前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能教学目的主题范文,仅供参考,欢迎阅读并收藏。
关键词:人工智能;图形编程;创新实践
近年来,人工智能已成为一个高频词,各种与人工智能相关的智能家居、自动驾驶、智能语音、图像识别等新技术,深刻影响着社会的方方面面,也逐步改变人们的工作及生活方式。许多国家已经开始积极尝试,大力推进小学人工智能教学。2017年,国务院正式颁布《新一代人工智能发展规划》,明确提出了“在中小学阶段设置人工智能相关课程,逐步推广编程教育”;如今,计算思维培养又成为热点。在这样的一个时代背景下,学校和教师有责任和义务组织、引导学生去接触、了解、学习、应用人工智能技术,以适应未来学习和工作环境的变化。人工智能涉及的学科内容较为广泛复杂,小学生相对年龄较小,储备的相关知识较少,学校应如何在小学阶段有效开展人工智能教学,推进人工智能教学真正落地?笔者结合自己的教学实践,从“巧”借活动、“巧”设场景、“巧”编程序、“巧”创项目等方面,积极探索小学人工智能教学的推进路径。
一、“巧”设场景体验人工智能
人工智能的知识结构具有较强的逻辑性和抽象性,与之前信息技术课上所教的内容相比,难度及复杂性更高。在日常人工智能教学中,教师应根据学生的心理特点以及不同教学要求,改变教学方式,把体验搬进课堂,让学生通过具体的体验活动逐步理解人工智能的相关知识,把重难点从对概念、原理、技术的学习转换到了解相关概念、技术实现的过程、体验人工智能技术的应用上。丰富有趣的教育实践活动可以让学生在愉悦的教学情境中,从不同的思维角度、用不同的思维方式来认识和理解与生活密切联系的一些人工智能概念,如机器学习、大数据、神经网络等,体验人工智能在实际生活中的应用。例如在《人脸识别》一课教学中,需要让学生了解人脸识别技术的应用、影响、实现过程和原理,其中人脸识别的原理和过程较为复杂,如果教学中只进行简单说教,无法有效达成教学目标。本课设计了一个“人脸大比对”体验活动,活动分两个部分,第一部分就是通过百度AI开放平台里的人脸检测与属性分析功能,体验人脸检测中具体检测哪些属性;第二部分就是通过人脸对比功能,完成教师提供的三组人像照片的对比分析。在第一部分的实例体验中,学生通过自己上传照片进行检测,主要是通过对人脸的面部、肤色、毛发、眼睛、嘴、鼻和轮廓等150个特征的精准定位来准确地识别和计算出一张人脸的特征和属性信息,包括年龄、性别、颜值、情绪、是否戴眼镜等。这样的体验让学生非常感兴趣,也能很好地理解特征提取的过程。第二部分的体验是人脸对比,教师提供给学生三组照片,第一组是一对相似度很高的双胞胎;第二组是同一个人戴口罩和不戴口罩的照片;第三组是同一个人的两种表情。学生先自己观察,记录三组照片的结果,再上传照片到百度AI体验人脸对比过程,并查看对比结果。经过体验,学生认识到在现有的技术下,人脸识别的准确度还是非常高的,对人脸识别的过程也留下了非常深刻的印象。
二、“巧”编程序理解人工智能
从当前人工智能技术应用的实际情况分析来看,主要应用领域为大数据及机器学习,这些功能的实现得益于算法的不断完善。可见,算法学习是实现人工智能的关键,而对算法的学习又是计算机编程教学中的一大难点。推进小学编程教学将有利于帮助学生理解人工智能的相关知识。小学生相对抽象思维偏弱,采用图形化的编程教学,更加有利于他们接受,有助于提高学习的积极性。通过编程教学引导学生学会分析问题、抽象与建模、设计算法、编写程序脚本,在验证过程中不断改进和完善,并最终实现问题的解决,能有效培养学生的计算思维,并过渡到对人工智能所需要的其他知识的学习上。例如在五年级的《创编游戏》教学中,情境任务是设计制作一个猫捉老鼠的小游戏,目标是让学生认识“碰到颜色”“如果……那么……”等指令,能够用它们的组合来编写判断角色是否碰到边缘和老鼠的脚本。人工智能的概念主要体现在“碰到颜色”和“如果……那么……”语句的应用上,“碰到颜色”是侦测识别,“如果……那么……”则是逻辑判断的处理。在教学中,首先通过问题引导学生思考完成游戏需要考虑哪几个要素,从问题和答案中帮助学生提炼出“舞台”“角色”“动作”三个要素,进而帮助学生厘清实现游戏功能的基本思路。在程序编写中,让学生具体体验侦测模块的编写与判断语句的应用。简单的编程实践,能让学生逐步了解人工智能的基本概念及其实现流程。
三、“巧”创项目实现人工智能
知识的学习必须与学生的生活实际结合起来,如果学生在掌握人工智能知识和技能后能将所学知识应用于实践,解决生活中的实际问题,那么这样的学习就是真实有效的。学生通过设计创作具体作品,可以大大增强分析和处理问题、解决实际问题的意识和能力,培养逻辑思维和动手实践能力,这也是人工智能教育的方向和目的。根据学生的实际生活经验,教师将人工智能的具体应用案例巧妙引入课程中,引导他们科学地确定项目内容;通过对项目的梳理分析,建立逻辑关系和模型;用编程语言描述逻辑关系;采用硬件设备实现人工智能的具体功能,这种基于真实任务的学习活动,能有效促进学生的理解。例如四年级实践小组的“智能垃圾桶”作品,便是以垃圾桶为课题进行探究,先让学生对现有垃圾桶的优劣势进行分析,思考怎样改造垃圾桶才能真正实现智能化。通过教师的引领和自身观察,学生很快认识到智能垃圾桶应该具有的功能:一是能检测什么时候有人投放垃圾;二是垃圾桶盖能自动开启和关闭。确定了目标之后,就是思考达成上述目标需要哪些条件。学生根据已有知识,确定可以用超声波检测是否需要打开垃圾桶盖子,打开和关闭动作可以通过舵机和连杆来实现。通过探究后,学生根据设计的方案自主完成了智能垃圾桶的作品搭建,接下来就是通过编写程序和不断调试验证来实现预期的功能。作品完成后,学生可以根据实际情况进行功能的增加与修改,如增加桶内垃圾超过一定高度时能自动提醒的装置等,让智能垃圾桶更加智能。本次作品的创作过程,不仅锻炼了学生分析实际问题、解决实际问题的能力,又锻炼了他们的编程思维和计算思维,更重要的是体验了自己创作人工智能作品的乐趣和成就感。在人工智能应用日益普及的今天,人工智能课程进入小学课堂是大势所趋。在小学阶段开展人工智能课程教学,主要是为了让学生掌握人工智能知识,体验和运用人工智能技术,培养学生的信息技术核心素养、创新意识、实践应用能力,为学生适应未来社会打下扎实的基础。但人工智能教学具有其特殊性,如何有效推进人工智能教学,还面临着许多需要解决的问题。学校和教师应尽最大努力创设更好的人工智能教学环境,探索更有效的教学策略,促进学生对人工智能相关知识的学习。
参考文献
[1]丁华.人工智能教学中对学生计算思维的培养[J].华夏教师,2020(13):42-43.
[2]徐欣彦.引入体验活动创新小学人工智能教学模式[J].中小学信息技术教育,2019(9):62-64.
关键词:高职教育;人工智能;转型发展
一、高职教育现状
(一)客观层面
(1)社会面。当前社会发展处于转型关键期,高职教育迎来全新发展机遇,对人才培养质量不断提高。传统思想中,家长学生都带着有色眼镜看待高职教育。随着社会给技术技能型人才提供很多高薪岗位,部分学生主动选择高职院校进修学业,提高自身技能水平。高职院校必须以社会发展趋势为导向,及时调整自身发展战略。(2)政策面。在新课程改革视域下,政府高度重视高职教育的发展,出台了多项扶持政策,如《国家职业教育改革实施方案》《职业学校专业顶岗实习标准》《关于推进高等职业教育改革创新引领职业教育科学发展的若干意见》等,极大的推动了高职教育的稳定发展。
(二)主观层面
(1)教学理念。高职教师受传统思想影响,往往重视成绩和理论知识,亟需引进新的教学理念,并落实在实际教学中。高职院校已经意识到人工智能时代,自身转型创新的必要性,正积极将全新的教学理念贯穿在人才培养过程中。(2)教学方式。高职教育逐渐创新教学方式,将顶岗实习、校企合作、实训教学等应用在常规教学中,适应时展,彰显职教特色。但在实际教学中,教师理念未发生变化,能力无法满足新型教学方式需求,存在亟需改进优化的地方。(3)教学体系。只有完善的教学体系,才能为高职教育的改革创新提供依据参考。当前高职教育体系中含有诸多不足,如学科单一、理论与实践比重不协调、知识内容陈旧等。高职教育要想适应新时展趋势,应积极完善教学体系。
二、人工智能现状
(1)国家战略。近年来,国家高度重视人工智能发展,国务院《关于印发新一代人工智能发展规划的通知》(国发〔2017〕35号),提出科技创新的主要方向是人工智能,提倡积极构建全新的人工智能科技创新协同机制,进一步完善人工智能教育体系,实现人才储备和梯队建设的目标,推动智能经济的发展。各部委也积极颁布一系列政策,如《智能制造2025》《“互联网+”人工智能三年行动实施方案》《机器人产业发展规划(2016-2020)》等[2]。可见,国家为人工智能技术的发展提供了充足动力,人工智能已成为国家战略的一部分。(2)产业发展。多年的探索,人工智能技术有了明显提升,在问题求解、泛逻辑理论、不确定推理、拓扑学、图像处理、模式识别、专家系统等方面有了显著研究成果,一部分成果甚至领先世界水平。例如我国在模式识别领域的研究,文字识别、语言识别、虹膜识别都取得优异成果,被广泛应用在生物医药、机器人视觉研究、卫星遥感、自主导航、军事等领域。企业十分关注人工智能技术的发展应用,像360人工智能研究院、阿里人工智能研究院、百度人工智能研究院等。人工智能技术的深度研究,使应用和商业价值最大化。据不完全统计,2017年人工智能产业创造700亿元市场价值,预计在2020年产业规模超过1600亿元。
三、人工智能推动新时代高职教育转型发展的必要性
(一)技术技能型人才的需求
高职教育发展的目的是培养适合岗位需求的技术技能型人才。人工智能时代,先进技术的广泛应用,大部分岗位对人才的需求发生明显变化,逐渐形成了“机器换人”的局面。企业中简单、重复、劳动强度大的岗位,都由智能机器人予以代替。例如在京东电商的物流中,出现无人机配送方式,直接冲击了传统人工物流配送模式。相信在不久的将来,会有更多的智能机器人走向物流配送的工作岗位,形成全新的工作体系。此外,在生产制造的质检环节,由于传统人工监测方式存在诸多不足,应用人工智能的图像识别技术,可以实现对产品质量的动态检测。可见,人工智能时代会有大批岗位“消失”,取而代之的是智能化机器人。高职教育必须转变以往的教育模式,顺应时展趋势,结合社会岗位对技能人才的需求,调整高职教育方向,实现高职教育价值。
(二)国家发展战略的要求
以往的发展致力于“中国制造”,但新时代“中国制造”已无法提升综合国力,国家必须调整发展战略。人工智能时代将“中国制造”转变为“中国创造”“中国智造”。这一发展战略的转变,能看出先进科学技术在国家发展中的重要地位。为了2025年实现“中国智造”的目标,高职院校创新人才培养模式,顺应国家发展战略的调整。同时,高职教育转型过程中,转变以往以理论、成绩为主的思想观念,对人才进行更加系统的培养,调整理论知识、实习实践之间的关系比例。人工智能时代的高职教育转变与创新,可以加大对学生创新意识的培养力度,使人才综合素养得到更好提升,满足“中国创造”的需求。
(三)学生自身价值实现的需求
时代的发展使高职学生的思想发生变化,传统的高职教育虽能提高学生专业能力,但并不满足当前企业对工作岗位的需求,学生无法实现自身价值。曾经的学生,没有认识到自身与社会的关系,存在“得过且过”等不良思想。新时代,高职学生逐渐认清自身地位,意识到自己与国家民族是“命运共同体”,是实现伟大复兴“中国梦”的主要力量。高职教育转型创新,根据时展要求、学生需求,合理调整教学方案与计划。
关键词:人工智能;电气信息类;教学应用
教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。
一、人工智能时代的概述
人工智能(ArtificialIntelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligentagent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯卡普兰(AndreasKaplan)和迈克尔海恩莱因(MichaelHaenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是十分广泛的科学,它由不同的领域组成,它是哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等多种学科互相渗透而发展起来的一门综合性学科。在人工智能时代下进行电气信息类专业教育改革的过程中,需要对人工智能时代的含义和发展背景进行深入的分析和研究,这样才可以给电气信息类专业教育改革指明一个正确的方向,保证后续工作的科学性和有效性。在2016年的世界经济报告中,人工智能被预测为第4次工业革命的主要技术代表,人工智能的发展将从宏观到微观的各个角度进行相互的渗透以及融合,从而符合各个领域对于智能化技术的新要求和新需求。在人工智能技术发展的过程中,产生了大量的新技术和新产品,也形成了新的产业核心的发展模式[1]。我国经济结构在人工智能时代下发生了重大的变革,由于人工智能技术独特的技术形式和技术模式,深刻地改变着人们的生活方式和生活模式。在一定程度上不仅可以推动我国社会生产力的提高,还有助于推动科学技术水平逐渐朝着智能化和数字化的方向而发展,从中可以看出人工智能技术的发展是时展的必然趋势,并且发展前景是比较广阔的。人工智能技术主要是指将多个学科技术进行有效的整合,其中涵盖了计算机学科、语言学科和心理学科,智能化特征是比较明显的。在实际应用的过程中,由于融合了各种尖端的技术,能够将技术能力和技术思维进行有机的结合,模仿人的工作行为和思维,在当前时代下人工智能技术得到了蓬勃的发展,但是人工智能技术的发展也需要一定的时间和精力。首先,在实际用的过程中相关工作人员进行了机器人的研发,机器人可以在复杂的环境中对信息进行有效的替代和处理,模仿人类的思维进行日常的工作。在后续工作的过程中,相关工作人员进行了数据系统的开发,可以自动化和智能化的对计算机数据进行有效的处理以及分析,在较短时间内提取出有效的信息,完成整个工作流程[1]。随着我国当前科学技术的不断发展,一些工作人员纷纷加强了对人工智能技术的研发力度和开发力度,不仅可以提高计算机的使用效果,还可以及时的发现在计算机系统日常运行过程中所存在的故障。在当前时代下人工智能技术的使用范围在不断的扩展,并且人工智能技术的发展前景是非常广阔的,在计算机网络技术中发挥着独特性的作用和决定性的重要影响的作用。
其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业2本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。
二、人工智能对电气信息类专业人才需求的影响分析
人工智能主要是利用计算机对人脑功能进行模拟,具备一定程度的人类认知和分析问题的能力,人工智能是人类所制造的智能化技术,也是机器智能化发展的主要载体。在人工智能发展的过程中,由于是计算机科学领域的一个分支,所以在人工智能研究的过程中,涉及有关语言识别和图像识别方面的功能。在当前时代下,人工智能所形成的热点效应是比较广阔的,人工智能技术的应用,使得各行各业朝着智能化的方向而发展,对于电气信息类专业人才需求来说,也逐渐朝着智能化的方向而发展。电气信息类的教学,主要是为了让学生能够在班级学习的过程中,将理论和实践进行有机的结合,提高学生的实践能力和操作能力,实践性是比较强的。在电气信息类专业发展的过程中各种新兴的技术被应用其中,扩展了电气信息类专业的发展实力,并且人工智能和电气信息类专业进行了有机的融合和渗透。人们在互联网思维的影响下已经形成了互联网思维的发展理念,随着人工智能技术的广泛运用再加上云技术和算法技术的普遍化,这又给电气信息类专业的发展提供了重要的支撑。在相互融合的技术背景下,电气信息类专业也即将进入到人工智能发展的领域中[2]。因此对于电气信息类专业行业的工作人员来说,要了解人工智能时代下先进的信息技术,并且还要结合电气信息类专业在人工智能背景下的新特点,树立新的工作模式和工作理念,从而使得电气信息类专业能够在人工智能技术背景下得到广泛的发展。对于人才需求方面,要求高校要对原有课堂教学模式和课程教学重点进行深入的改革和创新,融入人工智能方面的内容,对学生的综合素质和专业能力进行良好的培育,高校要正确地理解人工智能对电气信息类专业教学的影响,从而使得电气信息类专业能够朝着生态化和持续性的方向而发展。
三、人工智能给电气信息类专业提供的机遇
在人工智能技术中,所涵盖的技术内容相对来说是较为丰富的,这在一定程度上有助于提高电气信息类专业的教学水平和教学质量。从中可以看出在当前时代下的电气信息类专业教育教学中,教师要充分地把握人工智能技术所带来的机遇,从而提高课堂教学的效果和质量。在人工智能技术中包含着语言识别技术和图像辨认技术,也可以对一些语言进行有效的处理和研究。在课堂教学的过程中,教师要充分的发挥人工智能技术的优势,让学生了解当前电气信息领域的发展方向和主要的发展特点[3]。由于电气信息类专业所涵盖的内容是相对来说较为复杂的,学生在日常学习的过程中,需要进行多个学科知识内容的学习,这给学生日常学习和教师的课堂教学带来了诸多的挑战,教师要结合课程教学的内容,对课堂教学模式和流程进行精心的安排。在实际工作过程中,要以计算机作为主要的辅助手段兼容,并且充分利用其他专业领域的技术来开展日常的教学。在课堂教学过程中,教师要充分的利用人工智能技术,对原有课堂教学模式进行深入的改革以及研究,并且结合新一代人工智能发展规划的这一大背景,对原有课程教育模式进行创新和调整,从而给学生提供更加广阔的发展空间。首先,在实际工作的过程中,人工智能技术重新构造了电气信息专业的课程,由于电气信息类的实用性是比较强的,在人工智能的技术下能够取得不一样的教学效果。将语言识别技术和图像辨认技术进行了有机的结合,教师可以充分发挥这些专业技术的优势,提高课堂教学的效果。另外在课堂教学情景中,教师可以利用人工智能技术来实现网络化的教学,并且为学生打造智能化的工厂开展虚拟实验室,从而对学生的专业能力和操作水平进行良好的培育。其次,在电气信息类专业教学中人工智能技术的应用能够对传统课程教育模式进行有效的转型和升级。在以往课程教学中,由于电气信息类专业所涉及的知识学科是相对来说较为丰富的,这给教师的日常教学带来了诸多的问题。比如在实际教学的过程中很难实现课程的有效统一,也无法为学生打造标准化的课程教育体系,在进行个性化和独特性课程教学方面的力度还是不足的,甚至也没有完善的教育体系进行主要的支撑,这给实际的教学工作带来了诸多的问题。随着人工智能技术的应用,在课程教育的过程中,教师可以充分的发挥人工智能技术的优势,对相关信息进行有效的总结和收集。从而为学生打造个性化的教学课堂,并且运用人工智能技术,还可以对不同学生的学习需求进行分析和研究,提高课堂教学的针对性,从而使学生可以更加积极地进行知识内容的学习,实现快乐学习的效果[4]。在专业教育中教师要充分的发挥人工智能技术的优势,提高人工智能技术的应用性效果,对学生的知识需求进行深入的挖掘以及研究,从而使学生的学习质量能够得到有效的提高。与此同时,在课程教育的过程中,教师还可以进行课堂情景的构建,通过网络化的教学为学生再现一些生活中的真实案例,为学生全面素质的提高奠定坚实的基础。
四、人工智能技术在电气信息类专业教育教学中的应用路径
(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。
(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。
(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。
(四)利用人工智能技术进行辅的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。
(五)在电气设备故障诊断中的应用在电气设备故障诊断中,人工智能技术中的模糊理论、人工神经网络和专家系统的应用比较广泛。以前我们常常面临的问题是,当电气设备出现问题或故障时,总是表现出比较复杂的症状,采用传统处理手法难以对问题做出准确判断和查找,人工智能技术则很好地解决了上述问题。比如发电机的设备故障具有非线性、不确定和复杂性的特征,传统论断方法准确率非常低,而通过人工智能技术中模糊理论和专家系统的综合应用,能大大提高故障论断的准确率。
关键词:人工智能;学习兴趣;教学方法
1956年,在美国Dartmouth大学,由数学家J.McCarthy和他的三位朋友M.Minsky、N.Lochester和C.Shannon共同发起一个历时两个月的夏季学术讨论班,他们在此讨论班上第一次正式使用了人工智能(Artificial Intelligence)这一术语。人工智能是一门多学科交叉的课程,涉及计算机科学、数学、控制论、信息论、神经生理学、心理学、哲学及语言学等多个学科,是新理论和新技术不断出现的综合性学科。当前,人工智能领域加强了从人类智能与生命现象中汲取养分的趋势,加快了向分布式系统与复杂系统靠拢的步伐,智能化的应用更为深入,影响更为广泛,其发展已对人类的经济、社会、文化等方面产生了深远影响[1]。
1人工智能导论课程特点
人工智能导论是人工智能领域的引导性课程,介绍人工智能的基本理论、方法和技术,目的是使学生了解和掌握人工智能的基本概念和方法,为进一步学习奠定基础。人工智能是计算机科学与技术学科一门重要的基础课程,需要相关课程作支撑。离散数学、概率论与数理统计等课程是其数学基础,数据结构、程序设计基础、算法分析与设计等课程则为人工智能中知识表示、逻辑推理和问题求解提供了设计与实现手段。与其他软件课程相比,人工智能课程有鲜明的特点,主要表现在思想方法上强调启发性、算法上强调不确定性。同时,由于人工智能是一个新思想和新技术层出不穷的开拓性领域,因此其对学生的训练是鼓励创新的,具有其他课程不可替代的作用。
人工智能导论是计算机相关专业的必修课,在许多信息类相关的本科教学中也有开设,一般开设在第六或者第七学期。我国目前本科教育的定位是专才教育,培养某方面的专业人才。完成公共基础课程和部分专业基础课程的学习之后,本科高年级学生应该了解本专业的应用领域和发展前景,因此在教学过程中要注意内容的专业性和应用性。由于本科阶段学生缺乏科研意识,初步的科研训练设置在第八学期,即所有课程学习完毕之后的毕业设计,而人工智能课程强调科研性,因此教学难度较大,由此带来的最直接后果就是学生学习兴趣不高。同时,对有志于读研的学生而言,本科阶段的学业也是研究生教育的起点,在教学过程中要适时的进行科研引导,提升学生对科学研究的兴趣,为研究生阶段打下基础。可见,圆满完成人工智能导论课程这一教学任务是重要且极具挑战性的。
2教学内容安排
人工智能的研究和应用领域非常广泛,包括问题求解、机器学习、自然语言理解、专家系统、模式识别、计算机视觉、机器人学、搏弈、计算智能、人工生命自动定理证明、自动程序设计、智能控制、智能检索、智能调度与指挥、智能决策支持系统、人工神经网络、数据挖掘和知识发现等。人工智能导论旨在为这些具体领域的研究提供引导和基础保障。
人工智能导论课程涵盖内容较多,因此需要明确“精讲”和“泛讲”的内容,以使教师和学生在教学活动中都有所侧重。当然,首先应和学生说明,泛讲并不代表内容不重要,只是由于课程性质和课时的关系,暂时不作深入探讨。日后如有需要,可在此基础上进一步学习和研究。结合当前人工智能学科的发展状况,根据教学大纲和作者的教学经验,对人工智能导论课程教学内容的精讲和泛讲安排如表1所示。
3提升学生学习兴趣的教学方法
3.1穿插背景故事
为激发学习积极性,针对学生喜欢听奇闻轶事、想象力丰富的心理特点,通过讲述一些与教学内容有关的故事或者趣事来吸引其注意力,辅助思维并丰富联想,使学生在愉悦中完成学习[2]。下面列举几个我们在课程教学中用到的背景故事,通过这些故事,不但传授了知识,也活跃了课堂气氛。
1) 人类智能的计算机模拟与人机大战。
讲授人类智能的计算机模拟时,可以给学生简述一下IBM公司的超级电脑和国际象棋世界冠军卡斯帕罗夫之间的人机大战,以促进学生对人类智能和人工智能的进一步思考。北京时间1997年5月12日凌晨4点50分,在美国纽约公平大厦,当IBM公司的“深蓝”超级电脑将棋盘上的一个兵走到C4的位置上时,国际象棋世界冠军卡斯帕罗夫对“深蓝”的人机大战落下帷幕,“深蓝” 以3.5U2.5的总比分战胜卡斯帕罗夫。2003年1月26日至2月7日,卡斯帕罗夫与深蓝的升级版“小深”又进行了一场人机大战,先后进行了6局比赛,最终卡斯帕罗夫以1胜1负4平的结果和“小深”握手言和。这也表明了人工智能和人类智能之间的较量还将持续下去。
2) 问题规约法与老和尚说教。
问题规约法是从要解决的问题出发逆向推理,建立子问题以及子问题的子问题,直到最后把初始问题归约为一个本原问题集合。本原问题指不能再分解或变换且直接可解的子问题。可见,问题规约的本质是递归的思想。此时,可以给学生简述我们小时候就听说过的老和尚说教的故事,即“从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说,从前有座山……”。
3) 模糊理论与秃头悖论。
模糊推理是一种重要的不确定性推理方式,是指基于模糊理论进行的推理。讲授模糊理论时,可以先讲一下秃头悖论让学生讨论。一个人有10万根头发,肯定不能算秃头,不是秃头的人,掉了一头发,仍然不是秃头,按照这个道理,让一个不是秃头的人一根一根地减少头发,就得出一条结论,即没有一根头发的光头也不是秃头!秃头悖论的出现源于在严格的逻辑推理中使用了“秃头”这一模糊概念,因此需要以模糊逻辑代替传统的二值逻辑解决该问题。
3.2课堂辩论和多媒体教学
人工智能从其诞生之日起就充满争议,各种学派的争论使得人工智能的发展更趋完善,加快了其纵深发展。目前,人工智能的争论主要有两方面,即研究方法的争论和技术路线的争论。前者争论的主要问题有人工智能是否得模拟人的智能;对结构模拟和行为模拟是否可以分离研究;对感知、思维和行为是否可分离研究;对认知与学习以及逻辑思维和形象思维等问题是否可以分离研究;是否有必要建立人工智能的统一理论体系。后者争论的主要问题是沿着什么样的技术路线和策略来发展人工智能。
在课堂教学中,可以充分利用人工智能中存在的争论较多这一特点,针对相关议题组织课堂辩论,如可用议题“机器的反叛――机器的智能会超越人类吗?”。让学生在图书馆或者从网上查阅相关资料,明确自己的论点并准备证据材料,并在课堂上进行辩论。这类辩论无所谓输赢,旨在通过这种活动,增进学生思考[3]。教学中,还可以充分利用多媒体教学的特点,如让学生观摩电影《终结者》系列、《人工智能》、《黑客帝国》等,增强学生对人工智能的直观感受,提高课堂教学效果[4]。
3.3应用实例分析
普遍而言,本科学生对单纯的理论讲解不太感兴趣,因此在教学过程中,适当增加一些实验和设计,提高学生分析问题的能力和实际动手能力。比如,讲解知识的产生式表示法时,给出产生式的概念和基本表示形式之后,可以通过“野人与传教士过河”问题来说明产生式表示法的具体应用过程;讲解计算智能的进化计算部分时,给出进化算法的几种具体形式和算法流程之后,可以通过中国旅行商问题(CTSP)来说明算法求解问题的过程。教师在教学过程中,可以根据需要,选择一些合适的应用实例进行分析。通过这些实例,既能加深学生对知识的理解,又能增加学习的兴趣。下面给出两个实例的简单描述。
1) 产生式表示法求解“野人与传教士过河”问题。
问题:传教士和野人各N人过河,现只有一条船,传教士和野人都会划船,船一次只能载k人,船上野人多于传教士时野人就会吃掉传教士,问如何安全过河?(不失一般性,以N=3,k=2为例求解)。
求解简述:设综合数据库中状态用三元组(m, c, b)表示,其中m、c、b分别表示传教士、野人和船的数目,则有:
0≤m, c≤3, b ∈{0, 1}
以左岸为参照点,则初始状态和目标状态分别为(3,3,1)和(0,0,0)。据此,可以给出一条产生式规则如下:
IF (m, c, 1) THEN (m-1, c, 0)
以此类推,把所有可行的规则都求出之后,就可按照规则集和控制策略得到问题的解。
2) 遗传算法求解31个城市的CTSP问题[5]。
问题:给定有限个城市的集合C={c1,c2, …,cm}及每两个城市之间的距离矩阵D=[dij]m×m,其中m∈N,dij=d(ci, cj)∈Z+,ci、 cj∈C,1≤i、j≤m,求出满足的城市序列cπ(1)、cπ(2)、…、cπ(m),其中π(1),π(2),…,π(m)是1、2、…、m的一个全排列。我们以CTSP问题为例,即求解中国31个城市之间最短巡回路线的问题。
求解简述:路径表示直接使用城市在路径中的相对位置,如有编号分别为1、2、3、4、5的5个城市的一条路径4-1-2-5-3,用路径表示方法直接可写为(4 1 2 5 3)。适应度函数值用路径的实际长度表示。交叉算子采用次序杂交,即选择父体的两杂交点,交换相应的段,其它城市则保持在父体中的相应次序。变异算子采用倒位算子,即随机选择两个位置,然后将它们之间的城市反序。通过运用遗传算法求解,可得最优解为15 404 km,对应的巡回路线为“北京―呼和浩特―太原―石家庄―郑州―西安―银川―兰州―西宁―乌鲁木齐―拉萨―成都―昆明―贵阳―南宁―海口―广州―长沙―武汉―南昌―福州―台北―杭州―上海―南京―合肥―济南―天津―沈阳―长春―哈尔滨―北京”。实例讲解完成后,可要求学生采用相同或者不同的方案自己去实现一下问题的求解过程。
4结语
人工智能是计算机科学与技术专业的一门核心课程,同时也是一门交叉学科,涉及面广,理论性强,教学难度较大,学生的学习兴趣有待提高。本文作者根据自己在人工智能导论课程中的教学实践和课程特点,明确了教学中的精讲内容和泛讲内容,总结了三种提高学生学习兴趣的教学方法,并给出相应的实例说明,旨在为本门课程的教师提供教学参考。
参考文献:
[1] 蔡自兴,徐光v. 人工智能及其应用(本科生用书)[M]. 北京:清华大学出版社,2003:288-296.
[2] 薛占熬,齐歌,杜浩翠,等. 离散数学的课堂导入法研究[J]. 计算机教育,2010(8):95-99.
[3] 徐新黎,王万良,杨旭华. “人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.
[4] 李春贵,王萌,何春华. 基于案例教学的“人工智能”教学的实践与探索[J]. 计算机教育,2008(9):53-54.
[5] 杨利英,覃征,贺升平,等. 改进的演化近似算法求解TSP问题[J]. 微电子学与计算机,2004,21(6):126-128.
Teaching Methods for Promoting Learning Interests in Introduction to Artificial Intelligence
YANG Liying
(School of Computer Science, Xidian University, Xi’An 710071, China)
Abstract: This paper presents three teaching methods for promoting learning interests based on the characteristics of Introduction to Artificial Intelligence and our teaching experience. These methods have been used in practice. The teaching practice shows that the methods proposed in this paper can promote learning interests effectively.
关键词:人工智能;应用领域;实际应用
1. 人工智能中智能体的功能
1.1人工智能
人工智能是以知识为对象,研究知识表现、知识获取、知识挖掘等的学科。从其功能来看,人工智能即参照人类智能活动的客观规律,借助一定的智能体,模拟人类的思维执行诸如判断、推理、识别、决策、检测等活动。
1.2智能体
人工智能必须借助一定的智能体来实现,也就是说,智能体是人工智能的载体。因此,分析人工智能就要借助智能体来阐述。一个性能良好的智能体,应尽量准确捕捉用户的用意,通过对环境的感知,敏锐地获取相关信息和知识,并根据环境的数据变动适时作出调整,高效执行用户指令,完成用户指定的任务。
1.2.1单智能体的功能
依照智能体的功能,人们通常将智能体划分为思考型、反应型、混合型三种。
图1 思考型智能体的功能示意图
思考型智能体主要通过用户根据目标或任务,下达行动指令,用知识和计划指导行动,并根据行动的反应,对环境进行感知,智能体感知内部状态等对环境状态,适时对动作进行调整,实现思考型智能体的功能。
图2 反应型智能体的功能示意图
反应型智能体主要通过规则动作指导行动,并利用智能体对环境状态的感知,指导规则动作对环境作出适应性改变,实现反应型智能体的功能。
图3 混合型智能体的功能示意图
混合型智能体的功能较为复杂,它通过智能体对环境的一般、紧急情况作出反应,对环境状况建模,对环境可能发生的情况进行预测,与其它智能体进行交流,共同指导决策,指导行动的准确性。
1.2.2多智能体的功能
多智能体即通过多个智能体间的相互协调,共同配合,构成一个综合智能体,联合达成一个任务。每个成员智能体有着各自的目标和动作,可以不受其他成员的限制,自主执行自身的动作规则,利用各个智能体间的竞争与协调,化解多个智能体间的矛盾与冲突,实现多智能体的任务,体现多智能体的功能。在多智能体的综合功能下,各个智能体作为综合功能的子功能,每个智能体都具有较高的适应性,能够根据问题,进行规划和推理,判断应该采用的策略,对环境施加影响。多智能体基于简单的设计理念,具有有利于建模,可扩展性强,管理方便,能够节省构建成本,明白易懂等特点。通过多智能体,可以面向对象,实现智能体的多元化和多层次性的构架,缓解了综合系统的复杂性,也缓解了各个系统解决问题的复杂性,并通过协调与协作,提高解决问题的效率,提高整个系统行动的效率。
2. 人工智能的主要应用领域
2.1人工智能在教育的应用
2.1.1教师辅导的智能化
人工智能在教育的应用,主要表现在利用Agent技术,实现智能化教学。Agent技术是一种基于分布式的智能技术,通过智能体Agent,可以实现自主学习的功能,并根据感知自身和环境状态,采取相应的行动,达成系统规定的目标或任务。Agent具有多种优势,诸如可以自主完成行动,快速对动作做出反应,协作能力强,系统处于开放状态,通信性能好,能够随时随地进行行动等。多Agent系统由多个成员Agent组成,各个成员Agent都有既定的动作,通过成员hgent间的通信,获知相关信息,共同协调完成整个系统的复杂任务。Agent在智能化教学中的主要功能:对教学过程进行跟踪监控、教学分析、教学信息的整理、辅助学习、学习方法建议等。通过上述功能,能够适时监督学生的自主学习和教师的辅导,并能够结合学生的学习行为、学习效果等,提供有效的学习指导,实现教师辅导工作的智能化。
2.1.2教学资源的智能检索
目前,各种网络教学资源五花八门,信息量非常大且较为分散,并且各种教学资源还在不断的增长,给学生和教师利用教学资源带来相应的困难。智能检索系统的应用,能够帮助学生和教师在海量信息中,快速准确地搜索到所需信息,节省学生或教师的检索时间,提高用户检索效率。
2.1.3智能化评价
随着现代教育的发展,运用专家系统技术,通过网络考试系统,采用智能组卷算法,实现自动组织考卷。通过试题库,依照既定规则,对精选的试题进行筛选,实现自适应的试题测试功能。根据相关需要,设计自动评卷功能,对考试结果进行评价,并可根据需要对考试题型进行评价。
2.2数据挖掘技术
2.2.1数据挖掘技术
数据挖掘技术,就是通过揭示数据间的关系和数据的存在模式,对数据和数据库进行处理的技术。它是人工智能、数据库管理、仿真等多学科交叉的边缘学科。数据挖掘技术的应用,为工商、科研工作的发展提供了较多的新方法,对工商业与科学研究都具有非常重要的意义。由于数据挖掘技术蕴含着知识表现、知识获取和知识挖掘等理念,使得其与人工智能的功能如出一辙,很多人认为数据挖掘技术应该是人工智能的一支。从实际来看,虽然数据挖掘技术与人工智能有相应的交集,但它已经成为一个独立的系统,具有更为丰富的内容体系,与人工智能、机器仿真、OLAP、专家系统等都具有相关性,其规则、分类、算法等都自成体系,体现出数据挖掘技术的博大精深。
2.2.2数据库的知识发现
通过数据挖掘技术,对数据库中的知识存量进行充分的研究,从中找出潜在的规律性,从而利用数据的相关性分析,挖掘出蕴含在数据中的抽象知识,揭示数据所表现的客观世界状况,从中得出相关的本质和规律,从而自动获取知识。知识表现所概括的是数据所揭示内容的概念,比数据本身更有应用价值。
2.3智能检测技术的应用
2.3.1智能机器人研究
在智能机器人的研究中,研究者更加关注对机器人的行动进行智能控制,也就是说,研究者在给定机器人任务后,必定要根据任务设计相关的动作规则来实现任务,然后根据智能控制,使机器人的行动达到研究者的预期目的。
2.3.2对流水线的智能监控
很多工厂的生产流水线,都需要通过过程监控,保障产品质量和系统性能。很多企业已经采用人工智能对流水线进行监控 ,确保流水线的物理参数精度,实现流水线的高效和产品的优质。例如汽车工业的模糊逻辑智能控制,轧钢厂的神经元智能控制,水泥旋窑的模糊智能控制等。
2.3.3故障的智能诊断
一般情况下,智能系统根据检测到的故障状况,对照系统存储的相关诊断数据和信息,判断系统、器官、元件等出现故障的原因,采用系统给定的信息进行故障处理,及时排除故障,提高系统的稳定性和可靠性。故障的智能诊断系统构架主要有:故障信息库、诊断信息、数据接口、数据库等。例如,飞控系统的故障诊断、雷达的专家诊断等。
2.3.4医疗领域的专家系统技术
从上世纪70年代,医疗领域已经开始广泛应用专家系统技术。例如在外科手术中,采用模糊逻辑控制,通过模糊函数与语言,准确把握病人的麻醉深度,实现对病人麻醉深度的智能控制。
3. 人工智能的实际应用
3.1机器人在教育界的应用
3.1.1模拟教学
根据教材的安排,对某些需要解释的现象进行机器人模拟演示,让学生认真观察,从中发现一定的规律,使学生加深对规律性的认识和理解。如数学教学中的抛物线轨迹演示,物理教学中的阿基米德定理演示等,都能够利用直观的演示,揭示其中的规律,使学生加深对相关知识的理解。
3.1.2人机交互的辅导方式
利用机器人辅导学生学习,可以通过人机交互,为学生提供量身定制的辅导模式,使学生的个性得到充分发展。采用微型机器人与学生的交互辅导,可利用微型机器人其体积小、重量轻,便于携带等优点,随时随地进行学习,随时为学生解决问题,提供学习指导。利用家庭机器人与学生的交互辅导,承担家庭教师的职责,有利于学生问题的适时解决,也有利于学生的学习得到及时的巩固。通过软件机器人与学生的交互辅导,可以对学生的学习情况进行分析,为学生制定专门的指导计划,提高学生的学习质量。
3.1.3仿真训练
在教学中,教师可以利用机器人,将相关内容通过机器人的演示展现给学生,减轻教师的负担,并能够通过规则的动作,使教学更为规范。例如,用机器人示范体育高难动作,可以将动作分解、定格、重复播放等,从多方位展示动作,使学生能够充分掌握动作的规范,比教师的示范更为科学,也更为有效。
3.1.4机器人远程教育
通过机器人,可以通过对学生的特征数据分析,建立学生模型库,根据学生的个性,同时对多名远程教育的学生实施个性化教学和辅导,提高远程教育的效率,实现远程教育的智能化。
3.1.5激发学生的学习兴趣
机器人为学生创设富有情趣的教学环境,根据教学任务,采用与学习相关的游戏,调动学生的学习积极性,使学生在尽可能短时间内,掌握需要了解的知识点,提高学习效率。
3.2数据挖掘技术的实际应用
数据挖掘技术的应用领域较为广泛,主要有:
(1)商业领域
商业领域是最早应用数据挖掘技术的重要领域。通过数据挖掘,对产品销售数据进行分析,对产品进行市场定位;根据消费者需求分析,对产品的销售进行预测,调整产品营销策略;根据市场销售情况,制定合理的库存,减少资金的占用;对顾客的购买行为模式进行识别,据此布置货架,适应顾客的购买习惯;通过食品的滞销、畅销分析,制定相应的促销手段和促销时间,避免商品过期积压等等,使数据挖掘技术在商业领域得到极为广泛的应用。
(2)金融业
利用金融服务的各种卡品信息,分析客户的需求,了解客户的存款和贷款信息,对存、贷款趋势作出科学预测,从而制定合理的存、贷款优惠策略;对金融交易活动进行监控,从中提取有用信息。例如,有信用卡客户对私家车感兴趣,金融机构就可以将信息告知汽车销售部门,并为客户提供量身定制的贷款服务。
(3)工业生产
在产品销售环节,工业生产企业对数据挖掘技术的应用与商业领域的应用大致无异。随着市场竞争的激烈,很多工业生产厂家已经通过数据挖掘技术对生产过程进行动态监控。
(4)网络应用
随着信息流量的增大,简单的索引与搜索系统已经很难满足网络用户的需要,有待开发高层次的搜索引擎来适应网络不断的发展,智能化的搜索引擎带给用户的是快捷、高效与易用,使其成为今后搜索引擎的应用趋势。
(5)其它方面的应用
通讯公司利用远程通信,及时了解客户信息,创新客户服务,拓展新的业务,扩大市场影响力,赢得最佳效益。高校利用数据挖掘技术,了解生源信息,将学校的专业信息发送给目标生源;对教师的情况进行分析,从中找出关联性,有针对地制定教学方案,有效提高高校的教学质量。医药公司通过对医生处方分析,了解医生的用药情况,可以制定合理的供货计划和营销策略。旅游机构对旅游团体进行分析,可以采用有效的旅游模式,吸引更多的旅游团体。利用卫星遥感技术获取的数据,提高天气预报的准确度。
3.3人工智能在检测系统的应用
人工智能在检测领域的应用非常广泛,如前面介绍流水线的监控、智能故障诊断、专家技术系统等,现对网络入侵的智能检测系统加以简要说明。
3.3.1网络入侵专家检测系统
该系统的智能化程度高,用户不用干预专家系统的推理。然而,其系统信息是建立在专家知识的基础上,必然受专家认知网络攻击模式的限制。该系统的构建基于以下几点:首先,采用安全入侵规则的描述方式,如判断树描述、图形描述等。其次,通过合理推理,参照专家库的规则,判断网络安全状况,检测是否有入侵行为发生。最后,更新专家库,调整专家规则,结合神经网络技术,利用神经网络技术的敏感性与快速反应能力,不断增强系统的自适应功能,提高系统检测能力。
3.3.2入侵统计智能检测系统
该系统主要对异常的安全问题进行检测。它通过建立正常行为模型,对照进行网络入侵检测,检测出正常行为有较大偏离,则视为异常。首先,确立门限值,统计某一事件在特定时间出现的频率,检测是否超出门限值,判断系统是否异常。其次,设定事件度量均值、度量标准偏差的置信区间,统计系统的两个参数值,判断系统是否偏离区间,检测系统异常与否。最后,根据事件的矩阵数据,对事件转移的概率进行统计分析,结果小则预示存在异常。
参考文献:
[1] 于大方.浅析人工智能及其应用领域[J].科技信息.2008(23)
[2] 张鹏.智能机器人辅助教育及其应用[J].中国电化教育2009(2)
[3] 龚成清.基于人工智能的网络入侵检测系统设计[J].南宁职业技术学院学报.2009(5)
[4] 张睿.浅论数据挖掘技术及其应用[J].成功(教育版). 2009(10)
关键词:人工智能 情感 约束
中图分类号:TP18 文献标识码:A 文章编号:1007-3973(2013)001-085-03
1引言
人工智能(Artificial Intelligence,AI)自从20世纪50年代产生,经过长期发展,已经有了长足的进步,并且已经深入到社会生活的诸多领域,如语言处理、智能数据检索系统、视觉系统、自动定理证明、智能计算、问题求解、人工智能程序语言以及自动程序设计等。随着科学技术的不断发展,现在的人工智能已经不再是仅仅具有简单的模仿与逻辑思维能力,人们也越来越期待人工智能能够帮助或者替代人类从事各种复杂的工作,加强人的思维功能、行为功能或是感知功能。这就要求人工智能具有更强的情感识别、情感表达以及情感理解能力。通俗的说,为了使得人工智能对外界的变化适应性更强,需要给它们赋予相应的情感从而能够应对这个难以预测的世界。
在赋予人工智能“情感”的过程中,面临着许多的问题,有科技层面上的,也有社会学层面的。本文在这里只讨论其中一个比较基本的社会学问题:“人工智能情感约束问题”,即关注于如何约束赋予给人工智能的情感,不至于使其“情感泛滥”。情感指的是一种特殊的思维方式,人工智能具有了情感后的问题是:人工智能的情感是人类赋予的,人工智能自身并不会创造或者控制自己的情感。如果赋予人工智能的情感种类不合理,或者是赋予的情感程度不恰当,都有可能造成“情感泛滥”并导致一些灾难性的后果。例如,当人工智能具有了情感之后,如果人类自身管理不恰当,有可能导致人工智能反过来伤害人类。尽管目前我们只能在一些科幻作品中看到这种情况发生,但谁也不能保证未来有一天会不会真的出现这种悲剧。
本文第二章对人工智能情感研究进行了概要性回顾,第三章对如何约束人工智能情感进行了尝试性探讨,最后一章对全文进行了总结。
2人工情感发展情况概述
随着科学家对人类大脑及精神系统深入的研究,已经愈来愈肯定情感是智能的一部分。人工情感是以人类自然情感理论为基础,结合人工智能、机器人学等学科,对人类情感过程进行建模,以期获得用单纯理性思维难以达到的智能水平和自主性的一种研究方向。目前,研究者的研究方向主要是人工情感建模、自然情感机器识别与表达、人工情感机理等四个方面的内容。其中,尤以人工情感机理的研究困难最大,研究者也最少。
目前人工情感在很多领域得到了应用和发展,比较典型的是在教育教学、保健护理、家庭助理、服务等行业领域。在教育教学方面比较典型的例子是德国人工智能研究中心发展的三个方案:在虚拟剧场、虚拟市场和对话Agent中引入情感模型和个性特征来帮助开发儿童的想象力及创造力。在保健护理方面比较典型的是家庭保健与护理方向,如Lisetti等人研制的一个用于远程家庭保健的智能情感界面,用多模态情感识别手段来识别病人的情感状态,并输入不同媒体和编码模型进行处理,从而为医生提供关于病人简明而有价值的情感信息以便于进行有效的护理。服务型机器人的典型例子是卡内基梅隆大学发明的一个机器人接待员Valerie。Valerie的面孔形象的出现在一个能够转动方向的移动屏幕上时可以向访问者提供一些天气和方位方面的信息,还可以接电话、解答一些问题;并且Valerie有自己的性格和爱好,情感表达较为丰富。当然这些只是人工情感应用领域中的几个典型的例子,人工智能情感的潜力仍然是巨大的。
尽管关于人工情感的研究已经取得了一定的成果,给我们带来了很多惊喜和利益,但由于情绪表现出的无限纷繁以及它与行为之间的复杂联系,人们对它的运行机理了解的还不成熟,以致使得目前人工情感的研究仍面临着诸如评价标准、情感道德约束等多方面问题。所以必须清楚的认识到我们目前对于人工情感的计算乃至控制机制并没有一个成熟的体系。
3对人工智能的情感约束
正如上文所述,如果放任人工智能“情感泛滥”,很有可能会造成严重的后果。为了使人工智能技术更好的发展,使智能与情感恰到好处的结合起来,我们有必要思考如何对赋予人工智能情感进行引导或者约束。
3.1根据级别赋予情感
可以根据人工智能级别来赋予其情感,如低级别人工智能不赋予情感、高级别人工智能赋予其适当的情感。众所周知,人工智能是一门交叉科学科,要正确认识和掌握人工智能的相关技术的人至少必须同时懂得计算机学、心理学和哲学。首先需要树立这样的一个观点:人工智能的起点不是计算机学而是人的智能本身,也就是说技术不是最重要的,在这之前必须得先解决思想问题。而人工智能由于这方面没有一个严格的或是量度上的控制而容易出现问题。从哲学的角度来说,量变最终会导致质变。现在是科学技术飞速发展的时代,不能排除这个量变导致质变时代的人工智能机器人的到来,而到那个时候后果则不堪设想。因此,在现阶段我们就应该对人工智能的情感赋予程度进行一个约束。
根据维纳的反馈理论,人工智能可以被分成高低两个层次。低层次的是智能型的人工智能,主要具备适应环境和自我优化的能力。高层次的是情感型的人工智能,它的输入过程主要是模仿人的感觉方式,输出过程则是模仿人的反应情绪。据此我们可分别将机器人分为一般用途机器人和高级用途机器人两种。一般用途机器人是指不具有情感,只具有一般编程能力和操作功能的机器人。那么对于一般用途的机器人我们完全可以严格的用程序去控制它的行为而没必要去给他赋予情感。而对于高级层面的情感机器人来说,我们就适当的赋予一些情感。但即使是这样一部分高层次的情感机器人,在赋予人工情感仍然需要考虑到可能会带来的某些潜在的危害,要慎之又慎。
3.2根据角色赋予情感
同样也可以根据人工智能机器人角色的不同选择性的赋予其不同类型的情感。人类与机器合作起来比任何一方单独工作都更为强大。正因为如此,人类就要善于与人工智能机器合作,充分发挥人机合作的最大优势。由于计算机硬件、无线网络与蜂窝数据网络的高速发展,目前的这个时代是人工智能发展的极佳时期,使人工智能机器人处理许多以前无法完成的任务,并使一些全新的应用不再禁锢于研究实验室,可以在公共渠道上为所有人服务,人机合作也将成为一种大的趋势,而他们会以不同的角色与我们进行合作。或作为工具、顾问、工人、宠物、伴侣亦或是其他角色。总之,我们应该和这些机器建立一种合作互助的关系,然后共同完任务。这当然是一种很理想的状态,要做到这样,首先需要我们人类转变自身现有的思维模式:这些机器不再是一种工具,而是平等的服务提供人。
举例来说,当机器人照顾老人或是小孩的时候,我们应该赋予它更多的正面情绪,而不要去赋予负面情绪,否则如果机器人的负向情绪被激发了,对于这些老人或者小孩来说危险性是极大的;但是,如果机器人是作为看门的保安,我们对这种角色的机器人就可以适当的赋予一些负向的情绪,那么对于那些不按规则的来访者或是小偷就有一定的威慑力。总之,在我们赋予这些智能机器人情感前必须要周到的考虑这些情感的程度和种类,不要没有顾忌的想当然的去赋予,而是按分工、作用赋予限制性的情感约束,达到安全的目的。
3.3对赋予人进行约束
对人工智能情感赋予者进行约束,提高赋予者的自身素质,并定期考核,并为每一被赋予情感的人工智能制定责任人。
纵观人工智能技术发展史,我们可以发现很多的事故都是因为人为因素导致的。比如,首起机器人杀人案:1978年9月的一天,在日本广岛,一台机器人正在切割钢板,突然电脑系统出现故障,机器人伸出巨臂,把一名工人活生生地送到钢刀下,切成肉片。
另外,某些研究者也许会因为利益的诱惑,而将人工智能运用在不正当领域,或者人工智能技术落入犯罪分子的手中,被他们用来进行反对人类和危害社会的犯罪活动。也就是用于所谓的“智能犯罪”。任何新技术的最大危险莫过于人类对它失去控制,或者是它落入那些企图利用新技术反对人类的人的手中。
因此为了减少这些由于人而导致的悲剧,我们需要对这些研究者本身进行约束。比如通过相应的培训或是定期的思想政治教育、或是理论知识的学习并制定定期的考核制度来保证这些专家自身的素质,又或者加强对人工智能事故的追究机制,发生问题能立即查询到事故方等等,通过这样一系列强有力的硬性指标达到减少由于人为因素导致悲剧的目的。
3.4制定相应的规章制度来管理人工智能情感的发展
目前世界上并未出台任何一项通用的法律来规范人工智能的发展。不过在1939 年,出生在俄国的美籍作家阿西莫夫在他的小说中描绘了工程师们在设计和制造机器人时通过加入保险除恶装置使机器人有效地被主人控制的情景。这就从技术上提出了预防机器人犯罪的思路。几年后, 他又为这种技术装置提出了伦理学准则的道德三律:(1)机器人不得伤害人类,或看到人类受到伤害而袖手旁观;(2)在不违反第一定律的前提下,机器人必须绝对服从人类给与的任何命令;(3)在不违反第一定律和第二定律的前提下,机器人必须尽力保护自己。这一“机器人道德三律”表现了一种在道德忧思的基础上,对如何解决人工智能中有害人类因素所提出的道德原则,虽然得到很多人的指责,但其首创性还是得到公认的。尽管这个定律只是小说家提出来的,但是也代表了很多人的心声,也是值得借鉴的。
那么对于人工智能情感的约束呢?显然,更加没有相应的法律法规来规范。那么,我们就只能在赋予人工智能情感的道理上更加的小心翼翼。比如,我们可以制定一些应急方案来防止可能导致的某些后果,也即出现了问题如何及时的处理之。另外我们在操作和管理上应更加慎重的去对待。也希望随着科学技术的发展,能够在不久的将来出台一部相应的规章制度来规范人工智能情感的管理,使之更加精确化、合理化。
4结束语
人工智能的情感研究目的就是探索利用情感在生物体中所扮演的一些角色、发展技术和方法来增强计算机或机器人的自治性、适应能力和社会交互的能力。但是现阶段对这方面的研究虽然在技术上可能已经很成熟,但是人工智能情感毕竟是模拟人的情感,是个很复杂的过程,本文尝试性的在人工智能发展中可能遇到的问题进行了有益的探讨。但是不可否认仍然有很长的道路要走,但是对于人工智能的发展劲头我们不可否认,将来“百分百情感机器人”的问世也许是迟早的事情。
参考文献:
[1] 赵玉鹏,刘则渊.情感、机器、认知――斯洛曼的人工智能哲学思想探析[J].自然辩证法通讯,2009,31(2):94-99.
[2] 王国江,王志良,杨国亮,等.人工情感研究综述[J].计算机应用研究,2006,23(11):7-11.
[3] 祝宇虹,魏金海,毛俊鑫.人工情感研究综述[J].江南大学学报(自然科学版),2012,11(04):497-504.
[4] Christine Lisett,i Cynthia Lerouge.Affective Computing in Tele-home Health[C].Proceedings of the 37th IEEE Hawaii International Conference on System Sciences,2004.
[5] Valerie.The Roboceptionist[EB/OL].http://.
[6] 张显峰,程宇婕.情感机器人:技术与伦理的双重困境[N].科技日报,2009-4-21(005).
[7] 张晓丽.跟机器人谈伦理道德为时尚早[N].辽宁日报,2011-11-04(007).
[8] Peter Norvig.人工智能:机器会“思考”[J].IT经理世界,2012(Z1):331-332.
[9] McCarthy J.Ascribing Mental Qualities to Machines1A2. In Ringle M,editor,Philosophical Perspectives in Artificial Intelligence1C2,Humanities Press Atlantic Highlands,NJ,1979:161-195.
摘要:“智能超媒体网络教学系统”是使用快速自然语言处理系统、概念提取和排序、个性化信息归档、管理和标签管理等新一代网络和人工智能技术的教学系统。本文主要讨论在向大学本科学生提供紧跟国际前沿技术发展的“智能超媒体网络教学系统”(工程实训和毕业设计平台)的基础上,创造一种全新的课程教学模式。该项目研究为西安交通大学城市学院第一轮科学研究课题,已取得阶段性研究成果并开始实际应用。
关键词:数字媒体;超媒体;网络;教学系统
中图分类号:G642
文献标识码:B
1项目目标
按照高等院校的学生实际学习状况以及日益严酷的就业市场前景,试图以计算机网络课程教学中已初步进行的一些课程教学模式的改革为基础,提出设立“智能超媒体网络教学系统”,加强学生实践能力和创新培养,以进行本科院校课程教学模式的改革和探索。
主要目标是在向学生提供紧跟国际前沿技术发展的“智能超媒体网络教学系统”的基础上,创造一种全新的课程教学模式。
为解决日益严重的信息超载问题,使用全新的 “Web-based教学”在线教学模式和高级人工智能软件,向学生介绍和组织互联网上感兴趣的资料,让学生更快地找到想要的信息,并且从大量的数据中,发现对个人来说重要的信息。
项目以培养大学生创新能力和实践能力为重点,通过使用网络教学和辅助教学系统,增强自主学习的兴趣,学会工程化的设计方法。在实际工程设计练习的同时,也可使学生应聘时展现本人技术实力和工作经验,为就业创造良好的机会。
课程改革增加专门的工程设计的实训课程,将学生置入与实际工作环境类似的工程设计团队,以模拟招投标项目环境为背景,自主选择课题,进行职务角色分工,在教师指导下,参考预置的类约1000M实际项目资料以及人工智能设计工具和个性化智能数据库查询系统随时收集的最新资料,按标准化,规范化的实际工作流程,进行项目调研,用户系统分析,技术方案设计,最后形成可实际用于工程实施的完整技术解决方案,设备与工程预算,招投标文件,项目实施演示PPT文档等。
2解决的主要问题
需要解决的主要是大学生创新能力、实践能力和可持续发展能力的培养。
(1) 构造一种智能化、全球化的网络教学平台――“智能超媒体网络教学系统”。
(2) 使用上述系统,学生可以在学院内完成高水平的项目实训和毕业设计。
(3) 学生可了解和亲手实践了解国际最新的超媒体技术和产品知识。
(4) 学生可在建成的辅助教学系统平台上完成全部系统设计,为考取国际认可的工程师认证打下坚实基础,促进学生就业。
(5) 学生可完成完整的技术解决方案,招投标文件,在学生应聘时展现本人技术实力和工作经验,为学生就业创造良好的机会。
3项目研究在国内外同一领域的现状与趋势分析
3.1现状
在知识经济的新形势下,一种全新的教学模式“Web-based教学”已经在逐渐开始兴起并不断的发展壮大,然而目前国内的网络教学和辅助教学系统只是使用了Web-based教学的形式,仍然算不上真正意义上的网络教学,不能脱离传统的教学模式自建一个完善的教学系统,只能算是传统教育模式的一种补充。
基于这种情况,本课题组开始进行“超媒体网络教学”课程教学模式的改革探索。通过近一学期的前期实验,已经取得相应预期教学效果。
已参加实训的三个班级200多名同学共组成28个团队小组,分别模拟了28个公司,以西安交通大学城市学院北郊新校区为工程设计环境,参与了学院校园网,校园无线局域网,学院数据网络中心,校园网通信平台,行政楼网络集成,办公自动化系统,数字化图书馆管理系统,数字校园智能监控网络,内网安全解决方案,大学视讯系统等项目的计算机网络工程设计。
所有团队均按预定教学计划在规定时间内完成了项目立项报告、全套招标文件、全套投标文件(包括概要设计,草图,设备清单,信息点统计表,技术方案详细设计与技术方案图纸,设备报价清单,投标技术方案,投标评审会演示PPT等文档),并最后参加模拟投标会议和方案优选汇报会。
3.2趋势
目前,国内外教育界已开始研究真正意义上的网络教学和辅助教学系统。主要趋向是向智能化、全球化的网络教学方向发展。
国外较早就有人研究具有智能性的计算机辅助教学系统。近年来,有人提出了智能超媒体教学系统的要领,就是将人工智能技术与超媒体的信息组织、管理方式结合在一起而形成的智能型信息处理技术。
在智能超媒体教学系统中,可以利用超媒体提供的友好界面来激发学生的学习兴趣和学习动机,同时还可以利用超媒体向学生提供图文声像并茂的解释信息;而超媒体模块则可利用知识推理技术实现教学内容和教学策略的适应性控制,对学生进行有针对性的指导。当前,智能超媒体教学系统的研制和开发已成为网络教学应用领域中的一个重要的前沿课题。
4项目研究的重点
4.1课程教学模式的创新和发展
对在实训中将学生作为模拟企业的员工,严格按企业化模式进行管理,通过课程实训,完成贴近实际应用的工程化网络系统设计,以取得实践经验的教学模式进行重点研究,并尽可能开发出更新的课程教学模式。
4.2智能超媒体教学系统核心技术的理论研究
进行核心专利技术研究;算法研究及技术框架设计;软件总体规划及详细设计。
4.3智能超媒体教学系统软件开发和应用研究
进行验证及软件程序编码;进一步进行超媒体课程应用研究;同时考虑研究将系统平台应用于其它学科的教学模式改革。
5项目研究的创新点
(1) 在课程教学过程中结合实训和毕业设计,使用模拟公司工作岗位和招投标场景对学生进行工程化训练。
(2) 教学系统核心使用“主题聚类发现引擎”技术。按用户提出的个性化需求进行主题发掘,人工智能知识排序,重要信息推荐并提供分析图形显示的主题内容发现与聚合的优化搜索引擎。
(3) 在系统内部数据库提供1000M实际项目资料(包括招投标文件范本,工程实例,技术方案范本,设备产品,工程预算范本,PPT演示文档范本,日报-周报范本等分类数据库)以及相关人工智能设计工具和个性化智能数据库查询系统。网上搜索和用户PC机上的信息搜索集成一体。
(4) 向全球化的网络教学方向发展,使用语意分析,自主学习,及WEB 2.0环境中的信息挖掘和超前数据库处理技术,将最适合每个用户的需求的相关信息情报资料进行人工智能处理后即时推送给用户,主要解决了用户在网络时代被超量信息所淹没,无法在最短的时间内检索查询到自己所关心的相关信息的问题。
6项目研究的方案设计
6.1研究思路和技术方法
在项目研究上采取的研究思路和技术方法是:
(1) 使用WEB数据库、中间件和网站设计工具等构造三层架构的网络应用系统。
(2) 使用先进的搜索引擎和信息获取技术取得大量实训和毕业设计所需要的基础资料。
(3) 使用人工智能海量信息分析及提取技术进行个性化搜索及计算机辅助设计。
(4) 在网络化的基础上提供人工智能实训和毕业设计工具和个性化智能数据库查询。
6.2研究阶段
第1阶段:智能超媒体教学系统核心技术的理论研究;
第2阶段:软件总体规划及详细设计;程序编码;
第3阶段:课程教学模式的创新研究;教学系统验证试验;
第4阶段:智能超媒体教学系统应用研究。
6.3技术方法和路线
(1) 技术目标
研究开发个性化RSS主题聚类发现搜索引擎产品,进而形成一种按用户提出的个性化需求进行主题发掘,人工智能知识排序,重要信息推荐并提供分析图形显示的主题内容发现与聚合的优化搜索引擎产品。
(2) 技术内容
主题聚类发现引擎是一种按用户提出的个性化需求进行主题发掘,人工智能知识排序,重要信息推荐并提供分析图形显示的主题内容发现与聚合的优化搜索引擎。
主要解决了用户在网络时代被超量信息所淹没,无法在最短的时间内检索查询到自己所关心的相关信息的问题。大约可增加搜索查询速度几十到一百倍,并引导用户找到最适合自己的信息。
主题聚类发现引擎的技术核心可以按不同技术层面装入网站服务器,企业服务器,个人计算机形成以下不同用途的产品:
(1) 学校大型Web2.0环境网站RSS主题聚类发现搜索引擎
(2) 院系专用数据处理及信息挖掘优化搜索引擎
(3) 学生个人用户个性化专用信息挖掘优化搜索引擎。
(4) 设备价格比价搜索网络门户(可应用于计算机,电信,电子等不同领域)
6.4技术方法和路线
使用语意分析,自主学习,及WEB 2.0环境中的信息挖掘和超前数据库处理技术,将最适合每个用户的需求的相关信息情报资料进行人工智能处理后即时推送给用户。
部分技术方法摘要描述图示如下:
图1显示了本项目高级检索程序的实现。
图2显示文件组织系统的实现。
图3显示智能助理个体的实现和用知识库来发现和确认联想的例子。
智能检索挖掘系统运行于最终用户PC机上,包括Web server部分。系统采用类似B/S架构。利用IE插件开发技术,截取用户发送的Web请求信息,并由插件发送到Web server,由Web server实现相应的功能,最后通过分析提取处理相关信息,返回IE插件进行显示。Web server采用 + Apace进行开发。
7理论及实践意义
本项目的实施主要是为了进行“计算机网络”课程学科教育的教学改革研究与实践;其目的是全面推进素质教育,重点培养大学生创新能力、实践能力、创业能力、就业能力和可持续发展能力。
其主要意义是:
(1) 计算机网络课程是计算机专业,信息管理专业,电信专业的骨干专业课程,建设实训和毕业设计的智能超媒体辅助教学系统对促进教学和学科建设有重要意义。
(2) 实训和毕业设计辅助教学系统可在学生进行课程实训和毕业设计时提供人工智能设计工具和个性化智能数据库查询,以便学生完成高质量的毕业设计,同时通过课程实训完成贴近实际应用的工程化网络系统设计,取得实践经验,为就业作好充分准备。
(3) 技术先进的实训和毕业设计智能超媒体辅助教学系统可提供学习现代计算机网络技术的良好平台,增进教师学识水平,同时促进了教学水平的提高。
8推广价值
(1) 项目中涉及的学科教学模式改革研究成果可在有相似应用需求的本科院校,高职高专推广应用。
(2) 智能超媒体教学系统软件可以在相似的计算机专业,电信,信息管理,电力,能源,机械制造以及各类工科专业推广应用。
(3) 教学系统核心使用的“主题聚类发现引擎”技术可以按不同技术层面装入网络服务器或个人计算机形成以下不同产品,如企业专用数据处理及信息挖掘优化系统,个人用户个性化专用信息挖掘优化软件。
参考文献:
关键词: 智能; 教学系统; 模型
智能辅助教学系统的开发是涉及人工智能、计算机科学、教育学、心理学和行为科学的综合性任务,其研究的最终目的是由计算机系统担负起教育、教学的相关责任,即赋予计算机系统以智能,由计算机系统在一定程度上代替教师实现最佳教学。
一、智能辅助教学系统的发展历程
智能辅助教学系统兴起于上世纪七十年代,Bolt Neranek Newman公司开发了Scholar系统,它被认为是最早出现的智能辅助教学系统。当时应用人工智能技术在计算机辅助教学系统中添加了学生的学习行为、能力以及训练策略。同时人工智能技术还被用于建立学习顾问之中,即存放所要教授课程的问题和技能,控制训练策略并给出适合学生的学习内容,使之产生根据学生的能力、弱点以及所喜爱的学习风格进行教学的软件系统。
随后又出现了Why 、Sophie、West、 Buggy、Neomycin等系统,并将知识表示、专家系统、问题求解、推理方法等人工智能技术用于智能辅助教学系统,取得了丰硕的成果。
我国智能辅助教学系统的研究起步较晚,开始的研究工作主要集中在少数大学和研究机构里断续进行,且多为研究和演示用的系统,经过严格评测的系统很少。最近几年则发展较快,一些计算机公司也投入其中,伴随着智能辅助教学系统的迅猛发展,必将对我国的教育改革起到积极的推动作用。
二、智能辅助教学系统的模型构建
智能辅助教学系统是以认知学为理论基础,将人工智能技术应用于CAI,是智能化的CAI。在智能辅助教学系统中,学生的学习也可以借助于智能化的推理机制对大量知识进行选择、判断与处理,使学习内容更有针对性,从而提高学习效果。
一般,智能辅助教学系统模型的构建包括以下几个模块:
1.知识库
作为智能辅助教学系统的重要组成部分,知识库主要提供一个指导性的、自适应的、开放的、可操作的框架和服务设施。为各个学科知识提供规范的知识输入和组织,其它教学资源,如题库、课件、素材等,均依据它来组织管理,这将使用户可以建立适用于自己的知识体系,使各类知识应用能够有一个好的开发和集成基础。另外,核心的教学领域知识将被分解为相互联系的知识点,形成知识树,提供可视化的、操作性好的知识树编辑界面,方便教师将教学领域的知识输入到知识库。
例如,有的智能辅助教学系统中的知识库,是从知识表示入手,在SC文法知识表示体系和知识树映射方法的基础上,提出了一个动态、实时、自适应、交互式知识库模型。模型包括基于SC文法的知识点表示方法、知识树结构、知识树映射、知识点学习循环等内容, 模型在智能辅助教学系统中经过实例化设计和运用,可以表现出动态教/学、领域无关、人机交互、自适应、个别化、可扩展等智能特点。
2.学生模型
学生模型就是用于表示学生实际认知状况,并通过解释学生的活动得出他对领域知识和技能的掌握情况。系统中每个学生有唯一的ID标识,建立唯一的学习资源、学习信息和特征数据库,系统智能功能的实现在于如何动态地、正确地提取学生的主题特征。
一般,系统可以采用领域知识树模型来表示学生对领域知识的掌握情况。例如,可以设学习中的整个领域知识树为DKT;学生已学习过的知识树为SKT,未学过的知识树为SNKT;学生已掌握的知识树为GKT,未掌握的知识树为GNKT。则{SNKT}={DKT}-{SKT}、{GNKT}={SKT}-{GKT},如果SNKT和GNKT皆为空时,则表示学生达到了学习的要求。其中,如果GNKT不为空,则学生不能进入下一阶段的学习,只能进行重复学习和补充练习,直到GNKT为空时,才进入下一阶段的学习。
3.专家决策机制
该模块可以看作智能辅助教学系统中的推理机,它一般采用两级推理相结合的方法,即基于语义网络的推理和基于产生式规则的推理,其中基于语义网络的推理用于确定教学内容,而基于产生式规则的推理用于确定教学策略。
也有观点认为基于规则的推理是容易健忘的,即基于规则的推理对于每一个问题的求解都是从头开始,而不管类似的问题以前是否遇到过。但日常的智力行为则不同,人们往往迅速地把事件或问题同以前的经验相联系。与基于规则的推理不同,基于范例的推理被认为是基于以前经验的推理。因此,在有的智能辅助教学系统中采用的是基于范例的推理。
基于范例推理的工作过程为:分析输入,确定范例的索引,根据索引从范例库中取出相近的范例,改善范例的问题求解方法并使之适应于需要求解的新问题。如果成功,则创建索引、形成新范例并存储;若不成功,则首先分析失败的原因,修正解法,重新测试,或转至重新指定索引进行范例检索。
4.智能接口模块
该模块实际上是作为系统与用户交互作用的部件,它除了提供学生信息的输入与注册外,还实现了学生与系统之间的通信功能。与之相关的技术有自然语言处理、人机对话内部处理、知识库系统化维护、学生模型初始化、教师模型自适应调整等。该模块为实现协商、辩论、会话等教学形式的应用提供了一个良好的环境。
三、智能辅助教学系统的未来趋势
智能辅助教学系统的发展不是孤立、单一的,它的发展要涉及计算机科学、教育学、认知科学和人工智能等多门学科,就目前而言,其表现为以下几方面的发展趋势。
1.智能技术的应用
智能技术是能自动执行用户委托任务的计算实体,从技术的角度来看,智能技术应当是由各种技术支撑着的,许多实用的应用特性的集合,开发者正是使用这些应用特性来扩展应用的功能和价值, 从而达到能自动执行用户委托任务的目的。在智能辅助教学系统中,学生可以使用智能技术进行搜索、导引来查询有效知识。由于它具备学习的功能,能够主动、高效地从网络信息空间中发现和收集用户所需要的信息,因此有助于解决使用单一关键字匹配查询、搜索引擎引起的大量无关信息的涌现、信息检索的精确度较低等问题,使得教师和学生在教与学的过程中,提高知识选取效率,加强交互学习和自主能动性学习。
2.自然语言处理技术的应用
自然语言处理属于高技术学科,是知识信息处理中的核心课题。长期以来人们对计算机理解自然语言颇感兴趣,计算机专家采用人工智能的理论和技术,将设定的自然语言机理用计算机程序表达出来,构造能够理解自然语言的系统。他们从系统功能的角度出发,把输出对输入文本的反映作为衡量计算机理解语言的判别标准。在智能辅助教学系统的研究开发中,特别是智能人机接口方面,可以结合运用多种自然语言处理技术的研究成果,提高系统的智能。例如,通过自然语言人机接口,可以实现更加方便的人机交互功能;利用语义网络技术,可以充分实现知识点之间的层次关系和语义联系;通过智能模糊查询技术,可以实现系统知识库的知识查找和知识利用;利用机器翻译技术,可以开展跨语言的知识学习。
3.虚拟现实技术的应用
虚拟现实技术是由多媒体技术、仿真技术以及计算机技术相结合而生成的一种交互式人工世界,它的根本目标就是达到真实体验和基于自然技能的人机交互。而教学是一个传授知识的过程,通过亲身经历能加速这一过程和巩固所传授的知识,在智能辅助教学系统中,使用创建的虚拟环境,可以在一般人所不能亲身体验的情景中,达到演示、操作的教学目的。它允许学生与现有的各种信息发生交互作用,学生可以在仿真过程中经历不同的时间和空间,可以与各种仿真物体接触,还可以与虚拟境界的各个部分接触,为增强学生的学习实践提供了方便的途径。
4.现代学习理论的应用
现代学习理论认为,学习不是一个被动地记录外界信息的过程,而是一个主动建构的过程。它要求学生由外部刺激的被动接受者和知识的灌输对象转变为信息加工的主体、知识意义的主动建构者。学生在学习过程中,主动地选择一些信息,忽视一些信息,并运用原有的经验和具体情况去理解新的信息。现代学习理论在智能辅助教学系统中的应用,能为学生建构知识提供充足的信息,容易激发学生的学习兴趣和学习主动性,更能满足学生的个性化要求。
在当今教育改革的大环境下,智能辅助教学系统将显示出越来越重要的作用。目前,我国在这方面的成果还不多,真正能投入教学实践的系统则更少,这个有着诱人发展前景的领域,值得我们进一步研究和设计。
参考文献:
[1]莫赞等.智能教学系统的发展与前瞻[J].计算机工程与应用,2002,(6):7-8.
[2]肖雯.人工智能技术在计算机辅助教学中应用 [J].南京工程学院学报,2002,(6):56.
[3]杨国才等.一个智能教学系统的设计模型 [J].计算机应用,1998.(10):18.
[4]闭应洲等.基于校园网的智能教学系统的研究和设计[J].广西师范学院学报, 2002.(12):61.
【关键词】人工智能;计算机网络技术;应用
人工智能化的计算机网络技术能够在一定程度上方便了人们的生活,也能够提高人们的生活水平。人工智能看似高端,其实它早在前两个世纪就已经出现在了人们的生活当中,不得不说其历史还是相当悠久的。并且在这么久的发展历程中,人工智能经历了几个发展阶段:首先,其能够帮助人们理清思路,具有基本的逻辑推理能力;其次,其能够处理较为复杂、繁琐的大数据处理问题;最后,其能够自觉过滤掉没用的数据,收集有用的数据,这样就从根本上提升了相关人员的工作效率,也节省了大量的时间。
1人工智能技术的相关理论介绍
人工智能即为在计算机的编程过程中,通过输入代码来实现计算机思维模拟人类的思维,从而来帮助完成一些较为复杂、繁琐的数据处理工作。同时计算机不仅在思维上模拟人脑,在各种感官、各种思考方式上都能够在一定程度上模拟人,从而达到对各项问题的高效率、高质量完成的目的。虽然人工智能的发展是基于计算机的发展基础,但是其在个别方面上都要优于计算机,同时其对各个学科的综合性能要求更为严苛、苛刻。现如今将人工智能有效地融入到计算机网络技术中,能够从根本上降低工作时间,提升了相关工作人员的工作效率。
2人工智能的优点
2.1保证网络的稳定运行
现如今我国经济水平不断提高,伴随着科学技术也在紧跟世界上高端水平的前沿。计算机网络技术能够在现如今被广泛地应用,生活中的各个细小环节都离不开计算机技术都是由于我国经济实力不断攀升的结果。各个领域的技术人员在计算机网络技术方面的要求都较高,各方面的工作都与相应的计算机网络技术息息相关。同时加入人工智能的计算机网络技术使其变得更加智能、更加科学,从根本上提升了人们的工作效率与减少了人们的工作负担,这样才会使得社会和平稳定的发展。
2.2人工智能的运用便于对网络进行管理
计算机技术在21世纪以来发展迅猛,世界各个地方都是通过计算机网络技术进行较为频繁、密切的信息交流与讨论,这样也能够从侧面帮助各国建立良好的国际关系。同时伴随着世界经济水平的不断发展,各国对于计算机技术的要求也不断提升,使得计算机网络技术、结构变得更加繁琐、复杂,因此加入人工智能的计算机网络技术能够体现其智能化的优势,能够智能化地分层、逐级管理这一网络结构。并且其能够科学合理地处理、协调好每一个管理部门与管理系统的交流与联系,由此可以看出人工智能的计算机网络技术在现代社会的重要性,其也在逐步占领计算机信息领域鳌头地位。因此只有在加入智能化的现代计算机网络技术,才能够从根本上提升各项工作的工作效率,减轻人们的工作负担。
3人工智能在计算机网络技术中的应用
3.1安全管理计算机的网络方面
3.1.1智能型的反垃圾邮件系统我们在实际生活与工作当中,往往会在使用电脑的过程中不知不觉收到许许多多的垃圾邮件,并且这些垃圾在很大程度上占据电脑内存。同时这些垃圾绝大部分是毫无用处的垃圾广告,也还会存在一些对青少年成长不利的低俗广告。这些垃圾邮件不仅影响了人们生活与工作的正常进行,也在很大程度上降低了工作人员的工作效率。并且这些垃圾邮件不能够自动删除,只能够通过人为地手动进行删除,这样就会使得相关的工作人员在工作的同时,由于使用电脑产生的垃圾邮件如“雨后春笋一般”疯长不得不进行清理,还需要人为地腾出时间清理垃圾,这样就会使得相应的工作思路被打断。如果能够在计算机中加入人工智能化的高端技术,电脑自身就如同具备了一个“人工大脑”,它能够自动进行相应的垃圾拦截、清理工作。这样就可以在很大程度上帮助相关的工作人员节省时间,也能够直接保证我们电邮邮箱的安全,保证我们的隐私。3.1.2智能的防火墙技术高端的防网络病毒系统对于一个电脑来说极其重要,其主要是为了保证电脑的安全性,能够科学合理地拦截、清理一些垃圾邮件与危害电脑系统的病毒。同时如果能够在其中有效地融合人工智能,带给整个电脑防护系统的不仅仅只是安全的人工电脑管家,还带给我们更加便捷、更加高效的工作体验与生活、娱乐体验。同时对于一些高危漏洞与占用系统内存的垃圾进行及时地修补与清理工作,这样就能够从侧面提升了我们的生活质量与工作效率,也能够使得我们的生活与工作更加规律、有序。
3.2计算机网络管理与系统评价方面
对于计算机网络的管理与评价工作,需要依靠人工智能的铺垫才能够完成的,毕竟加入人工智能的计算机网络技术才能够真正的算得上高端计算机网络。同时人工智能能够帮助电脑中整个网络系统更加的科学有效、准确无误地推进具体工作。同时人工智能化的电脑系统能够及时发现其中存在的问题与安全隐患,提醒主人及时进行系统维护与更新,这样就能够保证其中的数据安全,方便在日后使用。
4总结
人工智能体现了人类高超的智慧与娴熟的实践能力,同时将人工智能科学地加入到计算机网络技术中,一定要保证其准确无误地加入到当中,让他们完美地融合成为一个不可分割、共同发展的整体。并且人工智能能够实际应用到每一个工作环节,每一个细微的计算机网络技术环节,需要相关的工作人员不断地实践与总结,在保证其能够有效地提升人们工作效率的同时,还需要其能够更加稳定、安全地发挥其实际功效。所以,在各个工作项目中需要不断将人工智能化的计算机网络技术推行在实际工作中,这样才能及时发现问题并处理,达到提升工作效率的目的。
参考文献
[1]罗勇,向奕雪.计算机人工智能技术研究进展和应用分析[J].电子制作,2014(18):47.
[2]马越.探讨人工智能在计算机网络技术中的应用[J].计算机光盘软件与应用,2014(22):43-44.
[3]刘芳.基于计算机网络教学的人工智能技术运用研究[J].计算机光盘软件与应用,2014(03):246+248.