公务员期刊网 精选范文 空气环境质量监测范文

空气环境质量监测精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的空气环境质量监测主题范文,仅供参考,欢迎阅读并收藏。

空气环境质量监测

第1篇:空气环境质量监测范文

【关键词】环境空气监测;全程质量控制;科学监测

0.前言

环境空气监测是由环境监测机构规定程序和有关法规的要求,对代表环境质量及发展趋势的各种环境要素而进行技术性监测,对环境行为符合法规的情况进行执法性的监督、控制和评价的全过程。几年来,随着我国经济的高速发展、城市建设规模的不断扩大、城市功能区和产业结构布局的不断优化、调整,许多城市在城市环境、城市建成区规模和人口数量、分布等方面都有了很大变化,原有的城市环境空气监测呈现出监测点位数量上的不足或者空间分布上的不科学,不能继续满足城市环境空气监测的技术要求,从而面临着需要不断进行优化。

1.国内的环境空气质量监测的特点

就目前的发展情况而言,国内的环境空气质量监测的构成特点比较简单,环境监测部门把从监测站获得的数据进行整理和分析,再由行政部门一级一级的上报。国内的质量控制和质量保证部门都是独立的各项操作都是由监测站的人员完成的。这样的系统已经落后我们应该不断的进行完善。

2.自动化环境空气质量监测系统的主要组件

自动化环境空气质量监测系统主要组件包括:质量保证的实验室、中心计算机室、系统支持的实验室、各个下属的监测站等。(1)质量保证的实验室的主要工作内容是对所有的监测设备的保养和审定,对检修后的设备进行校准和技术指标的审核,制定和落实系统的质量监测的控制措施。(2)中心计算机的主要工作的内容是通过各种通通讯方式来收集各个下属的监测站监测到的数据和监测设备的工作的信息,并且判断收集到的信息检测和存储,对这些数据进行统计分析和处理;对下属的监测站远程监测、诊断。(3)系统支持的实验室的主要工作内容是仪器设备的运转情况,对系统仪器设备进行保养和设备的维护;对发生故障的仪器设备及时的进行检修和更换。(4)下属监测站的主要工作内容是对环境空气质量的全程的自动监测、收集、储存监测到的信息,按照中心计算机的要求准时的向中心计算机发送监测的数据和仪器设备工作的状态。

3.在现代社会加强监测能力尤为重要

不断的完善环境空气监测,正确的选择环境空气质量监测的控制点,促进国家环境空气监测全程质量控制的能力,提高地区性的污染物质的监测水平,不断发展农村特殊性空气监测站和地区性的监测站的建设,使环境质量监测的结果更加贴切实际情况,符合人们的亲身的感受有着非常重要的意义。空气质量的好坏影响着人们的健康,为了让人们了解环境情况,监督环境空气质量监测的效果,应该准确的环境监测的信息,加强环境空气监测全程质量控制的能力。

4.顺利推进保证能力建设

(1)各级环保部门应提高组织领导的能力,完善工作中遇到问题的协调机制,制定本区域内环境空气质量监测能力建设的方案,把各阶段工作的任务分配到各个部门和单位,做到部署任务、检查问题、以便发现问题能够及时解决问题。(2)各级环保部门应该和同级的财政部门沟通,把环境空气监测全程质量控制能力的建设和完善加入到公共财政开支里面,国家和地方应该共同承担环境空气质量监测的建设和完善。(3)各级环保部门应该依据现在的发展形式对环境空气监测的要求,规划对监测方面的人才的培养,定期的进行人才的培训,把培训各类技能性的人才、专业能力较强的人才和综合性的管理人才为主要目的,促进人才队伍素质的不断提高,为保障环境空气监测全程质量的控制提供人才。

5.对环境空气质量监测的意见和建议

针对我们国家的自动化的环境空气监测全程质量控制发展的形式,提出了以下的几点意见和建议。(1)把环境监测部门的责任要明确的区分开,不同时期的责任分配到个人。比如:校准日常使用的仪器,每年对仪器进行审核,对收集的数据的分析和处理,对数据的优化应该由专人进行负责。(2)从监测站收集到的数据,经手人必须要谨慎保存原始数据,经手人对数据的修改和筛选的权限要保密,以便于在以后的审核或者是调用这些数据的时候有据可依。(3)不断的完善环境空气质量监测的区域性的网络系统。现在21世纪是网络的信息时代,各种信息系统已经大范围的运用到各个行业中去了,要把信息做到透明化是现在环境空气监测全程质量控制的目标,不断的发展和完善环境空气监测的系统,促进信息的集中的处理和数据的不断优化,提高环境空气质量的监测。(4)要不断的完善城市自动化环境空气质量的监测,按照新颁布的《环境空气质量标准》的要求,现在地级以上的城市都需要不断的发展和完善城市自动化环境空气质量的,分批的把缺少的监测设备补充完整。根据地区特点的不同建立不同的环境空气监测点位,各个监测点位之间应该具备良好的信息数据的传输的系统,和网络化的监控平台,进而提高各市、地区的城市自动化环境空气质量的监测。

6.小结

在人们生活水平不断的提高和环保意识的日益重视的社会中, 展望环境空气质量监测未来的发展,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。■

【参考文献】

[1]杨亚洋.环境空气监测数据分析及处理[J].中国新技术新产品,2011(23).

[2]谢晓实,魏东明.关于环境空气监测质量保证的建议[J].中国环境监测,2003(1).

第2篇:空气环境质量监测范文

Abstract: With the development of society and the development of industry, the worsening ecological environment poses a serious threat to human survival and development. Therefore, we must monitor the environment by certain means. The traditional environmental detection has not been able to meet the requirements for modernization and informatization. Therefore, the current monitoring system uses modern technology. This paper studies the present situation of research and development status and the problems in on-line environmental air quality monitoring at home and abroad. In the end, it presents some common atmospheric environment quality monitoring model. It puts forward the design scheme of atmospheric environmental quality prediction system by the third generation air forecasting model, combined with geographic information system software.

关键词: 第三代;大气预测模型;在线监测;大气环境质量;预报

Key words: the third generation;atmospheric prediction model;on-line monitoring;atmospheric environmental quality;prediction

中图分类号:X823 文献标识码:A 文章编号:1006-4311(2013)22-0240-03

0 引言

随着社会工业的不断发展和进步,日益恶化的生态环境日益威胁着人类的生存和发展。要想走持续发展的道路落实科学发展观并且最终构建和谐社会,加强对生态环境的保护是关键。及时检测环境的变化以掌握环境污染的第一手资料,是改善人类的生存环境同时防止环境的进一步恶化的第一步。采用在线检测、模型预测的手段对大气实施环境质量预报将对人们的生活以及环境管理起到重要的作用。

传统的环境检测主要是以人工、单个设备功能为主,这种预报方式已经不能够满足现代化的需要。随着数据采集技术、通信技术以及数据处理技术的不断发展,对监测系统提出了自动化、网络化以及信息化的要求。而以自动测量、系统功能为主的环境在线自动监测预报方式具有实时性好、自动化程度高的优点,已经成为现展的趋势。

环境在线自动监测预报系统是一个综合性的自动化系统,由于该系统集现代化的传感技术、自动测量技术、通信、网络和计算机应用技术为一体,因此,利用本系统可以自动采集、处理、存贮、分析预测水、大气以及噪声等环境监测数据,并且可以把数据以及其他相关处理的信息通过计算机网络提供给环境检测站、环保局、各级政府以及其他相关部门。依据这些数据不仅可以对其进行管理、研究、调度以及决策,同时还可以快捷的以多种方式实现数据的交流和共享。本文重点以大气环境质量预报为例进行介绍。

1 第三代大气环境质量预测模型

1.1 美国AERMOD模型 AERMOD来源于美国环保局,此模型目前已经成为“美国国家法规模式”。AERMOD大气扩散模型是由美国LAKES环境公司开发、美国环保署(EPA)推荐的大气扩散模型软件,有界面已经汉化的版本。

从相关报告来看,AERMOD和ADMS相比在理论基础以及输出精度上不分上下。但是中国引入ADMS的时间相对较长,目前能逐时逐日输出最大浓度值的只有AERMOD和ADMS两款软件。

AERMOD是一个包括AERMAP(AERMOD地形预处理)、AERMOD(AERMIC扩散模型)以及AERMET(AERMOD气象预处理)三方面内容的适用于定场的烟羽模型系统。

AERMOD特殊功能包括对垂直非均匀的边界层的特殊处理,不规则形状的面源的处理,对流层的三维烟羽模型,在稳定边界层中垂直混合的局限性和对地面反射的处理,在复杂地形上的扩散处理和建筑物下洗的处理。

AERMET是AERMOD的气象预处理模型,输入数据包括每小时云量、地面气象观测资料和一天两次的探空资料,输出文件包括地面气象观测数据和一些大气参数的垂直分布数据。

AERMAP是AERMOD的地形预处理模型,仅需输入标准的地形数据。输入数据包括计算点地形高度数据。地形数据可以是数字化地形数据格式,美国地理观测数据使用这种格式。输出文件包括每一个计算点的位置和高度,计算点高度用于计算山丘对气流的影响。

1.2 ADMS模型 ADMS模型是由用过剑桥环境研究中心(CERC)开发的一套先进大气扩散模型,作为新一代空气质量模型,它可以利用常规气象要素对边界层结构进行定义,由于该模型能够更好的对大气的扩散过程进行描述,因此,采用此模型计算的污染物浓度更加准确可信。

使用Monin-Obukhov长度和边界结构的最新理论是ADMS模型区别于其他大气扩散模型的显著区别。ADMS模型是一个三维高斯模型能够精确地对边界层特征参数进行定义。该模型在计算污染浓度的时候采用高斯分布公式;使用倾斜式的高斯模型计算非稳定条件下的垂直扩散,使用一个拉格朗日烟羽抬升模块,烟羽抬升模块预测抬升轨迹和因为热的气态物质的排放对污染物浓度的稀释,其机理是一个顶盖内嵌模型,包括对逆温渗透的处理;化学反应使用了GRS机理,通过化学反映模块可以计算大气中一氧化氮、二氧化氮、臭氧以及挥发性有机化合物之间的化学反映;采用阻力公式计算对颗粒物的干沉降影响,沉降速度考虑到污染物在大气表面层,穿过层流底层到达地面所受污染物阻力的总和,附加重力沉降,湿沉降的计算使用了下洗率的定义。

该模型可以计算大排放量和高烟囱的点源排放、密集的中小源排放、无组织的面源排放、街道和公路的线源排放,并考虑建筑物附近的绕流;该模型可以用于评价城市污染现状,制定城市污染物排放标准,预测污染趋势,选择最佳工业布局,设计监测网点,同时可以用来研究大气质量管理措施,应用于环境评价及规划,该模型可详细模拟300个网格源,1500个工业源及1500个道路源。

ADMS模型摒弃了Pasqill稳定度分类法,将大气边界层分为稳定、近中性和不稳定三大类;同时摒弃了跃变式Pasqill曲线或幂指数形式的扩散参数体系,采用连续性普适函数或无量纲表达式的形式;在不稳定条件下摒弃了高斯模式体系,采用PDF模式及小风对流模式,可以模拟计算点源、线源、面源、体源所产生的浓度,ADMS模型特别适用于对高架点源的大气扩散模拟。

2 大气环境质量在线监测预报开展现状

环境在线检测预报信息系统将传统手段与现代信息技术相结合以适应新形势下环保工作的具体要求,此系统由于综合应用了地理信息系统(GIS)、网络与通信技术、全球定位系统(GPS)、管理信息系统(MIS)技术、自动控制技术以及数据库技术等先进手段和方法,因此在对环境监测目标进行管理和分析的时候能够实现实时动态、总量控制、应急响应以及多维变频等,实现了实时、多维以及高精度的在线监测水、气、噪声以及生态等环境,为了最大限度地提高环境监测的信息化水平以增强环境决策与管理的能力,应当通过分析和管理数据以深度支持监测业务以及环境管理决策。

2.1 国外技术发展现状 基于单台仪器的间断方法以及人工取样实验室分析的非在线式的传统的环境监测具有明显的缺点,如:不能实现数据共享、在线测量以及远程控制;无法掌握环境质量的突然恶化以及污染物的突发超标排放情况等,因此经常导致重大污染事故和经济纠纷。因此,世界各国均将自动控制技术、化学分析手段记忆计算机监控技术作为发展环境监测技术的重要手段。尤其是在西方一些发达的国家和日本等纷纷投入巨资建立了以检测空气、水质环境综合指标以及某些特定项目为基础的在线检测系统。

环境检测仪器随着信息技术以及网络技术的不断发展也呈现计算机化和网络化,网络技术、工业测控总线技术、面向对象的软件开发技术等均在环境在线监测方面得到了良好的应用。

目前,欧美发达国家正依托完善的环境在线监测系统,积极的开展在线的环境质量预报工作,大量优秀的预测模型、预测软件被开发出来,并实现了商业化的运作,这就极大地增强了政府环保部门的环境决策与管理的能力。

2.2 国内在线监测预报发展现状 近20年以来随着经济的不断发展,环境形势越来越严峻。我国的环境检测相继经历了三个阶段,即被动监测、主动监测以及自动(在线)监测。上个世纪80年代我国开始引入和吸收国外先进的技术,并在北京、上海以及青岛等15个重点城市建立了空气质量自动监测系统,在黄浦江、天津引滦入津河段以及吉林化工、宝钢等大型排污企业的排水系统建立了水质自动监测系统。

目前我国重点城市已利用建立的环境空气质量自动监测系统开展环境空气质量日报或预报工作。2000年开始实施130个城市的环境空气质量监测系统的建设项目。与此同时,随着控制污染物排放总量制度的实施,各地相继开始建设污染源在线自动监测系统(重点废气排放源和重点污水排放源)。

国内在线监测系统已经初步建立,但对于在线预报领域还处于探索起步阶段,各地正在尝试建立在线预报系统。

3 大气环境质量预报系统设计

3.1 研究背景 环境质量预测是研究城市污染防治对策、制定城市环境总体规划、真正实现城市环境有效控制等工作的基础。通过对环境质量状况和环境发展趋势做出正确的预测,可以为环境规划决策提供科学依据,从而达到调控和指导城市经济发展行为、避免重大失误的目的。

3.2 系统平台 在综合考虑各种约束的基础上通过对系统进行需求分析,利用可行的以及可用的技术手段和方法来确定系统实施方案的过程即为大气环境质量预报系统设计,此外,它也是建立系统物理模型过程和实施的重要依据。

在选择系统平台的时候主要考虑以下因素:系统应用的环境和功能需要、监测机构投入的保证能力、应用水平、平台软硬件产品的功能与性能指标等。同时还要遵循以下原则:实用性和经济性;标准性和主流性;易用性和可扩展性;成熟性和先进性等。

系统平台根据系统结构设计的要求主要分为硬件和软件两大部分。硬件系统的组成见图1。软件系统的构成见表1。

3.3 系统数据的采集与处理 系统所要采用的数据类型可分为污染数据、气象数据、地形数据三类,其中污染数据包括污染源类型、污染源位置和污染排放率、流量、烟囱的排放温度、烟囱高度和烟囱直径等,模型带有的排污因子可以使从车流量,平均车速数据来计算道路交通的排污率,污染排放数据可以存储在标准的数据库中;气象数据包括风速、风向、温度、云盖度和一些演算出来的数值(如莫尼-奥布克夫长度,边界层高度等);除了模拟平坦地形的情形,模拟山地时可以输入合适的地形数据,地表粗糙度数据、街区窄谷的高度、道路宽度和位置等。

预测系统所要监测与预测的大气污染源主要是集中供热站与道路的机动车辆,所需的污染数据将由设在集中供热站内与道路监测点的自动监测设备实时获取,监测数据通过网络在线传输给监测中心,监测中心收到数据后将数据及时录入ADMS软件数据库中存储。

气象数据除了一些基础的常年观测平均数据外,还包括气象台实时提供的风速、风向、温度、云盖度数据,这些数据可在监测中心通过网络在线从气象台获取。获取到的数据经过标准化处理后也将输入到ADMS软件数据库。

预测所需的地形数据都将统一输入地理信息系统软件Acr view中进行管理,通过ADMS软件与地理信息系统软件Acr view的联合使用,我们就能对预测区域的空气质量进行预测。

3.4 总体结构设计 大气环境质量预测系统是由一个中央控制系统和若干个监测终端系统组成的,一般情况下,中央控制室设置在独立的环境监测中心站内,而在各个监控企事业单位污染物的排放口以及各主要道路监控子站中设置监测终端站,而控制室和终端站之间采用无线或Internet网的方式进行通信和控制。

中央控制系统主要由计算机机组、通信设备和应用软件组成。控制室的计算机组采用客户/服务器(c/s)体系结构,在c/s结构下,若干个客户机和多个服务器以及网络设备、通信设备及其应用软件组成一个支持分布式预测数据获取、计算、分析和表示的系统。在该模式下,设有前台机和后台机,分别运行相应的软件。前台机负责对子站进行监控管理。

如监测站的运行状态显示与控制、数据远程传输接收等;后台机主要对前台机采集的数据进行分类统计、查询、分析、数据存储与输出等管理,同时通过局域网和Internet网,供环境管理部门查询共享和对外。

本系统中,中央控制系统接受来自若干个监测站系统的数据,以及气象局各气象站的气象数据,对这些数据及时进行处理分析,最后将预测结果通过网络适时,从而组成一个完整的大气环境质量预报信息系统,见图2。

参考文献:

[1]环境影响评价技术导则 大气环境(HJ2.2-2008).北京:中国环境科学出版社,2008.

[2]徐伟嘉,刘永红,余志.ADMS Urban在机动车尾气扩散上的应用研究[J].科技管理研究,2004(6).

[3]韩洪武,张洪林,蒋林时等.ADMS仿真模拟在总量控制中的应用[J].辽宁城乡环境科技,2005(12).

[4]方力.鞍山市ADMS-城市空气扩散模型的建立与验证[J]. 辽宁城乡环境科技,2006(2).

[5]尹洁,王会燃.基于Internet的大气分布式实时在线可控监测网的应用[J].环境监测管理与技术,2002(8).

第3篇:空气环境质量监测范文

关键词:环境控制监测;质量控制;措施

中图分类号:Q89 文献标识码:A 文章编号:

所谓环境空气监测就是指,环境监测机构对环境空气监测的程序及法规进行规定,对表示环境空气质量和发展趋势的各种要素进行全面的技术监测,并对环境行为符合相关法律法规的状况进行相应的执法监督、控制和评价。近些年来,我国的经济取得了高速的发展,城市化、工业化进程不断提升,城市原有的环境、规划和人口分布产生了巨大的变化,城市原有的环境空气监测网络已经无法满足当前环境空气检监测的需要,环境空气监测质量需要进一步的提升。

一、环境空气监测中质量控制存在的问题

当前影响环境空气监测质量的主要问题表现为:一些高精度监测点位的筛选确定及评估体系还不是非常完善;缺少高频次、高准确度、高分辨率的立体监测方法和设备;一些空气监测设备的质量控制技术已经无法适应当前的监测需求;监测所获得的数据信息无法得到充分深入的分析;缺少必要的环境空气质量和污染源归因和反控制技术;缺少必要的环境空气监测预警技术等。

二、环境空气监测质量控制的有效措施

2.1、不断优化环境空气监测点位布局

随着我国城市化的不断发展,工业水平正在不断提高,原有的环境空气质量监测点位已经无法满足当前社会环境管理的需要,因此,建立科学合理的环境空气监测点位已经成为一项迫切的需要。首先,对环境空气监测的点位网络进行优化,坚持、系统化、完整化及代表性的点位设置原则,对现有的环境空气监测点位进行充分的优化调整,实现点位网络的科学布局和设置。其次,点为网络应该逐步朝着基层和农村延伸,在基层和农村建立专门的环境空气自动监测站,从而实现空气质量监测的城乡一体化,从而建成一个覆盖面广,符合当前社会环境空气监测要求的环境空气监测网络。

2.2、不断提升环境空气监测的准确性和公信力

环境空气监测能力的高低主要是有科技水平决定的,科学技术水平的高低直接影响着环境空气监测质量。当前,环境空气监测工作的复杂性越来越高,这也给环境空气监测科技水平提出了更高的要求,同时也是环境空气监测科技提升和变革的一次重大机遇。

2.3、以综合防治为基础,不断提升空气质量

环境空气质量的提升需要长时间的努力,不能简单的依靠某一种方式或手段来实现,应该多种方式共同努力的方法。环境空气监测是环境空气质量控制的第一步,只有实现科学有效地监测,才能够更好的实现联合防治和控制。首先,不断加强部门间的协同合作;其次,实施环境空气防治责任制;再次,不断加强法律法规建设;最后,加强各种治污工程的建设。此外,还应该加大对机动车的监测和治理工作,利用旧车淘汰、标准升级、区域限行、油气回收等手段,强化对机动车尾气的治理工作。

2.4、加强相关环境空气监测技术的培训

要想实现环境空气监测质量的提升,全面提高生态文明建设水平,必须重视社会对环境空气信息的知情权和监督权,大力推动环境空气监测信息的公开化。首先,利用各种技术讲座的形式,对当前的环境空气质量标准进行深入的分析和解读,并对相关的空气监测技术人员进行全面的技术培训。其次,邀请领导、专家、设备厂家进行环境空气监测知识的讲座,加强对PM2.5相关监测设备的技术培训,不断提升环境空气监测人员的技术水平。此外,还应该不断培养环境空气监测人员良好的学习氛围,举办各种形式的环境空气知识竞赛活动,调动相关人员的学习积极性,形成一种良好的学习环境空气监测技术知识的分为,最终实现提升环境空气监测质量的提升。

2.5、加强空气自动监测系统联网

利用空气自动监测可获得连续监测结果的特点,实现省级和国家自动监测网络的联网,为省级和国家级监测站实时分析评价区域性的空气质量,及时为环境管理服务提供了方便,各省级站将根据自己情况,逐步建立空气自动监测网络。空气自动监测系统联网控制体系,同时空气自动监测已成为空气质量监测的主要手段,原有城市环境空气自动监测系统质量保证和质量控制体系也需要完善。随着国家现代化发展的进程,国家环境空气监测网将根据国家环境管理的需要,确定全国的环境空气质量变化趋势、空气污染的背景全水平和全国及各地方的环境空气质量是否满足环境空气质量标准的要求,及时准确地提供监测和分析结果。

总之,判断大气质量是否符合国家制定地大气质量标准,科学监测是科学治理的基础,对环境空气的监测点选择应科学规范,最真实反映城市总体空气质量,避免人为因素影响监测结果。

参考文献

1、刘婵芳,我国环境空气监测评价现状分析与改善建议,科技创新与应用,2012(20)

第4篇:空气环境质量监测范文

【关键词】室内空气质量;甲醛;甲苯;二甲苯

1.前言

随着新校区的建设和投入使用,室内空气质量问题的严重性日渐显现,室内空气污染已对广大学生和教师的身体健康构成了威胁,特别是图书馆,由于配备了大量家具和存放了大量的书刊,其对室内空气产生了较大的影响。而图书馆是广大学生学习、生活的场所,其室内空气质量直接影响到下一代的健康和发育,因此,本课题检测了烟台新校区图书馆各个书库、阅览室的室内空气中甲醛、甲苯、二甲苯的浓度含量,结果表明各室室内空气中存在着不同程度的污染[1]。我们分析了造成此影响的因素,提出了改进的措施和建议。

2.室内空气监测方法及结果

本研究选择图书馆各书库、阅览室、图书馆办公室为检测点。根据我国室内空气质量标准“附录A(规范性附录)室内空气监测技术”规定的方法进行采样[2]。甲醛和苯系物的采样器为KC.6D型大气采样器和CPH一1恒温恒流采样器,采样流量为0.5 L/min,对各个书库、阅览室分别选4个抽气点,进行了采样测量.一般每天上、下午各采样测量1次,时间为上午9:00~10:00及下午4:00~5;00之间;用空气采样器抽气后,用AHMT分光光度法检测其中的甲醛,用气象色谱法检测甲苯及二甲苯的浓度含量[3],然后算一均值,结果见表1:

表1 图书馆各室内空气中污染物的含量(mg/ m3)

甲醛 甲苯 二甲苯

书 库 0.04 0.05 0.07

阅览室 0.05 0.06 0.08

办公室 0.03 0.04 0.05

国家标准 0.08 0.20 0.20

3.污染物的来源及分析

甲苯、二甲苯是油漆中不可缺少的溶剂,我们检测到阅览室空气中含有较高的浓度,就是因为存放了大量的新杂志和医学期刊,印刷油墨没有干透,仍在不断地向空气中释放甲苯、二甲苯。还有在装修中俗称天那水和稀料,主要成分都是苯、甲苯、二甲苯。特别是溶剂型胶粘剂在装饰行业仍大量使用,甲醛在各种建筑装饰材料的有机溶剂中大量存在,比如胶合板家具,其中多数含甲醛和甲苯,我们检测到家具多的书库含有较高浓度的甲醛和甲苯,就是因为胶合板释放出大量的甲醛和甲苯。

4.污染物对健康的影响及防治对策

当室内空气中含有少量甲醛时,人体就会有不适感,如引起流泪、咽喉疼痛;浓度增加时可引起恶心、咳嗽、胸闷气喘。长期接触可出现头疼、头晕、乏力和视力障碍。动物实验已证明甲醛能引起动物细胞核的基因突变、损伤染色体,可导致大鼠鼻癌,因此甲醛污染增加了人群胃癌、鼻咽癌及肺癌的危险性。

吸入苯系物对中枢神经有抑制作用,同时会伴有头痛、欲呕、步态不稳、昏睡、抽痉及心律不整。长期接触可导致造血系统抑制,白细胞减少,血小板减少,严重时可发生再生障碍性贫血;同时苯也是致癌物,可引起血白病[4]。因此,我们采取了以下措施来降低图书馆环境中的污染物浓度:

4.1装饰材料及家具的选择

室内环境污染的来源很多,其中有相当一部分是由于装修过程中所使用的材料不当造成的,包括甲醛、苯、二甲苯等挥发性有机物气体。因此在装修过程中应尽量选择有机污染物含量比较少的材料。比如选用正规厂家生产的油漆、胶、胶合板和涂料,选用无污染或者少污染的水性材料,同时提醒大家注意对胶粘剂的选择,因为目前建筑装饰行业各种规定中,没有对使用胶粘剂的规定,普通百姓又没有经验,装饰公司想用什么就用什么,容易被忽视。家具和书架我们尽量采用铁制材料,减少胶合板的使用。

4.2加强通风设施配置

由于阅览室和各书库经常增加新书刊,有的刊物油墨还没有干透,所以上架后在读者的阅读过程中就会不断地向空气中散发甲醛及甲苯等,所以学校给每个书库和阅览室都配备了多点式抽风机,做到上班前及每隔一小时开抽风机一次,每次抽风10分钟。同时夏天尽量开窗上班,冬天也不要密闭门窗,使室内空气保持在一个流动状态,这样就会降低空气中各污染物的浓度,减少师生员工的吸入量,减少对人体的损害。

4.3由于工作人员在室内工作时间长,因此,要养成每隔一小时去室外活动一下、呼吸新鲜空气的好习惯[5]。最好在设计时,就把工作台和书库、阅览室分开,减少工作人员在有污染的空气中的工作时间,同时在工作台附近,多养花草,对室内空气的改良也有一定的作用。

参考文献:

[1]吴嘉慧,吴科颖,宋会荣.某高校图书馆甲醛质量浓度的测定[J].齐齐哈尔医学院学报,2006,27(5):583—585.

[2]卫生部卫生法制与监督司,中国疾病预防控制中心环境与健康相关产品安全所,中国疾病预防控制中心辐射防护与核医学安全所.GB 18883—2002,室内空气质量标准[s].北京:中国标准出版社,2003.

[3]卫生部卫生法制与监督司,中国疾病预防控制中心环境与健康相关产品安全所,中国疾病预防控制中心辐射防护与核医学安全所.GB 11737—1989,居住区大气中苯、甲苯和二甲苯卫生检验标准方法——气相色谱法[s].北京:中国标准出版社,2003.

第5篇:空气环境质量监测范文

关键词 环境监测;空气质量;监测系统;注意问题

中图分类号 X831 文献标识码 A 文章编号 1673-9671-(2012)122-0163-01

改革开放以来,我国的经济得到了快速迅猛的发展,但经济增长背后却是以环境污染为代价。如今环境污染越来越严重,不仅危害到动植物的生存,更危害到广大人民群众的身体健康。诸多环境问题中,尤其严峻的是人类赖以生存的空气受到了污染,这无疑是人类健康的直接威胁,因此在环境监测中运用空气质量监测系统来监测空气质量,以更好的真实的反映空气污染程度,从而在掌握空气质量的前提下有针对性的进行环境护理和改善,促进生态的平衡发展。空气质量监测系统是一项专业的空气质量监测技术,在监测环境过程中注意哪些问题,采取什么措施是空气质量监测系统在环境监测中有效运用的重点,对改善环境污染来说,也是具有重大的意义。

1 空气质量监测系统

空气质量监测系统的核心是自动监测仪器的自动监控的实现,是用以采集空气样本并对空气的质量和变化情况进行数据收集整理和分析的一套系统,在空气质量报告和空气质量预告方面发挥着重要的作用,是我国重要的空气质量监测技术。空气质量监测系统主要由中心计算机室、监测系统实验室、各监测小站等部分组成,基本上能实现自动化采样空气样本、分析和对数据样本进行处理等功能,从而给各类提供各种空气指数和指标,以反映空气的真实状况。

2 在环境监测中运用空气质量监测系统需注意问题

空气质量监测系统在环境监测和改善环境污染等问题上的重要性已经被社会各界认识和接受。为了能顺利运用这套系统以充分发挥这项技术在环境监测中的作用,需注意其通过建立质量管理体系文件等方式对其质量加以控制,此外还需注意其设备维护等方面的问题。

2.1 质量管理体系文件的建立

空气质量监测系统的运用必须先建立起一套合理完善的质量管理体系文件。具体包括质量管理手册、质量管理程序文件和操作指导书,以及适时的质量记录等。在质量管理体系的要求下,要求技术人员熟悉和掌握质量管理体系的各项要素的内涵,结合具体工作岗位编制出规范性的质量管理体系文件。在工作中应严格按照质量管理体系文件进行空气质量监测。

2.2 在组织上和技术上保障空气质量监测系统的运用

1)建立具体的分工小组以提供组织上的保障。首先,建立中心控制组。这个小组主要负责空气质量监测系统的中心控制工作,并且对各监测小站监测仪器的运作情况进行控制和诊断。还负责地监测数据的收集和整理并日报和预报等工作。其次,建立运行保障组,负责对空气质量监测系统以及各监测小站的例行监测报告工作。再次,建立仪器维修组。负责对空气质量监测系统各设备进行维护和及时修理。最后,建立质量控制组。该组负责对空气质量监测系统的标定和校准等工作。

2)为实现空气质量监测系统的运用所需提供的技术保障。这需要吸收和采用熟悉相关环境保护知识和法规的监测人员,并且要求他们具备上岗证和良好的素质。另外,需购买稳定性好,能持续运行,各项指标符合国家标准的仪器设备,投入使用前需测试和调试。此外,需采用国家的标准方法作为监测方法。

3)注意标准物质和易耗材料的选取。需以标准气为空气质量监测系统仪器的标准物质,对于空气质量监测系统需用的β射线测尘仪,应采用标准膜和电子流量为校准物质。在易耗材料的选取方面,一般以过滤膜、气体管路等材料为首选。所选材料在应用前应通过国家相关的测试,以确保对空气质量监测的结果没有影响后才能在合理范围内使用。

4)注意监测仪器的校准。对强制检定仪器进行强制检定,一般以一年为强制检定周期。对于目前还未能通过计量部门检定的仪器需采用自行校准的办法,一般其有效期为一年。另外在空气质量监测系统仪器使用期间也应做不定期的自校准和检查,以及时发现问题和解决问题。另外,还需对设备仪器进行编号和归档管理。

5)注意对数据和报告进行科学合理的处理。对于监测的数据标准,应以国家的计量单位为标准,并依据国家相关规范对有效数据进行适当的取舍。严格遵守原始数据二级审核制度,对于上报的数据需进行三级审核。需对监测数据进行备份以保证数据的完整和安全。

3 小结

空气质量监测系统在环境监测中往往因为一些日常工作的疏忽和小失误而影响监测效果和结果,不能真实反映空气质量和误导环境改善工作。通过建立质量监测系统仪器,提供组织上的保障,提供技术保障,注意标准物质和易耗材料的选取,注意对数据和报告进行科学合理的处理等方面措施以顺利实现空气质量监测系统在环境监测的有效运用,对切实提高我国空气质量有借鉴意义。

参考文献

[1]黄仁杰,张荣锁,沈钢,倪士英.我国辐射环境监测网络质量管理现状及发展对策[J].辐射防护,2009,05.

第6篇:空气环境质量监测范文

关键词:环境监测; 质量控制; 影响因素;对策

Abstract: the environmental monitoring quality management is the results of monitoring the scientific, objective and fair important guarantee, is to ensure that the monitoring data of meet the representative, accuracy, precision, comparability and the integrity of the important measures required, pays special attention to the environmental monitoring quality control is important step. Combining with the influence factors on the quality of the environmental monitoring, put forward in order to improve the environmental monitoring measures of quality control.

Keywords: environmental monitoring; Quality control; Influencing factors; countermeasures

中图分类号:X83文献标识码:A 文章编号:

引言

随着监测技术的发展,各种监测技术在环境监测中广泛应用,这也使得其质量控制更为人们关注,因此,在环境监测中对质量的控制要严格要求,建立质量控制管理体系,切实提高环境监测质量,使环境监测更具有代表性、完整性。

影响环境监测质量的因素

在日常的环境监测过程中,影响监测结果的因素有很多,在此,介绍几个常见的主要影响因素:

1、人员素质的影响

在环境监测过程中,会涉及到很多采样、监测以及分析等人员,这些人员操作技能的高低、工作态度的好坏和责任心的强弱将会直接影响到监测结果的准确性。

2、现场样品的采集

2.1 监测布点

监测工作的第一步,也是非常重要的一步就是监测布点。但是,实际在操作过程中,往往会受到地理位置、天气状况以及周边环境等影响,难以实现理论上的监测布点,而只能选取其他可代替的点位来因地制宜的进行监测。一旦监测布点与要求中的相差较远,或随意的不按规范布设点位,就会使采集的样品和监测数据出现错误,从而无法反映出真实情况。

2.2、样品的采集

在日常的环境监测工作中,采样往往被认为工作简单而被忽视,其实恰恰相反,在环境监测中,如果采样方法不正确或不规范,即使操作者再细心、实验室分析再精确、实验室的质量保证和质量控制再严格,也不会得出准确的测定结果。

3、样品的管理

样品是从各种水、气环境中取得的实物证据和质料,妥善而严格的管理是获得可靠监测数据的必要手段。样品采集后应尽快送到实验室分析,样品超过保存期会发生物理、化学等变化,从而影响测定结果, 如果不能尽快分析,必须采取适当措施予以保存。

4、仪器设备

样品在分析过程中,会受到仪器设备的影响而直接使分析结果带有误差。这是因为仪器设备往往自身会有一定的精确度和灵敏度误差。

5、实验室环境

在样品进行测试的过程中,一般都对温度、湿度、压强和风速等条件有规定, 如果在当前测试环境下不符合以上要求,而又不采取任何补助措施,就必然会影响检测数据的可靠性和准确性。

6、分析方法的影响

环境监测方法是需要与时俱进,不断在实践中进行完善的,并非一成不变。同时,不同的环境污染物浓度,在分析时采用的方法也随之不同。因此,一旦在操作过程中,由于采取了不完善的方法或者搭配不当,就会直接影响监测数据的准确性。

二、做好环境监测质量的相应对策

质量控制就是要把监测分析误差控制在容许的限度内,保证测量结果的精密度和准确度,使分析数据在给定的置信水平内,达到所要求的质量。从实验室管理的角度上控制可分为预先控制,过程控制和事后控制,这三个控制阶段相互影响并形成一个循环的过程。

1、预先控制

预先控制是质控工作的起始点,是在环境监测工作开始之前所实施的控制。所以预先控制也是预防性的控制,即以避免产生错误,尽量减少日后的纠正活动为目的的控制活动。像质量体系程序文件、质量保证计划、人员训练和培训计划等都属于这种控制。为了做好预先控制应从以下几个方面来做好工作。

1.1人员素质。实验室人员的能力和经验是保证检测工作质量的首要条件。检测人员水平的高低直接影响者检测数据的准确可靠;目前尽管各实验室现代化仪器愈来愈多也越来越复杂,但技术判断、经验、技巧、甚至工作人员的专业水平对于减少和保持测量变动在可接受的水平上仍是非常重要的。实验室人员必须具有与测量项目要求相当的最低能力水平。随着获得大多数方法的经验后,测验能力就会提高。为了保证检测工作的质量,检测人员必须经专业理论、基本操作考核合格,才能持证上岗。

1.2 仪器设备。现代化学分析需要合适的设备和仪器,实验的成功或失败常常可以追溯到设备和仪器的配备和使用的合理性。因此必须有专人对仪器设备进行日常维护和保养,以便有效地保证设备的完好率和准确度。仪器设备从购置到使用要有一套完整的技术档案,我们还需要有为分析有关问题而专门设计的质量保证体系及相应的其他因素支持。

1.3 环境。仪器所处的环境也是十分重要的,现在大多数精密仪器都对室内的温度和湿度有要求。这就需要我们配备空调、抽湿机和通风厨等设施并保持实验室内的清洁。确保实验室的检测设备、辅助设施、操作空间、工作环境、能源、 照明、温湿度、通风等条件满足检测工作的需要,最大限度的使实验室的环境满足仪器的要求并防止因环境对实验人员健康造成的伤害。

1.4 检验方法是检测的依据,它可以是,也可以不是由标准部门制定的方法标准。我们要尽可能的使用国家、行业的标准方法,但这些标准方法对于在仪器操作使用、样品的制备和处置、检测工作程序等方面的说明尚不能准确指导检测工作时,应编制作业指导书来规范检测工作。检测工作所需的指导性文件、标准、手册等应随时更新,必须保证现场所采用的标准、方法和作业指导书等为现行有效版本。

1.5 标准物质和化学试剂应有专人负责保管,做好出入库登记,并保证其安全有效。及时清理已经过期的标准物质和化学试剂,在实验开展前要注意检查所需用到的试剂是否过期或变质,避免误用而造成时间和人力物力上的浪费。

2、 过程控制

过程控制是在实验的进行过程中实施的控制。实验室的检测过程一般是下达采样和质控任务后,采样人员按要求采集样品并送往实验室分析,实验人员确认仪器设备和环境符合要求后开始进行检测。实验室的检测过程控制分为现场控制和实验室内的控制。

2.1 现场采样质量控制, 现场采样质量控制和质量保证工作可确保样品具有代表性、完整性,能全面准确地反映客观事实。采样应严格按照相关规范进行控制。

2.1.1 监测点位的设置。在确定和优化监测点位时应遵循尺度范围原则、信息量原则,并注意其经济性、代表性和可控性。

2.1.2 样品采集。样品的采集应满足 《水和废水监测分析方法》第四版或 《空气和废气监测分析方法》 第四版对各项目的要求; 特殊样品的采集要特殊对待, 然后按要求填好采样地点、采样时间、采样人、记录人、核对人,出现异常要有附加说明记录。

2.1.3 样品统一编号。包括样品序号、监测点位、监测项目、采样日期,并要求贴好标签,采样人员应认真核对,记录其状态是否异常或与监测方法中所描述的标准状态有所偏离。

2.2 样品保存的质量控制

2.2.1 样品保存与管理。为保证从样品采集到测定这段时间间隔内,样品待测组分不产生变异或使发生的变化控制在最小程度,在样品保存、运输等各个环节都必须严格遵守有关规定并针对水样的不同情况和待测物特性实施保护措施,要力求缩短运输时间。当待测物浓度很低时,更要注意样品的保存,应尽快送实验室进行分析。

采样人员应根据不同项目的不同要求, 进行有效处理和保管,指定专人运送样品并与实验室人员交接登记。

2.2.2 样品确认。分析人员在接收样品时,要仔细核对样品和采样记录,确认正确无误后方可签收。样品要按保存期、保存环境、保存条件和有效期等进行保存, 符合要求的样品方可开展分析。

2.3 实验室内部质量控制。实施检测前必须创造一个清洁整齐便于操作的环境,应尽量减少因室内温度、湿度、电源电压波动、空气中污染成分对分析测试的影响;分析仪器设备、玻璃量器应进行定期检定校正。

2.3.1 纯水要求。一般分析工作用纯水,特殊要求的分析用纯水,按其分析方法规定制备,随做随检,填入检验记录表存档。

2.3.2 空白试验。空白试验值的大小及重现性可在相当大的程度上反映一个实验室及其分析人员的水平,如纯水质量、试剂纯度、试液配制质量、精密仪器的灵敏度和精确度、玻璃器皿的洁净度、仪器误差、滴定终点误差等对试验结果的影响。所以空白实验值应符合质控要求,否则就要从以上各方面查找原因。

2.3.3 双样平行与加标回收率。随机抽取样品进行双样平行和加标回收率的测定,使双样平行的相对偏差和回收率范围达到质控要求。 做回收率的测定时, 加入标准物质的量与样品中待测物质的浓度水平相等或接近。一般情况下要求加标量不大于样品中待调物质含量的0.50~2倍。

2.3.4 标准曲线。标准曲线的斜率常随环境温度、试剂批号和储存时间等试验条件改变而改变。标准曲线每月测一次,以控制标准曲

线的波动范围, 其测点不得少于6个,相关系数必须达到0.999以上,截距、 斜率取用位数为小数点后四位。使用标准曲线时, 应选用曲线的直线部分和最佳测量范围,不得任意外延。不同项目标准曲线斜率要逐次进行比对,若相差较大,应分析原因,及时更正。

2.3.5 标准控制样品。对密码标样进行测定,按标准保证值的不确定度检查质量。若分析结果超出不确定度范围,则要从人员,仪器,试剂等方面查找原因。

2.3.6 质量控制图。为了能直观地描绘数据质量的变化情况,以便及时发现分析误差的异常变化或变化趋势,就要绘制质控图来更加明确的指导我们进行质量控制。

3 事后控制

事后控制是质控过程的终点, 把好最后这一关,可以及时的发现和修正错误, 改善质量保证体系。 实验室的事后控制主要是通过数据与记录的控制、内审、 管理评审来实现的。

3.1 数据与记录的控制数据要真实、完整、准确、可靠,在技术上要经得起推敲。记录指的是实验室操作的成文依据和测量过程所有成文记录,包括:计划、 方法、校准、样品、环境、仪器和数据处理等。应准确地做好成文记录和数据报告。记录的真实性和完整性是对实验室诚实的考验。对测量负有责任的人都应在记录和报告上签字,以表明技术内容的准确性。

3.2 内审是对质量管理体系进行自我检查、自我评价、自我完善的管理手段, 通过定期开展内部审核,纠正和预防不合格工作,确保质量体系持续有效的运行, 并对质量体系的改进提供依据。

3.3 管理评审是指为了确保质量体系的适宜性、充分性、有效性,由最高管理层就质量方针和质量目标,对质量体系的现状和适应性进行正式的评价。 通过管理评审对质量体系进行全面的、系统的检查和评价,确定体系改进内容,推动质量体系持续改进和向更高层次发展。管理评审由机构负责人实施,每年至少评审一次,确保质量管理体系的适宜性、充分性、有效性和效率,以达到规定的质量目标。

三、结束语

通过对实验室的预先控制有效地避免了可能会出现的错误或问题。通过过程控制, 保证了实验室质量体系的正常运行;通过事后控制,可以及时发现和改正错误,从而不断完善质量保证体系,为下一个循环的质量保证计划和预先控制提供了依据,使我们可以预防更多的问题和避免更多的错误。只有加强了这三个方面的控制,才能使实验室的质量控制工作得到充分保证,使环境监测工作取得满意的效果,从而为环境保护事业的良性发展奠定坚实的基础。

参考文献:

[1] 国家环境保护总局编《水和废水监测分析方法》(第四版)和《空气和废气监测分析方法》 (第四版)

[2] 中国环境监测总站编《环境水质监测质量保证手册》 (第二版)

[3]国家认证认可监督管理委员会编 《实验室资质认定工作指南》

作者简介:

第7篇:空气环境质量监测范文

一、指导思想

以改善环境质量为核心,全面贯彻党的十和十八届二中、三中、四中、五中、六中全会精神,大力推进生态文明建设,深入贯彻落实《生态环境监测网络建设方案》,紧密围绕“十三五”环境保护重点工作,积极构建全国统一的生态环境监测规范体系、质量控制和质量管理体系,强化法规、行政和技术手段,全面提高环境监测数据的真实性、准确性和可比性,为环境管理科学决策提供重要保障。

二、基本原则

(一)理顺体制机制。适度上收环境监测事权,完善考核机制,明确各方责任,实现“谁考核、谁监测”,保障监测数据的独立性和公正性。

(二)强化质量控制体系建设。构建全国统一的环境监测规范体系和质控体系,实现环境质量监测活动全要素溯源传递和全过程质量控制,保障监测数据的科学性和可比性。

(三)严格执行各项质量管理制度。加强内部质量控制、强化外部质量监督,有效规范环境监测活动,打击监测数据弄虚作假行为,保障环境监测数据的准确性和权威性。

三、工作目标

2016 年底前,上收国家环境空气质量监测事权,建立气态污染物量值溯源体系和颗粒物比对体系,完善空气质量监测质量管理制度和技术规范,建立远程在线质控系统、数据及仪器参数变化评估及预警体系,保障国家环境空气质量监测数据的准确可靠。2017年,在现有基础上,进一步完善地表水和近岸海域环境质量监测质控技术体系,组织开展质量管理和监督检查活动,保障国家水环境质量监测数据准确可靠;建立土壤样品采集、制备、分析、数据审核全过程质量控制的有效机制。2020年,全面建成环境空气、地表水和土壤等环境监测质量控制体系,深化信息技术在环境监测质量管理中的用,进一步推进监测信息公开和公众监督,保障大气、水、土壤污染防治行动计划评价及考核数据客观真实、准确权威。

四、工作内容

(一)深化体制机制改革,防止行政干预

1.加快监测事权上收。积极推进生态环境监测体制改革,实行省以下环境监测垂直管理,加快环境空气、地表水、土壤、近岸海域等环境质量监测事权上收,全面建成国家环境质量监测网(以下简称国家网),所有站点原始监测数据第一时间直传中国环境监测总站。省级环保部门适时上收环境质量监测事权,完善地方环境质量监测网(以下简称地方网)。实现“谁考核、谁监测”,保障用于评价、考核的环境监测数据不受行政干预。

(二)健全管理体系,明确各方职责

2.构建环境监测质量管理新模式。建立国家与省级环保部门组成的两级环境监测质量管理模式。环境保护部负责全国环境监测质量管理工作,建立健全环境监测质量管理规章制度和标准规范,开展环境监测质量管理和监督检查活动,指导地方环境监测质量管理工作。省级环保部门按照国家统一要求,负责开展本行政区域内环境监测质量管理工作。中国环境监测总站和省级环境监测机构分别负责国家和地方的监测质量管理技术工作。

3.完善环境监测质量管理制度。推动出台《环境监测管理条例》,修订《环境监测管理办法》《环境监测质量管理办法》以及《环境监测数据弄虚作假行为判定及处理办法》,制订环境空气、地表水、土壤环境监测质量管理相关规定,健全环境监测技术人员从业规范,制定环保行业标准样品使用管理、社会环境监测机构的监督管理等制度,实现环境监测质量管理有章可循、依法管理。

4.强化国家网运行管理。国家网由中国环境监测总站直接管理。城市环境空气质量监测采取委托社会环境监测机构运维的模式开展;地表水环境质量监测采取委托社会环境监测机构监测(运维)或流域上下游环保系统监测机构联合监测的模式开展;土壤环境质量监测采取地方环保系统环境监测机构采样,由中国环境监测总站委托有能力的实验室集中制样、贴标和分析的模式开展。中国环境监测总站负责国家网监测数据传输、审核,监控监测仪器的关键参数,国家网运维机构开放通信协议,监测数据与地方共享。地方环保部门负责国家网的运维条件保障,不再参与国家网的数据审核。

5.加强内部质量控制。充分发挥国家环境质量监测质控体系的作用,强化主要环境要素的全过程质量控制。中国环境监测总站每年组织开展臭氧等气态污染物的量值溯源与传递、颗粒物手工比对工作。每年组织地级以上城市环境监测站开展环境空气、地表水和土壤等环境监测能力考核。不定期组织开展有证标准样品使用情况调查,组织不同来源标准样品之间的分析比对。组织开展地表水跨界联合监测、比对测试和留样复测等。建立土壤环境质量监测随机比对测试机制,组织不同监测单位开展比对测试。

6.加快培育环境监测市场。加强对社会环境监测机构的监管,出台管理办法,探索建立环境监测技术人员水平评价类职业资格制度,加大人员培训力度,规范环境监测社会化服务行为,促进环境监测市场健康有序发展。加强环境监测服务市场信用体系建设,建立社会环境监测机构和人员的诚信评价体系和“黑名单”制度,及时向社会公布监测质量信用情况,完善退出机制,积极营造全行业“重质量、讲信誉”的良好氛围和市场环境,不断提升社会环境监测机构和人员的服务水平和质量。

(三)完善技术体系,提高环境监测数据质量

7.健全环境监测规范体系。加强环境监测规范体系的顶层设计,建立制修订项目库,形成动态更新机制。加快环境空气、地表水、土壤环境监测规范制修订工作。完善有证标准样品体系。推动部门间环境监测方法标准和评价技术规范的统一,提高环境监测数据的可比性和评价结果的一致性。

8.构建国家环境监测质量控制体系。建立由国家环境监测质控平台、区域环境监测质控实验室、环境监测机构与运维机构组成的三级环境监测质量控制体系。国家质控平台设在中国环境监测总站,负责编制质量管理体系文件,制定质量控制计划并组织实施,组织开展量值溯源和量值传递,以及监测质量检查工作。环境保护部在全国遴选若干个省级环境监测机构搭建区域质控实验室,负责区域环境监测质控工作,向上、向下开展臭氧量值溯源、量值传递和颗粒物比对等工作,进行例行质控检查。环境监测机构与运维机构负责建立、运行并持续改进内部质量控制体系,按规定开展日常维护和监测仪器的检定、校准与量值溯源和比对等质控活动,环境监测机构与运维机构及其负责人对监测数据真实性和准确性负责。创新质控技术手段。完善自动监测数据采集和远程质控系统。在实现监测数据一点多发、实时直传的基础上,开发自动监测仪器关键参数的实时采集和传输功能以及水质自动监测仪器远程校准、维护等质控功能,及时发现并减少影响自动监测设备稳定运行的因素。加快建设环境空气和水质自动监测设施视频O控系统,实时记录和保存自动监测站内外环境及人员操作情况,保障自动监测设备正常运行。完善手工监测过程质控,探索采样现场和样品运输过程GPS 定位的应用,努力实现视频或图片等记录资料实时上传,形成覆盖手工监测各环节全过程的质量管理体系。

(四)创新监管机制,引入第三方评估和质控手段

9.推进质量管理第三方监督机制。建立由环境保护部主导、第三方参与的外部质量监督体系和中国环境监测总站主导、第三方参与的内部质量控制体系,构建权责明确、协调有序的国家环境监测质量管理体系。在全国范围内遴选权威专家组建国家环境监测数据质量评估委员会,下设环境空气、地表水和土壤等环境监测数据质量评估专家组,评估环境监测数据质量和全国环境监测质量管理体系运行情况,提出意见建议。

10.持续开展监督检查。规范日常监督检查,中国环境监测总站联合区域质控实验室,组织开展质控体系运行情况检查。每年完成一定比例的国家环境空气、地表水和土壤环境质量监测站(点)的现场检查,检查结果报环境保护部。强化飞行检查,环境保护部组建国家环境监测质量监督检查专家库,以环境监测数据质量评估结果和举报线索等为依据,不定期组织飞行检查,重点打击环境监测数据弄虚作假行为。

11.加大信息公开力度。将环境监测信息作为质控重要手段,按照“能公开、尽公开”的原则,继续执行环境空气和主要水系重点断面自动监测数据实时公开制度,大力推进地表水断面和土壤环境质量监测数据公开力度,保障人民群众的环境监测数据质量知情权和监督权。以传统媒体和新媒体为载体,宣传和解读环境监测质量管理政策,畅通建言献策和举报投诉途径,曝光监测数据造假典型案例,不断提高全社会环境监测质量意识。

(五)加大惩处力度,严厉打击数据造假行为

12.建立质量检查与考核联动机制。明确环境监测数据质量在大气、水和土壤污染防治行动计划考核中的作用,对于地方政府,着重考核环境质量的改善;对于地方环保部门,着重考核监测数据的有效性和真实性。在环境监测质量检查中发现环境监测数据质量不合格的,该地区污染防治工作成效考核适当扣除相应分值;发现环境监测数据弄虚作假的,一票否决该地区该环境要素污染防治工作成效。

13.严肃整治不规范监测行为。对监测工作中仪器设备安装不规范、仪器性能测试不合格、仪器维护频次不够、缺少监测质控报告等问题,依法依规严肃处理,并对整改情况开展“回头看”检查。

14.严厉打击监测数据弄虚作假。建立环保部门与公检法机关联动机制。对于擅自挪动监测点位、修改仪器关键参数、堵塞采样头或采样管路、样品分析和监测报告造假等行为,构成犯罪的,依照有关法律法规移交有关部门处理。对发现环境监测行为不规范且多次整改不到位的,以及数据造假或配合造假的社会环境监测(含运维)机构或监测仪器生产厂商,终止服务合同,列入“黑名单”。对造假行为的处理结果向社会公开,强化警示和震慑作用。

五、能力建设

结合“十三五”环境监测能力建设工作,加强国家质控平台及环境空气、地表水、土壤环境监测质量核查能力建设,配齐质控仪器设备,完善环境空气和地表水自动监测在线质控系统、国家网环境监测数据采集和远程控制系统、自动监测站视频监控系统等,提高国家质控能力水平。健全量值溯源与传递体系,提升环境监测质量核查、质控样品分装和标准样品验证能力,满足质量控制工作需要。

六、组织实施

(一)环境保护部负责制定环境监测质量管理规章制度,开展环境监测规范制修订工作,组织实施对国家和地方环境监测质量管理进行监督检查等工作。

(二)中国环境监测总站负责制定并组织实施环境空气、地表水和土壤环境监测质量控制技术方案,承担国家环境监测质量控制技术体系的构建和持续改进工作,直接管理国家网,对地方网进行业务指导。

第8篇:空气环境质量监测范文

 

实时准确的环境监测数据是开展环境管理和科学研究活动的基础,全国环境监测总站以及各地环境监测中心已积累了大量的环境监测数据资源,包括国控、省控、市控等地表水、饮用水监测数据,大气质量和酸雨监测数据,功能区和道路噪声监测数据[1]。这些数据资源是环境管理、应急决策和生态文明建设的重要支撑数据,如何利用现代化信息技术,对这些数据资源进行科学的管理、挖掘分析和可视化表达,充分发挥它们在环境管理、环境应急决策中的作用,促进环境友好型社会,是各地环境保护的必然要求。与此同时,基于这些数据资源,结合GIS技术,通过一种灵活可定制的手段自动适应国家环保部、省、市对生态文明城市、生态省、生态城市环境质量评价分析的需求,提供环境监测数据的科学管理、高效查询、自适应与多维评价、监测数据空间化等功能,实现“一套数据、多种应用”,减轻各地环境监测中心数据统计分析人员的负担,实现科学、高效和直观形象的环境质量评价分析,为环境管理和保护决策提供辅助支撑。

 

GIS以其强大的数据处理、分析计算功能,在环境领域得到了广泛的应用[2]。21世纪以来,国家环保部组织开发了国家环境监测信息系统(NESMIS)。随着GIS技术在环境领域的广泛结合使用,在监测数据审核分析与评价系统开发上也取得较大的发展[3]。目前环境监测信息化建设方面仍存在的主要问题有:①环境监测数据的审核及分析应用仍过多依赖工作人员的经验,监测数据分析系统的开发与应用仍较缺乏[4];②难以满足不同时空尺度的环境质量评价和成果的定制化展示;③难以灵活满足不同评价标准、评价部门对环境质量评价的需要;④监测数据和评价分析结果无法实时展现在GIS地图上等[3]。针对这些问题,为实现环境监测数据科学、高效、直观形象的环境质量评价分析,笔者开发设计了一种灵活的、可适应不同环境保护主管部门、不同评价标准和评价时空尺度的环境监测信息管理与分析系统。

 

1环境监测数据模型分析

 

环境监测的对象通常包括污染源和环境质量状况两方面。环境监测包括水环境、大气环境、噪声环境3大类型,水环境又分地表水、饮用水、近岸海域;大气环境又分空气质量、大气降水质量;噪声环境又分区域、功能区、交通道路。地表水数据包括:河流地表水、湖库地表水、近海海域地表水监测数据,以及水期代码、水域功能类别、湖库类型、中国海区代码、重点海域代码、近岸海域水质标准分类、近岸海域水质标准限值等辅助数据。空气环境数据包括:大气监测点基本信息、大气质量监测数据、大气降水监测数据,以及行政区域代码、监测点级别类型、空气环境质量标准分类、空气监测项目标准限值、空气污染指数计算参数、空气污染指数分类、酸雨强度分级等辅助数据。噪声环境数据包括:噪声监测点基本情况、区域定期监测噪声、道路交通噪声、功能区噪声监测数据,以及噪声测点类型、噪声功能区类型、噪声声源类型等辅助数据等[5]。

 

环境监测数据库通常包含4个部分:共用的数据库表(系统运行,水环境、空气环境、噪声环境质量评价时都需要的数据库表)、水环境监测与评价数据库表、空气环境监测与评价数据库表以及噪声环境监测与评价数据库表。共用数据库主要存放系统运行所需要的基础字典表,以及水、空气、噪声环境质量评价时都需要的公共数据库表。地表水监测与质量评价数据库表主要由地表水水质监测原始表、地表水水质监测字典表及取值说明、地表水水质评价表和近海海域水质监测原始表、字典表及取值说明、评价数据库表构成。空气质量监测与评价数据库表主要由空气质量监测原始表、空气质量评价字典表及取值、空气质量评价表构成。噪声质量监测与评价数据库表主要由噪声环境监测原始数据表、噪声环境字典表及取值、噪声环境质量评价表构成。环境监测数据库构成见图1。

 

2环境监测数据管理与评价业务流程

 

环境监测数据管理与综合分析系统业务流程总体上分为以下4个阶段(图2):

 

(1)数据导入管理阶段。该阶段系统管理员分配好系统

 

操作的用户和权限后,数据管理员从已有的国家系统(或环境自动监测数据库)中导入环境监测数据。

 

(2)评价分析模板定制阶段。该阶段环境质量统计分析人员利用系统进行水环境质量、空气环境质量、噪声环境质量评价分析模板的定制,主要定制参与评价的环境指标、评价标准等。

 

(3)环境质量评价分析阶段。该阶段环境质量评价分析人员利用系统进行按月、季、年或任意时间的站位、区域等层次的水环境、空气环境、噪声环境质量评价和变化趋势分析。

 

(4)评价结果可视化输出阶段。评价结束后,通过表格、统计图表或地理空间图层,对评价结果进行可视化表达。基于环境监测数据和评价结果,根据隐含的监测点空间位置信息,利用GIS技术,对环境监测点及其评价分析结果进行空间化处理,动态生成空间图层,从而实现环境质量监测和评价分析结果的可视化。

 

3环境监测数据管理与评价分析系统设计

 

3.1系统开发的核心业务分析

 

系统开发的核心业务是对地表水环境质量、饮用水环境质量、空气环境质量、噪声环境

 

质量等进行评价分析。

 

3.1.1地表水分析评价。能够按月、季度、水期、年或任意期范围进行监测因子质量评价、站位水质评价、市控以上站位水质评价、水系水质评价、湖库水质评价、近岸海域监测因子水质评价、近岸海域站位水质评价、近岸海域功能区水质评价;可生成全市地表水水质类别分布图、地表水功能达标状况分布图、近岸海域水质状况图,能开展污染因子及综合污染指数趋势分析。具体需求评价因素较多,不一一赘述。如站位水质评价因素包括站位水质类别、水质达标率、水质达标否、达III类标准率、达III类标准否、综合污染指数、主要污染指标及最大超标倍数等。

 

3.1.2饮用水水质评价。能够按月、季度、水期、年或任意期范围进行单个饮用水站位水质评价、水源地100%达标站位数及比例、污染因子及综合污染指数趋势分析等,除计算地表水通用因子外,还要计算饮用水专用指标。具体需求评价因素较多,不一一赘述。如单个饮用水站位水质评价因素包括28项指标达标率、16项指标达标率、超标项目和频次、项次达标率、均值超标因子、水质类别等。

 

3.1.3大气环境质量评价。能够按月、季度、年及任意时间进行评价;评价指标主要是二氧化硫、二氧化氮、可吸入颗粒物、降尘,具体为能进行测点/区域空气质量评价、测点/区域空气日报、测点/区域降水质量评价,能生成全市降水酸雨强度分布图,能进行污染因子及综合污染指数趋势分析。

 

3.1.4噪声质量评价。能够对功能区、区域和交通噪声进行评价;能开展功能区噪声质量评价、区域噪声质量评价,交通噪声质量评价;可生成市区区域噪声声级分布图、交通噪声声级分布图。

 

3.2系统逻辑结构

 

系统以实用性、稳定安全性、灵活扩展性、易操作性为设计原则。系统的总体架构纵向上下至上依次为基础设施层、数据资源层、功能层和用户层。环境监测数据管理与评价分析系统逻辑结构见图3。

 

3.3系统功能体系

 

为了实现系统总体目标,系统包括5大功能体系模块:系统定制模块、数据导入管理模块、环境质量评价模块、环境质量时空特征分析模块和统计输出模块。系统功能体系见图4。

 

4宁波市环境监测数据管理与评价分析系统的实现

 

基于上述的分析设计,以宁波环境监测数据管理与分析为例,实现了宁波市环境监测数据管理与评价分析系统。该系统基于C/S结构,在.NET环境下,采用C#开发语言,ArcEngine地理信息组件编程实现,后台数据库采用SQL Server。运行环境:Windows 2003 Server或Windows 2000 professional/XP等操作系统,ArcGIS Engine Developer Kit等GIS软件,SQL Server 2000或SQL Server 2005数据库系统及.Net Framwork2.0。

 

宁波市环境监测数据管理与评价分析系统实现了环境质量评价分析定制、基于表格的评价分析结果定制、多年变化分析以及评价分析结果GIS表达。主要分为以下7种功能。

 

(1)基础功能。包括系统登录、用户管理、切换年份、修改密码、评价模板管理(增加、删除、编辑模板)、地表水站位评价模板、样式管理功能,如图5。

 

(2)数据管理功能。包括监测数据导入、近岸海域数据导入、饮用水数据导入、数据编辑、监测数据浏览功能。

 

(3)水环境质量评价分析功能。包括饮用水质量评价分析(图6)、地表水环境评价、湖库水环境评价、近岸水域水质评价分析功能。饮用水、地表水、湖库水环境评价主要实现了监测数据统计计算、水质评价功能,水质评价是指根据评价模板及其他参数能完成饮用水、地表水、湖库水数据评价及评价结果查看功能,能实现评价结果的导出、打印功能。如图7所示,近岸海域水质评价功能主要完成监测数据统计计算、近岸海域数据的评价及评价结果查看功能;并可根据提供多年数据的比较分析进行地表水、湖库水水质变化分析功能,系统提供了表格、折线图、柱状图等多种分析方式。其他部分的变化分析功能与此相同。

 

(4)大气环境质量评价分析功能。该模块实现了监测数据统计计算、空气质量评价、大气降水评价、空气质量变化分析功能,上述功能均能完成数据评价及评价结果查看功能,如图8所示。质量变化分析分析内容丰富,其中空气质量变化分析包括空气质量日报、空气质量日报综合统计、测站空气质量日报统计、监测因子浓度、监测因子百分位浓度值、综合污染指数、空气污染指数、大气降水内容。

 

(5)声环境质量评价分析功能。该模块实现了监测数据统计计算、功能区噪声和区域噪声及交通噪声质量评价功能。功能区噪声主要分析功能区噪声的监测数据,分析出噪声数据、昼夜等效声级图及功能区噪声趋势;区域噪声主要分析区域噪声数据及区域噪声趋势;交通噪声主要分析交通噪声数据及交通噪声趋势。

 

(6)GIS地图功能。如图9所示,地图操作主界面主要分为3部分:地图显示区域、图层控制区域和地图工具条区域。也可实现图层符号设置、注记设置和图层属性表查看等图层控制操作,可实现地图保存、地图缩放、移动、视图、信息查看、增加图层、图片输出打印等地图基本操作。

 

(7)环境质量专题图功能。环境质量专题图主要是利用GIS的地图展现方式,将环境的日常监测数据以及分析汇总数据进行专题展示,从而让用户对监测数据和分析结果有更加直观的认识,便于领导进行宏观决策。环境质量专题图主要分为水环境质量专题图、空气环境质量专题图和噪声环境质量专题图3大部分。

 

5结语

 

充分利用环境监测数据发挥其最大价值是环境保护管理、决策和预测预警的紧迫要求。该研究在系统分析环境监测数据模型、环境质量评价业务流程的基础上,研发了基于地理信息技术的环境监测数据管理与评价分析系统。该系统在宁波市环境监测数据管理与分析中的应用表明,系统基本实现了环境监测数据的科学管理、高效查询、自适应与多维评价的功能,实现了对不同时间、空间尺度的环境质量进行实时地评价分析和形象表达的功能。

第9篇:空气环境质量监测范文

关键词:土壤环境质量; 土壤监测; 土壤污染状况详查

中图分类号:X833

文献标识码:A 文章编号:16749944(2017)10007602

1 引言

土壤是地球陆地的表面由矿物质、有机质、水、空气和生物组成的具有肥力并能生长植物的疏松表层,是经济社会可持续发展的物质基础。土壤环境质量关系到生活的方方面面,粮食安全、食品安全与农用地质量息息相关,进而影响到人体健康。近年来出现的湖南浏阳镉污染事件、广西思的村“镉米”等食品安全事件,都与土壤存在污染有关。同时,不论是商业、学校、医院,以及企业用地都与人民群众的生产生活安全息息相关,2015年的常州外国语学校污染事件就是由于和学校临近的化工厂在进行土壤修复时造成的污染导致493名学生先后被查出皮炎、血液指标异常等情况,个别同学查出患有淋巴癌。这些事件在社会上引起了强烈的反响,已经成为影响社会稳定的重要因素[1]。

2 土壤质量监测的特点

土壤污染和大气污染以及水污染具有以下3个方面的不同点。第一,土壤污染的隐蔽性,大气污染中参与空气质量评价的六项指标(细颗粒物、可吸入颗粒物、二氧化硫、二氧化氮、臭氧、一氧化碳)可以通过肉眼和嗅觉等很明显的被人所察觉,水污染也可以通过分辨颜色和气味儿被发现,但是土壤中重金属、有机类污染物很少能够通过直接的方法察觉;第二,土壤污染的流动性和均匀性差[2]。相比于大气和水,土壤污染不具有流动性,因此污染的在进行土壤环境监测时需要布设的点位和需要采集的样品量也多;第三,土壤污染的富集性。大气和水中的污染物都有可能富集于土壤中,但是土壤中的污染物却很难自行消除。

3 土壤质量监测的必要性

长久以来,我国粗放式的经济发展加剧了我国土壤环境质量的恶化,2006年组织开展的大规模土壤环境质量综合调查结果表明工矿业、农业等人为活动是造成土壤污染的主要原因[1,2]。土壤环境保护工作刻不容缓。正是由于土壤污染与大气污染、水污染相比所具有的不同的特点,土壤环境管理工作也呈现出更大的艰巨性。整体来说,土壤污染状况调查基础薄弱。相比对于大气和水的污染状况,土壤污染状况存在底数不清,资料不系统的特点。传统的土壤污染调查主要有国土部门的多目标区域地球化学调查、农业部门的农产品中产地土壤重金属污染调查,但是现有调查数据主要集中在对土壤样品重金属的测试,缺乏对土壤样品理化性质、有机物等项目的监测。而土壤中VOCs、OCPs、PAEs、硝基苯类、苯胺类、多氯联苯、酚类和石油烃类等有机物会对人体健康产生比较大的影响,所以今后对土壤污染状况的调查应增加对土壤理化性质和有机物的监测。为切实加强土壤污染防治,逐步改善土壤环境质量,国家在2016年5月制定并公布了《土壤污染防治行动计划》,其中将深入开展土壤环境质量调查作为一项重点任务,要求以农用地和重点行业企业用地为重点,开展土壤污染状况详查。与此同时,《土壤污染防治行动计划》要求实施农用地分类管理、实施建设用地准入管理、加强污染源监管、开展污染治理与修复,而开展土壤污染详查是所有工作的基础。另外,《土壤污染防治行动计划》要求统一规划、整合优化土壤环境质量监测点位,2017年底前完成土壤环境质量国控监测点位设置,基本形成土壤环境监测能力,到2020年底前实现土壤环境质量监测点位所有县(市、区)的全覆盖。

4 我国土壤环境质量监测的特点

综上所述,针对土壤的环境质量监测是非常必要的。我国的土壤环境监测现状主要有以下几个特点。

第一,3S应用技术在环境监测领域的应用。3S技术指的是将遥感技术(RS)、地理信息技术(GIS)和全球定位系统(GPS)与其他高新技术有机的构成一个整体而形成的一项新的综合技术[3]。构成一个强大的技术体系,可实现对各种空间信息和环境信息的快速、机动、准确,及可靠的收集、处理与更新。将3s技术应用在土壤环境监测领域有助于快速、高效地从整体上了解我国广大的地区,尤其是对于我国中西部拥有幅员辽阔的土地的地区具有更加实用意义。

第二,分析化学、物理化学在土壤环境监测领域的应用。传统的分析化学测试方法已经普遍应用于土壤环境监测中,随着各种仪器的发展和仪器技术的进步,原子吸收光谱法(AAS)、原子荧光光谱法(AFS)、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱(ICP-MS)、顶空、吹扫、气相色谱、液相色谱、气相色谱-质谱联用(GC-MS)等技术已经用于土壤环境监测的重金属和有机污染物等方面的检测。

第三,生物技术在土壤环境监测中的应用。随着生物技术的发展,PCR技术、生物芯片技术、变性梯度凝胶电泳技术(DGGE)也已经用于土壤污染的生物修复、土壤侵蚀、土壤微生物多样性监测等方面[4,5]。

第四,水平定向钻进技术在土壤环境检测领域的应用。水平定向钻机是在不开挖地表面的条件下,铺设多种地下公用设施(管道、电缆等)的一种施工机械,应用在土壤环境监测领域具有成本低、利于监测等特点。

5 我国土壤环境质量监测的发展趋势

随着技术的发展和社会对土壤环境的重视,我国土壤环境监测有以下几个发展趋势。

第一,监测项目以重金属为主向多目标污染物发展。改革开放以来,我国出现了很多小型化工厂,但是随着城镇化的加快,很多土地被开发利用,对土壤环境的监测应该不仅局限于重金属的监测,而是应扩大到以多环芳烃、硝基苯等为代表的有机物监测,同时应该根据不同地块的不同污染情况做出适时调整,增加或删减检测项目。

第二,加强现场应急监测力量。相比于采样、制样、实验室分析等传统的分析方法,很多污染事故现场需要现场进行快速监测,及时掌握污染现状,因此现场快速分析有利于及时有效地根据污染状况做出判断,采取必要的应对措施。

第三,完善建立土壤环境质量监测网络。现阶段,我国的土壤环境质量监测还停留在跟着国家任务走,并没有像大气和水监测一样形成成熟的国控、省控等多级监测点位,监测项目也是不尽相同。所以,在今后的工作中,建立成熟有效的土壤环境质量监测网络具有必要性。

第四,加强土壤环境质量监测人员建设。由于土壤环境污染的隐蔽性,广大人民并没有像关心大气污染和水污染一样关注土壤污染,也造成了全国各级环境保护部门对土壤环境监测的不够重视。整体来说,各级监测部门的土壤环境监测人员配备少,人员力量薄弱,技术水平相对较低,和广大的土壤环境质量监测工作量形成比较大的对比。另外,土壤环境监测方面设施配备和资金相对缺乏也是造成现状的重要原因。今后,随着国家和人民的重视,土壤环境监测会得到支持和提高。

6 结语

随着国家《土壤污染防治行动计划》和各省市相关工作方案的出台的落实,土壤环境监测工作面临着很大的挑战。当然,挑战也是机遇,做好土壤环境质量监测工作是环境管理工作中不可缺少的重要部分,是保证人民安居乐业的基础,更是社会可持续发展的重要保障。

参考文献:

[1]

陆泗进,何立环. 浅谈我国土壤环境质量监测 [J]. 环境监测管理与技术,2013,25(3):5~8,12.

[2]段成瑜. P于中国土壤质量的环境监测初探 [J].资源节约与环保,2016(8):175.

[3]巩玉玲, 冯永军. 中外土壤环境监测技术应用与发展状况 [J].安徽农业科学,2014,42(19):6229~6230,6232.