公务员期刊网 精选范文 工程热力学的应用范文

工程热力学的应用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的工程热力学的应用主题范文,仅供参考,欢迎阅读并收藏。

工程热力学的应用

第1篇:工程热力学的应用范文

关键词:热能;动力工程;锅炉;应用

在我国电力行业中,发电所使用的锅炉类型较多,不同类型锅炉在能源分配上存在较多的问题,会造成热量的损耗。因此,应用热能与动力工程学,不断优化锅炉设计,提升锅炉的利用率,推动锅炉的创新,可以有效解决锅炉能源分配上的问题,减少能源的浪费。

1.热能与动力工程学在锅炉中的应用

在我国的发电厂中,锅炉设备较为常见。锅炉设备作为一种将热能转化为机械能的设备,是电力厂发电中的重要能量转化设备。锅炉的工业应用有效的提升了传统工业的生产效率,实现了水能、热能向机械能的转换。在发电厂中,锅炉的作用主要是将生物或化学材料产生的热能,转化为机械能,通过机械能推动发电厂其它设备的运行,从而使整个生产线开始运作,在锅炉运作的过程中,需要运用到热能与动力工程学的相关知识[1]。因此,通过热能与动力工程学相关知识的更新,可以实现锅炉设计的创新,让锅炉更高效的运作,从而实现整条生产线工作效率的提升。

2.热能与动力工程学在锅炉中的应用问题

2.1锅炉风机的损伤问题

风机是锅炉的重要组成部分,在锅炉的运行中起着非常重要的作用。风机通过将气体压缩与传输,实现热能与机械能之间的转化,从而实现锅炉的正常运行。在锅炉运行的过程中,由于锅炉生产任务量的不断增加,风机需要承担更重的气体传输任务,这在一定程度上会给风机造成一定的损伤。风机在设计的过程中,基本上没有考虑到风机本身结构的承受能力,因此,气体压缩与传输的工作量在增加的同时,也会增加对风机的压力,从而可能造成风机本身结构的损伤,影响到风机正常的运行效果。在风机出现损伤时,锅炉的其他设备也会受到相应的影响,整条生产线的工作效率会明显下降。因此,利用热能与动力工程学进行风机结构的改良显得尤为重要。

2.2能源效率问题

在锅炉能源的转化效率方面,虽然采取了相应的燃烧控制技术,但是锅炉的燃烧效率还是没有得到有效的提升。在锅炉进行热能转化的过程中,锅炉本身的运行会造成大量的热能损耗,从总体上来看,虽然锅炉的燃烧效率在不断的增加,但是在锅炉能源利用方面上来看,利用的程度还是偏低。因此,当这种情况出现时,要满足锅炉的生产需求,就需要从增加锅炉的燃烧量入手,通过加重锅炉的燃烧负担,以保证提高能源的供应,这就会造成锅炉设备损耗的问题。因此,如何提升锅炉的能源效率,降低锅炉自身的能耗,提升锅炉的能源利用效率,还需要从热能与动力工程学中寻找到相应的技术支持[2]。

3.热能与动力工程学在锅炉中的应用创新

3.1创新锅炉燃烧控制技术

在锅炉燃烧过程中,加强对能量转换的控制,是提升锅炉能源利用效率的重要部分。在锅炉的早期生产中,锅炉燃烧时,主要是依靠人工进行锅炉燃料的填充。而随着科学技术的不断发展,许多电力企业淘汰了人工填料的方式,采用了自动填料。自动填料依靠锅炉燃烧控制技术,借助各种气体分析仪以及控制装置,实现对锅炉环境的实时监测,同时,利用热电偶实现对燃烧参数的O定,在利用计算机,实现对数值误差的计算,以提升计算结果的准确性。锅炉燃烧控制需要利用热能与动力工程学的相关计算实现。

3.2锅炉风机叶片的改进

风机的结构较为复杂,在实际的热能与动力测量中有较大的难度。当前,我国还没有形成一整套的风机叶片运行控制体系,无法对风机叶片的制造提供相应的参考借鉴。因此,要实现对风机叶片的设计优化,就需要通过实验模拟的方式对风机内部气流的运动进行分析,通过风机运行模拟实验,实现风向的最优化分离。然后,使用计算机对风机的运行参数进行模拟设定,采用模拟实现的方法,测算不同风速下,叶片运行的不同情况,获取实验的对比数据,根据对比数据的差异,自动调机最优化的矢量,得出矢量图,找出最优的风机叶片设计方案。在设计方案中,需要保证锅炉风机翼型边界层分离与攻角的最优关系,从而提升风机自身的承载力。

4.结语

随着我国电力需求的不断增大,电力行业在不断发展。在电力锅炉的运行过程中,需要应用到热能与动力工程学的相关理论。通过热能与动力工程学可以实现锅炉的优化设计,降低锅炉运行的能耗,保障锅炉的稳定运转,促进我国的可持续发展。

参考文献:

第2篇:工程热力学的应用范文

关键词 工程热力学 教学 策略

【中图分类号】G712

一、工程热力学的特点

工程热力学是热能与动力工程、化工机械及油气储运等许多工科专业的专业基础课,是这些专业的学生进行专业课程学习的基础,在高等院校教学工作中占有重要地位。工程热力学是热力学最早的一个分支,主要是研究热能与其它能量之间相互转换规律及其应用的一门学科。工程热力学包含的内容较多、理论性和实践性都很强、热力学理论和公式较繁杂、很多内容比较抽象,对于刚接触这门课的许多大学生来说是非常难的一门课程。虽然工程热力学和传热学同为专业基础课程,但其学习难度要远高于传热学,因为传热学的主要内容就是传导、对流和辐射等三种传热方式,而工程热力学中既包括热力学三大定律、各种工质的热物理性质,还包括郎肯循环等各种热力循环。基于工程热力学学科的上述特点,必须积极探讨工程热力学课程的有效教学方法,不断提高学生的学习效果,达到真正掌握工程热力学知识的目的。

二、工程热力学的教学方法

要做好工程热力学的教学工作,必须改进传统的课堂教学方法,通过教学法的改进来不断增强学生学习的兴趣和对知识的理解掌握程度。笔者根据自己多年的教学经验,认为在工程热力学的教学过程中可以采用以下几点策略。

1、明确工程热力学教学的目的

在教学的过程中,老师应该对工程热力学有一个明确的定位。工程热力学是一门专业基础课,因此教学的首要目的是让学生对工程热力学的知识有比较牢固的掌握。但与此同时,老师应该对教学目标有更高的要求,由于工程热力学的特点,学好这门课非常有利于培养学生的发散思维和分析问题、解决问题的能力,也就是说可以通过这门课使学生学会分析问题的方法,为他们今后的工作和科研打下良好的基础。虽然高职院校的学生底子普遍比较薄弱,但通过正确的引导也会使他们在学好课本知识的同时使自己的综合素质得到提高。如在学习熵的概念时,由于这个概念比较抽象,很多学生可能会比较困惑,这时老师应将课本内容与社会现象相结合,组织大家辩论社会的发展符不符合孤立系统熵增原理。同学们通过积极的辩论,不仅可以加深对热力学中熵的概念的理解,而且也提高了他们学习热力学的兴趣,锻炼了他们的思维能力,使教学效果得到显著提升。

2、在教学过程中运用好现代教学手段

现代技术特别是计算机和信息技术的发展使得多媒体教学的应用也越来越普遍,但与此同时也出现了许多问题需要解决,最典型的就是多媒体教学成了老师的阅读式教学和学生的浏览式教学,一堂课下来学生并没有收获多少东西。因此,在多媒体教学的过程中老师必须要认真准备自己的电子教案。在电子教案的制作过程中必须要根据工程热力学课程的特点引入大量的信息和动画,这样便于学生对所学的内容有一个直观的认识,如在学习郎肯循环时,通过向学生进行动画演示,可以使学生对该循环的流程和循环过程中所涉及到的设备有一个非常清楚的了解。另外,在制作多媒体课件的时候,老师必须要注意扬长避短,大到内容的收集与调整、小到字体的颜色与大小等问题必须要认真对待。在多媒体教学的过程中必须将老师、学生、课件及教材作为一个有机的整体来考虑,使教师成为整个教学过程的组织者、学生成为工程热力学知识的主动构建者,多媒体仅仅是教学的工具和辅助手段,并不能替代教师的作用,教学过程中仍然要以老师为主导和学生为主体。

3、积极在课堂教学中开展“研究型”学习的模式

高等职业院校培养的是实践性和应用性比较强的人才,因此在课堂教学中必须贯彻“学以致用”的教学理念。就以热力学第二定律的学习为例,虽然热力学第二定律仅仅是简单的一句话,但该定律却是用来判断热力过程能否进行的重要依据。利用该定律学生很容易对基本的物理现象进行判断,如热量不能自发地从低温物体传到高温物体等。但在热力系统比较复杂的情况下,很多学生往往不知如何下手去判断该过程能不能进行。在进行该部分内容的教学时老师应多结合具体的案例,让学生根据课本的知识去判断有些表面看起来可以实现节能的热力过程能不能实现。如可以让学生讨论汽轮机做完功的乏汽有没有利用的价值,因为这是很多没有学过工程热力学的人经常会提出的问题,要解决这个问题,就需要学生有一个宏观的思维,对郎肯循环的整个过程有深入的了解,多进行类似的“研究型”学习,可以使学生将自己的所学用到实践中去,真正达到学以致用的目的。

4、教学手段多样化,提高学生的综合学习能力

一个好的老师教给学生的是终身学习的能力,而不仅仅是给学生书本上的知识。随着科学技术的迅速发展,知识更新的速度越来越快。高职院校的学生毕业后大部分从事的都是一线的技术工作,由于技术更新换代的速度非常快,因此这就对他们的学习能力提出了更高的要求。由于工程热力学的内容十分丰富,并且只要涉及到能源的行业都能用上工程热力学的知识,这为工程热力学教学手段的多样化提供了非常便利的条件。在教学过程中除了让学生学好课本知识和进行必要的习题训练外,可以给学生布置实践性比较强的大作业,大作业的形式可以多种多样。如可以让学生就热力学中的某个热点问题进行文献调研,根据自己查找的资料写成报告;在学习完热力学中的主要热力循环过程以后可以让学生自己设计理论上可以实现节能的热工设备等;另外,还可以让学生针对某个企业的能耗特点进行分析,找出其中潜在的节能潜力并提出实现的方案等。通过以上多种多样的教学手段,不仅可以使学生对基本的理论知识有了更好的掌握,而且也真正培养了他们的综合学习能力,对他们顺利完成大学学业及今后的工作都有着巨大的帮助作用。

三、结语

结合自己多年的教学经验,从几个方面提出了做好工程热力学教学工作的措施。由于篇幅所限,仅就几个主要方面展开论述,希望能为从事工程热力学教学工作的大学老师提供一些有益的参考。

参考文献

第3篇:工程热力学的应用范文

关键词:化工热力学 教学 课程质量

中图分类号:G420 文献标识码:A 文章编号:1672-3791(2012)12(c)-0213-01

化工热力学是是化学工程一个重要的基础学科,是工程与工艺等各类化工专业的必修课程。该课程把热力学的基本原理应用于化工技术领域,结合表征实际体系特性的状态方程、活动系数模型进行各种热力学性质的计算。由于该课程相对于其他课程而言理论性强,概念多、公式多,学生往往觉得抽象不易掌握。大篇幅的公式推导也让学生望而生畏[1-2]。

如何引导学生掌握本课程的基本原理、应用及实验技能,了解学科发展动态,培养学习的严谨作风,也是本课程教学必须回答的问题。本文试从以下几个方面进行改进,以期提高化工热力学的教学质量。

1 理论联系实际,激发学生学习兴趣

对日常生活中一些常见的现象用专业的化工热力学知识给予科学的解释。这样可以使学生感受到该课程对生活实践的指导意义,从而激发学生的学习热情和兴趣,达到既掌握了化工热力学的知识又培养了学生分析问题和解决问题能力的目的。

例如:冰箱的工作原理与空调是否相同?夏天打开冰箱门是否能当空调?空调与取暖器哪个更省电?将冰箱和空调的工作原理与第六章的制冷循环相联系。为何从天然植物中提取香精、色素等有效成分常用超临界萃取技术?萃取剂为何常选CO2?在第二章PVT关系的应用当中着重介绍了超临界萃取技术以及萃取剂的选择[3-4]。在讲到相关的理论知识时,适时的把这些学生感兴趣的问题穿来,使理论知识不再那么枯燥。

比如说在讲第六章熵增原理的时候,可以做适度的延伸,将熵增原理与宇宙的变化过程联系起来。霍金[5]在《时间的方向》这一报告中,提出了热力学时间箭头、时间箭头和宇宙学时间箭头的一致性。根据热力学第二定律,事物总是向无序状态变化,称为“熵”的不断增大。因此,我们只能看见杯子打碎成碎片的过程,从来不会看见杯子的碎片复原成为杯子,相对来说,杯子是有序的状态,碎片是无序的状态。阿姆斯特丹大学理论物理学院埃里克.弗林德教授(Erik Verlinde)认为引力从本质上是一种熵力,如果一个物体在其它物体周围发生微小移动会改变周围的无序度,就会感受到引力。

通过这样一些理论的提出,让学生通过讨论,首先能培养学生勤于思考、开拓创新的精神;其次将热力学的理论与哲学、物理学等其他学科相联系,能让学生了解自然科学其实没有学科的边界,科学是相通的思想;三是介绍一些化工热力学在实际生活中的应用。例如在讲授范德华方程时,讲述了莱顿低温实验室的创始人著名低温物理学家卡末林-昂内斯如何利用范德华方程成功地把一种又一种“永久气体”(氧气、氢气、氦气等)液化,乃至作出对人类社会产生巨大影响的贡献—— 超导电性的发现。最后如何利用超导电性实现磁悬浮列车,让学生感受到化工热力学在实际生活中的重大指导意义。

2 与时俱进,借助计算机软件来辅助教学

在化工热力学教学过程中,公式多,计算复杂成为严重影响教学效果的主要因素。为了使学生在今后的工作实际当中能更好的运用化工热力学知识解决实际问题,我们在教学过程中,专门作了一个专题,介绍了目前应用较多的几种软件,包括Aspen Plus,Simulis Thermodynamics, HSC chemistry等。其中着重介绍了目前应用最广的Aspen Plus (Advanced System for P

rocess Engineering)。该软件美国AspenTech公司研制,由MIT主持、能源部资助、55个高校和公司参与开发。是基于序贯模块法的稳态过程模拟软件,并附带有庞大的数据库,包含了丰富的状态方程和活度系数模型。在各章节的计算过程中,分别对这几种软件相关的热力学计算部分进行了演示。

3 尊重传统,培养学生严谨的学习作风

化工热力学是一门严谨的课程,有人称之为完美的学科,就是因为它的理论和公式都有严密的理论基础,都是通过层层推导得到的。而本课程中最主要的内容就是热力学性质的计算。尽管有相应的软件工具可以进行辅助计算,但在教学过程中还是不能忽视学生的计算和推理能力的培养。通过日常的作业和课堂上的习题演练,让学生在做题过程中领会化工热力学的精髓,培养其严谨的学习态度和作风。

4 把握主线,纵观全局,理清脉络

化工热力学课程主要由原理、模型和应用三部分所组成。原理是基础,应用是目的,模型是应用中不可缺少的工具[7]。如果把化工热力学比作一个大树,那么原理就是它庞大的根系,模型是它的主干和枝丫,而应用这是化工热力学所开出的花朵和果实。

因此在每一章学习之前,我们都会给学生提供两副结构图。一是本门课程所研究体系的框架图。二是每章之间的关系及联系图。使学生能全面把握化工热力学的整体框架,正确理解热力学概念,灵活运用热力学原理。在学习时能做到,“提起是一串,放下是一堆”的学习方式。

参考文献

[1] 刘守军,何秀丽.《化工热力学》教学中应把握的几个问题[J].太原理工大学学报:社会科学版,2001,19(1):80-86.

[2] 王琳琳,陈小鹏,童张法.理论联系实际提高化工热力学教学质量[J].化工高等教育,2003,3.

[3] 冯新,陆小华,吉远辉,等.化工热力学中从生活中来到生产中去的实例[J].化工高等教育,2009(1).

[4] 陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等教育,2008(3):19-21.

[5] 包科达.热物理学基础[M].高等教育出版社,2004.

第4篇:工程热力学的应用范文

Thermodynamics and the

Destruction of Resources

2011,500pp

Hardback

ISBN9780521884556

B. R. Bakshi等编

本书从独特的多学科的视角努力把严格的热力学基础知识在各个学科领域的应用展示出来,所有这些领域的探索都涉及了可持续发展问题。这些领域包括机械、化学工程、物理学、地理学、经济学、生态学和工业生态学。

编者相信:需要一本像本书那样能综合反映热力学基本原则在各个领域应用的专著,使人们能充分地了解热力学基本原则可以在定性判断“人类活动如何影响自然资源和环境”方面发挥重要的作用。所以本书的目的就是汇集各个领域的专家撰写的各自领域内热力学规则应用的最新成果,并将本书的最终目的演化为:不是在领域以外寻求解决本领域内的严格的科学和工程问题的方法,但是要吸取其他领域解决类似科学问题的经验和智慧,定义好所要解决的问题的核心、坚定“环境保护”的原则,在本领域解决方法的基础上适当融合其它学科的有效办法,为将来有可能被称之为“可持续性科学”的解决方法打下基础。

全书分为4部分,含19篇论文,第1部分基础,含第1-3章:1. 热力学:广义的有用能量和可用的最大功或放射本能(exergy);2. 能量和放射本能(exergy):研究资源利用需要的两个概念?3. 热力学给出的资源使用帐单。第2部分产品和过程,含第4-8章:4. 材料的分离和回收;5.转换技术发展的一种基于熵的度量;6. 在生产过程中所用资源的热力学分析;7. 超纯度和能源利用:半导体制造的个案研究;8. 能源和利用:现状、未来可能的发展路径和热力学的观点。第3部分生命周期的评估和度量,含第9-13章:9. 用热力学和统计学提高生命周期库存数据的质量;10. 可持续发展技术:来自热力学的度量;11. 生命周期评估中的熵的生产和资源消耗;12. 在工业和生态系统中的能量和物流;13.物流分析和投入产出分析的合成。第4部分经济系统、社会系统、产业系统与生态系统,含第14-19章:14.能源和生态系统投入产出分析的早期发展;15. 放射本能(exergy)经济学和放射本能(exergy)环境分析;16. 熵、经济学和政策;17. 人口的一体化和隔离:热力学家的一个观点;18. 在生态系统中的放射本能(exeergy)分析:背景和挑战;19. 热力学用于可持续发展科学发展的思考。附录:标准化学放射本能。

本书是由来自世界各个国家的24位专家撰写。可供相关领域的大学生、研究生、教师、工程师和研究人员阅读和参考。

吴永礼,

研究员

(中国科学院力学研究所)

第5篇:工程热力学的应用范文

【关键词】 热力学;统计物理;教学方法

一、引言

热力学与统计物理是理论物理的五大分支之一,具有与其它四个分支(经典力学、电磁学、相对论、量子力学)同等重要的科学与工程地位。热力学与统计物理课程是本科教学中物理学及相关专业的一门重要基础理论课程,它以大量微观粒子组成的宏观物质系统为研究对象,基于热力学理论和统计物理理论,揭示热运动规律以及与热运动有关的物性及宏观物质系统的演化。许多工程科学都是由热力学所衍生的或与其密切关联,例如传热学、流体力学、材料科学等,该课程也是学习量子力学、固体物理的基础。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支援系统及人工器官等。

通过热力学与统计物理课程的教学,可以培养学生的形象思维和逻辑思维能力,提高学生的物理修养,使学生深入认识热力学与统计物理理论,能从热力学和统计物理学角度阐述热运动的规律及热运动对物质宏观性质的影响,能基于热力学和统计物理学理论解决实际热力学问题。热力学理论和统计物理学理论的统一性的教学,可使学生树立物质世界是分层次的、宏观现象与微观本质紧密联系、量的积累引起质的变化等物理学基本观点。然而该门课程抽象性强,教学难度很大,因此教学过程中必须有针对性的采用科学的教学方法以保证良好的教学效果。

二、重点突出物理思想和物理方法教学

科学思想和方法是物理科学的重要内容。美国著名物理学家费恩曼曾经说过:对学习物理的人来说,重要的不是如何正规严格地解方程,而是能猜出它们的解并理解物理的意义。清华大学著名物理学家叶企孙教授也曾强调指出: 物理教学不仅要给学生以知识,更要给学生科学思想和方法。可见物理思想和物理方法在物理教学中的重要性。物理知识的认识和发展是依赖于物理思想的发展和建立于科学的物理方法的基础之上的。物理知识的传授是“授人以鱼”,物理思想和物理方法的传授则是“授人以渔”。仅仅传授物理知识容易使学生对掌握的结论确信无疑,这将限制学生的创造性和个性发展。而物理思想和物理方法的传授不仅是为学生提供必要的知识储备外,也是为他们提供能力储备。

在热力学统计物理课程的教学中,除了物理思想和物理方法自身具有的重要地位之外,授课学时少和授课内容多的矛盾、化繁为简提高教学效果的要求也需要将物理思想和物理方法的传授放在一个重要位置。把握该课程的物理思想和基本方法,对授课内容和知识结构进行优化和调整,是解决授课学时少和授课内容多的矛盾的根本方法。热力学统计物理课程对学生数学基础要求也较高,涉及到大量繁复的公式数学推导和变换,导致学生在学习该课程的过程中很容易将注意力停留在物理公式的数学形式上而忽略了其中的物理意义、物理思想和物理方法,最终结果是导致学生思维混乱、满头雾水。因此,在热力学统计物理课程中应该尽量简化物理公式的数学推导和数学变换方面的教学,而将教学的重点放在物理公式的物理意义、物理思想和物理方法方面,帮助学生从物理角度对授课内容进行深入理解。

三、排除学生心理障碍

热力学与统计物理课程的特点是比较抽象,学生理解困难和难以建立相应的物理图像。较大的学习阻力会影响学生学习该课程的兴趣和爱好,导致学生存在接受热力学与统计物理的物理思想和相关理论的心理障碍。上述在把握课程的物理思想和基本方法的基础上对授课知识结构进行优化调整和将授课内容化繁为简是排除学生心理障碍的一个有效方法,此外好的课题引入对于排除心理障碍从而激发学生学习兴趣也会起到十分重要的作用。如教学实践证明,课程绪论由热力学发展史引入,从“热”本质的争论到焦耳、克劳修斯、开尔文、能斯脱、麦克斯韦、玻尔兹曼、吉布斯等科学家的丰功伟绩进行逐步阐述,可以有效激发学生学习统计物理的兴趣和增强学生的学习信心。恰当地运用热力学统计物理发展史能够提高学生的创新思维水平,提高学生整合信息、发现问题的能力。[1]同时也有利于激发学生的自我意识[2]和有助于学生理解物理知识,有助于学生体验物理学的批判精神和形成整体性的物理知识观。[3]再如在统计理论部分的课题引入时,重点突出物理思想,突出宏观系统由大量微观粒子组成的特点,使学生真正清楚统计物理学的研究对象及方法,理解统计物理与热力学的不同之处和统一之处,也可以有效消除学生学习统计物理的形成心理障碍。总之,通过好的课题引入,激发学生的学习兴趣和调动学生的学习积极性,消除学生的畏难情绪,对排除学生学习热力学统计物理的心理障碍不无裨益,这也是保证学生在热力学统计物理课程学习过程中始终保持学习主动性的关键。

四、详细阐述热力学与统计物理两种方法的关系

热力学方法与统计物理方法是热力学与统计物理研究大量微观粒子组成的宏观物质系统的热现象的两种基本方法,两种方法的有机结合是热力学统计物理理论的一个基本特征,应帮助学生很好地把握该基本特征。热力学的基本任务是研究热运动的基本规律,是研究热现象的宏观理论,它不涉及物质的微观结构,而是从能量转化的观点出发,依据在大量实践中总结出来的几条基本宏观定律,运用严密的逻辑推理而形成的一整套完整的热现象理论。统计物理学的基本任务是揭示热现象的本质,是研究热运动的微观理论,它从物质的微观结构出发,依据微观粒子所遵循的力学规律,再用概率统计的方法求出系统的宏观性质及其变化规律。热力学理论的发展先于统计物理学的发展,其起源可追溯至十七世纪末开始的长期而激励的“热”本质争论,到19世纪中页在焦耳测定热功当量的工作基础上热力学第一定律得以建立了“热质学”,奠定了热力学的发展基础,并在克劳修斯、开尔文、能斯脱等人的进一步努力下建立了热力学第二定律和第三定律,使热力学理论更臻完善。热力学能解决宏观热现象的一些问题,但仍未能对热现象的本质作出解释。在热力学发展的同时,分子运动论也开始发展起来。克劳修斯从分子运动论的观点出发导出波意耳-马略特定律。麦克斯韦应用统计概念研究分子的运动,得到了分子运动的速度分布定律。玻尔兹曼给出了热力学第二定律的统计解释。最后吉布斯发展了麦克斯韦和玻尔兹曼的理论,建立了系综统计法。至此统计物理学形成了完整的理论。可见热力学理论和统计物理理论的发展虽有先后之分,但是发展过程却紧密联系,对应的两种研究方法各有优缺点又有机结合,二者的区别和联系如下表所示:

基础 方法 优点 不足

热力学方法 由大量现象总结归纳的热力学基本定律 数学演绎、逻辑推理 高度的普适性、可靠性 无法解释涨落现象、无法揭示热现象本质

基础 方法 优点 不足

统计物理方法 物质微观结构、宏观量与微观量的关系、等概率原理 概率统计方法 可求具体物质的热性质、解释涨落、揭示热现象本质 近似性

可见,热力学方法和统计物理方法共同来自于人们对宏观热现象的明确认识和微观热运动特征的准确把握,二者相辅相成,互为补充,是一个有机统一体,缺一不可。课程教学过程中,应在详细阐述热力学与统计物理学的概念定义、发展历史的基础上讲授二者的有机统一关系,使学生对两种方法有一个整体的认识,准确把握课程的基本特征,这有利于学生理解热力学统计物理的物理思想和建立相应的物理图像。

五、帮助学生建立课程理论框架

学生在学习热力学与统计物理的过程中,难以理解相关的物理思想、定理定律和无法建立清晰的物理图像,很大程度上是由于没有很好地把握课程的知识要点和理论主线。热力学与统计物理课程有机结合思维方式截然不同的热力学和统计物理两种方法,分别从宏观和微观两个层面对物质系统的热运动规律进行研究,同时数学推导和变换繁复,因此学生在学习的过程很难捕捉到课程的知识要点和提炼出课程的理论主线,这就要求教师有意识的帮助学生把握课程的整体理论框架。

汪志诚的《热力学·统计物理》教材为例,[4]可以建立如下课程基本理论框架:课程分为热力学和统计物理两个部分。热力学部分包括热力学基本定律部分(核心)、均匀热力学系统的热力学公式、热力学基本定律和热力学公式的应用三部分,前两部分为热力学的基础理论,第三部分包括基础理论在均匀单元系、均匀多元系以及非均匀系中的应用。统计物理部分包括平衡态统计理论、涨落理论和非平衡态理论,平衡态统计理论为核心部分,又包括最概然统计理论和系综理论。在授课学时日渐缩减的情况下,可将最概然统计理论作为本科教学中统计物理部分的讲授主体。该部分可以分为系统微观构成的描述和基本统计规律、基本统计规律在不同微观系统中的应用两部分,后者包括了基本统计规律在玻尔兹曼系统、波色系统和费米系统中的应用。这样的一个简明的整体理论框架的建立,有助于学生对相关定理定律的融会贯通和对课程的物理思想和物理方法的整体理解,从而帮助学生建立完整的热力学统计物理图像,达到该课程的最终教学目的。

六、结论

热力学统计物理是本科物理学及相关专业的一门重要基础理论课程,具有抽象且数学知识要求高的特点,教学难度很大。在该课程的教学过程中通过重点突出物理思想和物理方法教学、排除学生心理障碍、详细阐述热力学与统计物理两种方法的关系、帮助学生建立课程理论框架等科学的教学方法的应用,可以有效提高教学质量,帮助学生深入理解相关的物理思想和掌握相关的物理方法,建立完整的热力学统计物理图像。

【参考文献】

[1] 周诗文.运用物理学史培养学生的创新思维[J].物理教学探讨,2005.9.15-16.

[2] 陈运保.物理学史对于培养学生自我意识的重要作用[J].物理教学探讨,2005.2.28-29.

[3] 赵长林,赵汝木.物理学史的课程价值[J].物理教学, 2005.2.32-35.

[4] 汪志诚.热力学·统计物理[M].北京:高等教育出版社,2003.

第6篇:工程热力学的应用范文

关键词:工程热力学;教学改革;教材;教学方法

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)38-0199-02

《工程热力学》是高等院校机械工程类、能源与动力类等专业的一门必修专业基础课程。该课程主要研究热能与机械能相互转换的规律,以及合理有效利用热能的基本理论,对培养学员科学素养、创新性思维和实践能力,以及专业课程学习都将起到奠基的作用。通过《工程热力学》课程的学习,使学员掌握热力学的基本概念和基本规律,并能正确运用这些规律进行热力过程、热力循环分析和计算;培养学员科学分析和逻辑思维能力。养成实事求是的科学态度和勇于探索、刻苦钻研的科学作风。经过数十年的持续建设,《工程热力学》课程在教学内容、教学方法和手段、实验保障设施、师资队伍建设等方面进行了大量的建设和改革,取得了显著的效果。

一、教材和教学内容改革

在教材和教学内容方面,课程组近年来开展了《工程热力学》“立体教材”体系的建设工作。以课程教学为基本形式,以综合能力的培养和提高为基本目标,利用多种教育化教育手段,构建新颖教材、网络课程、多媒体课件、教学辅导书等组成的内容丰富、功能齐全的《工程热力学》综合性立体化教学资源。从而使教学质量和教学效率大为提高。在人才培养方面,取得了丰硕的教学成果。多年来不断更新选取适合本科人才培养和专业需求的高水平教材,以满足课程标准的要求。《工程热力学》目前采用华自强等主编的《工程热力学》第四版,由高等教育出版社2009年11月出版。该教材是国家“普通高等教育十一五国家级规划教材”,被众多院校广泛采用。该教材还有配套习题,方便学员进行课后复习和自测。此外,课程还指定了多部教材和教学辅导书,供学员学习和研究使用,包括清华大学出版社2011年6月出版,朱明善主编的《工程热力学(第2版)》;高等教育出版社2007年6月出版,童钧耕主编的《工程热力学学习辅导与习题解答》;McGraw-Hill2005年出版的由Yunus A.Cengel主编的《Thermodynamics An Engineering Approach the 4th edition》等。针对授课专业增多,内容增加,学时减少及面向装备扩大和发展的实际,在对后续专业课程需求和部队需求深入调研的基础上,着眼当前需要和未来发展,从以下三个方面入手进行了课程内容体系的优化重组。

1.突出重点内容,贴近装备实际,针对装备特点突出与动力系统工作原理密切相关的热力学知识。弱化蒸汽的热力性质及其动力循环方面的内容。

2.以计算机网络为平台,结合《工程热力学》理论在武器装备上的具体应用和实验室发展,引入了计算机编程求解和虚拟实验等现代教学实践内容。

3.利用自主研制的和虚拟实验软件,以及课程组成员科研项目多的优势,引入了创新实验等研究性教学内容。优化重组后的新课程内容体系,以经典《工程热力学》内容为主体,科学处理了经典与现代的关系,引入了新知识和新技术,强调了知识的综合运用和实践训练,保持了课程教学内容的系统性、科学性和前沿性。

二、教学设施建设

《工程热力学》课程在教学设施方面取得了明显的进步。特别是近年来,本校充分利用各种科研项目成果,进一步完善本课程实验设备,更新了多套空气定压比热测试设备。对喷管流动演示实验的硬件平台进行改造,设计编制了具有虚拟实验和在线分析的分布式喷管流动演示实验网络平台。保障实践环节均能以实物操作为教学的主要手段,实验教学水平达到国内先进水平。为使学员在课堂以外能够及时的复习和总结,补充课堂教学内容的不足,针对课程的特点设计并完成了《工程热力学》的网络课程。该网络课程集教学指导、教学实施、自主学习、测试考试等功能于一体。目前已经完成本课程的网络课程建设,学员可以在校园网上观看课程授课的视频录像,课程内容的在线学习和测试,该网络课程的建设丰富了学员的学习途径,对于促进学员的学习积极性,提高教学效果发挥了积极的作用。通过多年来的建设,课程网络教学环境建设成效显著,形成了以教材、多媒体为主和网络教学环境为辅,集理论教学和实践教学于一体的课程网络教学特色。从毕业学员反馈的情况来看,利用网络教学环境,不仅显著地增加了课堂的信息量,而且有效改善了教学效果。利用新技术更新了实验平台,培养学员实践、创新能力的新做法。通过自主设计、研制的喷管流动演示虚拟实验软件平台,该虚拟实验平台具有良好的开放性、自主性、综合性,而且突破了实验受设备、场所、环境、时间的限制,有效提高了学员的实践创新能力和综合素质。

三、教学方法改革

教学改革是提高教学水平和教学质量的根本保障,多年来课程组一直十分注重加强和深化教学改革,并取得了一定的成果,具体做法如下。

1.课堂教学采用启发交流式,实现单向知识传输模式向师生交互模式的转变。利用自主研制的功能完备,界面友好,集授课、自学、测试、管理等功能于一体的《工程热力学网络课程》,依托校园网和多媒体教室等,构建了教学互动,适合自主学习、协作学习、相对宽松的双语多媒体网络教学环境,实现了教员主导作用和学员主体作用的和谐统一,在提高教学效果的同时,培养了学员主动、有效地获取知识的意识和能力。

2.在教学方法上,改进课堂讲授方式,采用“研究型”的教学模式。针对课程特点,强调培养学员掌握理论、应用和试验三个方面的知识与能力:《工程热力学》的理论,《工程热力学》基本理论和概念的掌握,培养理性思维和分析能力;《工程热力学》的应用,面向装备和工程实践,熟悉了解实际《工程热力学》问题,培养应用原理解决问题的能力;《工程热力学》的实验,通过综合性试验培养学员的动手能力和科研工作素质。

3.注重学生创新能力培养。结合课堂教学,开展科技创新活动,使学生综合素质能力获得提高。

4.根据学员的反馈不断完善教学文件。对已有的教学计划、教学大纲、优秀的教材进行及时的更新和完善,并作为素材之一放在教学网站上,作为学习的参考资料供学员下载学习使用。总结:笔者经过多年的教学实践,对《工程热力学》进行综合的教学改革,收效明显。教学质量和教学效率得到很大提高,在培养新型专业人才方面,取得了丰硕的教学成果。

参考文献:

[1]谭羽非,赵金辉.工程热力学立体化教材建设与实践[J].吉林建筑工程学院学报,2010,(2).

第7篇:工程热力学的应用范文

摘要:《工程热力学》和《传热学》是为新能源科学与工程专业学生开设的两门专业必修课,也是该专业大学生所必须掌握的热工类课程。该课程具有知识丰富、专业性强、课时多等特点。在《工程热力学》和《传热学》课程教学中,大学生创新能力的培养是很重要的一环。本文对该课程的教学内容、教学方法和考核方式等方面进行了探讨,并对大学生创新精神与创新思维的培养进行了研究。

关键词:工程热力学;传热学;新能源;教学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)52-0176-02

能源是现代社会赖以生存和发展的物质基础,是国民经济和社会发展的先决条件。新能源专业的毕业生,肩负着为国家能源发展贡献力量的重要责任。为达到培养专业知识面广、基本功扎实和创新能力强的本科人才的目标,作为新能源专业非常重要的必修课――《工程热力学》和《传热学》的课程设计和教学方法探索就显得尤为重要[1,2]。此前的相关文献中报道了《工程热力学》和《传热学》教学的优秀经验[3-6]。本文在此教学经验的基础上,对热工课程的教学内容和教学方法进行优化和探索,以更好地提高学生的创新精神和创新思维。

一、教学内容的优化

教学内容的优化和精选是教学改革的关键。作为专业必修课,在学时有限的情况下,如何最大程度地讲授最有价值的知识点成为教学的关键。

热工类课程由《工程热力学》和《传热学》两门课组成。《工程热力学》按热力学基本概念、热力学第一定律、理想气体的性质与过程、热力学第二定律与熵、气体动力循环、水蒸气、蒸汽动力循环、制冷循环、理想混合气体和湿空气、实际气体的性质等内容分为若干章节;《传热学》按照传热基本概念、稳态热传导、非稳态热传导、对流换热、热辐射及辐射换热、传热过程与换热器等分为若干章节。由于新能源科学与工程专业属于新兴产业专业,学科领域广泛,涉及能源类(如生物质能、太阳能、风能)、化工类(如基础化学、物理化学、新能源材料)、力学类(如工程力学、流体力学)等多门课程和领域。

在实际的教学过程中,教学内容必须有所侧重,应充分考虑到不与新能源科学与工程专业开设的其他相关课程的知识点产生重复。另外由于《工程热力学》和《传热学》课程难度较大,在教学过程中要讲清课程中的要点和基础知识。可以以“基本原理―公式推导―影响因素―实际应用”为主线介绍该课的有关知识,建立每章知识结构图,让学生清楚该门课程的知识体系结构。对重点的热力学第一和第二定律进行原理介绍,仔细推导相关公式,让学生夯实基础,使学生在进一步的学习中不会混淆概念,相对轻松地应对课程。此外,注重理论与实践相结合,例如介绍空调在夏天与冬天的工作原理、冰箱开门对室内的影响,积极引导学生利用热力学定律进行分析,增加课程的趣味性以提高学生的创新能力。通过优选教学内容,使教学内容始终能反映本学科的专业特点和学术水平,加强学生对后续专业方向的把握。

二、教学方法的探索

(一)以创新性地教带动创新性地学

科学技术是第一生产力。要想发展经济,需要加大科研力度、提高科技含量。这已被证明是一种行之有效的道路。与此对应的是,要促进教学质量、提高教学效率,必须加大教学与科研的力度、提高教学与科研互动水平。在当今大力发展科学技术的大背景下,如何提高身为未来科学技术发展主力军的大学生的学习热情和创新能力,成为目前高校教学的难题和重点。传统的直白讲课和搜集各种习题以供学生练习只会让课程变得生硬和枯燥,导致学生的学习效率和学习热情越来越低,甚至出现了普遍的抄袭作业和迟到早退等不良现象。为了改变这些不良现象,就需要在教学手段上进行创新。教师通过对平时科研工作成果的再学习,并结合对教材的研究,创造性地运用某些方法,使学生对重要问题达到本质上的领悟。在这种途径中,教师的创新思维方式以及从中体现的一言一行,让学生耳濡目染、潜移默化,对带动学生进行创新学习、开发创新思维起到积极的作用。

例如,在进行《传热学》教学时,学生往往对传热的基本概念,尤其是二维与三维的导热理论及方程很难理解。一般地教学方式是,教师在黑板上进行微观导热原理推导,得出一维傅里叶导热定律和二维三维傅里叶导热定律,并给出几个常用的导热方程。这种教学方式中,推导过程比较晦涩,给出的方程也较为难懂,学生们很可能只会死记硬背,不能灵活运用。针对以上问题,笔者建议将导热理论与生活问题相结合,或者采取数学建模的方法,将导热方程与实践相结合,选取最适合该问题的模型,以达到课程有趣生动、富有创新性,激发学生们的创新思维。以创新性地“教”带动创新性地“学”,学生收获的不仅仅是知识点,更是如何去发现问题、解决问题的实际能力,为以后在新能源科学与工程专业领域的探索中打下良好基础。

(二)板书教学与多媒体辅助教学相结合

多媒体技术以其图文并茂、声像俱佳、动静皆宜的呈现使课堂教学达到了全新的境界。在《传热学》的讲授中,一维的传热理论和公式很好理解和应用,但二维与三维牵扯到微观传热理论,以至于推导过程较为复杂,传热方程较为抽象难懂。因此需要教师精心准备多媒体课件,通过动态描绘各向同性材料的微观传热过程,让学生理解不同形状材料在具有不同位置的热源时如何进行热传导。通过绘制动态的卡诺循环过程,使学生深入理解热力学第二定律,并理解第二类永动机无法制成的原因。同时需要注意的是,对于工程热力学和传热学,由于信息量大、内容广,过多地依赖多媒体教学可能会让学生在短时间内难以消化,因此在教学中对于难度较大的基础理论部分和原理的学习,板书不可缺少,使学生能够有充分时间紧跟老师的思维去理解每一个知识点。

(三)课程教学与科研活动相结合

教师可以将全班学生分为若干调研小组,每五个人为一组,选择新能源与热工基础理论相结合的课题,通过查找国内外科技文献,调研总结新能源专业前沿知识,形成调研报告,锻炼学生阅读科技文献的能力,提前为毕业设计的开展奠定基础。各小组也可以参与指导教师的科研项目,在实验室做一些力所能及的科研活动,并通过文献调研,形成工程热力学和传热学知识系统。课程结束时,各小组以PPT形式向全班同学作汇报,授课老师根据报告提出问题,该组同学进行即时答辩,考查学生对相关知识点的掌握情况。

三、课程考核方式的探索

工程热力学和传热学覆盖面广、知识点多,应该采取灵活多样的考核办法。在成绩的评定方式上,可以设定了四项考核内容,第一部分是学生考勤、课堂互动表现和课堂笔记,通过此部分的考核,提高学生的听课注意力,锻炼学生提炼课程重点内容的能力;第二部分是根据每个小组的调研报告、PPT展示、答辩情况打分,锻炼学生的团队合作能力、口头表达能力和应变能力;第三部分是每节课结束前的思考题,采取加分方式,鼓励学生积极思考;第四部分是传统的期末考试,考试内容为课程讲授的基本内容,专业性强的理论部分强调定性了解,让学生对热工基础有个整体的认识。

随着新能源科学领域的不断发展,热工基础理论散发出强大的活力。根据新能源科学与工程专业特点,教师还需要在教学过程中,不断探索教学方法和考核方式,不断优化课程内容,提升教学质量,使课程教学体系更加科学合理,更好地适应社会对新能源科学与工程专业人才的需求。

参考文献:

[1]陈登宇.新能源科学与工程专业人才培养模式研究[J].科教文汇(下旬刊),2015,(1):61-62.

[2]登宇.新能源科学与工程专业(生物质能方向)人才培养探索[J].课程教育研究,2015,(1):236-237.

[3]武和全,姚永腾.对“工程热力学及传热学”课程教学的几点思考[J].科教导刊(下旬),2015,(4):90-91.

[4]武和全,吴云强.提高“工程热力学及传热学”课程教学质量的改革探讨[J].教育教学论坛,2015,(23):267-268.

第8篇:工程热力学的应用范文

关键词:大工程观;热物理基础;教学内容;工程专业;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1673-291X(2012)36-0300-04

自20世纪70年代以来,世界性的新技术革命对工程活动产生了巨大影响,工程活动对知识技术、能力综合的需要达到前所未有的程度。从动力生产、能源节约、环境保护以及工业生产过程本身特点来看,工程专业学生应该具备合理用能、节能和环保的意识并懂得其基本的技术,而热物理基础课程的内容是合理用能及节能理论中的最基础与核心的部分。因此,作为介绍热能的有效、合理的利用和转换、传递技术的热物理基础课程,不仅应是大工程观下能源动力类专业高等工程教育中的重要理论基础课[1~2],而且也应是21世纪所有大工程观下工程专业学生的公共理论基础课。

高等工程教育 [3~4] 的热物理基础课程教学是培养具有热物理工程技术的“大工程观”要求的高等工程人才的唯一途径。因此,热物理基础课程和教学的改革占据着“大工程”培养观的重要地位,在大工程观下高等工程技术人才的培养方案中,热物理基础课程体系是整个工程专业课程体系的基础,应首先进行改革,为整个培养具有大工程理念的高级工程技术人才打好基础。

一、热物理基础课程体系现状分析

(一)热物理基础课程特征分析

在中国,热物理基础课程一般指《工程热力学》与《传热学》两门课程。同时,由《工程热力学》与《传热学》组成的《热工学》、《热工基础》或《热物理学》也属于热物理基础课程的范畴。高等数学与大学物理是热物理基础课程的前续课程。对于工程专业而言,高等数学与大学物理是基础中的基础,很多学不好热物理基础课程的学生,主要是因为高等数学基础知识或者大学物理基础不扎实所造成的[5-6]。《工程热力学》是一门较完善的课程,已形成较完整的理论体系,并具有完整的理论结构和实际应用内容。《工程热力学》课程中的基本概念和理论基础是热力学工程实际应用的基础,若基本概念和理论基础没掌握好,必然导致不能熟练推导出数学公式,从而会致使热力学工程实际应用学习的难度大大增大,甚至会使得学生产生厌学的情绪。与《工程热力学》不同,《传热学》的公式很多是来自于实验的归纳整理,需要记熟背熟。《传热学》主要是使用其原理或知识进行分析,而《工程热力学》主要是推导计算。两门课程的共同特点是必须大量做思考题和习题,才能真正掌握,熟练应用。

(二)热物理基础课程体系存在的问题

与大工程观背景下工业先进国家的热物理基础课程教学相比较,还有较大的差距,主要表现为[7]:(1)轻视实际、脱离实际;(2)人才培养的热物理知识结构体系不够完善,面向实际的热物理工程训练不足,与企业联系不够紧密;(3)办学方向面向热物理工程不够,教学模式和教学方法陈旧,文化陶冶过弱,专业教育过窄,功利导向过重,共性制约过强等。

二、大工程观下热物理基础课程体系构建

针对目前中国高等工程教育中热物理基础课程教学存在的问题,其改革思路是:以“大工程观”教育理念为指导,以理论教学与实践教学结合为基础,以热物理与其他课程交叉渗透为依托,以热物理工程的实践性与培养学生的创新性为核心,以具备合理用能、节能和环保能力的培养为主线对工程专业的热物理基础课程进行适应性改革,探索大工程观背景下工程专业热物理基础课程改革新途径(如下页图1所示)。

(一)大工程观下热物理基础理论课程体系构建

1.统筹规划,合理安排工程专业热物理基础课程体系结构和内容。(1)研究适应各大类工程专业学生培养需要的热物理基础课程结构和内容。根据各大类工程专业学生培养所需要热物理基础知识的不同,各大类工程专业可分成三大类:1)热物理基础课程是该类型专业的重要技术基础课;2)热物理知识是某一大类中部份专业的技术基础,而对另一些专业则关系则要远一些(工业设计)或者热物理知识是某类专业(如材料成型与控制工程)中的某一方向(如铸造、焊接)的主要技术基础课但与另一些方向(如真空技术及设备)关系较远;3)热物理知识与该大类专业的主干技术无直接的关系。因此,可针对此三大类工程专业开设不同结构和内容的热物理基础课课程,并可分为高学时(必修)的《工程热力学》和《传热学》、中学时(必修与选修)的《工程热力学》、《传热学》或者《热物理学》和少学时(必修与选修)的《热物理学》等三种。对于同一大类中的不同类型专业在教学内容上还可有所不同侧重或以专题形式作适当补充。对于中学时(必修与选修)的《工程热力学》、《传热学》或者《热物理学》;和少学时(必修与选修)的《热物理学》,应强调理解基本概念,掌握方法,而不深究公式的推导,通过典型问题的分析,达到举一反三的目的。(2)热物理基础课程的相互渗透和相互融合。由于热物理基础课程的内容是相互渗透、密切联系的,必然存在交叉、重复部分。经过综合分析,可对那些有益的或是讨论角度不同造成的重复内容进行谨慎处理(如有些内容压缩,而有些内容则须加强)。其处理原则是:既要考虑课时的有效利用,又要保持热物理基础课程之间的衔接和层次。(3)拓宽热物理基础课程的工程应用,增强与工程专业的联系。热物理基础课程在工程实际中有广泛的应用,在教学过程中,应突出地反映这一特点。从两个方面着手,首先把每个教学单元划分为基础篇和应用篇,基础篇着重掌握基本概念、定律,应用篇则力求培养分析能力,采用点面结合的方法。所谓点,就是讲清某单元基础知识在工程实际或专业课某方面的应用,其中包括一定数量的例题或习题;所谓面,则是针对教师的科研、技术开发课题或科技论专题讨论,综合所学的知识。学生对这种教学方式反映热烈,觉得学有所用。(4)更新热物理基础课程内容,适应现展要求。近代工程技术的发展给本科《传热学》教学带来了巨大的变化,《工程热力学》的教学内容也不同程度地存在类似的情况。例如,二十年前的本科生教材很少有关于火用 分析方面的内容,而现在这个状态参数已经被广泛接受并用来分析工程设备过程的能量利用情况。

相对于《传热学》,《工程热力学》的国内外教材的内容显得似乎过于稳定,近年来出版的教材中新技术的概念介绍极少。比如,当前中国的长期能源问题已经十分突出,为保护环境,执行可持续发展的方针,在“十二五”规划教材上,《工程热力学》应该对新的、先进的能源利用方式(联合循环发电、氢能利用、燃料电池、分布式发电和热电冷三联供、新能源发电等等)有适当的反映。超临界和超超临界循环是传统燃煤汽轮发电机组提高经济性与环保性的有效途径,也是近年来国外燃煤火电厂的重要发展方向及中国要积极研发的方向,在热物理基础课程新教材和今后的教学中也应有相应的地位。如在这方面予以充分重视,在热物理基础课程新教材和今后的教学中注意扬弃旧的思想、研究方法及其内容,利用一定学时介绍各学科的新方法、新内容,努力使教学内容适应现代科技的发展趋势。

2.热物理基础课程与其他课程交叉渗透。(1)热物理基础课程与物理课程的交叉。热物理基础课程中的部分内容与大学物理中的热学存在重复。大学物理中,热学内容总学时数为12~14学时,且热力学两个定律只安排6学时。由于物理学主要解决“是什么”、“为什么”的问题,而热物理基础课程主要解决“做什么”、“怎么做”的问题,因此在热物理基础课程中,应着重讨论热力学系统与环境(外界)相互作用的形式;热平衡态与准静态过程的矛盾与统一;热力学中如何延拓力学中的力、位移、功、热力学能概念;为什么要讨论可逆过程,如何由不可逆过程抽象出可逆过程概念,熵是如何引入的,为什么要定义一个熵函数等等。(2)热物理基础课程与流体力学课程的交叉。例如,《传热学》的对流换热部分,有大量的边界层和绕流理论,是重复流体力学的内容。又如,流体力学和热力学中都有气体在管道、喷管中流动的理论。经过综合分析,可以对那些完全重复内容予以削减,或者进行谨慎处理,但要保持热物理基础课程与流体力学课程之间具有较好的衔接性。(3)整合出新型热物理课程。为适应不同类型专业的需要,可以开设出一些综合性的、新的热工类课程。无论是能量转换、热量传递还是质量传输,都存在如何提高转换效率、传递效率和节约能源的问题,其中的关键是要减少过程的熵产(或不可逆损失)以及强化传递过程。为此,可开设一门综合《工程热力学》、《传热学传质学》和《流体力学》的新课——例如可称之为《工程装备热流设计与优化》。如果关于“优化”的内容能具体结合一些工程专业过程中的具体问题,那么这样的课程就会受到相关专业的欢迎。

(二)大工程观下热物理基础实验课程体系构建

从热物理基础课程发展历史来看,实验研究和数学物理方法是并行发展、相互补充、相互促进的;而从教学角度分析,实验是锻炼学生动手能力,培养学生理论联系实际和解决问题能力的重要环节。如何完善和合理组织实验内容将直接影响课堂教学的效果。为此,在热物理基础实验教学中突破以往的传统模式,以配合理论教学、巩固课堂效果为目的,以培养应用型人才为目标,改革实验教学方法,加强实验室建设,有效地发挥了实验室的功能。

1.科学设置热物理基础课程实验项目。实验室应成为理论联系实际,培养学生动手操作能力的场所。为满足这种功能,应增加热物理基础课程实验学时,增设热物理基础课程实验项目,并相应设置演示实验(包括课堂演示)、验证性实验、应用性实验以及设计性实验。演示、验证性实验是不可缺少的内容,可帮助学生理解抽象概念,印证热物理基本理论和基本定律,巩固课堂学习内容,熟悉各种仪器设备及其操作规程,培养严谨的科学态度。应用性、设计性实验则是一般实验的一个飞跃,其作用更多的是为了培养锻炼学生的综合能力,引导他们的纵向和横向思维以及创新思想。这样,通过多方面、多层次循序渐进的实验过程,以求达到掌握基本技能和提高应用能力的目的。

2.合理组织热物理基础课程实验。以往的热物理基础课程实验模式,大多是学生根据实验指导书给出的原理和步骤等,机械地照搬硬套,做完实验、写出实验报告。这样既束缚了学生的积极性、创造性,也不能满足能力训练的要求。针对弊端,可对热物理基础课程实验方式进行合理组织。根据不同实验的性质,有的安排预习,在实验开始前由指导教师提出问题,让学生回答解决方法,以此评定预习成绩;有的则让学生分组,自己动手组装实验台,做完实验后集中评议,对比优劣,公开评定成绩;设计性实验则完全抛开指导书,代之以设备说明书、实验任务和要求等,让学生自己拟定实验方案,发挥学生的创造力。

3.更新热物理基础课程实验设备和内容。随着科技的进步和学科的发展,热物理基础实验的技术和手段也更加完善,内容不断推陈出新。要适应这种发展,不能仅仅依靠学校的拨款。在有限的财力、物力条件下,调动教师积极性,自行研制、设计新实验,改造原有设备,开发新项目。例如,可以自行设计改造对流传热过程阻力实验的微机采集和处理系统、热管换热器试验台等项目,这样既可节省大量的经费,锻炼了教师队伍,又可保证学生能够在实验中学习新知识、新技术,开拓视野。

4.制订严格合理的考核制度。实验成绩的好坏,应有一个合理的考核方法。以往的考核大多以实验报告为依据,而实验报告中大部分内容是从实验指导书上照抄的实验目的、原理、步骤等,考核成绩不能反映学生的实际水平和能力以及相互之间的差别,影响了学生学习的主动性和积极性。为此,可制订一套考核方法,分为纪律情况和学习态度、预习程度、操作和解决问题能力、实验结果、实验报告等多项考核内容,贯穿了整个实验过程,每项内容按10分制评定成绩,在统一印制的学生实验卡上反映出来,这样能促使学生在实验的各个环节都认真对待,可提高实验效果。

三、结论

时代在前进、教育在发展、教学工作在改革,包括教学内容也应改革,与时俱进。作为热物理基础,一方面为大工程观背景下各类工程专业学生学习后续专业课等提供预备知识;另一方面通过实验、测试技能训练,提高学生运用理论分析和解决工程实际问题的能力。

从教育改革的发展趋势和培养本科层次的工程技术人才的角度来看,理论与实际相结合,强化技能训练、培养学生的技术应用和开发能力应是技术基础课的重要任务。在大工程观下工程专业热物理基础课改革过程中,兼顾知识结构和能力培养两个方面,使之成为由基础到专业、从理论面向应用的桥梁,确保培养的工程人才具备工程知识能力、工程设计能力、工程实施能力、价值判断能力、社会协调能力和终身学习能力。

参考文献:

[1] 鄂加强,杨蹈宇,崔洪江,唐文武.工程热力学[M].北京:中国水利水电出版社,2010.

[2] 邓元望,袁茂强,刘长青.传热学[M].北京:中国水利水电出版社,2010.

[3] 李培根.工程教育需要大工程观[J].高等工程教育研究,2011,(3):1-2.

[4] 谢笑珍.“大工程观”的涵义、本质特征探析[J].高等工程教育研究,2008,(3):35-38.

[5] 黄凯旋,刘建华.热工课程教与学改革探索[J].集美大学学报,2001,(3):73-75.

第9篇:工程热力学的应用范文

1核心课程体系的构建

1.1核心课程体系构建的原则

钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。 所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。

分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。

2核心课程体系的优化

为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。

2.1加强数理基础教学力度,适度拓展

新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到Matlab在科学和工程计算领域的突出作用,建议开设Matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的MATLAB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。

2.2整合化工专业实验

为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。