前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的神经网络方向主题范文,仅供参考,欢迎阅读并收藏。
关键词:贝叶斯神经网络;60Co-γ射线;无防腐剂香肠;网络预测
引言
食品辐照技术是20世纪发展起来的一种新型灭菌保鲜技术。采用辐射加工技术手段,运用高能射线如x-射线、γ-射线等对食品进行加工处理,在能量的传递和转移过程中,产生理化效应和生物效应达到杀虫、杀菌的目。因为是冷杀菌手段,所以有效的提高了食品卫生质量,保持营养品质及风味和延长货架期。本文采用无防腐剂的香肠作为对象,排除了化学防腐剂对保鲜效果影响,同时为了食品加工行业发展提供方向,不添加化学防腐效果成分的同时也可以采用辐照的方法有效提升货架期,有效提高企业效益,延伸销售链;对于不同种类的香肠制品,从肉质到成分,都会有所差别,通过大量辐照试验获得辐照工艺的方法,不仅耗时长,而且检验指标及检验方法也过于繁琐,因此结合采用人工智能神经网络算法,在有限次数实验数据的基础上,建立不同剂量60Co-γ射线对香肠品质影响的规律模型为科学辐照提供理论依据。
1 实验方法与理化指标的检测
1.1 样品辐照
本项目采用不含任何防腐效果的特制香肠为对象,在黑龙江省科学院技术物理研究所辐照中心进行。采用静态堆码式60Co-γ放射源,跟踪剂量计为Ag2Cr2O7经中国剂量科学研究院丙氨酸剂量计(NDAS)传递比对校准,分别采用不同剂量(2-6)kGy,进行静态辐照。完成辐照2天内进行理化指标的检测,在(22.0±1)℃下保存30天后进行微生物指标的检测。
1.2 理化指标及微生物指标测定方法
1.2.1 菌落总数,参照国家标准GB/T4789.2-2008采取实验方法测定菌落总数。
1.2.2 水分含量,参照国家标准GB/T6965.15可用蒸馏法或直接干燥法。本项目采用直接烘干法。
1.2.3 氯化钠含量,参照国家标准GB/T9695.8进行测定,采用水浸出后用硝酸盐标准溶液滴定法测定。
1.2.4 蛋白质,参照国家标准GB/T9695.11进行测定。
1.2.5 菌落总数,参照GB4789.2-2010进行测定。
1.3 检测结果与数据处理
采用以上检测方法进行检测,由于实验过程产生个别认为误差,利用matlab软件plot函数对每组数据进行拟合,将误差较大的个别数据进行剔除,最终得到50组数据,部分数据如表1。
表1 60Co-γ射线辐照保鲜无防腐剂香肠检测结果
2 神经网络算法
2.1 BP神经网络
通常BP神经网络具有3层结构,分别为输入层、隐含层和输出层。通常来说隐含层采用Sigmoid函数,输出层采用Pureline函数,因为符号函数标准输入、输出现代为[0,1],因此在学习过程中,通过转化层将辐照工艺参数进行转化限定区间,避开网络输出的饱和区。五层神经网络结构如图1。
2.2 性能指标
性能指数是衡量网络性能的量化标准,BP神经网络一般采用网络军方误差作为性能指标:
式中:Ed为网络的均方误差;n为学习集体样本总数,tp为第P组训练的期望输出值,ap为第P组的实际输出值。影响神经网络泛化能力主要依赖于网络结构和训练样本的特性,因此可以选择合适的训练策略和优化网络结构来提高其泛化能力。本文选取贝叶斯正则化算法对BP神经网络进行修正,网络性能指数变为:
式中:w为网络的权值向量,EW=m-1■?棕■■为网络所有权值的均方误差,其中m为网络权值的总数,Wj为网络权值,a和b为正则化系数,其大小直接影响训练效果。
2.3 贝叶斯正则化BP神经网络训练步骤
(1)确定网络结构,初始化超参数α=0和β=1,根据先验分布对网络参数赋初值。
(2)用BP算法训练网络使总误差F(W)最小。
(3)利用高斯牛顿逼近法计算出有效参数个数。
(4)计算超参数α和β的新的估计值。
(5)重复执行(2)、(3)、(4)直到达到所需精度。
贝叶斯方法正则化神经网络是个迭代过程,每个迭代过程总误差函数随着超参数的变化而变化,最小点也在变化,网络的参数也在不断修正,最终达到总误差函数在迭代过程中没用较大改变。目前在网络结构的选择方面还没有理想的方法,在实际工作中常常需要用试验的方法确定最佳的网络结构,因此可采用不同的网络结构进行网络训练,然后比较这些网络模型的显著度,选择显著度较大的网络作为模型。
3 神经网络建模及预测
通过上述实验获得的50组数据中,45组数据作为人工神经网络训练样本,另选择其他5组数据作为检验样本,运用MATLAB软件,进行人工神经网络的训练和预测。网络输入剂量、剂量率,输出为水分、氯化钠含量,通过应用均方差函数比较目标值和预测值的差异,计算目标值与预测值间的误差,观察网络模型对训练情况,网络拟合图性能进行评价。
网络训练结果显示,经过1500步训练后,网络误差平方和均值为5×10-3,达到了设定的最小训练目标值。网络训练完毕后,得到数学模型后,利用剩余5组数据进行预测验证,网络训练效果如图2-5所示。
4 结束语
采用辐照的方法进行无防腐剂香肠保质期的时间跟辐照剂量相关,采用4kGy的剂量进行辐照可使香c的保质期达到1个月以上,且香肠的颜色仍在可接受范围内,说明辐照方法有效的提高了香肠的卫生质量,延长保质期。采用神经网络建立了香肠辐照工艺与理化、微生物指标的模型,并通过实验验证了模型的准确性,为进一步确定辐照工艺提供理论支持。
参考文献
[1]2015-2020年中国肉制品市场现状及战略咨询报告[R].北京:中国产业信息网,2015.
[2]郭淑珍.辐照保藏五花肉的品质特性及影响因素的研究[D].四川农业大学,2007.
[3]贾巧唤,任石苟.我国辐照食品的研究现状及发展前景[J].食品工程,2008(4):12-14.
[4]陈秀兰,曹宏.鹅肉制品的辐照保质研究[J].核科学报,2005(4):371-374.
[5]田 ,梁飞,卢江.人工神经网络建模结合遗传算法优化岗松油环糊精包合物制备工艺参数[J].中国医药大学学报,2011(4):324-328.
关键词:电源系统 智能故障诊断 CPN网络
随着大量电力电子设备在装甲车辆中的应用,车载电源系统的可靠性是其能否运行的关键。传统的依靠简单检测仪表进行判断的方法已无法保障系统的可靠性。目前,智能技术已逐步应用在装备的故障诊断当中,利用改进的Elman神经网络来实现飞机电源系统欠压故障的识别和定位,具有很好的动态系统故障诊断能力,但不能对未知故障进行识别。文献[1]利用BP神经网络实现了三相全控桥整流电路故障诊断。但基于BP神经网络的方法存在着局部最小、收敛速度慢的问题,且随着诊断系统复杂程度的增加,较大规模的BP网络结构有可能导致系统泛化能力的下降,从而造成错误的诊断决策。本文研究基于对象传播的自组织神经网络,并将算法应用到装甲车辆电源系统的智能故障诊断中。该网络在竞争层通过无监督的竞争学习方式对输入故障进行自组织聚类,并将聚类结果通过线性输出层输出,具有很好的故障识别和诊断效果。
一、CPN对象传播神经网络算法
CPN对象传播神经网络分为输入层、竞争层和输出层。由输入层到竞争层,网络按照SOM学习规则产生竞争层获胜神经元,并按照这一规则调整相应的输入层到竞争层的连接权;由竞争层到输出层,网络按照基本竞争型网络学习规则,得到各输出神经元的实际输出值,并按照有导师型的误差校正方法,修正由竞争层到输出层的连接权。因此,该网络既涉及了无导师网络分类灵活、算法简练的优点,又采纳了有导师型网络分类精细、准确的长处,使两种不同类型的网络有机地结合起来,具体的网络学习过程参考文献[2]。
二、实例应用
在装甲车辆电源系统智能故障诊断中,根据系统结构和测试性设计准则,该系统的检测对象包括以下LRU(现场可更换单元)模块:无刷旋转励磁交流同步发电机,电压调节器和不可控三相整流桥。每个模块中的SRU(内场可更换单元)根据不同的设计要求进行划分,在此不再列出。通过大量的实验数据和分析,得到了电源系统的不同的故障模式。本文选取整流桥故障作为CPN诊断算法的研究对象,主要分为:第一类:无故障状态(正常工作状态);第二类:一个二极管断路;第三类:同一相电源的2个二极管断路;第四类:同一半桥中的2个二极管断路;第五类:交叉2个二极管断路5种故障模式。通过MATLAB\Simulink建模仿真,各种模式下的整流输出电压仿真波。
本文利用小波包变换来构造诊断系统的特征向量,选用db3小波作为小波基对五类故障状态下的电压信号进行小波包分析,构造出各自的能量特征向量,建立特征向量与故障状态的对应关系,这样网络的输入节点数为8。实验中取每种故障模式的数据各10组,对其进行处理后的结果(限于篇幅,表中给出了6组特征向量)。通常故障状态需要经历一个暂态的过渡过程,故将故障后的暂态过程和稳态过程作为故障状态的两个子类,因此竞争层(即无监督聚类层)应含有9个节点。
为了方便计算,对期望输出编码为(U1,U2,U3),则第一类故障期望输出为000,第二类故障期望输出为100,第三类故障期望输出为010,第四类故障期望输出为001,第五类故障期望输出为110,输出层的节点数为3。从而,整个诊断网络的结构为(8,9,3)。
网络训练参数选择为:学习率=0.1,=0.1,偏值因子=0.1,时间因子=0.0001,最大迭代学习次数为1000。将5类模式共50组数据依次输入改进的CPN网络中,网络在监督下进行自组织学习,不断修正网络的权值。训练结果与期望输出如表3所示。
对训练好的网络进行测试。另取不同的样本输入该网络,测试样本,实际诊断结果与期望输出。表中可以看出,实际的诊断结果与期望的输出完全一致。
在装甲车辆电源系统整流桥故障诊断中,先采用小波包变换提取各种模式下信号的特征能量,构造出诊断系统的特征向量,应用改进的对象传播神经网络进行辨识,使系统具有无导师聚类,有导师学习的能力,取得了较好的诊断效果。然而,网络的参数选择一般通过经验来确定,需要进一步研究参数的自动调整,以适应不同系统的应用。
参考文献:
[1]郑连清,王腾,邹涛.基于神经网络的三相全控桥整流电路故障诊断[J].重庆大学学报.2004,27(9):72-74
人工神经网络是由大量的简单基本元件-神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。人工神经网络的基本结构模仿人脑,反映了人脑功能的若干基本特性,能够自身适应环境、总结规律、完成某种运算、识别或过程控制。人工神经网络具有并行处理特征,可以大大提高工作速度。
人工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。
第二,具有联想存储功能。
第三,具有高速寻找优化解的能力。
1 神经网络的学习方法
神经网络的学习也称为训练,指的是神经网络在外界环境的刺激作用下调整网络自由参数,并以新的方式来响应外部环境的过程。能够从环境中学习并在学习中提高自身性能是神经网络最有意义的性质。理想情况下,神经网络在每一次重复学习后,对它的环境有了更多的了解。
(1) 监督学习(有教师学习)
在学习时需要由教师提供期望输出,通常神经网络对于周围的环境未知而教师具有周围环境的知识,输入学习样本,教师可以根据自身的知识为训练样本提供最佳逼近结果,神经网络的自由参数在误差信号的影响下进行调整,其最终目的是让神经网络模拟教师。
(2) 非监督学习(无教师学习)
它也称为自组织学习,系统在学习过程中,没有外部教师信号,而是提供给一个关于网络学习性质的度量,它独立于学习任务,以此尺度来逐步优化网络,一旦网络与输入数据的统计规律达成一致,那么它将发展形成用于输入数据编码特征的内部表示能力,从而自动创造新的类别。
(3)强化学习(激励学习)
在强化学习系统中,对输入输出映射的学习是通过与外部环境的不断交互作用来完成学习,目的是网络标量函数值最小,即外部环境对系统输出结果只给出评价信息(奖或罚)而不是给出正确答案,学习通过强化那些受奖的动作来改善自身性能。
神经网络针对学习问题修改网络自由参数的过程称为学习规则(学习算法),设计学习规则的目的是训练网络来完成某些任务,没有一个独特的学习规则可以完成所有的学习任务。神经网络有5个基本的学习规则:误差--修正学习,基于记忆的学习,Hebb学习,竞争学习,随机学习。
2 神经网络的研究趋势
(1) 利用神经生理与认知科学研究大脑思维模式及智能机理过程
深入研究神经网络理论神经网络在一定程度上揭示人类智能和了解人脑的工作方式,由于人类对神经系统的了解非常有限,而且对其自身脑结构及其活动机理的认识不完善,故而神经网络只能是模仿人脑的局部功能,而对人脑作为一个整体的功能解释,神经网络起不到任何作用。神经科学,心理学和认识科学等方面提出的一些重大问题,是向神经网络理论研究提出的新挑战,这些问题的解决有助于完善和发展神经网络理论,因此利用神经生理和认知科学研究大脑思维及智能机理,如有新的突破将会改变智能和机器关系的认识。
(2) 神经网络领域的数学研究趋于重要
随着神经科学基础理论研究的深入,用数理方程探索智能水平更高网络模型将是研究的趋势所在,神经元以电为主的生物过程在认识上一般采用非线性动力学模型,其动力演变过程往往是非常复杂的,神经网络这种强的生物学特征和数学性质,要求有更好的数学手段,而对于神经网络这样非线性模型,需要用数学方法研究网络新的算法和网络性能,如稳定性、收敛、容错性、鲁棒性等,开发新的网络数理理论,如神经动力学、非线性神经场等。研究人员断言一种更简洁、更完善和更有效的非线性系统表达与分析的数学方法是这一领域主要目标之一。
(3) 神经网络软件模拟、硬件实现的研究以及神经网络在各个科学技术领域应用的研究
目前,数字计算机在计算方面的能力已远远超出入的大脑,但在自然语言理解、图像辨识、信息处理等方面都显得笨拙,原因是基于冯・偌依曼思想的计算机结构及其运算方式与人的大脑有本质的区别,而神经计算机(第六代计算机)以神经网络为理论基础,用于模拟神经网络,具有自学习、自组织和自适应能力,能更有效地处理复杂问题,其实现过程用光学、生物芯片的方式,现在光学神经计算机和分子计算机的研究是神经网络的前沿课题。
(4) 神经网络和其它算法结合的研究
神经网络和其它算法的结合和交叉,研究新型神经网络模型也是发展方向之一。如神经网络和模糊逻辑结合,建立模糊神经网络;将混沌理论和神经网络结合建立混沌神经网络;将遗传算法和神经网络结合;利用遗传算法优化神经网络的结构或权值;将小波分析和神经网络结合建立小波神经网络;专家系统,贝叶斯学习以及粗糙集理论和神经网络结合等,这些都是神经网络研究的热点。
3 结束语
神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。比如:神经计算的基础理论框架以及生理层面的研究仍需深入;新的模型和结构的研究;神经网络的可理解性问题;神经网络技术与其他技术更好的结合等。
关键词:神经网络 网络方法 环境色谱法 多个节点 信息模型
中图分类号:X83 文献标识码:A 文章编号:1674-098X(2017)05(a)-0126-02
从近几年在国内神经网络的使用来看,在环境监测中也有着非常良好的效果。无论是从色谱法、光谱法还是整个环境的评价都带来了很多新的成果。该文主要是通过对神经网络相关分类的阐述,结合神经网络在环境监测中的应用效果,希望能给神经网络对环境监测中做一些回顾和总结[1]。
1 网络方法类别
由于着重的角度关系,网络法会有多种不同的类别,由于神经网络是多个节点的连接,有相当多复杂的算法,基于神经网络,可以总共阐述两大类的情况,包括有管理和无管理的网络方法。关于这两种的不同点就在于它们是否需要对现有的样本进行训练。有管理的网络方法是需要训练,而无管理的网络方法是无需进行训练,它需要与其他的化合物相结合使用,里面会涉及到网络与遗传法、偏最小二乘法等分析方法来进行分析比较。另外根据网络的结构不同,也可以把网络方法给分成前向和后向的网络方法,而如果是从网络活动方式的差别,也可以将其分为随机和确定两种网络方法。
2 关于环境监测的化学方面的应用
在化学方面,国内与有很多用于化合物的一些研究,比如一些有机结构分析,还有化学反应、蛋白质结构等等的分析。在进行定量的构效关系分析中,可以把酿酒的酵母菌来作为一种模型的指示物,建立相关网络模型,然后对生物的毒性进行进一步预测,当然,在分析过程中还存在着很多的问题,通过比较一些网络模型,然后计算它们之间的权值,再筛选相出相应的参数,学者们在分析的时候也会对多层前传网络进行探讨分析,尽量减低误差,通过多方向的非线性校准,并且进行数据解析,然后表明引射能力,通过建立神经网络来不断接近规律的程度,拟定相关的指标数[2]。
3 分光光度的方法应用
在化学分析进程中,通过多元校正和分辨是相对来说较好的一种方法。随着相关方法的不断普及,目前大多数是使网络和现有的紫外光谱法相互关联,利用线性网络、BP网络等来用于多个分组的报道[3]。邓勃等[4]学者在分析的时候,认为除了人工神经网络,迭代目标转换因子的分析法相比较起来也是一种不错的选择,两种方法各有优势,并且产生的网络法的误差一般都不会很大。孙益民等专家在分析时,利用现有的人工神经网络先后侧出的光度法,并且可以测定比如铜、镍,并且这个分析方式非常的简单和方便[5]。
4 神经网络对X射线中的荧光光谱法的应用
研究人员通过神经网络建立与X射线荧光谱谱法的关系,通过多个不同的神经网络来应用,可以通过他们之间的连接来测定酸溶铝,通过神经网络的设置,可以测定里面的最低的铝值,通过神经网络与BP的网络模型的设立,可以直接输入测出来的铝含量情况,然后通过铝含量来侧出酸溶出来的铝的数值。BP模型可以结合现有的神经网络系统,充分的在现有的信息模型上应用,通过利用网络神经的结构,不仅可以做一些化学分析,还可以通过神经网络来检测环境监测中涉及到的红外谱图等的分析,这为环境分析提供了非常有意义的方向,并且给环境监测提供了新的检测方法[6]。
5 环境监测中的色谱法的研究
在关于色谱法的研究中,人工神经网络也有可以应用的方向[7]。色谱法中的小波分析,与人工神经网络的结合,小波分析的主要目的是为了得到重叠的色谱峰的信息,运用神经网络分析之后,可以在其中建立相关的模型,通过两者的结合来分开重叠的色谱峰信息,众所周知,把重叠色谱分开是一个非常复杂的工程,它们之间需要运用大量的元素来分开,效率极低,极其浪费时间。因为其内里复杂的重叠组织,而现在,人工神经网络为其分离提供了一种新的尝试[8],不仅如此,通过人工神经网络的方法不仅可以分离,而且可以在分离之后得到更加精确的色谱信息。研究工作者在模拟退火神经网络的时候,会运用药物来优化整个分离的条件,这对于提高色谱精确度也非常有效。
6 环境监测中的评价
通过之前提到的BP网络,通过介绍与人工神经网络模型的结合,来阐述了整个模型应用的原理,通过综合相关的分析方法可以对环境监测中的适用性进行分析评价,这样表现出来的结果会更加客观。研究者可以从有预测模型中表现的结果,在水库里进行抽样,提取水库中的相关元素进行预测,确认是否与实际结果一致,可以通过建立人工神经网络来对水质中的污染指数进行评价,然后得出相应的成果。
7 结语
人工神经网络在整个环境监测中有着非常重要的作用,它拥有一些比较有意义特性,总共可以总结为以下3个方面:第一,人工神经网络具有自学习的特性。可以通过大量的图像来设计,进行相关的图像识别,把不同的几个图像进行整合分析,并且把与之相互对应的结果嵌入到神经网络系统中,系统会根据自己特有的自学功能,对以后相关的图像进行识别操作,它可以给人们提供一些预测结果,甚至在未来的无论是经济还是政治等方面提供一些预测,预测经济和市场,给未来的发展提供引导。第二,系统具有可存储的特性。人工神经网络里面包含了一种反馈的功能,而通过输入信息和模型整合,联系不同元素之间的关系,得出一些可能的联想信息。最后,神经网络还有一项功能便是优化得出答案的能力。
一般问题的因果关系都会涉及到多个方面,那么如何在多个元素中抽丝剥茧,不断地优化整个系统,是神经网络的一个主要的功能,它可以通过计算来得到最优化的解,即便其中的运算量牵连的比较多,但是结合神经网络中反馈联想的功能,再包括计算机强大的运算效率,那么得到答案有时候也是比较容易的。
人工神经网络在环境监测中表现的效果比较好,但是除此之外,在其他领域,运用神经系统也可以得到一些相关的数据,比如经济领域,它可以通过建立信息模型,来进行市场预测和风险评估,这些都是很好的应用方式。在未来的实践中,随着经验的积累,神经网络的应用在环境监测中会不断地深入,通过在色谱、光度等领域的剖析,为未来的环境监测效果提供了更多的可能性。
参考文献
[1] 黄胜林.遗传优化神经网络在大坝变形监测中的应用[D].辽宁工程技术大学,2012.
[2] 熊勋.人工神经网络在环境质量评价和预测中的应用研究[D].华中科技大学,2009.
[3] 王学.无线传感器网络在远程环境监测中的应用[D].山东师范大学,2011.
[4] 武艺.人工神经网络在土壤质量监测中的应用[D].浙江海洋学院,2015.
[5] 黄湘君.基于主成分分析的BP神经网络在电力系统负荷预测中的应用[J].科技信息:科学・教研,2008(16):313-314.
[6] 李春梅,周骥平,颜景平.人工神经网络在机器人视觉中的应用[J].制造业自动化,2000(9):33-36,49.
[7] 涂晔,车文刚.BP神经网络在福利彩票预测中的应用[A].中国智能计算大会[C].2009.
[8] 李岩,韩秋,郑万仁.BP神经网络在电力需求决策中的应用[J].现代经济信息,2009(22):325-326.
人工神经网络是近年来迅猛发展的前沿课题,它对突破现有科学技术的瓶颈起到重大的作用。本文剖析了人工神经网络的特征、模型结构以及未来的发展趋势。
【关键词】人工神经网络 神经元 矩阵
1 人工神经网络概述
人工神经网络(ANN)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。
人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:
1.1 并行分布性
因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。
1.2 可学习性和自适应性
一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的存储。
(3)鲁棒性和容错性
由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。
1.3 泛化能力
人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。
1.4 信息综合能力
任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。
2 人工神经网络模型
神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。
在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的神经网络模型有:感知器、线性神经网络、BP网络、自组织网络、径向基函数网络、反馈神经网络等等。
3 神经元矩阵
神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。
神经元矩阵采用矩阵形式,它可为n维向量组成。引入向量触头和信使粒的概念,向量触头可生长,即长度可变,方向可变,信使粒可“游荡”在矩阵中,建立各种联系。如图1即是神经元矩阵模型
(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。
(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。
(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。
神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。
4 人工神经网络的发展趋势
人工神经网络是边缘叉科学,它涉及计算机、人工智能、自动化、生理学等多个学科领域,研究它的发展具有非常重要意义。针对神经网络的社会需求以及存在的问题,今后神经网络的研究趋势主要侧重以下几个方面。
4.1 增强对智能和机器关系问题的认识
人脑是一个结构异常复杂的信息系统,我们所知道的唯一智能系统,随着信息论、控制论、计算机科学、生命科学的发展,人们越来越惊异于大脑的奇妙。对人脑智能化实现的研究,是神经网络研究今后的需要增强的地发展方向。
4.2 发展神经计算和进化计算的理论及应用
利用神经科学理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,使离散符号计算、神经计算和进化计算相互促进,开发新的网络数理理论。
4.3 扩大神经元芯片和神经网络结构的作用
神经网络结构体现了结构和算法的统一,是硬件和软件的混合体,神经元矩阵即是如此。人工神经网络既可以用传统计算机来模拟,也可以用集成电路芯片组成神经计算机,甚至还可以生物芯片方式实现,因此研制电子神经网络计算机潜力巨大。如何让传统的计算机、人工智能技术和神经网络计算机相融合也是前沿课题,具有十分诱人的前景。
4.4 促进信息科学和生命科学的相互融合
信息科学与生命科学的相互交叉、相互促进、相互渗透是现代科学的一个显著特点。神经网络与各种智能处理方法有机结合具有很大的发展前景,如与专家系统、模糊逻辑、遗传算法、小波分析等相结合,取长补短,可以获得更好的应用效果。
参考文献
[1]钟珞.饶文碧.邹承明著.人工神经网络及其融合应用技术.科学出版社.
【关键词】人工神经网络 信息技术 发展趋势
人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的发展,人工神经网络技术得到了快速的发展阶段。
1人工神经网络技术
人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点——神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。
2人工神经网络技术应用分析
随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。
2.1生物信号的检测分析
目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。
2.2医学专家系统
传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。
2.3市场价格预测
在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。
2.险评价在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。
3人工神经网络技术未来发展
人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。
4结语
通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。
参考文献
[1]周文婷,孟琪.运动员赛前心理调控的新策略——基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.
[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.
随着科技的不断进步,国内外各领域专家学者相互努力共同打造了智能机器人。模糊神经网络理论通过自身所拥有的归纳等能力,有效地帮助了人们更好地控制机器人。使其具备自我学习和联想能力,通过蚁群算法优化的模糊神经网络理论能够更好地控制特种机器人,有效地应对工作中随机出现的变化问题。
关键词:
特种机器人;蚁群算法;人工智能控制;模糊神经网络
1创建机器人的数学模型
任何机械物体的运动都需要理论与实践的支持,而特种机器人的研究也是如此,对特种机器人进行操控就需要对它的各个运动构件的方位、位置、速度等建立一个合理有序的关系。而机器人的空间坐标、运动等可以通过数学模型来呈现。
1.1特种机器人的空间坐标
首先,描述特种机器人的空间坐标,可以用X,Y,Z轴方向的向量表示。其次,对于机器人的运动和操作,方位的准确明了非常关键。而特种机器人的方位也可用坐标系来表示。设一直角坐标系{B}与此刚体固接,坐标系{B}的三个主轴方向的单位矢量XB、YB、ZB相对于坐标系{A}的方向余弦组成的3×3矩阵称为ABR旋转矩阵:ABR=[AxBAyBAzB]=r11r12r13r21r22r23r31r32r33333333333333333333(1)式中,R的上标A和下标B表示R是{B}相对于{A}的关系;r为矢量矩阵的单位向量。而刚体{A}的位姿可通过上述所说的坐标系{B}在坐标系{A}中的各个方位和位置来阐述,进而{B}的原点根据其在坐标系{B}、{A}中的方位,分别表示了刚体在其中的位置和方向,式(2)表示{B}的位置矢量,用ABR和APBORG来描述坐标系{B},其中APBORG是确定坐标系{B}的位置矢量,建立公式(2):{B}={ABR,APBORG}(2)
1.2机器人运动方程
连杆坐标系、动力学方程、运动学方程都是操控机器人运动所需要的。特种机器人中的机械臂系统是一种涉及各杆、各关节、机械臂末端相对于绝对坐标的位姿、运动等的多刚体系统。其中,连杆坐标系的建立则为更好地操控机器人,使其高效长久地运动、工作做出了巨大的贡献,图1则为连杆坐标图。虽然建立了连杆坐标系,但是其中的杆与杆的关系则要建立一个齐次变换阵来连接。通过这个矩阵,机器人末端连杆在笛卡尔坐标系里的位置和位姿便可得出。
1.3机器人动力学方程
机械臂系统的运动学模型建立以后,还需建立动力学模型来控制。而动力学解决的问题是2种相对问题:若已知关节的施加力或力矩,求其速度、位移、加速度等;反之,则求力或矩阵。牛顿的欧拉方程等都是为了更好地操控特种机器人而建立的动力学。
2模糊神经网络理论研究
机器人系统功能多且复杂,对于各种生产运作过程中出现的一些问题很难控制。对此,模糊控制和神经网络相结合而成的模糊神经网络具备了解决一些问题的特别优势。模糊控制系统主要通过语言的描述控制机器人的运动,而语言描述能够充分地将专家的经验、知识转化为控制规则,模糊控制器由以下几个高功能的部分构成。
2.1神经网络理论
用于控制特种机器人的神经网络是根据人类大脑的思维模式和构造而设计,其中,神经元是大脑组织、信息处理的基本单位,而人工制作的神经网络则会根据企业、国家、个人的不同需求进行设计和分类,前馈网络和递归神经网络是其中的两大类。前馈网络不但层次感强,其常用的感知器、BP网络也能非常有针对性地解决一些问题;递归神经网络包含积分、反馈等功能,反馈机制是其在信息传输中的一大特点。
2.2模糊神经网络控制系统系统的输入及各种运作
实验证明:模糊系统与神经网络之间具有很多相似点,可以相互转化。模糊神经网络系统使其对数据的计算等更快并且更加正确,通过模糊控制也使其自身的容错力增强。模糊神经网络(FNN)模型的设计经过专家利用各种经验和知识的打造,能够更好地通过BP网络、建立样本等方式控制特种机器人的运作。
3蚁群算法优化训练的模糊神经网络
特种机器人控制蚂蚁算法是模仿生物界中蚁群通过交流、协作、共同搜寻获取实物活动的仿生优化算法。在蚂蚁工作的过程中,他们通过一种“信息素”交流。
3.1蚁群算法的本质
蚂蚁算法是通过分析、实践、探索蚂蚁群体活动得出的,是一种随机算法。蚂蚁算法分适应阶段和调解阶段,在这2个阶段中他们不断地优化自身的机构、积累需要的信息、寻求最佳解。蚂蚁算法中的人工蚂蚁不但有自组织性,还有协作、竞争的关系,在这过个程中,需要不断地协作、改进、更新。
3.2蚁群算法优化模糊神经网络
蚂蚁算法具有全局优化的特点,可以有效地训练FNN,避免了BP的缺陷。它在模糊控制系统和神经网络系统结合后,不但提高了整体优势,也增加了一些功能和特点。这些优化的改变,使某些工作的计算更加便捷。同时BP的缺陷及一些神经网络系统无法解决的问题,它也能很好地解决。而蚂蚁算法通过蚂蚁群体机智有效的协作,总结并融合了一些思想,通过这些思想,特种机器人能够自我选择方便、快捷、有效的工作路径[1]。蚂蚁算法为进一步控制特种机器人提供了更加合理有效的措施,也优化了各种运作系统。
3.3蚁群算法优化的结果
通过各种实验结果表明,蚂蚁算法优化的模糊神经网络系统更加稳定,也更加高效快速。通过实验比较发现:在普通的模糊神经网络中,把基本臂和期望主臂的轨迹长度比较后发现,被蚂蚁算法优化的模糊神经网络控制系统运行的轨迹更短效果更好更明显。
4结语
随着人类文明的发展,机械的运用与不断的创新随处可见,这个时代对特种机器人的需求也在不断增加。而国内外对特种机器人的研发也在不断地创新和投入,对此,涌现了大批的类型、功能不一的特种智能机器人。被蚂蚁算法优化过的系统很好地解决了一些问题,能够全面地优化各个方面,这种算法,为人类更好地发展特种机器人研究机器人做出了巨大的贡献。
参考文献:
关键词 神经网络;空调;应用
中图分类号 TP387 文献标识码 A 文章编号 1673-9671-(2012)071-0184-02
中央空调系统是一个庞大复杂的系统,主要包括:空调冷热源系统、水或空气系统、控制系统等,空调系统能耗与影响因素之间是一种多变量、强耦合、严重非线性的关系,具有很强的动态性。而人工神经网络可以实现从输入到输出的任意非线性映射,能够模拟高度非线性系统,具有较强的学习能力、自适应能力、容错能力和联想能力,已成为复杂的非线性系统建模、仿真、预测的新型工具,人工神经网络自20世纪40年代初被首度提出来以后,经过几十年的发展,广泛运用于模式识别和图像处理、控制与优化、人工智能等方面。随着我国空调事业的快速发展及节能减排新形下,人工神经网络在空调系统中的运用越来越受到广大暖通空调研究者的关注。
1 神经网络
神经网络是对人脑或生物神经网络的抽象和建模,具有从环境学习的能力,以类似生物的交互方式适应环境。人工神经网络是一个由大量简单的神经元广泛联接组成的复合系统,当系统被训练达到平衡后,由各个神经元的权值组成的整个网络的分布状态,就是所求的结果。网络学习的过程也就是各神经元权值的调整过程。人工神经网络根据连接方式不同可以分为两大类:无反馈的前向神经网络和相互连接型网络(包括反馈网络),图1为BP神经网络系统结构简图,BP网络就是一种误差反向传播的前向网络,神经网络的学习算法总体来讲可分为有监督学习和无监督学习。人工神经网络的具有强容错性、冗余性、鲁棒性和信息分布式并行处理及快速进行大量计算能力特点, 能适应复杂环境和进行多目标控制。
图1 BP网络系统结构
2 人工神经网络在空调系统中的应用
2.1 空调风系统方面的应用
变风量系统(VAV系统)的基本思想是:当室内负荷发生变化时,改变送入室内风量,以满足室内人员的舒适性或工艺性要求,实现送风量的自动调节,最大限度地减少风机动力,节约运行能耗。目前对变风量空调控制方法传统方法主要有:定静压控制、变静压控制、总风量控制等,但多数局限于的PID控制理论,对变风量空调这种非线性系统的控制精度难以保证。朱为明等人在VAV系统中采用神经网络预测优化算法对变风量空调进行控制,神经网络预测优化算法控制过程的节能范围为:6%-13.5%,与PID控制方法相比,神经网络预测优化算法的控制量之和减少6%以上,具有较好的节能效果。
2.2 空调水系统方面的应用
中央空调水系统主要包括冷却水和冷冻水系统,对于大型系统,管道长,系统热容量大、惯性大,被控系统水温和流速变化速度较慢,滞后现象严重,是一种典型的大滞后系统,对于过程纯滞后非线性特性,目前过程控制传统算法不具备克服滞后影响的能力,在稳定性和响应速度上都难以达到较好的性能指标。周洪煜等人利用了神经网络的非线性逼近特性、自学习、自组织的能力以及预测控制的滚动优化和反馈校正的特性,建立起的中央空调水系统的动态模型,作为预测控制器的预测模型,不需要对被控对象进行精确的辨识, 提出的多变量神经网络预测控制系统具有优良的控制效果,实现了空调水系统的自适应控制。何厚键等人在中央空调水系统的建模与优化研究中,利用前馈型网络结合BP算法建立了冷却塔和制冷机的神经网络模型,解决的具有高度非线性的中央空调水系统设备的建模问题。
2.3 制冷系统方面的应用
神经网络在空调中的制冷系统应用,主要体现在制冷机组优化控制和制冷系统的故障诊断两方面。在中央空调系统中制冷机组是能耗最大的设备,对制冷机组进行优化控制,提高其运行效率,是空调系统节能的重要途径之一。赵健等人在分析了影响压缩机运行效率的主要因素基础上,建立了以压缩机入口制冷剂温度、压缩机出口制冷剂温度和负荷为输入量,最佳吸气压力输出为输出量的BP神经网络模型。通过在线修正制冷机的吸气压力工作点,解决变负荷下,制冷机优化控制问题,大幅度提高制冷性能参数COP的值,降低了制冷机的运行能耗,与采用额定工况相比,采用神经网络优化控制方法的制冷机节能量约为44.8%。
故障诊断是一种了解和掌握设备在使用过程中的技术,确定其整体或局部是否正常,早期发现故障及其原因并能预报故障发展趋势的技术。在制冷系统的故障诊断方面,神经网络也发挥着重要作用,随着我国空调制冷事的蓬勃发展,制冷系统越来越复杂,故障的潜在发生点也越来越多,制冷设备的故障检测与诊断越来越受到人们的重视。胡正定等人在分析制冷系统常见故障特征的基础上,建立以压缩机进口温度、蒸发器进口温度、冷媒水进口温度、冷媒水出口温度、压缩机排气压力、压缩机吸气压力、压缩机出口温度、冷凝器出口温度等8特征征参数作为输入量,故障模式作为输出量的补偿模糊神经网络模型。仿真结果表明,系统的诊断结果且有较高的准确率。李中领等人在空调系统故障诊断中利用神经网络建立了三层BP网络模型,输入层节点个数为4,对应于4种故障现象,隐含层单元个数为4,输出层节点个数为12,对应于12种故障原因,输出节点值的大小反映了故障出现的可能性。
2.4 负荷预测方面的应用
空调系统逐时负荷的准确预测是实现现代控制的前提之一,准确预测空调负荷对空调高效节能运行具有重大意义,影响空调负荷的因素有空气温度、湿度、太阳辐射强度、人员、设备运行情况等,空调负荷与影响因素之间是严重非线性的关系,具有动态性。
2.5 空调制冷系统的仿真设计方面的应用
制冷空调产品设计中,大量地依赖样机的反复制作与调试,使得产品的设计周期延长,并影响性能优化,用计算机仿真代替样机试验,在计算机上面实现优化设计,使得制冷空调装置仿真技术近年来得到了迅速发展 。
2.6 大型建筑运行能耗的评价方面的应用
大型公共建筑指非住宅的民用建筑,包括办公楼、商场、宾馆、医院、学校等,大型公共建筑用能特点是单位面积耗能非常高,为每年100 kW/m2-300 kW/m2,而且我国大型公共建筑能源系统效率较低,浪费严重,其电耗超过公共建筑节能设计标准规定指标的10倍以上。大型公共建筑中央空调系统运行能耗的科学评价是对大型公共建筑进行用能科学管理的重要基础,赵靖等人基于BP人工神经网络,将冷水机组、冷冻水泵、冷却水泵、冷却塔、其它设备月平均功率、运行时间和气象特征共七个作为预测因子,空调系统总能耗为输出量,建立了大型公共建筑系统运行能耗的预测评价模型,仿真结果表明,网络的平均预测误差输出值约为3.3E-014,可以满足实际应用的要求。
3 发展方向
人工神经网络基于较强的学习能力、自适应能力、容错能力和联想能力,在暖通空调领域中的应用已经取得了突破性的进展。今后的发展方向主要有两个方面,首先,不断改进神经网络性能,提高其预测和控制精确度;另外,逐步使神经网络的实现由软件实现过渡到硬件实现,扩大其在空调领域的应用范围,也是今后的研究方向之一。
参考文献
[1]胡守仁.神经网络导论[M].北京:国防科技大学出版社,1999.
[2]候媛彬,杜京义,汪梅.神经网络[M].西安电子科技大学出版社,2007.
【关键词】小波包变换 BP神经网络 EPS转矩传感器 故障诊断
1 引言
EPS是当前世界最发达的转向助力系统,它是电子控制单元(ECU)根据各传感器输出信号决定电动机的转动方向和最佳助力转矩的转向机构。EPS转矩传感器测定方向盘与转向器输出轴之间传递的转矩,并且将其转矩大小转化为电压值信号。
目前已形成了多种转矩传感器故障检测和诊断的方法,比如:故障树法、神经网络观测器以及基于小波分析的方法等等。小波分析是近年来发展起来的一个新的数学分支,非常适合于分析非平稳信号,对于EPS转矩传感器信号,可方便地剔除系统的噪声干扰和检测出故障信号。基于这一点,将信号进行若干次小波包分解,可以得到信号在各个频段上的分量,这样就实现了信号特征的分离。由于这些特征与故障之间是一种非常复杂的非线性关系,而BP神经网络又具有强大的综合分析能力,用构造的传感器的各种故障样本特征向量对BP神经网络进行分类训练,这样就能进行故障诊断。
2 故障诊断流程
信号获取信号消躁采样小波包变换提取各频带能量归一化处理BP神经网络诊断输出。
3 基于小波包预处理的故障特征提取方法
设EPS转矩传感器电压信号为f(x),令 ψ(x)为小波母函数,则f(x)的二进小波变换为
(1)
其中,离散信号的小波包分解算法为
(2)
其中,ak,bk为小波包分解共轭滤波器系数。
小波包的重构算法为
(3)(4)
当能量较大时,可对特征向量进行归一化处理,令
(5)
(6)
有了信号基于小波包的能量特征向量,就可以利用BP神经网络的非线性和拟合特性进行故障的诊断识别了。
4 BP神经网络
BP神经网络的结构如图1所示,图中的节点是BP神经网络的神经元,它的作用函数为,式中y―神经元的输出,xi―神经元的输入,wi―神经元的连接权值,θ―神经元的阈值,f―神经元的激活函数,由于采用IWPT预处理的小波包分析方法,构建的神经网络为输入层5个神经元,即为故障的能量特征向量维数,输出层为5个神经元(四种故障和正常状态),即为故障的类型数,隐含层为6个神经元,隐层节点函数选用sigmoid函数。
具体的BP网络训练算法可以查阅参考文献。BP网络在设计时,必须规定隐层的数目、每层的节点数、激活函数和输入/输出样本对。这些参数将会影响BP网络的收敛速度和BP网络的有效性。
本文提出的基于IWPT预处理的神经网络故障诊断方法,预处理的目的是为了减少神经网络输入层和隐层节点的个数,从而加快神经网络训练和收敛速度,提高故障诊断的效率。
5 结束语
通过小波包算法对传感器故障信号的分析发现传感器故障几种典型信号在各个频带内的能量分布是不同的,因此可以提取故障信号的子频带能量信号作为特征向量,在提取特征向量的过程中,采用IWPT(不完全小波包变换)预处理方法,使网络的输入层和隐含层节点数目都减少了,能够显著的提高神经网络的学习和收敛速度。将提取的特征向量作为神经网络的输入量,结合样本数据(训练样本和测试样本),利用BP算法对网络进行学习训练,实验表明,训练后的网络能对EPS转矩传感器的典型故障进行有效的诊断。
参考文献
[1] 沈斌,陈敏.电动助力转向传感器故障研究[J].机电一体化,2012(5):59-63.
[2]A.Grossmann and J.Morlet, "Decomposition of hardyfunction into square integrable wavelets of constantshape,"SIAM J.Math.,vol.15, pp.723-736.
[3]Haykin S.Neural Networks A Comprehensive Foundation.Prentice Hall,2001
[4]Y.He,Y.Tan and Y.Sun,Wavelet neural network approach for fault diagnosis of analogue circuits.IEEE Proc.-Circuits Devices Syst.Vol 151(4), pp.379-384
[5]S.Mallat,"Multifrequency channel decompositions of images and wavelet models,"IEEE Trans.ASSP,vol.37, no.12,pp.2091-2110,1989.