公务员期刊网 精选范文 水利工程测量技术范文

水利工程测量技术精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的水利工程测量技术主题范文,仅供参考,欢迎阅读并收藏。

水利工程测量技术

第1篇:水利工程测量技术范文

关键词:水利工程 测量 技术 趋势

中图分类号:TV文献标识码: A

前言

水利不仅是国民经济中的基础设施,而且在基础设施中处于首位。近些年来,随着现代科学技术的快速发展,水利水电工程测量技术的发展也是日新月异,计算机技术、精确定位技术、微电子技术、激光技术等先进科技成果为工程测量提供了新的方法和手段。由于水利水电工程在国民经济中的重要地位决定着需要采取有效措施确保这一行业的发展,由此论述水利水电工程测量技术的发展与现状就显得尤为重要。

一、水利工程测量的主要工作

水利工程主要项目有土方开挖、坝体堆石、土工布、浆砌石工程、混凝土工程等。对于大坝施工测量主要分为以下几个阶段:大坝轴线的定位与测设,坝身平面控制测量,坝身高程控制测量,坝身的细部放样测量和溢洪道测设等内容。以下将针对水利工程各道工序施工实施中,施工测量的具体实施措施而展开探讨。对于水利工程中标后,立即组织测量人员,在工程施工实施前,首先按监理单位以书面形式提供的平面控制网点和高程控制网点,建立工程施工使用的平面控制网和高程控制网。

水利工程开工前,对监理单位提供的控制点进行复测,并且布设施工控制网,包括平面控制网及高程控制网,其测量等级、精度必须满足《水利水电工程施工测量规范》规定,并且定期对其布设的施工控制网进行核查。施工过程中的跟踪测量。工程施工从进场后的土方开挖开始,土石混合料、坝体堆石都必须跟踪测量,主要包括:土方开挖轴线、边坡及高程放样;水工建筑物位置、外观尺寸、高程放样;预埋件尺寸、高程放样;土方回填高程放样等。竣工验收测量。工程竣工前应对施工建筑物(包括隐蔽工程覆盖前)进行测设建筑物位置和标高。对工程预埋观测设施测量,得出精确数据,报送监理单位,并经监工程师审批后备案。

二、当前主要水利工程测量技术

1、GPS技术

GPS 其中文全称为全球卫星定位系统( Global Posi-tioningSystem) ,它是无线式导航系统,其系统基础为已经发射的地球卫星。我国测量采用的是美国发射的 24颗导航卫星。通过测量地面三维坐标来实现导航或者定位。GPS 技术已经广泛应用于各个领域,水利工程测量中,GPS 技术也得到了广泛的应用。比如: 三峡水利枢纽,小浪底工程等水利工程测量中都用到了 GPS 技术。GPS 技术在水利测量中的应用主要包括 GPS 的外业测量、GPS 的布网以及实时动态测量。

GPS 外业测量中,选点是关键。点的定位对于保证测量结果的正确性具有非常重要的意义。因此要在选点前做好充分的准备工作,包括收集和了解有关测区的地理位置,标架,标型的完好状况等,这都是做好选点的关键。GPS 的观测工作主要体现在无线安置和开机观测,这与常规测量有很大的不同。无线安置工作中,要卡中心的上方直接对中,天线基座上的圆水准气泡必须整平; 在有风天气中,应将无线进行三方向固定。

对于线路及带状工程测量,例如引水工程等,通常都采用点连式或边连式组成连续发展的三角锁同步图形,而对于工程枢纽地区的施工控制网和变形监测网,则通常采用边连式或网连式布设,以增强网形的几何强度,提高 GPS 控制网的可靠性和数据精度。

流动站在接收 GPS 卫星信号的同时,通过无线电接收设备接收基准站传输的数据,依据相对定位的基本原理,基准站及流动站将该数据与本身观测到的数据进行差分解算,从而得到两观测站之间的相对位置,解算出流动站所在位置的三维坐标并实时存储和输出。

2、RTK 技术

RTK ( Real Time Kinematic) 技术是 GPS 实时载波相位差分的简称, 是一种 GPS 与数据传输技术相结合, 实时解算并进行数据处理, 在 1-2秒时间内得到高精度位置信息的技术。 工作原理是将一台接收机安置在已知点上作为基站, 对所有可见卫星进行连续观测, 并将其观测数据通过无线电传输设备 (数据传输电台) , 实时地发送给用户观测站 (流动站), 在用户站上, GPS 接收机在接收 GPS 卫星信号的同时, 通过无线电接收设备接收基准站传输的观测数据, 然后根据相对定位的原理, 实时地计算并显示出用户站的 3 维坐标及其精度。 目前采用这种技术可以取得厘米级的定位成果。北斗卫星导航系统是中国正在实施的自主研发、 独立运行的全球卫星导航系统。 是继美国、 俄罗斯之后第三个成熟的卫星导航系统。 由空间段、 地面段和用户段三部分组成, 空间段包括 5 颗静止轨道卫星和 30 颗非静止轨道卫星,地面段包括主控站、 注入站和监测站等若干个地

面站, 用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端

北斗 RTK 技术是卫星定位技术的一个新的里程碑, 大大提高了测量效率并拓展了 GPS 应用领域, 为水利工程测量提供了十分有力的条件, 使用北斗 RTK 进行水利工程测量能缩短作业时间、减低劳动强度。

3、3S技术

3S 技术是遥感(RS)、地理信息系统(GIS)及全球定位系统(GPS)的统称。是一门具有信息采集、分析、处理、管理等功能的多学科、多专业的现代新技术。已经在很多行业被广泛应用,通过此项技术可以很轻松得到待测位置的环境空间信息,并可以分析建立相关数学模

型,进而起到管理的功能。3S 技术在水利信息化中的发展不仅与计算机硬件和操作系统、原数据库的建设,数据仓库、数据挖掘、网络、数据库管理与自动成像等技术的发展是紧密相关的,而且与水利行业信息化的进程,尤其是数字化的进程紧密相关。在技术上已经发展并逐步成熟。总之,要在水利行业更好地应用和发展 3S 技术,必须加强标准化、规范化的基础建设,大力开展基础数据库的建设。此外还要加快提高3S 技术的应用水平,充分发挥 3S 现有的和潜在的功能,并且与网络计算机等高新技术以及水利行业本身的技术紧密地结合在一起。为水利信息化和现代化作出它应有的贡献

三、工程测量技术的发展展望

展望 21 世纪,工程测量将在以下方面将得到显着发展:

1、测量机器人将作为多传感器集成系统在人工智能方面得到进一步发展,其应用范围将进一步扩大,影像、图形和数据处理方面的能力进一步增强。在变形观测数据处理和大型工程建设中,将发展基于知识的信息系统,并进一步与大地测量、地球物理、工程与水文地质以及土木建筑等学科相结合,解决工程建设中以及运行期间的安全监测、灾害防治和环境保护的各种问题。

2、大型复杂结构建筑、设备的三维测量,几何重构及质量控制,以及由于现代工业生产对自动化流程,生产过程控制,产品质量检验与监控的数据与定位要求越来越高,将促使三维业测量技术的进一步发展。工程测量将从土木工程测量、三维工业测量扩展到人体科学测量。多传感器的混合测量系统将得到迅速发展和广泛应用,如 GPS 接收机与电子全站仪或测量机器人集成,可在大区域乃至国家范围内进行无控制网的各种测量工作。

3、GPS、GIS 技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。在人类活动中,工程测量是无处不在、无时不用,只要有建设就必然存在工程测量,因而其发展和应用的前景是广阔的。

参考文献:

[1] 冯志中,荆永明,赵胜利.浅谈 GPS 高程测量技术在水利工程测量中的应用 [J]. 内蒙古水利2003-12-30.

第2篇:水利工程测量技术范文

关键词:水利工程 测量技术 发展应用

中图分类号:TV文献标识码: A

前言

随着当前测绘不断出现新的仪器设备和技术,水利工程的测量技术也逐渐有了新的发展方向,不断趋于自动化和网络化。在水利工程之中,测量往往有至关重要的作用,测量工作几乎贯穿了水利工程的全过程,因此我们更应该对水利测量技术,如何更加准确迅速地应用于实际工作当中展开分析和探讨。

一、水利工程测量的主要工作

水利工程主要项目有土方开挖、坝体堆石、浆砌石工程、混凝土工程等。对于大坝施工测量主要分为以下几个阶段:大坝轴线的定位与测设,坝身平面控制测量,坝身高程控制测量,坝身的细部放样测量和溢洪道测设等。以下将针对水利工程各道工序施工实施中,施工测量的具体实施措施展开探讨。对于水利工程中标后,立即组织测量人员,在工程施工实前,首先按监理单位以书面形式提供的平面控制网点和高程控制网点,建立工程施工使用的平面控制网和高程控制网。水利工程开工前,对监理单位提供的控制点进行复测,并且布设施工控制网,包括平面控制网及高程控制网,其测量等级、精度必须满足《水利水电工程施工测量规范》规定,并且定期对其布设的施工控制网进行核查。施工过程中的跟踪测量。工程施工从进场后的土方开挖开始,土石混合料、坝体堆石都必须跟踪测量,主要包括:土方开挖轴线、边坡及高程放样;水工建筑物位置、外观尺寸、高程放样;预埋件尺寸、高程放样;土方回填高程放样等。竣工验收测量。工程竣工前应对施工建筑物(包括隐蔽工程覆盖前)进行测设建筑物位置和标高。对工程预埋观测设施测量,得出精确数据,报送监理单位,并经监工程师审批后备案。

二、水利工程中传统测量技术

1、控制测量技术

在所有的水利工程测量中,最基础的测量技术是控制测量。目前,我国的水利控制测量技术已经发展到了现代控制测量阶段,测量方式主要是GPS定位技术,能够比较精准地进行定位。水利工程的控制测量依据阶段和内容划分,主要包括测图控制网及专用控制网,具体的测量技术为高程控制及平面控制。主要应用于水库的淹没界限测量、河道测量及地质勘查的测量等,水库的淹没界限测量主要包括土地征用线、水库清理线和测设移民线等的测量。确定回水曲线和设定水位时,能够按照设计图纸在实地完成水库边界线的确定, 可采用经纬仪高程测定;在进行河道测量时,能够对河床两岸完成测绘,以及将相关的水位资料进行采集绘示,可以测量河道的地形、河段中的瞬时水面线以及沿河地物等;地质勘查测量主要是配合地质勘查所的工作,提供一些基本的勘察资料如厂址、水库和渠道等,可以采用水准仪及 RTK 来完成测量工作。

2、摄影测量技术

航空摄影测量经常用于地籍图和大型工程的测绘,不需要直接接触需测量的物体,主要优势包括效率较高、野外工作量很少以及成果种类繁多,最初的起源是模拟摄影测量,然后逐渐向解析摄影测量转变,最后形成了全数字的摄影测量技术,此后还结合了 IMU、GDPS 等辅助测量手段, 使野外控制点连测大幅度减少,航测的效益显著增加,而摄影测量技术逐渐迈向了数字化和自动化的新趋势。高分辨率卫星的像成图,主要应用于我国西部的无图地区进行测绘,据研究表明,如果于高山区或者西部山区采用这种成图技术,依靠大量的地面控制点,可以取得较高的精准度,是西部地区最方便有效的测量技术; 近景摄影测量通常作为地面测量的辅助工具,最初是由专业的测量相机发展而来,后来逐渐发展成为数字专业的近景摄影测量, 最终形成了数码非专业的近景测量相机。通常应用于土石方量计算、三维重建、地形勘测以及滑坡测量等,其较高的精准度和功能性接近三维扫描仪。

3、变形测量技术

变形测量主要是对被测量的变形体做测量,以对内部的形态变化和空间具置进行确定, 变形测量依据变形测量的内容,通常包括内部和外部两个环节的测量。 其中主要涉及的为外部的变形测量,它包括垂直位移测量以及水平位移测量两种测量方式。在变形测量的方式中,主要方式有大地测量,这种测量方式能够进行工作基点测量、基准网测量等,需要配合运用的设备包括测量机器人和电子水准仪等,测量手段为几何水准、三角、交会以及边角测量等方式。 它通常运用常规的大地测量设备,得到的测量数据较为真实可信,但存在观测时间较长和智能化程度较低等弊端;基准线测量采用水平位移的变形测量,支墩坝和土石坝这类直线形的大坝, 通常结合垂直法及引张线法进行观测,拱坝通常结合大地测量法,滑坡体和高边坡通常结合垂线法和视准线法。

4、无棱镜测量技术

无棱镜测量技术按照测量长度主要分为长程、中程和短程三种,其中长程的长度要不小于 300 米,中程的长度在 100 到 200米之间,短程的长度要不大于100 米。无棱镜在进行测量时,按照水利工程的环境要求通常采用中长程长度的无棱镜进行测量,它更适合用于反射介质较好, 以及通视条件高的地区来完成测量,会很大程度地提高工作效率并且降低测量的危险性。 但在一定的视线范围之内不能有障碍物存在,否则将产生测量误差。

三、水利工程测量的新技术

1、数字地形测量技术

当前计算机网络技术逐渐得到广泛普及,出现了很多大比例尺数字地形测量方式,并形成了一些数字成图系统,它们利用了三维测绘手段,不但能够进行专业图及地形图的测绘成图,而且能够完成 GPS 的前端数据更新。 这种测量技术通常运用数字摄影、 电子平板和数字侧记等模式。 掌上数字测图是由掌上电脑、地形图内业绘图系统和全站仪来配合完成的,这种系统主要克服笔记本电脑中的电子平板弊端,突出了简便灵活操作、可视化界面及携带方便等优势, 现已经成为野外测绘数据的主要采集和成图系统;数字侧记系统主要由全站仪、草图、RTK 及地形图内业绘图系统配合进行操作,但作业过程并不直观,可能造成地物错漏,通常适用于环境数字的地形图测量绘制。

2、遥感测量技术

是一种卫星遥感技术,不直接接触目标或现象就能收集信息,并据此进行识别与分类。即在地球不同高度平台上使用某种传感器,收集地球各类地物反射或发射的电磁波信息,对这些电磁波信息进行加工处理,用特殊方法判读解译,从而达到识别、分类的目的,为科研工程的生产应用服务。GPS 即全球定位系统是美国从本世纪 70 年代开始研制,历时 20 年,耗资 200 亿美元,于 1994 年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。遥感(rs)技术是一种卫星遥感技术,不直接接触目标或现象就能收集信息,并据此进行识别与分类。RTK 技术,即 GPS 实时相位差分。RTK 测量技术是以载波相位观测量为根据的实时差分 GPS 测量技术,它是测量技术与数据传输相结合而构成的测量系统。GPS 定位系统具有性能好、精度高、应用广的特点,是迄今最好的导航定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,应用领域正在不断地开拓,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。

结论

当前形势下,我国的水利工程测量技术发展迅速,并获得了一定的成效,我国不断加大对水利工程测量研究的资金和人力投入。我们要不断对水利工程测量技术进行革新和改进,尝试新的技术,让测量技术不断向电子化和自动化发展,并汲取相关行业的知识和技术,让水利工程的测量技术不断应用于新的领域,加大发展力度,使水利测绘逐渐趋于服务型技术。

参考文献

[1]. 王耀华;尚学勇.GPS在水利工程测量中的运用探讨[J].河南建材.2011(05)

[2]. 钟飞.GPS在水利工程测量中的应用[J].科技资讯.2009(12)

第3篇:水利工程测量技术范文

关键词:水利工程,测量技术

中图分类号:TV文献标识码: A 文章编号:

1、水利工程测量重要性分析

测量学是从人类经验中发展而来兼有时代性的一门学科,是人类在复杂的自然界中生存的一个重要手段。工程测量中,无论工程项目的大小,系统的工程测量、公路测量和大面积测绘等,都少不了测量技术,工程测量在工程项目中起着重要的作用。在工程建设规划设计的阶段,测量技术主要提供各种比例的地形图和地形资料,还要提供地址勘测、水文地质勘测和水文测量的数据;在工程建设施工阶段,要把测量之后的设计变为实地建设的依据,即根据工程现场地形和工程性质,建立完整的施工网,逐一把图纸化为实物。总之,从施工开始到结束,都离不开工程测量这项工作。因为对于一个工程,首先需要对该工程进行定位,确定其实际位置,之后确定准确的标识从而确定该区域是否有设计后新增项目或者其他,以保证机械设备的使用。基础设施完毕后,还要进行竣工线的投测,即对设备的平整度等进行跟踪测量,来保证设备工艺的流畅。在工程运营管理阶段,工程测量同样重要。为了提高工程质量和施工效率,必须重视测量技术和新时期下测量技术的新发展。

2、水利工程中应用GPS RTK测量技术

2.1控制点加密的测量

在首级控制网的基础上,为满足地形图及断面等测量的需要,必须进行加密控制点的测量。而水利水电工程多位于偏远地区,已知高等级控制点较少,常规的控制测量方法是测距仪导线,测量精度受到很多条件限制,且工作量大。而用GPS RTK加密测量控制点则很简单,只需在测区10km范围内有3个以上且包含测区的高等级测量控制点即可,操作简单方便,平均每天可测量30~40个加密控制点,效率较高。

2.2水下地形测量

水利工程测量最难的是水下地形测量,水下地形复杂,作业条件差,而水下地形资料的准确性对水利工程建设十分重要。传统水下地形测量方法大多采用经纬仪交汇或全站仪配合测深仪,其缺点是:精度不高,测区范围有限,工作量大,人员配置多等。随着GPS 测量技术在测量中的空前发展,水下地形测量也较多地采用GPS RTK技术,主要设备有:双频Trimble GPS 5700 RTK,中海达数字单(双)频测深仪,海洋测量软件。进行GPS RTK水下地形测量的步骤是:将GPS、测深仪和笔记本电脑连接成一体,导航软件对测量船进行定位,并指导测量船在指定测量断面上航行,GPS和测深仪将实时测得数据导入笔记本电脑,由海洋测量软件处理生成水下地形图或导出*.Dat数据,再由成图软件绘制水下地形图。从几年测量结果来看,GPS在水下地形测量的应用,大大提高了测量的精度,减少了工作量,缩短了工作日,并且输出的数字化的水下地形图为今后地理信息系统(GIS)的建立和管理创造了有利的条件。

2.3施工放样测量

利用RTK随机软件中放样的功能进行点、直线、曲线放样功能,进行施工放样测量。输入设计好的已知坐标作为参考点和目标点,流动站实地所在位置的坐标作为修正点,电子手簿屏幕上的图形显示出实地待定点相对于目标点所偏移的距离,按照指示移动流动站,直到满足所要求的精度。同样方法可以用来复样及检查验收。

2.4数字化地形图测量

利用RTK快速定位和实时得到坐标结果的特点,在一定的测量环境中可以进行地形测量。地形点的测量可以在数据采集的功能下进行,也可以根据现场地形的实际情况进行测量设定,采集完的地形点经过成图处理,生成数字化管道地形图。地形点的采集可以单人作业,极大地节约了人力和时间。

3、水利水电工程测量技术的发展

3.1变形监测

变形监测又称变形测量,是对变形体进行测量,确定其空间位置及内部形态的变化特征。水利水电工程的变形监测主要包括基准网测量、工作基点测量、变形体变形监测、监测资料分析等内容,目前常用的变形监测方法主要有大地测量法、基准线测量法以及液体静力水准测量方法等。

(1)大地测量法。大地测量方法是变形监测的经典方法,可完成变形监测基准网测量、工作基点测量、变形体变形监测等工作,测量设备主要有电子水准仪、精密全站仪,测量方法包括传统的三角测量、几何水准测量、交会测量和现代的边角测量、三角高程测量等方法。大地测量方法利用常规大地测量仪器,理论方法成熟,数据可靠,观测费用较低,但观测时间长,劳动强度高,横度易受观测条件影响,自动化和智能化程度较低。

(2)基准线测量法。基准线法是水平位移变形监侧的常用方法,土石坝、重力坝、支墩坝等直线形大坝的坝体、坝基一般采用引张线法、真空激光准直法和垂线法观测,若坝体较短可采用视准线法、大气激光准直法观测;拱坝坝体坝基主要采用垂线法或大地测量法观测;近坝区岩体、高边坡、滑坡体水平位移监测主要采用大地测量法、视准线法和垂线法。

视准线法的优点是所用设备普通,操作简便,费用少,但受照准精度、大气折光等多种因素影响,操作误差不易控制,精度会受到明显的影响。近年来采用较少。引张线法是一种广泛应用的大坝水平位移监测主要方法,具有设备简单、测量方便、速度快、精度高、成本低等特点。引张线读数仪由早期人工测读引张线仪发展到目前的步进电机光电跟踪式引张线仪、电容感应式引张线仪、CCD式引张线仪以及电磁感应式引张线仪,基本实现了实时自动化观测。对于短距离引张线,取消了系统中的浮托装置,提高引张线的综合精度,简化引张线的观测程序,可实现完全自动化观测。垂线包括正垂线和倒垂线两种形式,是水利水电工程水平位移变形监测的主要方法。正垂线—般采用“—线多站式”,可用于水工建筑物各高程面处的水平位移监测、挠度观测和倾斜测量等;倒垂线—般要求深入稳定的基岩内,大多用于岩层错动监测、挠度监测,或用作水平位移的基准点监测。垂线监测由传统人工读数的垂线坐标仪发展到自动化观测的遥测垂线坐标仪。

(3)液体静力水准测量方法。垂直位移监测技术主要有水准测量、三角高程测量、液体静力水准测量技术,目前发展最快的是液体静力水准测量技术。液体静力水准测量系统特别适用于坝体廊道内高程观测及高程传递,它通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,允许两容器之间的高差从过去的数厘米达到数米。

3.2水下地形测量技术

传统的水下地形测量采用一般多以经纬仪、电磁波测距仪及标尺、标杆为主要工具,用断面法或极坐标法及交会法定位,用测深杆和测深锤来采集水深数据,这种方法存在作业效率低,误差大等诸多缺点,近来已经很少被采用。近年来随着卫星定位技术的发展,DGPS、GPS RTK及CORS系统配合多波束测深仪进行水下地形测量得到了广泛的应用。DGPS(差分全球定位系统)是以某已知点作为基准点,基准点的GPS接收机连续接收卫星信号,并与已知点的位置进行比较,确定当时误差的伪距修正值,将这些修正值通过无线电台接收,用户接收机接收修正值来实时校正GPS信号,它具有全天侯、实时连续、高精度等特点。目前GPS RTK及CORS系统定位已达到厘米级的定位精度,并且能够做到实时无验潮测量。以上几种定位技术进行水下地形测量与岸上基准点交会法、极坐标法等定位技术相比。具有极大的优势,特别是较大面积的水下地形测量,可以大大缩短工作周期,减轻劳动强度。

第4篇:水利工程测量技术范文

【关键词】GPS-RTK技术;水利工程;测量;应用

一、GPS-RTK 技术应用中的特点

(1)定位精度高:GPS高程测量观测时要充分考虑影响GPS测量精度,目前的GPS可以保证在动态的情况下可以在几分钟内就很容易达到±10mm~±20mm的定位精度,这完全可以满足水下地形点的平面位置精度要求。同时在50km以内的基线上相对定位精度可达1×10-6~2×10-6,100km~500km可达10-6~10-7,1000km以上可达10-9。(2)加密控制点:进行准确测量首先要做控制测量,平均每天可测量30~40个加密控制点,效率较高,操作简单方便。(3)准确测量施工放样:利用RTK随机软件中放样的功能进行点、直线、曲线放样测量。

二、测量误差分析

1.GPS接收机误差。一般说来,GPS接收机为TOPCONHIPER双频接收机。该接收机的静态测量平面精度为:3mm+1ppm×D(基线距离)。RTK的测量平面精度为:10mm+1.5ppm×D(基线距离)。

2.RTK测量误差及其确定。静态GPS点是在测量区域内按照大致每5km一个布置,在下一步工作中,影响RTK测量点的精度主要有以下几个方面:(1)基站架设的对中误差m站;(2)GPSRTK接收机标称精度m标;(3)GPS解算软件的解算精度m解;(4)测量对中杆的对中误差m对。水准器分圆水准器和管状水准器。圆水准器内部是一个球面,球面的顶点为圆水准器的零点,水准器的分划以零点为圆心的同心圆。它的球面半径比较小。管水准器的内壁是一个半径很大的旋转弧面。管内注有冰点低,流动性强,附着力小的液体,外表刻有2mm的分划线。衡量水准器的精度指标是圆弧面上的2mm所对应的圆心角角度。使用的基座和对中杆均是圆水准器,它的指标精度t=8分。基座是光学对中,根据几何关系,指标精度对对中的影响就是对中的视线偏离铅垂线角度为8分。那么它对基站对中的影响m站就可以推算出来:根据三角函数:m站=Hi×tan(8′),Hi:仪器高,一般为1.5m。m站=1500×tan(8′),m站=3.49mm。对中杆对中误差m对:m对=Ht×tan(8′),Ht:杆高,一般为2.0m,m对=4.65mm。

3.GPS-RTK接收机标称精度m标。在实际作业中,一般比较远的作业半径为5km,根据GPS标称精度,可以推算GPS本身误差。m标=10mm+1.5×5000000/1000000,m标=17.5mm

4.GPS解算软件的解算精度m解。软件解算精度是随观测时间变化,时间越长,解算的精度越高。一般选择平面解算精度低于3mm,就自动保存测量数据。m解=3mm。

5.RTK测量点的精度确定根据误差传播定律:

m2测=m2站+m2标+m2时+m2解,m2测=3.49×3.49+17.5×17.5+4.65×4.65+3×3,m2测=349.05,m测=18.7mm。

所以,RTK测量点位在距离基站5km时的测量精度为18.7mm。根据作业距离,估算点位精度、相对基站的相对精度、相邻最弱点点位精度和最弱相邻点边长相对中误差如下表(表1)。其中,最弱相邻点边长相对中误差是按250m计算(在水利水电工程测量规范中,测量1:1000的地形图,测量五等导线的长度为250m)。

表1估算点位精度、相对基站的相对精度、相邻最弱点

点位精度和最弱相邻点边长相对中误差

三、测量应用实例

(1)测区概况。该水利工程以防洪、灌溉及城乡供水、发电为主,兼顾航运,并具有拦沙减淤等综合利用效益,属准社会公益性项目。该水下测区河道曲折,两旁山形相对平缓,水线两旁五十米区域为弃土或鹅卵石无茂密植被。除个别地方外对RTK作业无大的影响。将GPS-RTK技术水利工程的施工测量中,使测量内外作业一体化,数据获取及处理自动化,测量过程控制和系统行为智能化,解决偏远地区水利工程施工测量困难的问题,同时通过施工测量监理,能够及时进行测量质量检查工作,确保测量成果的正确性。(2)确定转换参数。为保证转换参数的精度,共加进5个高等级GPS控制点(A,B,C,D,E),通过多种点的匹配方案,选择残差较少、精度较高的一组参数为最终启用参数。(3)工程应用及定位精度比较分析。工程控制测量和放样测量均采用RTK作业。相邻观测点间全站仪实测距离和RTK实测距离进行抽样检查。由于采用了残差较小的参数控制文件,正式工作之前检测已知点,观测时利用带对中杆的三角支架作业,提高了观测精度。

参考文献

第5篇:水利工程测量技术范文

关键词:3S测量技术;动态监测;研究与应用

中图分类号:TV5 文献标识码:A

水利不仅是国民经济中的基础设施,而且在基础设施中处于首位。作为国民经济基础设施的水利行业同样面临着信息化建设的问题,水利信息化是水利现代化的基础和重要标志。从国家到地方,从领导到大众,水利行业信息化确实引起了重视,并建立了众多的水利信息系统,但普遍存在着网络功能弱、数据共享能力弱、数据更新手段受限、数据可视化手段单一、系统各自为政和缺乏决策支持分析能力等弱点。

GPS是一种可以定时与测距的空间交汇的导航系统,通过接收卫星信息来给出(记录)地球上任意地点的三维坐标以及载体的运行速度,同时它还可给出准确的时间信息,具有记录地物属性的功能。90年代以后,GPS技术开始应用在水利行业中。“3S”技术是英文遥感技术(Remote Sensing RS)、地理信息系统(Geographical information System GIS)、全球定位系统(Global Positioning System GPS)这三种技术名词中最后一个单词字头的统称,是数字水利的支撑技术。

1 什么是3S技术

3S技术是遥感(RS)、地理信息系统(GIS)及全球定位系统(GPS)的统称。是一门具有信息采集、分析、处理、管理等功能的多学科、多专业的现代新技术。已经在很多行业被广泛应用,通过此项技术可以很轻松得到待测位置的环境空间信息,并可以分析建立相关数学模型,进而起到管理的功能。

2 3S技术的特点

3S技术中的卫星遥感技术,简称RS,通过高空卫星可以实现远程无接触的勘测,并采集相关信息,获取其分类的信息。这项技术的优点就在于不管待测环境有多复杂,勘测可以替代人的现场勘测,直接利用电磁波的多普勒效应,利用波的反射,可以产生待测地区的相关信息,并通过模型进行识别、分类,最后能够对后续的科学研究服务。

3S技术中的地理信息系统,简称GIS,主要的作用是对卫星遥感勘测空间数据进行分析处理,分析地理图形,利用计算机相关的专门软件,可以编辑、分析数据,一般是能够得到一些空间构造,或者是三维的空间地理图形。

GPS是全球定位系统技术的英文缩写,是建立在卫星通信技术上的一个应用,被广泛应用与军事、工农业生产等等领域,它的特点就是可以在全球范围内,提供快速的定位、测速和导航等功能服务,在军事前沿,GPS技术已经演化的更加全面,而且变得无所不能了。结合现代光学,GPS技术大大改善了传统定位导航不精确的缺点,将定位导航还有高清晰成像相结合,成为目前军事、工业生产等方面的高精尖技术。

随着3S技术在测绘科学中的应用日趋成熟并广泛应用到水文测量中,传统河道的水文监测,既费时费力,也不准确,采用新技术后其效率和准确度有了很大提高

3 水利测量传统方法存在的缺陷

传统的河道检测,我们采用经纬仪、六分仪、水准测试仪等,这些仪器手工测量,劳动强度很大,而且受地理环境影响,待测位置有很大限制,因此在测量待测地带的物理性质时,就会产生很多的困难,比如山洪、泥石流等自然灾害发生时,传统测试方法就显得费工费力,不出力,无效率。

分析流量的变化主要反映河道的变化情况。通常包括一对河道形态变化,河流纵剖面变化和深泓线变化。水下地形、体积的测量,以冲淤量计算水文测量为基础,可以及时了解冲淤变化的河流情况,通过此项分析可以做到水资源的合理调度,沉积物控制,为科学管理工作提供了决策依据。

在传统的检测是忽视河流动力学方面研究的。在许多检测方法中,我们经常用截面法,即利用河道槽蓄量变化判断河床。该方法的前提是部分间距可以准确测量,部分之间的海底地形和河床变化规则没有区分。而实际地形变化复杂,河床不平,所以这种方法计算的冲淤量无法准确反映河床变化。

4 3S技术应用前景与展望

3S技术在水利信息化中的发展不仅与计算机硬件和操作系统、原数据库的建设,数据仓库、数据挖掘、网络、数据库管理与自动成像等技术的发展是紧密相关的,而且与水利行业信息化的进程,尤其是数字化的进程紧密相关。在技术上已经发展并逐步成熟,而且在水利行业开始应用的主要有以下几个趋势:

4.1 网络化

将计算机技术与网络技术紧密结合,实现分部的计算分析,实时的资源共享和信息查询服务等功能,建立水利测量信息化平台,实现检测联动和信息共享。

4.2 集成化

水利信息化进程中的3S技术在实际应用中不仅要通过数据接口将RS、GIS、GPS严格地、紧密地、系统地集合起来,成为一个大规模的应用系统。当然还要与MIS或OA系统紧密结合,才可以达到各个功能的完美实现。因此,3S技术与外部系统无缝集成是必然的发展趋势。

4.3 以数学模型和决策分析为支撑

要让新的测量技术发挥最大功能,仅仅得到一些图片或者是数据这是远远不够的,因此我们的水利测量人员要发挥软件的所有功能,利用特有分析功能,建立相关数学模型,利用这些很专业的算法和更深入的比对分析,最后可以得到较准确地计算结果,这些结果对于相关部门的决策实施起到了重要的指导作用。

4.4 实时三维和虚拟现实技术

水利问题不是一尘不变的,往往需要我们有前瞻性,很多时间序列和动态问题,需要技术人员实现能够通过各种技术手段能够得到相关信息。因此,加上时间维的3S技术应用需求很广。三维尤其是灾时的三维3S系统为各种水利信息提供了更为直观的表现方式。在调水线路沿线贯穿飞行,城市及蓄滞区洪水演进,水利工程布置,大坝及堤防等工情信息的表达、地面与地下结合的地质构造描述、水流流动的i维表现、厂房或结构内部的描述、库区的描述、宏观地形地貌表现、通视性分析等等方面使用得特别多或者是特别有前景,而且它也是虚拟或仿真的基础。

5 GIS技术在河道测量中的应用

GIS是作为重要应用工具还具有计算距离、表面积、周长等功能,使用方便,简单易学。GIS利用dem模型数据能立即计算出两冲淤监测断面间的冲淤量,不仅便捷且精度大为提高。利用dem模型可以很方便得到某点的高程。河道演变分析主要是冲淤分析。河道某断面图的绘制、某地冲淤过程的累积图等,可直接从图上提取数据并自动绘制成图。

6 RTK技术的应用

促进GPS技术向更深、更广、更新的方向发展,它既克服了常规测量要求点间通视、费工费时而且精度不均匀、外业不能实时了解测量成果和测量精度的缺点,同时又避免了GPS静态定位及快速静态相对定位需要进行后处理,避免了业后处理中发现精度不合乎要求,需进行返工的困扰,RTK实时三维精度可以达到厘米级,大大减轻了测量作业的劳动强度并提高了作业效率。

要在水利行业更好地应用和发展3S技术,必须加强标准化、规范化的基础建设,大力开展基础数据库的建设。此外还要加快提高3S技术的应用水平,充分发挥3S现有的和潜在的功能,并且与网络计算机等高新技术以及水利行业本身的技术紧密地结合在一起。为水利信息化和现代化作出它应有的贡献。

参考文献

[1]闫 新,杨永辉.3S技术在水利建设领域中的应用讨论[J].黑龙江水利科技,2008(02).

第6篇:水利工程测量技术范文

【关键词】数字化测绘;水利测量;误差可控;准确可靠;方便快捷;技术先进;综合效益

1引言

在传统的测量技术形式中,主要包括了水利和交通以及建筑等方面的测量。随着计算机网络技术的不断发展,以及相关智能测量仪器的出现,使得水利工程建设的测量技术在向着数字化的方向前进。数字化的测绘技术和仪器已经在我国工程测量领域取得了广泛的应用。研究结果表明:目前数字化测绘科学技术已经取得了很大的发展成果,其中以通信网络、地理信息技术和全球定位系统为核心的数字测量技术已经得到了较为广泛的应用。在日常水利测量的过程中,数字化测量技术因其具有较小的设备体积,重量比较轻,定位精度相对于传统测量技术具有较高的测量精度,从而给现代水利测量技术带来了很大的便利。

2数字化测绘技术的特征分析

首先是高效性。数字测绘不仅将工程勘测设计形成一体化,而且也能将数据进行更新、自动化以及采集等。目前,数字测绘已经属于 GIS 数据采集中的方法之一,相对比传统的经纬仪配合平板的测图手段,数字化测量具有更高的效率,即在通视良好的前提下,利用建站点作为圆心,并通过采用全站仪进行测量,一站测量的地形图的范围最低是可达1km;不但如此,采用数字化测绘,还能够将成图的周期进行大幅度的减少,即在通常状态下,传统的经纬测绘方法,通过白纸测图的手段进行测量地形,在 1天 时间内可测量 200个左右的地形点,然而采用数字化测图的技术,1天时间内可测量高达 400 个地形点,正好于传统的测绘手段的 2 倍。其次是精确性。所谓的数字化测绘,是指把相关的地貌以及地物进行采集之后,并将其信息以数字进行呈现,同时经过数据接口,将其数字信息输入计算机内,并通过计算机进行有效处理后,从而获取具有丰富内容的电子地图。然而,数字测绘具有相当高的点位精度,据相关实践显示,采用数字化测图,测出的点位精度可符合相关的《水利水电工程测量规范》中的精度指标,该指标是点位误差

3工程测量中的现代测试技术

3.1 工程测量中的地图数字化技术

现代化的数字测量技术在水利工程测量的过程中发挥着比较重要的作用,可以解决传统测量所不能解决的问题,从而使得数字测量在水利测量过程中变的相对容易进行。在传统的数字测量过程中,由于缺乏一定的科学技术,对于那些比例尺较大的地图,就很难顺利地完成输入工作。随着地图数字化这种技术的出现,在运用扫描矢量仪器以及手扶式数字跟踪化的基础上,就可以实现对大比例尺的水利测量地图进行输入。其中大部分的扫描器可以对地图中所呈现的信息实现数字化处理,数字化的信息处理具有高效率和便利性以及精确性等优点。目前建立GIS数据系统是对图像进行数字化信息处理的关键过程。在确保水利测量工作的前提下,要尽可能的加快数字化测量仪器工作的处理速度。

3.2 水利测量工程中的数字化成图手段

水利工程是测量工程中比较重要的内容,也是测量过程中比较传统的内容之一。但是水利测量大多数是一种野外的测量工作。野外的水利测量工作是一项比较艰辛和复杂的工作,野外水利工程的测量周期比较长,传统的测量技术并不能够满足实际测量的需求。随着数字化成图手段的出现,一方面可以最大程度的提高水利测量地图的工程质量,同时还能够保证较高的测量精度。此外数字化的成图手段可以大幅度的降低水利工程测量人员的工作强度,使得野外测绘变成更为简单和容易的工作。目前在水利测量过程中,数字化成图技术主要包括两种成图模式,即电子平板模式以及内外一体化业务模式,这两个模式比较起来,前者的操作精度较高,操作也相对简单,所以受到了广泛的欢迎。

3.3 现代数字化测绘技术的优点分析

与相对传统的手工作业绘图相比,现代化的数字测绘技术具有以下几个方面的优点:

1) 与传统的手工绘图相比,现代数字化的成图在测量精度方面远远要高的很多,数字化成图系统在进行对外作业的数据采集时,可以选择全站仪进行现场的全面测量,并形成自动的坐标进行存储。在对测量数据进行处理时,可以很好的保持测量作业的精度,减少人为因素所出现的误差;另外一方面,展点绘图是在传统测量工作中必须要进行的野外测量工序,在大幅度的减少野外测量的工作量的同时,还能缩短测量人员的野外测量时间,不断的提高测量作业的效率。

2) 在水利测量的过程中,现代化数字测量技术的应用可以对各种要素实施数据的加工和处理,形成不同用途的绘图作业产品,从而满足不同用户的追求。

3) 通过现代多媒体技术的广泛应用,将测绘的地图相貌以及形象,都能够比较完整的展现出来,使得测量工程人员能够一目了然,同时所取得的测量结果比较有直观性。

4数字化测绘技术在工程测量中的应用

4.1 原图数字化技术的应用

原图数字化技术在使用的过程中,只要对当前的数字地形图进行软件化的处理和运用,添加扫描仪以及计算机、绘图仪和相关数字化软件相互配合的情况下,就可以比较顺利的实现操作,同时还可以在较短的时间内取得比较精确的数字化测量成果。在数字化测量所得到的图像中,结果图的精度一般与原图的精度有着比较密切的关系。由于在水利测量的过程中会存在着各种各样的测量误差,所以在通常情况下,数字化测量所得到的水利图对比于原图而言,其精度较差。另外一个方面,数字化测量图仅是对白纸成图时各种地貌和物体的反映,缺乏一定的现势性。为了使得这种方法能够取得充分的利用,通常可以采取补测和修测等方法来进行,从而使得原图的精度得到了一定程度的修改。

4.2 地面数字测图技术的应用

在很多水利工程的测量过程中,尤其是对于某些地区的大比例尺地图还是比较缺乏的,这个时候就可以采用地面数字化测量技术。这种地面数字测量技术主要特征就是可以实现从内到外的一体化操作,所以该技术在我国的很多工程测量单位都得到了广泛的应用。目前数字化的地面测量技术具有精度较高的特点,只需要添加一些辅助设备就可以进行高精度的测量工作。另外在地理信息的相关科学中,空间数据基础的建设和完善也发挥着比较重要的作用。所以笔者认为为了实现我国现代化测量技术的快速发展,一方面,须加大数字化测量技术在实际水利测量工程的研究与运用,对我国的传统的测绘技术进行数字化的改造;另外一方面,要尽可能的降低由于人为因素的出现,使得测量过程中出现的错误率明显的降低。

5结束语

总之,数字化测量技术在水利工程测量技术中有着比较广泛的应用,是目前比较常用的测量方法,具有传统测量技术不可比拟的优点。现代数字测量技术可以实现测量过程中对各个数据要素的处理和加工,形成不同用途的水利工程测量图,在提高产品测量精度的同时,满足用户的不同需求。所以在各个水利测量工程中,数字化测量技术都得到了广泛的应用。水利测量工作者要不断顺应时代的发展,不断的更新知识和思维,进行现代化的数字测量工作。

参考文献:

[1] 曹黎明. 数字化工具在水利工程勘测设计和施工中的应用[J]. 农业科技与信息. 2010(20)

第7篇:水利工程测量技术范文

关键词:水利工程;工程测量;技术

水资源作为一种稀缺性的自然资源,如何有效地利用好它对于国民经济的发展至关重要。由于我国水资源时空分布不均,为了更好的满足经济的发展需要,人民的生活需求,国家加强了水利工程建设,水利工程能够有效地调配水资源。工程测量作为水利工程的基础性工作,其重要性不言而喻。

1 应用新技术开展水利工程测量工作的必要性

工程测量涵盖了工程项目建设的各个环节,是对整个过程开展测量的一项工作。工程测量工作专业性要求较高,注重团队分工配合,加之涉及到的环节复杂多样,因而必须严格控制误差的出现,坚决避免“一着不慎满盘皆输”局面的出现。在设计阶段,要遵循“没有调查就没有发言权”原则,认真考察实地具体情况,着重加强对重要位置的考察测量,这是收集工程建设的第一手资料,意义重大;在施工过程中,为保证施工的顺利安全进行,在建设各个建筑构件前,必须对建筑构件位置进行测量定位;工程验收阶段,按照工程设计要求,必须加强施工质量的检验。

水利工程测量本身具有其特殊性,测量工作多在偏远山区实施,地理位置复杂,测量实施难度较大,甚至会发生安全状况,危及测量工作人员的生命安全。因此,水利工程测量对于新技术的使用更为迫切,一方面应用新技术有利于提高测量的准确性,降低测量工作的难度,提高测量的质量和效率;另一方面有利于保障工作人员的人身安全,极具现实意义。

2 水利工程测量的主要任务

工程建设是一项复杂的系统性工作,它涉及方方面面,水利工程也是如此。水利工程建设项目一般包括土方开挖、坝体堆石、土工布、浆砌石工程、混凝土工程等,其主要工作任务包括以下几点:一是水利工程在开始前,需对照监理单位提供的控制网点进行详细的复测,认真布设施工控制网(平面控制网和高程控制网),其测量的等级和精度必须达到《水利水电工程施工测量规范》的标准,平面控制测量和高程控制测量技术要求分别按精密导线测量技术和精密水准测量技术,具体如表1、表2所示,此外还需定期核查施工控制网,保证测量施工的精准度。二是施工过程中的跟踪测量,测量工作并不是一劳永逸,而是贯穿于工程始终,跟踪测量的重点在于土方开挖、土石混合料、坝体堆石等方面。三是竣工时的验收测量,认真做好测设建筑物位置和标高工作,加强对工程预埋观测设施测量,保证数据的精确性,以便进行审批后备案。

3 现代工程测量新技术在水利工程中的应用

随着工程建设要求的提高和技g的进步,传统的工程测量技术已然无法满足其发展需求,简便、灵活、快捷、高效、精确的技术应运而生,即现代工程测量新技术,其具有的一系列优点让它在工程测量中得到广泛应用。当前,在水利工程中应用到的工程测量新技术主要包括3S技术、RTK技术、数字化测绘技术、数字化摄影技术。

3.1 3S技术

所谓3S技术,是GPS(全球定位系统)、GIS(地理信息系统)、RS(遥感系统)的统称。3S技术在水利工程测量中价值巨大,一是提高了测量效率,获取更为准确的水利环境信息,一定程度上可以预测自然灾害。二是可以及时监测与分析己经发生的水利施工事故,提高解决事故的效率和质量。三是3S技术能够精确有效地确认水利建筑腐蚀部位,可以明显提高水利工程建筑的维护质量和效率。四是3S技术可以实现水资源动态管理与监测,丰富了水利管理的数据,为后续工作的开展奠定坚实的基础[2]。

3.2 RTK技术

RTK技术也就是实时动态定位技术,主要由基准站和流动站两部分组成,它结合了GPS技术和数据传输技术,是在利用实时处理两个测量站载波相位的基础上,观测其测量差分,从而三维定位到特殊点上[3]。RTK技术在控制点加密、工程放样、断面测量等测量任务方面利用前景广阔[4]。目前RTK技术主要用于测量纵横断面,如测量堤防工程、灌区的纵横断面。它擅长远距离测量,能够测量十数公里的距离,精度依然可以达到厘米级。RTK技术灵活、方便的特点使其在水利工程测量中得到了广泛的应用,其在水利工程建设上的占据了一定的地位。

3.3 数字化测绘技术

数字化测绘技术是一种利用数字化成图及测图的技术,它包括数字化原图技术和数字化成图技术。较之传统测量技术,数字化测绘技术优势明显,具有以下四个方面的优点,一是精确度较高,水利工程测量多在野外进行,易受外界因素干扰,而应用数字化测绘技术能有效避免人为误差的出现,提高数据的精确性;二是自动化程度更高,数字化测绘技术是基于计算机技术发展的,具有较强的自动化性能,存储更加便利;三是图形属性信息更加丰富,能准确使用各类测图符号,明确地图测绘中的坐标位置;四是测量结果直观形象,将地形地貌模型化、直观化,非专业人士也可以读懂地图信息[5]。

3.4 数字化摄影技术

基于全数字的摄影测量系统,数字化摄影技术可以直接从数字影像中获得测绘信息,在提供实时三维空间信息上优势巨大,可以有效地提升了生产效率和数字线划图的精度,并且可以按照要求制作高精度的数字高程模型,极大地满足了水利工程建设的需求[6]。当前全数字摄影测量系统在测量领域不断深入推广应用,其产品可以将影像图、线划图转化为数字化系列产品。在水利工程建设工程中,利用数字化摄影测量技术可以快速获得制作大比例尺影像图和断面图图库,有效建立并永久保存高分辨率建基面三维影像数字地面模型数据库[7]。此外,在检查陡坡地段的开挖质量和工程竣工部位的形体资料方面,数字化摄影测量技术优势明显,作用突出。

第8篇:水利工程测量技术范文

[关键词]水利工程;施工;测量技术

根据多年的理论和实践对水利工程施工测量进行了分析,提出水利工程中进行施工测量的核心,重点对控制测量和施工整个过程中的细节以及技术问题进行深入探讨,同时提出了相关技术要点和见解。

1.水利工程控制网测设

1.1工程首级测量控制网

在本主体工程开工前,项目部在接收监理提供的测量基准后,与监理人共同校测其基准点(线)的测量精度,并复核其资料和数据的准确性。首先对于监理移交本工程首级测量控制网的控制点位、点号熟悉,控制点的大地坐标数据校算和实测,以免用错点位及数据。对原有的平面控制点、导线点、水准点、的位置,标石和标志的现状,其造标埋石的质量;了解施工区的行政划分、社会治安、交通运输、风俗习惯、气象、地质情况。施工控制网测量结果经监理工程师批复后投入使用,并采用定期与不定期相结合对控制网进行复测,复测精度不低于施测精度,在工程测量期间每三个月对控制测量控制网复测一次,并对复测成果上报监理单位。

1.2施工控制网测设

根据本工程建筑物布设和现场地形情况,同时结合本工程施工进度加密布设施工测量控制网点。加密布设的施工测量控制网,平面控制采用三角测量、边角组合测量、导线测量,高程控制可采用水准测量和三角高程测量,布设成闭合环线、附合线路或结点网。施工控制网布设、测量平差计算后的资料报监理批准,监理批准后方可进行施工测量。然后根据工程设计意图及其对控制网的精度要求,拟定合理布网方案,利用测区地形地物特点在图上设计出一个图形结构强的网。根据承担的工程布设测量控制网点,点位布设严格遵守测量规范要求,点位要布设在能够满足施工控制和测量放样条件,控制点的埋设在基础坚硬、不易被坏、通视条件好的地方。施工测量控制点采用埋设地面标石,标石浇筑埋设于地面。对于本工程所采用的点号、编号根据承担的工程总体进行编号,在测量点号注记上记录清楚。在施工测量中,对后视点位要进行后视测量检查,以避免用点错误。

1.3控制点保护

测量控制点是本水利工程施工的依据,为此对本工程测量控制点采取适当的保护措施。测量控制点严禁有人为破坏的行为发生,施工主控制网点在施工中有影响施工时,需要报请监理批准,重新选点测设,数据平差计算后报监理批准后使用。

2.水利工程施工测量技术

2.1复测

按照招标文件的要求及相关规定,施工前需对交接桩时提供工程范围测区有关GPS点、导线点、精密水准点、水准点等进行复测。控制点使用前必须用三个以上的原始控制点,其边长和夹角进行观测检查,互差符合规范要求,方可使用,采用索佳SET230RK3全站仪,测回法测角6测回,边长正返观测各6个测回。高程控制点复测按国家二等水准测量技术要求进行,用中纬电子水准仪配一对条码尺,按国家二等水准的标准,用附合水准线路测量要求进行往、返测。

2.2加密点选取

本工程对加密点的选取采取下列要求:(1)平面加密点应与已有的GPS点和精密导线点构成精密导线网,高程加密点与精密水准点构成附合或闭合路线,平面及高程控制点应该设在不受施工影响的地段,设在稳定的地质上。(2)平面加密点相邻边长不宜相差过大,个别边长不宜短于100m,高程加密点间距平均300m。(3)GPS点与相邻平面加密点间的垂直角不应大于30°。(4)加密点应选在发生沉降变形区域以外的稳固地段。

2.3加密点布设

复测工作完成后,在首级控制点的基础上,根据工程项目的施工需要并结合本水利工程特点等实际情况制定平面加密控制方案,布设一定数量的加密点进行闭合导线测量,主要满足本工程的施工测量及监控测量。

2.4加密点测量

对本水利工程的平面测量采用索佳SET230RK3全站仪,测回法测角6测回,边长往返观测各6个测回。水准点加密按国家二等水准测量技术要求进行,用中纬电子水准仪配一对条码尺,按国家二等水准的标准,用附合水准线路测量要求进行,控制桩复测结果经监理工程师批复后进行加密点测量,加密点测量精度采用精密导线测量和精密水准测量技术要求,测量数据采用严密平差,测量成果上报监理工程师审批。精密导线测量采取利用原有控制桩组成附合导线和闭合导线;水准测量利用原有控制桩与加密点构成附合水准路线进行测量。

2.5地形测量与工程量复核

在主体工程开工前,首先进行开挖工程量的复核,为精确计算开挖工程量,在首级测量控制网建立后,对工程施工各部位进行原始地形测量,平面图比例1:500,断面图比例为1:200,断面施测范围超出基础区20°-50m,横断面图间距不大于25m,根据地形断面图,复核计算各部位开挖工程量,报送监理工程师审核,作为本水利工程结算依据。而在开挖工程结束后,需进行各部位基础竣工地形、断面图的测量,技术要求同原始地形断面图,并根据基础最终开挖断面图计算工程量和竣工资料。

3.施工测量放样

3.1土石方明挖工程测量放样

第9篇:水利工程测量技术范文

关键词:水利工程RTK 转换参数

中图分类号:TV文献标识码: A 文章编号:

0 引言

目前,RTK测量技术已经应用到了各行各业,针对不同的用户,实现不同的功能。在进行RTK测量时,作业人员往往会按照培训人员的要求机械化地去操作,这样时间一长就会对整个测量工作效率产生影响,RTK的优越性也不能完全地发挥出来,因此,熟练地灵活地操作RTK在实际工作中显得尤为重要。

求转换参数

根据RTK的原理,参考站和移动站直接采集的都为WGS84坐标。参考站一般以一个WGS84坐标作为起始值来发射,实时地计算点位误差并由电台发射出去。移动站同步接收WGS84坐标并通过电台来接收参考站的数据,条件满足后就可达到固定解。移动站就可实时得到高精度的相对于参考站的WGS84三维坐标,这样就保证了参考站与移动站之间的测量精度。如果要符合到已有的已知点系统上来,需要把原坐标系统和已知点坐标系统之间的转换参数求出。

在RTK应用中,转换参数大概分为校正参数、四参数、七参数和拟合参数。

四参数和七参数并不是一个概念,四参数是同一椭球不同坐标系之间的转换参数。表示为X、Y、A(旋转角)、K(尺度比)。七参数是两个不同椭球之间的转换参数,表示为X、Y、Z、α、β、γ、K,三个平移、三个旋转和一个尺度参数,是不严密的。四参数和七参数是不能同时使用的,两者只能任选其一,那么在具体测量时怎么确定这两种参数是一个关键的问题。

RTK直接测量的坐标是属于WGS84坐标系,我们通常用的是国家标准坐标系统,比如1954年北京坐标系,两者并不是一个椭球,那么原则上讲需要七参数才可以实现两个椭球的转换,我们才有可能采集到54坐标。但在不能精确求取七参数的情况下,可以把WGS84的原始经纬度作为北京54的经纬度处理,这样一来就可以通过采集两个或两个以上的北京54已知点来求取四参数,高程就可以通过拟合的方法得到。

一般RTK仪器都提供了两种求取四参数的方法:第一种是先采集控制点经纬度坐标,输入已知点坐标,软件就会自动计算出四参数并给出点位精度;另一种就是方法就是利用校正向导的多点校正方式,输入已知点坐标后实时读取当前点坐标,两个点以上就可以求出四参数,将其保存后就可以应用了。

七参数的求解方法一般是通过做静态测量。静态测量的数据进行数据处理后,软件会自动求出七参数,在做RTK测量时直接输入使用。七参数相对于四参数来说可以认为更精确、精度更高,如有条件建议使用七参数。

若在进行一工程测量时,第一天求解了转换参数之后,之后的工作只需调用第一天的参数再找个已知点单点校正就可以了。这样可以节省很多时间去求参数了。

2.测量及放样

参数求完之后就可以测量和放样了。测量时只要将移动站在特征点上对中整平,然后输入点名和天线高即可。需要注意的是一定要在固定解的状态下,否则测出来的数据误差会很大,如果在树林里面或者遮挡比较严重的地方就需多等一会,也可将碳钎杆升高或者选择卫星信号好的时段去测。

放样是有点、直线、道路的放样,放样的坐标可以是直接输入或通过电脑导入两种方式,点的放样比较简单,选择好要放样的点后按照方向的指示就可以找到药放样的点位了。直线放样的话要先建立直线,然后根据偏距和里程即可。道路放样相对要复杂一些,要先进行道路设计,方法有两种:一是元素法,二是交点法。一般建议使用元素法来设计,按照“点—直线—缓曲—园曲—缓曲—直线”的顺序把元素数据输入手薄,生成道路文件。最好是在电脑里把文件处理好,再导入手薄,减少出错率。设计完之后就可以通过自动计算好的坐标去放样,同样根据里程和偏距去找,偏距是左负右正。

3.数据传输

在将数据传出之前,需要将数据转化成需要的数据格式和类型,例如成图需要的.dat格式、.txt格式等。然后通过两种方式将数据传输到电脑上。

方法一:安装同步软件,用数据线连接手薄与电脑,连接成功后即可通过手薄的路径把数据传输出来。

方法二:将手薄的USB端口设置成U盘模式,将要传输的数据复制后在SD卡里面粘贴,然后用数据线路径手薄与电脑,直接在SD卡上将数据拷贝出来即可。

4.注意事项

在仪器具体操作时,需要注意以下事项:

架设参考站时,如果是大电台,一定要注意电瓶的正负极,先连接电瓶端,检查无误后再连接主机和电台,如是内置电台,最好将仪器架设在比较高的地方,测量前要检查一下参考站的工作状态是否正常。

移动站状态检查,各种显示是否正常,手薄工作状态是否正常,常规界面应显示点号、坐标、精度、卫星状况、电台通道(与参考站一致)及信号强度等。

如果测量中出现问题,要根据具体情况来分析原因。如果手薄下方显示无数据,表示手薄与移动站没有连接;通道号没显示或显示与参考站不一致的通道号,用电台设置切换到一致的通道即可;如果总提示ID号有变化,则表明基准值被动了或者电台串频了。

RTK测量技术还有很大的发展空间,操作方法也会越来越简单,但是要更好的应用RTK技术,还是要测量人员亲身体会其原理和性能,对各种情况做到心中有数,这样才能有效地保证RTK测量精度,提高作业效率。

5 RTK技术的应用前景

实时动态(RTK)定位有快速静态定位和动态定位两种测量模式,两种定位模式相结合,在水利工程中的应用可以覆盖勘测、施工放样等前端数据采集。

5.1.快速静态定位模式

要求GPS接收机在每一流动站上,静止的进行观测。在观测过程中,同时接收基准站和卫星的同步观测数据,实时解算整周未知数和用户站的三维坐标,如果解算结果的变化趋于稳定,且其精度已满足设计要求,便可以结束实时观测。一般应用在控制测量中,如控制网加密;若采用常规测量方法,受客观因素影响较大,在自然条件比较恶劣的地区实施比较困难,而采用RTK技术可起到事半功倍的效果。

5.2.动态定位

测量前需要在一控制点上静止观测数分钟进行初始化工作,之后流动站就可以按预定的采样间隔自动进行观测,并连同基准站的同步观测数据,实时确定采样点的空间位置。目前,其定位精度可以达到厘米级。动态定位模式在勘测阶段有着广阔的应用前景。测量2~4s,精度就可以达到1~3cm,且整个测量过程不需通视,有着常规测量仪器不可比拟的优点。

6 结束语

工程测量技术在我国的经济发展历程中有着极为重要的作用,它为我国的工程建设提供了强有力的保障。但是随着各种新的工程测量新技术的发展,对测量技术人员的要求也越来越高。在这种状况下,就要要求我国的工程测量人员必须随着测量技术的发展不断更新自己的技术水平,只有这样才能够对新的测量设备进行正确的操作,在工程测量工作的开展中才能提供精确的数据,是工程质量基础保证。

参考文献

[1] 周立, GPS测量技术,黄河水利出版社,2006-08-01

[2] 吴子安、吴栋材. 水利工程测量,测绘出版社,北京,1993年11月