进行解题。但不少教师认为以上教学过程过于简单,没有结合学生的认知基础,没给学生展示详细的分析解答过程,导致学生只能完成对简单题目的求解,不能举一反三,更不能灵活应用。
4. 应用题教学急于求成,没有坚持循序渐进的教学原则
一些教师常常通过讲解各种类型的、难度较大一些的应用题来进行教学,但学生不能理解题意,找不出其中的等量关系,列不出方程,从而无法通过解题训练来掌握知识。结果适得其反,学生由此对应用题产生为难情绪,解应用题的能力不能得到很好的提高,丧失学习数学的兴趣。
根据课程标准及数学教材的特点,教师应从以下几方面来着手优化应用题教学。
1. 从基础入手,帮助学生建立信心
不少学生不知道怎样去分析、寻找题中的数量关系,解应用题存在畏难情绪,信心不足。要解决这一问题,教师要先从基础抓起,从简单的应用题开始教学。简单应用题的背景较简单、语言较直接,通过此类题目的练习,学生较容易地领会如何进行审题、理顺数量关系,建立数学模型,为求解复杂的应用题打下基础,同时也能带给学生成功解题的体验,增强学生学习应用题的信心。
2. 培养数学兴趣,给予学生学习动力
兴趣是学习动力的源泉,要获得持久不衰的数学学习动力,就要培养学生的数学兴趣。一是重视应用教学,提高学生对数学的认识。许多学生认为数学在日常生活中根本用不到,学数学并没有太大的意义。但事实上,数学就在生活的各个角落,能应用于生活的方方面面。以往的教材是和生活实践脱节的,而新教材在这方面有了很大改进,强调了数学的应用性,这就让学生充分感受到了数学的作用和魅力。二是引入数学实验,让学生感受到数学的直观性。让学生以研究者的身份,参与包括探索、发现在内的获得知识的全过程,使其体会到通过自己努力取得成功的快乐,从而产生浓厚的学习兴趣和求知欲。三是鼓励攻克数学,使学生在发现和创造中体验成功的喜悦。数学研究的过程中充满了成功和快乐,在教学教学的过程中,也应该充分让学生体会成功和快乐。
3. 多种途径转化文字语言
运用多媒体的优势,将应用题中用文字表述的抽象数量关系用可视图形向学生展现,化抽象为具体。同时,教师应教会学生用画图、列表等方法转化应用题的文字语言,以理清题目的条件、问题,寻找解题突破口,让学生更好地理解题意,启迪思维。
4. 重视过程教学,培养建模能力
为提高学生分析问题、解决问题的能力,教学中首先应结合具体问题,展开求解的具体过程,让学生理解求解的每个步骤以及每个步骤之间的关联。求解过程可归结为以下几步:(1)审题:分析题意,将条件和所求结果用正确的数学语言或数学符号来表示;(2)建模:寻找合适的数学模型(如不等式、方程、函数、统计初步知识等);(3)解模:将已知条件代入数学模型,求解一个纯数学问题(如解方程、求二次函数的最大值或最小值等);(4)还原:将所求得的数学解还原到实际问题。建模能力是数学应用的核心。学生解应用题的能力差,最根本原因是建模能力不强。教师在教学中应重视对学生进行寻找数量关系的训练。通过对数量关系的寻找,建立适合的数学模型以反映应用题中已知量和未知量的数量关系,并引导学生一步步地分析和研究问题,最终解决问题。
5. 指导学生灵活运用各种解题策略
有些学生感到解题困难是由于没有恰当的解题策略,这就要求教师要善于研究、归纳针对不同题型的解题策略,并对学生进行恰到好处的引导、点拨。一要摆脱思维定势。有些应用题,学生之所以百思不得其解,原因就在于受到定势思维的影响。这时,教师要引导学生转换思考角度,让学生从不同的角度分析题目。二要树立整体思想。有些题目较为复杂,若按常规的解题方法根本无从下手,学生会在思考中陷入“死胡同”。对于这样的题目,教师应引导学生转换思维方式,从全局出发,从整体上把握数量之间的关系,找到问题的关键所在,这样解题的效果就会特别好。
6. 加强培养学生的创新意识和能力