公务员期刊网 精选范文 人工智能教学方案范文

人工智能教学方案精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能教学方案主题范文,仅供参考,欢迎阅读并收藏。

人工智能教学方案

第1篇:人工智能教学方案范文

【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统

人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。

1传统的诊断学教学方法存在的问题

诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。

2人工智能应用于诊断学教学的重要意义

2.1教师方面

将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。

2.2学生方面

将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。

2.3教学过程

针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。

3人工智能在诊断学教学中的应用

3.1智能教学系统

智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。

3.2智能网络组卷阅卷系统

诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。

3.3智能仿真教学系统

诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。

4总结及展望

第2篇:人工智能教学方案范文

自1956年人工智能概念在达特茅斯会议提出以来, 人工智能的发展超出了人们的想象:1997年, IBM超级电脑深蓝击败国际象棋世界冠军卡斯帕罗夫;2016年, 由Google旗下的深度学习公司Deep Mind开发的人工智能围棋程序Alpha Go战胜了世界围棋冠军李世石, 这件事轰动了全世界[1]。随后有关人工智能的热点应用不断推出, 比如无人驾驶、智能医生、语音与人脸识别等, 让我们认识到人工智能的应用已与生活息息相关。在教育领域, 人工智能应用也取得了重大突破, 比如2017年高考期间, 机器人艾达挑战高考数学, 10分钟就答完, 获得134分, 激发了教育领域对人工智能的巨大热情, 同时也引发了人们对教育的忧虑与反思[2]。2017年7月国务院印发了《新一代人工智能发展规划》, 提出人工智能产业竞争力在2030年要达到国际领先水平。目前世界主要发达国家先后从国家层面人工智能政策规划, 将人工智能作为国家经济发展、社会变革和国际竞争的新动力[1]。

1 人工智能定义和发展阶段

人工智能的英文是Artificial Intelligence, 简称AI, 人工智能的内容不断丰富和发展, 至今还没有统一的定义。比较权威的说法认为[3]:人工智能是关于人造物的智能行为, 主要包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的长期目标是发明出可以像人类一样或能更好地完成以上行为的机器, 短期目标是理解这种智能行为是否存在于机器、人类或其他动物中, 所以它包含了科学和工程双重目标。根据其功能强弱, 人工智能分为三类, 即弱人工智能、强人工智能还有超级人工智能。人工智能的发展大体上经历了三个阶段, 第一阶段是20世纪50~60年代, 提出人工智能的概念。主要以命题逻辑、谓词逻辑等知识表达和启发式搜索算法为代表;第二阶段是20世纪70~80年代, 提出了专家系统, 同时基于人工神经网络的算法研究发展迅猛, 伴随着半导体技术计算硬件能力的逐步提高, 人工智能逐渐开始突破;第三阶段是自20世纪末以来, 尤其是2006年开始进入了大数据和自主学习的认知智能时代。随着移动互联网的快速发展, 人工智能的应用场景也开始增多, 特别是深度学习算法在语音和视觉识别上实现了巨大的突破[4,5]。人工智能的技术体系主要分为四个方面, 即机器学习、自然语言处理、图像识别以及人机交互等。当今击败世界围棋冠军李世石的Alpha GO主要应用了机器学习中的深度学习算法。

2 人工智能应用状况与反思

2017年, 阿里的无人超市落地杭州, 进店、挑选商品、付款支付一气呵成, 消费者几乎在完全自主的状态下完成购物。与此类似, 昆山富士康公司裁员6万名工人, 全用机器人代替。京东、淘宝引入的智能机器人替代了原来的仓库管理、人工客服等岗位。因此有学者悲观地断言:在人工智能时代, 因为很多职业岗位或技能将被智能机器人所代替, 职业院校毕业生很有可能面临毕业就失业的窘境。笔者认为, 我们不应该重蹈历史上英国制定的限制汽车推广使用的《红旗法案》的悲剧。正是这个在今天看来毫无道理的, 但却持续了三十年的法案让德国和美国的汽车工业完全赶上来, 最终远超英国。人工智能应用必将淘汰或替代很多现有就业岗位, 但同时又会创造新的就业岗位, 这是一个伴随着产业智能升级的、长期的艰难过程, 对于职业教育来说, 这既是一个严峻的挑战, 也是一个难得的机遇。

3 人工智能时代职业教育的发展策略

为了更积极地适应人工智能时代, 除了国家层面的统筹规划、科学指导和政策、经费支持之外, 建议还要做好以下几个方面的发展规划。

3.1 解放思想, 更新理念与制度

中国工程院院士潘云鹤提出, 人工智能走向2.0阶段的真正原因是世界正从原来由人类社会与物理空间构成的二元空间, 向着由物理空间、人类社会与信息空间构成的新三元空间演变[6]。因此, 职业教育在教学和管理过程中应该加入人工智能等相关理念和技术, 同时其办学定位、人才培养方案、专业建设、课程内容、考核评价标准等方面都需要做出相应的改进。比如当前大多数职业院校非计算机类专业的课程安排中, 信息技术类课程课时偏少, 数据处理、编程类或人工智能课程几乎没有, 这样的安排不利于提升学生的信息素养, 必须做出相应的调整, 同时适当减少将来可被人工智能应用替代的技能课程的课时, 比如电算会计、环境监测等。

3.2 善用人工智能, 提升教学与管理

在人工智能背景下, 教师们现有的重复性工作和大量数据积淀的教学任务, 比如批改作业或阅卷或课堂考勤都可能被人工智能取代, 因此, 教师能腾出更多的时间, 更充分地关注学生的个性差异, 从而为学习者提供更精确的个性化学习服务, 教师也能够及时调整教学方法和手段, 优化教学评价方式, 补充教学资源, 减少备课重复性工作, 提升教学效率, 真正地做得因材施教, 同时学生们的学习方法和方式将不同程度地得到重构, 基于大数据的智能在线学习平台大量出现, 不同的学校、学科及专业课程不再封闭, 学习时时处处都可以进行, 碎片化与个性化学习将日益普遍。教师能完整地跟踪学生的整个学习过程, 比如学生上课是否睡觉、是否玩手机、是否在教室里与其他同学合作学习等, 都能够根据监测数据进行智能解析, 有利于更有效、更全面地对学生进行过程性评价。大部分课程考试将全部自动化, 考生资格审查利用人脸识别、监考与阅卷都由智能机器来完成。上述人工智能给教学带来的这些变化既需要网络硬件设施和相关软件系统来支撑, 更需要职业教育的教师们继续提升信息技能、深化和加强信息素养。

3.3 深化产教融合、优化实训筑牢就业

在人工智能时代, 职业院校应与相关行业统筹发展, 深化产教融合, 拓宽企业参与的途径, 深化引企入教改革, 支持引导企业深度参与职业院校的教育教学改革, 多种方式参与学校专业规划、教材开发、教学设计、课程设置、实习实训, 促进企业需求融入人才培养环节;鼓励以引企驻校、引校进企、校企一体等方式吸引优势企业与学校共建共享生产性实训基地;全面推行现代学徒制和企业新型学徒制, 推动学校就业与企业招工无缝衔接。比如职业教育将出现新师徒制, 行业领域的行家里手将通过互联网以VR或者AR技术言传身教的方式, 带领规模庞大的徒弟用碎片时间进行学习与实践。

3.4 完善终身学习的职业教育体系

随着人工智能应用的深入推广, 职业院校培养的技能型人才所掌握的技能如果不及时进行充电升级, 中低端的重复性强的工作将面临被智能机器人不同程度进行替代的危险。所以对于不少技能岗位, 守着一门技术吃一辈子老本的时代将一去不复返。因此, 职业教育要继续完善终身教育体系, 为职业教育学生的充电升级铺就一条纵深的通道。

3.5 人文教育为道, 智能教育为用

在人工智能的帮助下, 简单重复性的工作将被机器替代, 人们将从重复繁琐的事务中解脱出来, 转去从事更具有创造性、创新性或者更具有情感类的工作, 这些工作需要人与人之间的合作与沟通, 因此, 职业教育更需要注重学生思想道德水平、人文综合素质的培养, 这是做人之道, 在此基础之上激发学生们的学习主动性和创造力, 促进跨界思维的形成, 更好地掌握人工智能时代的相关职业岗位知识和相应的智能技能。著名理论物理学家霍金曾说:完全人工智能的研发可能意味着人类的末日。Tesla汽车和Space X公司创始人马斯克说:我们必须非常小心人工智能。如果必须预测我们面临的最大现实威胁, 恐怕就是人工智能了[7]。一群没有良好道德水平的, 但掌握了智能技术或设备的人们是危险的, 所以职业教育应该从学生入学起就开始, 不断提升学生的思想道德水平, 热爱社会、热爱生活、乐于助人、与人为善。只有这样, 人工智能应用才能更好地服务人们、造福社会。

4 结论

人工智能正在快速又深刻地改变我们的教学、生活和工作方式, 也对职业教育提出了严峻的挑战, 同时也是一个巨大的机遇。职业教育在面对人工智能时代的变革时, 须要从国家政策、理念与制度、教学管理、产教融合、终身学习等方面做好应对, 切实地把握人文教育之道对智能教育之用的统领原则, 培养能很好地掌控人工智能技术和应用的人才。

参考文献

[1]谢青松.人工智能时代职业教育的转型和发展[J].教育与职业, 2018 (8) :50-56.

[2]苏令.人工智能来了, 教育当未雨绸缪[EB/OL].[2018-05-15].

[3]Nils J.Nilsson.人工智能[M].郑扣根, 庄越挺, 译.北京:机械工业出版社, 2000.

[4]王璐菲.美国制定人工智能研发战略规划[J].防务视点, 2017 (3) :59-61.

[5]贺倩.人工智能技术在移动互联网发展中的应用[J].电信网技术, 2017 (2) :1-4.

第3篇:人工智能教学方案范文

关键词:人工智能;教学内容;教学方法

中图分类号:G642 文献标识码:A

1 引言

人工智能(AI)是二十世纪五十年代后期兴起的利用计算机模拟人类智能活动去求解问题的学科,与空间技术、原子能技术一起被誉为二十世纪三大科学技术成就,目前广泛应用于专家系统、机器翻译、语音识别、文字识别、计算机视觉、机器人、电子游戏等方面,已经成为计算机技术发展以及许多高新技术产品中的核心技术。

为了适应人工智能技术日益广泛的需要,国内外高校普遍开设了“人工智能”方面的课程,特别是作为计算机方面专业的核心课程之一。我校自从1993年开始为自动化专业本科生开设“智能控制”选修课,1996年为自动化、计算机、机械等专业本科生开设“人工智能导论”、“人工智能及其应用”课程。目前,我校软件学院、信息学院、机电学院都开设了“人工智能导论”课程,已经成为计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其目的是使学生了解人工智能的基本概念和基本原理,初步学习和掌握人工智能的基本技术和前沿内容,拓宽知识面,启发思路,为学生提供最基本的人工智能技术和有关问题的入门性知识,提高学生应用开发软件的能力和水平,为今后在相关领域的研究和应用奠定更为坚实的基础。因此,建设好“人工智能导论”课程具有重要意义和很广的受益面。

由于人工智能是交叉学科,涉及面广、内容抽象、不易理解,学生往往有望而生畏的感觉,在教学过程中,老师教、学生学都比较吃力。为了更好地实现上述教学目标,提高本课程的教学质量,协调好教与学的双边关系,使学生由望而生畏的感觉,变为有用有趣的感觉,根据已有人工智能课程在教学与实践方面的经验和方法,结合“人工智能导论”课程的近几年教学实践,对课程的教学体系、教学内容、教学方法、教学手段、考核方式等方面进行了探索总结。

2 调整与优化教学体系和教学内容

“人工智能导论”是计算机科学与技术、软件工程、数字媒体技术、自动化、机械制造与自动化等许多专业本科生的一门重要的技术基础课程,也是面向包括人文社科等全校所有专业的公选课之一,其研究领域及内容十分丰富,涉及的基础面广。因此如何选好教学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件重要而又困难的事情。

进入21世纪以来,人工智能学科又有了新的发展。为了及时反映人工智能研究和学科的最新进展,我们修订了“人工智能导论”的教学大纲,对教学内容进一步优化和更新,极大充实了各个系统的内容。我们确定的教学内容主要分为三部分:第1部分为概论,介绍人工智能的基本概念、基本内容、主要研究领域及发展过程;第2部分是知识表示,推理和搜索技术,讨论几种常用的知识表示方法、推理技术(包括确定性推理方法和不确定推理方法)和搜索求解策略;第3部分是人工智能应用研究领域,包括专家系统、自然语言理解、机器学习、人工神经网络、遗传算法等的基本概念和方法等。其中第2部分是基础理论,是人工智能的重要基础,应该循序学习。第3部分是人工智能的应用,由于每个研究内容都相对独立、自成体系且有其专门的学术著作研究、热点,因此针对高等院校的本专科生来说,不必循序学习,而且结合专业特点可以选择其中几个研究领域。例如对自动化专业的学生来说,可以选择专家系统、人工神经网络、遗传算法等,同时可增加在自动控制领域的应用,包括专家控制、神经网络控制和进化控制等热点:而对计算机科学与技术专业来说,可以选择专家系统、自然语言理解、机器学习等,并辅以动物识别系统、语音识别系统、智能机器人等实例。总之就是要把握课程性质和教学目的,调整本课程教学体系,优化教学内容,让学生以有限的时间学到人工智能的基础知识和基本方法。

另外,在选择和确定教学内容时必须兼顾基础知识和新兴技术,注意与相关课程(如离散数学、数据结构、概率论、自动控制原理、Matlab系统仿真、面向对象的编程技术等)的链接,密切理论与实际的关系,通过课堂讲授和课外训练,注意学生能力培养,提高他们的学习效果和整体素质。

3 加强课程立体化建设和系列教材研究

在课程的立体化建设中,教材充当了地基的角色,所有的课程内容安排,无不体现出以教材为基本,以教材为模板。所以本着基础、实用的原则,我们先后编著出版了《人工智能及其应用》课程教材导论部分概括性强,引人入胜;基础部分系统全面,叙述深入浅出,循序渐进;应用部分密切理论与实际关系,典型形象。其中第二版在第一版的基础上,增加了证据理论、模糊推理、神经网络等理论的一些典型应用,使学生能够更深入地理解和应用这些理论;另一方面,又新增了自然语言理解及其应用内容,以适应目前计算机翻译、人机自然语言交互等技术日益广泛应用的需要。系列教材适应了人工智能导论新课程开设的需要,反映了人工智能学科的发展,为人工智能课程确立了基本框架,发挥了重要作用。系列教材的问世不仅解决了本校“人工智能导论”课程教学用书的问题,而且也被各兄弟院校普遍采用,促进了该课程的普遍开设,推动人工智能学科的发展。

为了配合教材第二版的教学和自学,在已有教学经验和教学成果积累的基础上,制作了高质量的教学课件和完整的教学视频录像,并刻录成光盘随书供读者使用;同时又研究与开发了网络课程(http://),以更好地调动学生的学习兴趣和主动性,促进本课程的教学改革。

包括主教材、电子教案、教学视频录像、网络课程及教学资料库等在内的课程立体化建设符合二十一世纪高校教学的要求,支持教师提高教学手段现代化的水平,更贴合学生的学习需求。

4 改革与创新教学模式和教学方法

在“人工智能导论”课程教学的过程中,我们积极探索教学新路,经过数年辛勤试验,结合蔡自兴教授等对人工智能课程的建设经验,对课程的教学模式和教学方法进行了如下一些的改革与创新。

(1)通过多种途径激发学生的学习兴趣

“兴趣是最好的老师”,“人工智能导论”课程的学习效果,直接受到学生兴趣和参与意识的影响。由于这是一门导论性前沿课程,一般来说,学生开始学习兴趣很大。但是,当一些学生开始接触到抽象概念和算法时,往往感到不易接受。我们通过各种途径和方法,激发和培养学生的学习兴趣。例如,鼓励学生参与课堂讨 论、布置读书报告和课外实验、以问题为导向的启发式教学、专题讨论/辩论等形式。特别,我们精心组织和准备了模糊控制技术及其应用、智能机器人技术与应用、智能交通、BCI(脑机交互接口)等专题,以及智能调度软件、语音识别系统、动物识别系统、足球机器人比赛、机器人轨迹跟踪、倒立摆的智能控制等课内演示,使学生扩大了眼界,增加了感性知识,达到提高学生学习兴趣的目的与效果。

(2)面向问题的启发式教学

人工智能中的许多问题,有的似是而非,有的引人入胜。在教学中,有意识的提出相关问题,提请学生思考,鼓励学生提出自己的猜想和解决方案。然后逐步进入教材中的解决方案,启发学生求解这些问题,并进行分析和比较,从而强化了学生学习的主动意识和参与意识,提高了学生的学习积极性。例如,在讲到比较抽象的“遗传算法”时,提出“遗传算法如何用于优化计算?”这一问题。针对该问题,先从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用;然后通过一个简单的例子,从特殊到一般地启发学生思考“遗传”、“变异”和“选择”的实现,最终让学生与教师一起导出遗传算法用于优化计算的基本步骤。这样,学生不但从中学习了遗传算法,而且得到一次逻辑思维的训练,取得很好的教学效果。

(3)课堂辩论与交互式教学

组织课堂辩论,讨论的议题包括人工智能的应用前景和其他比较等有争议的问题。学生对这些问题展开了激烈的争论,激发了学习潜能,明确了学习目标。例如,为了加深学生对智能机器人内涵的理解,我们组织了“机器智能能否超过人类智能”的辩论会。会前正反双方结合本课程内容及其相关知识,认真进行准备;辩论会上正反双方唇枪舌战,激烈争辩,气氛热烈。辩论后,学生余意未尽,讨论热情不减。无论是哪一方获胜,都达到了预期的效果。教学中我们还注意采用了多种交互式策略,如课堂上教师提问可鼓励或指定学生提问,也可由学生自由地就某个知识点进行主题发言后老师点评等。

(4)个性化学习与因材施教

在本课程教学过程中注意对学生因材施教和个性化教学。例如,通过组织学生进行读书报告的形式,鼓励学生从多方面、多角度考虑问题,多提新颖思想,有意识地鼓励优秀学生探讨比较深层的内容,并辅导优秀学生将其成果以科技论文和发表文章的形式转化为成果。又如,在教学设计和实验设计中,注意要求学习有余力和兴趣的学生选作部分探索性、创新性的功课和实验(选学内容,如模糊控制器的设计、进化控制等),从而引导学生发挥个性优势,达到因材施教的目的。同时注意分析学习较差的学生的具体困难,进行有针对性的指导。

(5)多媒体与网络教学的使用

本课程在PPT演示文稿和网络课程上,采用了大量的多媒体表现形式,如视频、动画、声音和图像等。目的在于使得人工智能抽象的知识形象化,便于学生理解。例如,课内让学生在线观看涂晓媛博士的计算机动画“人工鱼”的录像片段、人工生命Floy中生命智能体在环境中不断的适应进化构成演示等,有助于加深学生对所学知识的理解,促进教学水平的提高,激发了学生对课程的兴趣,使学生创新意识得到增强。此外,随教材附赠的教学光盘和开发的网络课程(http://)提供了学生课外自学用的高质量的电子课件、完整的教学视频录像、丰富的实验和案例资料等,以更好地调动学生的学习兴趣和主动性。

(7)理论与实践结合

在教学内容安排上,注意理论联系实际,适时布置一些人工智能实验给学生进行课外练习。设计的课外实验包括产生式系统实验,归结反演实验,主观Bayes推理网络实验,A搜索实验,以及基于Maltab工具箱的模糊控制位置跟踪系统、两车追赶模糊控制系统、神经网络模式识别仿真、遗传算法优化计算等实验。通过实践和参与,保持学习兴趣,有助于学生对人工智能基本概念和难点的理解,掌握基本方法和技术,为从事智能系统应用开发打下基础,从而达到教学目的。例如,我们组织学生参观我们的研究生综合自动化实验室,观看机器人臂取物、倒立摆控制、语音识别软件、指纹识别软件、智能调度软件等演示,密切理论与实际的关系。

我们在教学改革实践中探索的这些教学方法,有利于充分激励学生的学习积极性和主动性,有利于鼓励学生发挥独立思考和创新思维,有利于多方位培养学生学习发现问题、分析问题和解决问题的能力。

5 运用多样化的教学手段和考核方式

5.1 多样化的教学手段

采用现代信息技术进行教学,构筑“人工智能导论”课程的现代教学模式,是本课程的主要特点之一。教学过程中采用了多媒体教学课件和网络课程相结合的方法,充分利用多媒体的丰富表现形式,利用网络课程的交互性、情景化等,进行教学。采用的方法包括:

(1)抽象知识内容的多媒体表示

通过动画和视频来演示抽象的概念、算法和过程,包括机器人轨迹跟踪、机器人臂取物、足球机器人比赛、倒立摆控制、“人工鱼”等录像片段,以及智能调度软件、语音识别系统、指纹识别系统、动物识别系统等软件演示。

(2)通过PPT撰写教案

精心编制PPT,组织好课件内容,做到图文并茂,提纲挈领,便于学生理解,便于教师讲授。

(3)开发与应用网络课程

“人工智能导论”网络课程较好的实现了交互性、在一定程度上实现了学习过程的情景化。在交互性方面,通过网络课程的课堂练习和章节练习,评价学生的学习情况,并给学生提出学习建议。在情景化方面,采用了在线答疑形式,使得学习过程丰富有趣。

(4)先进实验系统的观摩与演示

利用我们的研究成果等有利条件,有针对性地对学生进行成果演示(包括智能调度软件、语音识别系统、指纹识别系统、动物识别系统等软件),使学生知道学了有用,而且很有用,很有趣,很有意义,从而进一步诱导学生的学习兴趣,巩固了课堂所学知识,提高了教学质量。

教学效果通过上述先进的现代信息技术的应用,不仅极大地提高了学生的学习兴趣和主动性,而且也取得很好的实际教学效果,提高教学质量。

5.2 作业、考试等教改举措

(1)改革作业方式与方法

改变过去那种单纯的书面习题作业,发展成为必须交给教师评阅的书面家庭作业、不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中上交作业通过网络进行,教师批阅后的作业也通过网络返回给学生,实现了作业呈交和返回的网络化。

(2)改革考试方式与方法

如何对本课程的考试方式进行改革一直是我们探索的问题。我们综合考虑课堂出勤情况(10%)、平时正式作业成绩(20%)和期末课程考试(70%),进行综合评分。期末考试有时采用综合试题考试,出几个大题目让学生选择其中几个进行开卷笔试,当面交卷后评分;有时采用课外开卷论文结合或口试面试。最近,我们还对部分学生结合实验或实际问题提问等进行考核。我们正进一步改革、试验和探索,使考试成为衡量与培养创新能力,促进学生学习主动性和提高课程教学质量的重要环节。

第4篇:人工智能教学方案范文

当前高职教育中为计算机专业学生所开设的人工智能课程很大程度上沿用了普通高等教育环境下的教学方式和内容,这显然与高职教育本身培养人才的目标和方式不一致。高职教育的最终目标是要培养适应生产需要的技能型、应用型人才,而高职教育在教学方式上应更为注重实践教学,包括各种实验、实训、实习和设计。因此,人工智能课程中单纯的理论讲授并不能有效地适应高职教育的实际教学环境要求,有必要对人工智能课程在教学内容和方式上加以改革。三个改革途径(一)引导学生阅读应用研究文献

高职教育强调培养学生的知识应用技能,其中重要的一点是要培养学生把理论知识应用到实际生产中的能力。然而在教学实践过程中,学生普遍反映由于人工智能课程理论性强,难于从课本理论联系到实际的专业应用上,这样对激发学生的学习兴趣,提高技能应用水平是不利的。

实际上,人工智能涉及的应用领域极为广泛,其中在专家系统、模式识别、智能控制、数据挖掘、自然语言理解等方面尤为突出,每一种应用都能够很好地体现出人工智能学科的基本理论方法特点。因此,在课程学习的开始阶段,应让学生按照个人兴趣自行选定某个应用领域,在一定的提示和引导下通过检索有关文献,访问相关的科研院校网站等方式获取资料,了解当前该领域的发展现状和具体产品的开发和使用情况,最后在课程的结束阶段以学习报告的形式在课堂上加以演示和共同讨论,这样可以大大激发学生学习人工智能课程的主观能动性,开阔学生的知识视野。资料的收集阅读与思考是知识应用的首要环节,对于培养应用型人才的知识应用技能很有帮助。(二)安排学生对经典算法程序进行实验

与普通高等教育相比,高职教育更加强调实践教学的重要性。从实践中学习和理解理论知识,并且把所学知识运用到实践中,这是高职教育的重要特点。人工智能课程内容抽象而概念性强,单纯的理论讲解学生难以从中得到启发,也难以体现出高职教育突出实践教学的特点,为此需要安排学生动手实验,从实践中理解人工智能科学的理论原理和应用途径。

在人工智能科学的发展过程中,先后提出了一些经典的优秀算法程序,如A*算法、遗传算法、神经网络的BP学习算法等,在科研和工程实际中得到了广泛的应用,在实践教学中同样有着重要价值。根据教学要求和实际情况,学生并不需要自行设计关于这些算法的具体程序,在提倡开放和共享源代码的今天,通过网络能够获得大量相关的程序代码资源。同时,一些软件平台也集成了一些工具箱,如遗传算法工具箱、神经网络工具箱等,只需设定相关输入参数和数据,便可通过调用工具箱函数实现算法,极为简便而易于理解。

学生应通过对这些程序作验证性实验来理解所学内容。为安排学生有效地进行实验,教师应结合当前阶段所讲授的内容准备相应的算法程序,当该部分内容结束后在课堂上讲解和演示算法程序的运行方法。学生获得该算法程序以及具体的实验任务后在课后完成实验并提交实验报告。

例如,在讲授启发式搜索时,可向学生提供A*算法求解八数码难题的算法程序,并对某个学生给定某个初始棋盘状态,要求学生动手运行程序并记录由算法扩展所得的每个棋盘状态的估价函数计算结果,以及相应的OPEN表和CLOSED表的变化情况,从中理解A*算法的原理特点。又如,在讲授BP学习算法时,可根据学生的实际情况对内容进行调整,强调BP神经网络的实际工程应用价值,而对BP算法的基本原理只作简单介绍。向学生提供利用BP神经网络学习特定目标函数的MATLAB程序代码后,要求学生动手运行该程序,并且记录和对比神经网络在训练前后对目标函数的逼近效果。

(三)启发学生引入人工智能理论方法对毕业设计加以创新

毕业设计是高职教育的重要环节,学生通过毕业设计对以往所学知识作系统性总结,通过毕业设计能进一步加强学生的技能训练,提高学生的技能应用水平。从实践教学的角度来讲,毕业设计不仅仅要求学生对已学知识和技能的简单重复运用,更重要的是强调学生能够主动独立地分析实际问题,对问题的解决方法提出新的观点并付诸实践。然而从教学的实际来看,在毕业设计中学生创新的主动性不足,往往停留在继承和模仿阶段,毕业设计作品少有突破和创新。究其原因,并非学生所学知识和技能不足,而是学生未懂得如何分析已有问题,在其基础上引入新的解决方法或提出新的应用内容。

第5篇:人工智能教学方案范文

随着信息技术的不断发展,计算机科学渗透生活的各个领域,改变了人们的生活方式和学习方式。其中,人工智能作为计算机科学中迅猛发展的一部分,正在以其独特的魅力走进人们的视野。“人工智能”(Artificial Intelligence),顾名思义,即通过应用计算机来模拟人脑的信息接收、思考、判断以及决策等思维行为过程,进而扩展人脑的思维和行动,帮助人们高效智能化地解决特定问题。近年,人工智能在教育领域中发挥的作用越来越显著[1],其与众不同的特点决定了其在教育培训中的地位,将人工智能应用在农业知识培训中的可行性也成为教育界热议的新话题。

1我国农业发展背景和农业培训必要性分析

11我国农业发展背景

我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。

12开展农业知识培训的必要性

反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。

2人工智能在教育中的应用与发展

近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。例如,智能化的作业批改可以大大减轻教育工作者的沉重负担,在线学习等网络教学模式可以让人们更灵活地接受教育。从人工智能诞生伊始,其就与教育产生了密不可分的联系,延续发展至今,人工智能在教育领域中的应用主要包含以下几个方面。

21基于人工智能的计算机网络课程

计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。

22基于人工智能的教师辅助系统

近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。

23基于人工智能的教育数据库系统

随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;依托教育资源管理系统中来,教育管理工作者可以合理分配教学资源,让人们从爆炸式的高密度信息中解放出来,真正做到物为己用,因材施教。

3人工智能与农业知识培训的结合

新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。

人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。

31人工智能应用于农业知识培训的优势

从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。

311个性化教育针对性强

相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。

312教育资源利用率高

我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。

4平台开发的系统架构

基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。

41学生模型

学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。

另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。

42教师模型

教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。

教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。

在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。

另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。

43综合数据库模型

综合数据库模块为农业知识培训系统提供数据库支持,主要包括以下三个模块。

知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。

专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。

为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。

44人机交互接口

基于人工智能的农业知识培训的过程是学生和系统进行交流的过程,所以一个友好的人机接口是系统必不可少的组成部分。在这一模块中,友好的图形用户界面的设计能够帮助学生流畅地接收信息,提高学习效率。同时,借助于人工智能中对语音和图像信号的先进识别技术,人机交互接口可以智能化地接收分析和理解学生的自然语言信息和动作信息,进而为系统提供宝贵的输入信息。

第6篇:人工智能教学方案范文

关键词:人工智能;信息素养;信息技术

中图分类号:TP18文献标识码:A文章编号:1009-3044(2008)35-2417-02

Artificial Intelligence Education and Middle School Students Information Literacy

WU Wen-tie

(Mathematics and Computer Institute of Mianyang Normal University, Mianyang 621000, China)

Abstract: Information Literacy in the Information Age is a national basic literacy, artificial intelligence represents a cutting-edge information technology. Based on the analysis of information quality and substance of the definition on the basis of exploring the field of artificial intelligence research, as well as in education, put forward the theory of artificial intelligence and technology courses in secondary education should be in a more systematic, comprehensive Improve the information literacy of students.

Key words: artificial intelligence; information literacy; information technology

1 信息素养的定义及其内涵

“信息素养”一词最早产生于信息技术和信息产业发达的美国, 是随着现代信息社会的逐渐形成而对国民提出的一种兼跨人文和科学范畴的综合性个人素养要求的描述。随着研究的深入,人们对信息素养的认识也在不断深化。

1974年美国信息产业协会主席保罗・泽考斯基最先提出信息素养的概念, 他认为信息素养是“利用大量的信息工具及主要信息源使问题得到解答的技术及技能”。1992年美国图书馆协会提出:“信息素养是人能够判断何时需要信息, 并且能够对信息进行检索、评价和有效利用的能力。”同年, 道尔在《信息素养全美论坛的终结报告》中给出了一个较为全面的定义:一个具有信息素养的人, 他能够认识到精确和完整的信息是作出合理决策的基础, 他能够确定对信息的需求, 能够形成基于信息需求的问题, 能够确定潜在的信息源, 能够制定成功的检索方案, 从包括基于计算机的和其他的信息源中获取信息、评价信息、组织信息用于实际的应用, 将新的信息与原有的知识体系进行融合以及在批判性思考和问题解决过程中使用信息。

综上所述, 虽然研究人员从不同的视角界定了信息素养的定义, 但可看出, 信息素养既包括认知态度层面上的内容, 也包括技术层面、操作层面和能力层面上的内容。概括起来讲, 信息素养主要包括信息意识、信息能力和信息道德三个方面:

1) 信息意识。信息意识是信息素养的首要因素, 主要指人们对信息及其交流活动在社会中的地位、价值、功能和作用的认识, 换句话说, 就是指人们对信息的判断、捕捉的能力。信息意识的强弱将直接影响人们利用信息的程度和效果。人们只有有了信息意识,才有可能有信息的需求, 进一步去寻找信息和利用信息, 并主动学习与信息处理有关的技术。

2) 信息能力。信息能力是信息素养的重要方面, 是指人们获取信息、处理信息、利用信息、创造信息、交流信息的技术和能力。人们只有掌握一定的信息技能, 才能有效地开展各种信息活动, 有效地利用信息和创造信息, 充分发挥信息的价值, 变信息为动力和优势。

3) 信息道德。信息道德是指人们在整个信息交流活动过程中表现出来的信息道德品质。它是对信息生产者、信息加工者、信息传播者及信息使用者之间相互关系的行为进行规范的伦理准则, 是信息社会每个成员都应该自觉遵守的道德标准。

2 人工智能的研究领域

人工智能的研究领域非常广泛, 而且涉及的学科也非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在网络教育环境中常用的智能技术。

2.1 专家系统

所谓专家系统就是一种在相关领域中具有专家水平解题能力的智能程序系统, 它能运用该领域专家多年积累的经验与知识, 模拟人类的思维过程,求解需要专家才能解决的困难问题。

2.2 机器学习

“学习”是一个有特定目的的知识获取过程, 其内在行为是获取知识、积累经验、发现规律; 外部表现是改进性能、适应环境、实现系统的自我完善。所谓机器学习, 就是要使计算机能模拟人的学习行为, 自动地通过学习获取知识和技能, 不断改善性能, 实现自我完善。机器学习主要研究学习的机理、学习的方法以及针对相应的学习系统建立学习系统。

2.3 模式识别

所谓模式识别,是指研究一种自动技术。计算机通过运用这种技术,就可自动地或者人尽可能少干预地把待识别模式归入到相应的模式类中去。也就是说,模式识别研究的主要内容就是让计算机具有自动获取知识的能力,能识别文字、图形、图像、声音等。一般来说,模式识别需要经历模式信息采集、预处理、特征或基元抽取、模式分类等几个步骤。

2.4 人工神经网络

人工神经网络是指模拟人脑神经系统的结构和功能, 运用大量的处理部件, 由人工方式建立起来的网络系统。它是在生物神经网络研究的基础上建立起来的,是对脑神经系统的结构和功能的模拟, 具有学习能力、记忆能力、计算机能力以及智能处理功能。其中学习是神经网络的主要特征之一, 可以根据外界环境来修改自身的行为。学习的过程即是对网络进行训练的过程和不断调整它的连接权值, 以使它适应环境变化的过程。学习可分为有教师(或称有监督)学习与无教师(无监督)学习两种类型。对神经网络的研究使人们对思维和智能有了进一步的了解和认识,开辟了另一条模拟人类智能的道路。

3 人工智能技术在教育中的应用

3.1 智能搜索引擎

随着互联网站点和页面的激增以及网络用户队伍的不断壮大,信息检索成为人们利用Internet的重要途径。但是在浩瀚的网页海洋中寻找有用的信息并不容易,需要借助有力的检索工具如搜索引擎等等。目前一些著名的搜索引擎有:GOOGLE、YAHOO、EXCITE、INFOSEEK等,他们各有特色,但仍存在不足之处,如检索到的无关信息过多以及检索结果排序较混乱。智能化信息检索是信息检索的新分支,它是人工智能和信息检索的交叉学科。它在对内容的分析理解、内容表达、知识学习等基础上实现检索的智能化,这样可以节省学习者在检索中花费的时间,帮助学习者提高检索效率。智能化信息检索所用到的人工智能技术有专家系统、自然语言处理和知识表示。

3.2 智能体(agent)

agent技术早在70年代出现在人工智能领域,通过感知、学习、推理以及行动能够基于知识库的训练模仿人类社会的行为。随着其进一步发展,它在远程教育领域发挥着越来越重要的作用。一套完整的远程教育系统中包含许多子系统,如答疑、作业、考试、交互等等子系统。这些子系统都有各自的数据库用来存储信息。为了提高整个系统的智能性,可以引入智能技术,把众多子系统的数据库链接起来,实现信息资源的共享。通过分析这些信息,智能技术可以发现学习者的个别特征(如兴趣爱好信息、点击知识点信息统计、交互日志等等),并根据这些特征量身订做出适合学习者的学习方案,也有助于教师及时掌握学习者学习过程中的动态信息。

3.3 智能CAI(ICAI)

随着计算机技术的飞速发展,计算机辅助教学(CAI)已受到教育界的重视,成为学科教学改革的一种重要手段。许多学校都在开发CAI课件,但大多数CAI课件只是机械地按照教学设计者事先设计好的教学模式和内容向学生传授知识,并没有体现出个性化学习,无法做到因材施教。

智能CAI是以人工智能技术为核心,使CAI系统能够根据学生的学习情况等因素分析学生的特征,合理安排教学内容、变化教学方法去满足个别教学的需要。使用智能CAI进行教学能够克服传统CAI的不足,显著提高教学效果,是CAI课件发展的趋势。

3.4 智能教学系统ITS

智能教学系统(intelligent tutoring system,ITS)是涉及人工智能、计算机科学、认知科学、教育学、心理学和行为科学的综合性课题,其研究的最终目标是由计算机负担起人类教育的主要责任,即赋予计算机系统以智能,由计算机系统在一定程度上代替人类教师实现最佳教学。我国ITS的研究起步较晚,但近几年随着计算机的普及和教育软件需求增大,ITS的发展较快。ITS按照功能分为四个模块:专家知识模块、学生模块、教师模块、人机接口模块。

4 人工智能教育对学生信息素养的作用

人工智能(ArtificialIntelligence,AI)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科。换言之,它研究如何用计算机模仿人脑所从事的推理、证明、识别、理解、设计、学习、思考、规划以及问题求解等思维活动,来解决需要人类专家才能处理的复杂问题,例如咨询、诊断、预测、规划等决策性问题。人工智能也是一门涉及数学、计算机科学、控制论、信息学、心理学、哲学等学科的交叉和边缘学科。与一般的信息处理技术相比,人工智能技术在求解策略和处理手段上都有其独特的风格。人工智能研究处于信息技术的前沿,它的研究、应用和发展在一定程度上决定着计算机技术的发展方向。同时,信息技术的广泛应用也对人工智能技术的发展提出了急切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响。

综上所述,作为信息技术一个不可缺少的重要组成部分,人工智能的基本内容在中学信息技术课程中是不能不专门提及的,以往某些教材中用一两页篇幅作个简单介绍的方法根本不足以反映人工智能学科的全貌。因此,十分有必要在高中阶段的信息技术课程中专门设立人工智能选修课。我们认为,高中阶段开设人工智能课程可以在以下几个方面对学生的信息素养培养产生积极作用:

1) 多种思维方式的培养和信息素养的综合锻炼。

现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题,难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。一般说来,中学阶段开设的传统意义上的信息技术课程中所介绍的信息技术,例如多媒体技术、网络技术、数据库技术、算法与程序设计等,都是求解结构化问题的基本技术。而人工智能技术则是解决非结构化、半结构化问题的一类有效技术。

把人工智能课程引入我国现行的高中信息技术教育,可以让学生在体验、认识人工智能知识与技术的过程中获得对非结构化、半结构化问题解决过程的了解,从而培养学生的多种思维方式,达到提高信息素养的目的。通过人工智能课程的学习,学生还将了解人工智能语言的基本特征,学到智能化问题求解的最为基本的策略。

2) 体验人类专家解决复杂问题的思路,提高学生的逻辑思维能力。

这里以人工智能学科中“专家系统”技术的体验、学习与应用过程为例进行说明。在专家系统的应用过程中,一个实际的专家系统不仅能够为用户给出相关领域的专家水平建议或决策,而且能够通过解释机制,以用户容易理解的方式解释专家系统的具体推理过程。学生可以向专家系统提出诸如“为什么(Why)”、“如何(How)”、“如果……会怎么样”等问题,系统接受用户的问题指令后,可以根据推理的逻辑进程,即时将答案呈现给用户,整个过程如同教师与学生在进行面对面的教学。在该过程中,学生可以充分体验人类专家的求解思路和推理风格,有助于提高他们的分析、思维与判断能力。

另一方面,在专家系统的教学过程中,可以要求学生自行构建由产生式规则组成的知识库,或进一步利用工具软件来开发简单的实用型专家系统。为了完成该项工作,学生一开始就要编制开发规划、制定知识获取策略,并具体付诸实施,这是一个不断深化的过程。学生还得明确与系统有关的所有变量或相关的因素,并且将这些变量和因素转化为问题求解,得出相应的结论。在进行一系列问题求解分析之后,运用产生式规则来表示知识,以此建立起来的专家系统还可以让其他学生去运用和体验,具有一定的实用价值。

由于专家系统中的知识组织与推理过程是对人类专家思维方式的一种模拟,因此上述知识库的组织和系统的推理过程能够较好地体现学生的思维过程。在建造知识库过程中,学生需要将原来零碎的未成型的知识概念化、形式化和条理化,从而内化为学生自己的东西。所以,建造知识库的过程不但能反映学生的学习过程,而且有助于学生对该领域知识的深层思考并有利于长久记忆,同时也学会了专家系统的基本开发技术。正如美国著名的学习论专家Jonassen所指出的:那些自行设计专家系统的学生将会在这种活动中受益匪浅,因为这是一个对所学知识进行深度加工的过程。

3) 了解信息技术发展的前沿,激发对信息技术未来的追求。

人工智能技术在一定程度上代表着信息技术的前沿,通过人工智能知识、技术的学习与体验,高中学生能够对信息技术发展的前沿知识有一定程度的了解,这样有助于他们开阔视野,培养兴趣,激发对信息技术美好未来的追求,从而为今后进入大学或走向社会奠定良好的基础。

5 结束语

中学生的信息素养的培养是当前信息技术课的一个重要目标,而在现有的中学信息技术课程中,关于人工智能的知识只作了简单的介绍,学生们对于人工智能研究的广大领域不能有详细的概念,这对于中学生的信息化认识和信息素养的培养不够全面。因此在中学信息技术课中加大人工智能的知识介绍是信息技术课改革的重要内容。

参考文献:

[1] 雷晓庆.网络环境下大学生的信息素养及其培养[J].太原大学学报, 2004(2):38.

[2] 杜玉霞.美国信息素养教育与研究的启示[J].电化教育研究, 2005(10):42.

[3] 王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,2002,1-53.

[4] 潘瑞玲,余轮.Agent技术在远程教育系统中应用的研究[J].微型电脑应用,2002,18(4):28-30.

[5] 吴战杰,秦健.Agent技术及其在网络教育中的应用研究[J].电化教育研究,2003(3):32-36.

[6] 张剑平.关于人工智能教育的思考[J].电化教育研究,2003(1):24-28.

第7篇:人工智能教学方案范文

关键词:无人机系统;智能决策;自主控制;智能体系;任务规划;课程设计

0引言

无人机具有较强的机动性和较好的可操控性,能辅助人类在恶劣和危险的环境中执行复杂的任务。近年来,无人机系统迅速发展并广泛应用于环境监测、灾难搜救、反恐侦察等众多领域。无人机系统研究的一个关键问题是如何发展高度智能化的软件系统,提高无人机在动态复杂环境中自主决策的能力。目前,众多高校开设的无人机专业课程主要研究无人机的硬件平台、通信与测控、指挥控制、综合保障和实践等方面,然而对于无人机系统的智能决策问题研究尚不深入。

1无人机系统决策的内涵

1.1无人机自主控制系统概述

无人机自主控制系统是无人机实现自主飞行管理与自主任务管理的机载系统,如图1所示,它涵盖了机器人“观测一判断一决策一行动(observer-orient-decision-action,OODA)”的各个环节。

无人机自主控制能力是衡量无人机智能自主水平的一项重要能力。表1基于OODA分别对无人机自主控制能力进行了描述,其中,“判断”与“决策”部分评价的是无人机对战场态势的评估能力和对任务或行为的决策与规划能力,是衡量无人机自主决策能力的最重要指标,也是无人机决策课程设计与实践的核心。

1.2无人机自主决策子系统概述

自主决策模块位于智能无人机系统的顶层,它如同人类神经系统执行决策行为,产生计划并处理不确定性。自主决策模块主要包括顶层任务决策、顶层任务规划、底层行为决策和底层路径规划。顶层任务决策用于任务策略的在线生成;顶层任务规划用于任务计划的在线制定;底层行为决策用于运动行为的在线序贯决策;底层路径规划用于导航计划的在线生成,这些内容的教学与实践将贯穿课程的教学与实践过程。

2人工智能在无人机系统决策中的发展以及作用与地位

人工智能从孕育之初到现在,经历了“三起两落”,如图2所示。人工智能的发展也不断促进无人机自主决策能力的发展,甚至可以说,人工智能的发展决定无人机自主决策水平的高低。早期,无人机决策大多依托产生式规则或谓词逻辑技术,主要针对确定决策;20世纪六七十年代,知识表达引入到有人机辅助决策支持系统的设计与研发中,也逐步迁移到无人机智能自主系统中;随着概率统计的引入,基于贝叶斯的不确定推理决策方法得到大力发展;专家系统依据专家经验生成策略,用于解决离散事件不确定性,形成了一系列无人机智能自主决策成功案例;近年来,机器学习、多智能体理论的热潮将无人机智能水平推到了一个前所未有的高度,使无人机具备知识沉淀、知识挖掘、智能发育的能力,并将单无人机执行ISR任务拓展到多无人机协同遂行多任务领域。无论经典人工智能方法还是人工智能新思路,都是无人机智能自主决策的重要基础,在无人机系统智能决策课程教学与实践中具有举足轻重的地位。

3无人机智能决策课程教学总体设计

国防科技大学依托控制学科和仪器学科在自动化专业试办开设了“无人机工程”专业方向,培养掌握无人机工程相关领域基础理论和基本知识的学员,使其具有从事无人机系统及相关装备的分析、设计、研制、维护和管理等方面的实际工作能力和初步科学研究能力。

3.1教学目的与课程设计总体思路

设置无人机智能决策课程的目的是使本专业学生快速了解无人机决策系统组成、熟悉决策系统工作原理、掌握决策理论与实现方法。课程设计的总体思路是设置课堂教学和动手实践两个主要环节,课堂教学环节主要通过教师讲授的方式,基于无人机自主控制系统组织结构,介绍无人机决策系统的基本概念;实践环节则是在学生已经掌握智能决策算法基本原理和流程的基础之上,让学生参与到决策系统的设计与实现中来。

3.2课程教学主要内容

无人机智能决策是课程教学的核心内容,主要覆盖贝叶斯推理理论、最优化理论、智能搜索等基本决策理论和方法,主要讲解如何将其运用于无人机智能感知、任务规划的建模和优化方法,比如基于贝叶斯的不确定推理、基于启发式人工智能搜索算法的路径规划等。内容安排包括问题描述、基本原理、算法过程、输入输出设计、结果分析等;人机智能融合决策是课程的拓展部分,主要涵盖人机智能融合原理、脑机接口原理、融合决策机制等理论和方法,主要讲解如何将其运用于人在回路辅助的无人机智能自主决策、混合主动规划的接口设计与融合决策方法,比如基于脑机接口的人机智能融合决策、混合主动任务规划等;拓展内容安排包括资料查新、接口设计、融合机制设计、融合算法实现、结果分析等。

4无人机智能决策教学实践环节设计

4.1课程实践环节的必要性

4.1.1无人机系统智能决策课程对实践的需求

实践教学是高等学校教育非常重要的教学环节,是提高人才分析问题与解决问题的重要途径。无人机系统智能决策是一门实践性很强的课程,一是由于无人机系统是一门交叉性的学科,主要涉及空气动力学、无人机平台设计与制造、图像处理与智能感知、导航系统原理、无人机飞行控制、人工智能、机器学习、任务规划与分配、无人机系统体系保障技术等许多学科,所以该学科具有知识点多、涉及面广、理论性强,需要学生具备较好的逻辑思维能力和数理基础等特点,因此,必须通过实践才能加深对无人机系统知识的理解;二是智能决策技术不断走向实用,20世纪80年代随着人工智能基础科学的研究,智能决策作为一门新兴学科出现在国际科学舞台上,智能决策技术早期以研究经典的智力游戏问题和仿真实验来证明理论等为主流,随着互联网的普及和国际信息化进程的提高,智能系统和智能计算等也逐渐成为学者们的研究热点。从加强学生的实践能力出发,考虑到课程的建设需要,需要加强无人机系统智能决策课程的实践教学内容。

4.1.2无人机系统智能决策课程对实践的要求

根据智能决策的特点,进行实践教学需要达到以下几个目的:一是加强学生对基础知识的理解,对智能决策基本方法的掌握;二是加强学生将智能决策知识与方法用于解决实际问题的能力;三是增强学生对智能决策研究领域的兴趣,培养更多的专业人才。

智能决策的实践教学工作必须以高质量的科研内容为基础。通过瞄准国际前沿、集成创新和引进消化吸收、提升原始创新以及再创新能力,从而建设创新平台和创新团队,以高水平科学研究支撑高质量的高等教育。此外,智能决策的实践教学还要考虑因材施教,验证关键技术环节。目前学生的学习任务较重且水平参差不齐,在设计实践环节时,要把握如何能在较短的时间内让学生得到最大程度的能力锻炼。在这种情况下,教师必须进行充分的准备,事先搭好通用的硬件平台和软件框架,以减轻学生不必要的负担,营造良好的氛围,将学生的主要精力集中在创新实践上,这样才能提高实践教学的效率。因此,课程借鉴了无人机领域最具影响力的国际微小型飞行器赛会(IMAV)的比赛规则,结合智能决策的研究热点和当前承担的学术科研任务,引入无人机竞赛作为智能决策教学实践的平台。

4.2基于无人机系统智能决策的课程实践方案

在智能决策课程开始之际,教师向学生明确课程实践方案,即通过无人机竞赛的形式考核学生解决实际问题的能力。通过举办无人机竞赛,可以激发学生的学习热情和创新动力,达到寓教于乐的目的。学生带着思考主动学习理论知识,而不是为了应付考试被动学习;教师应当按照学生的综合能力合理组队,从而达到能力互补和团队协作。

无人机竞赛面向本校无人机工程专业方向的本科生,根据智能决策课程的需要,共设置3个科目。

第一个科目是自稳飞行,无人机需在3分钟内完成从出发点到指定目标点的飞行,要求单次滞空时间不少于30秒;本科目考查的是学生对无人机自主飞控基础知识的掌握。第二个科目是避障侦察,无人机需以尽可能快的速度穿越一排障碍门,并识别地面上的物品;障碍门的可通行区域各不相同,无人机需通过机载单目相机识别可通行区域,并自主规划路径;本科目考查的是学生对智能识别和任务规划基础知识的掌握。第三个科目是特级飞行,包括手抛无人机平稳飞行、8字飞行、伴随飞行等;本科目考查的是学生的创造力。比赛采用百分制,3个科目按照难度系数和重要程度评分占比分别为30%、50%和20%。

如图3所示,课题组提供比赛使用的无人机硬件和飞控软件平台并指导学生拼装无人机及使用软件。学生需在课程学习的过程中制定智能决策的算法设计及代码实现计划,并严格按照时间节点实现目标;每个小组的成员必须说明自己在团队中的贡献,从而作为教师打分的依据。

第8篇:人工智能教学方案范文

关键词:人工智能;研究生教学;教学方法

人工智能是一门研究机器智能的学科,是在研究人类智能行为规律的基础上,利用人工的方法和技术,研制智能机器或智能系统来模仿、延伸和扩展人的智能,实现智能行为。在知识经济向智能经济高度发展的今天,人工智能具有重要的理论意义和社会价值。人工智能理论已经渗透到各个领域,人工智能技术也得到广泛应用,许多研究成果已经进入人们的生活。

人工智能课程是一门多学科交叉的课程,具有很强前沿性,涉及哲学、认知科学、行为科学、脑科学、生理学、心理学、语言学、逻辑学、物理学、数学等众多领域;涉及面宽,内容广泛,更新快。人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平[1]。

人工智能课程内容的广泛性、前沿性和应用性特点决定了授课方法的多样性。与本科生相比,研究生在教育目标和身心特征方面都有较大的区别。笔者多年从事研究生人工智能课程教学工作,现总结多年教学经验如下。

1研究生培养目标及其教学特点

研究生教育阶段的教育目标是使研究生形成具有个性化的研究品格、研究定向和研究视野,以具有独立思考并获得独创研究成果的能力[2]。从这一意义上讲,个性化是研究生教育培养目标的构成主体。尤其随着我国经济持续高速增长,社会对知识创新、新经济生长点的期望值增大,这就要求我国研究生教育在其培养目标的定位上不仅要重视人才培养的高层次性,更要重视创新能力、实践能力和创业精神的培养。并且,研究生身心发展已较成熟,具有较稳定的个性特征,思维力强,具有较高的专业性思维意识和创造力,为独立地进行专业研究活动提供了心理上和智力上的保证。而且,研究生已具备了基础理论和专业知识,特别是有一定工作经历的研究生,他们不仅有本科教育阶段的知识积累,也有应用这些知识的经验,对于扩大其专业知识领域并进行研究有着积极主动的态度。总之,从年龄构成及身心特征上讲,研究生适应高层次、跨学科知识领域的学习和研究。

研究生的特征及其教育目标决定了研究生教学不应该是由教师讲授已定论的知识,而应是以教学为基本依托,通过教学提出具有研究性、探索性、未确定性甚至是尚存争议性的课题,激励研究生独立思考和质疑,让他们在思考和质疑的过程中提出问题,培育他们发现问题、提出质疑的科学批判精神,训练并提高其创新能力、实践能力和创新精神。创新精神和创新能力主要表现在具有健全的人格、强烈的责任感、开放的心态、团结合作的精神、严谨科学的思维能力和创新思维方式。

个性是创新的源泉,研究生课程体系的设置应该具有一定的灵活性,依据研究生不同的知识基础和研究定向,设置具有弹性化的课程,使研究生的个性化得以凸显。另外,为提高研究生专业研究和创新能力,在课程教学中,也应凸显教学的研究性和专业性,重视专业领域背景知识和研究方法的讲授,开展跨学科、非专业知识的教学,教学内容应涵盖专业领域的研究热点、难点、争议问题和最新研究动态,还应包括交叉学科、边缘学科的研究趋势,以扩展学生的视野[3]。也就是说,研究生教学既要凸显研究生的个性化特点,又要凸显内容的学术性和研究的指向性。

2人工智能课程的特点

2.1多学科交叉,具有很强的前沿性

人工智能是一门多学科交叉的课程。课程内容的理解需要运用多学科知识和较强的逻辑思维能力,多学科的知识相互联系、相互交叉,融合形成新的知识,成为新的思维方法和综合能力的萌发点。通过课程学习,学生可以通过不同学科知识的融合来达到对原有知识的超越,用一种全新的思维方法来思考所遇到的问题,提出新的解决办法。这也是创造力的迸发和智能的飞跃。具有了知识的广度和深度才具有融会贯通、创新的可能,人工智能课程的开设能够更好地培养学生的创新思维和技术创新能力,为学生提供一种新的思维方法和问题求解手段。

2.2涉及面宽,内容广泛,更新快

人工智能课程是一门知识点较多的课程,它以概率统计、离散数学、数据结构、计算机编程语言、数据库原理等课程为基础,涵盖了模式识别、机器学习、数据挖掘、计算智能、自然语言理解、专家系统等众多研究方向,内容涉及面广,概念抽象,不易理解。并且,人工智能课程内容更新快,近年来人工智能科学的快速发展,涌现出了大批新方法,研究热点问题也从符号计算发展到智能计算和Agent等。其中,计算智能主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用;Agent最早来自分布式人工智能,随着并行计算和分布式处理等技术的发展而逐渐成为热点。

在互联网上有大量最新的与课程内容相关的研究论文,为学生提供了很好的查阅文献的环境,使学生能够根据所学习的内容和所在课题组的研究方向阅读相应文献,提高学生的学习兴趣和独立提出问题、解决问题的能力。

2.3应用性强

人工智能理论已经渗透到科学的各个领域,当前,几乎所有的科学与技术分支都在共享着人工智能领域所提供的理论和技术。例如,自第一个专家系统DENDRAL研制成功以来,专家系统已成功地应用于数学、物理、化学、医学、地质、气象、农业、法律、教育、交通运输、军事、经济等几乎所有领域;数据挖掘技术是以一种更自动化的方式对具有大量数据的商业活动进行分析和预测,在市场营销、银行、制造业、保险业、计算机安全、医药、交通、电信等领域已有许多案例;语义Web让Web上的信息能够被机器所理解,实现Web信息的自动处理,成功地将人工智能的研究成果应用到互联网。另外,在机器视觉、自然语言理解、智能控制与智能制造等方面,人工智能技术也得到广泛的应用,有许多研究成果已经进入人们的生活。目前,从理论到技术,从产品到工程,从家庭到社会,智能无处不在,人工智能广泛的应用性给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。

人工智能课程的多学科交叉性、内容广泛性、概念抽象、不易理解以及前沿性和应用性特点决定了在该课程的讲授过程中应该采用多种授课方法。多种授课方法的采用一方面便于授课内容的理解,另一方面也能够更好地培养学生的创新思维和技术创新能力,提高他们的科技素质和学术水平。

3人工智能课程教学方法

3.1基于问题的启发式教学法

苏霍姆林斯基说:“唤起人实行自我教育,乃是一种真正的教育。”基于问题的启发式教学法是教师在深入了解学生心理特点和学习规律的基础上,设计适合教学的启发式问题,并采取灵活多样、生动活泼的启发方式,充分调动学生的学习兴趣,激发、引导学生进行科学思维,培养学生独立思考问题、提出问题和解决问题的能力。该教学方法强调的是过程,教师的主要任务是提出问题,依据举一反三的思路引导学生展开逻辑推理,通过逐层分析深入思考问题,最后综合学生观点阐述相关理论。

在课程教学中,有许多内容适合于采用启发式教学方法。例如,在知识表示方法的学习过程中,教师首先提出问题:“你是怎样进行数学定理证明的?”并在学生的回答过程中,引导学生认识到知识及其表示的重要性;随后,提出问题:“在计算机中如何表示知识?”引导学生逐步总结出不同知识表示方法在知识表达能力、推理效率、可实现性、可组织性、可维护性方面的区别。另外,在确定性推理的教学过程中,教师可以利用“某处发生盗窃案,公安局派出5个侦查员去调查,研究案情时,5个侦查员各给出了一句可信的结论,据此判断谁是盗窃犯”的问题[4],让学生进行判断和讨论,引导学生认识到推理过程中可以使用多条规则进行推理,并且推理路线也可能存在多条,从而引出推理的两大基本问题:解决冲突消解等问题的推理策略,以及解决推理线路等问题的搜索策略。

启发式教学法的要点是设计适当的启发式问题和启发方式、安排能调动学生积极性的讨论环境、鼓励学生发表个性化观点。教师不仅用问题引发学生思考,更要鼓励学生让思维自由驰骋,主动提出问题,讨论问题,寻求问题解决方案。在探讨、研究问题中,不要以现有的结论和固定的程式束缚思想,鼓励学生的个性化观点。启发式教学是一种民主、科学的教学方法,其中包含诸多具体的教学方法,如激疑启发法、比喻启发法、类比启发法、联系启发法,等等。启发式教学在传授知识的同时,更注重的是对创新的孕育、萌芽、生成和壮大,它能促使学生自己获取知识、思考问题、提出问题、分析问题、解决问题,培养学生的自学能力。以问题为基础的启发式教学,利用问题引导学生学习,全方位深层次发展学生的创新思维和探究性学习能力。问题可以诱发出学生的求知欲,激发、唤醒了学生的主体意识;问题往往是面向生活世界的实践活动的,它使教学活动从以传授知识为中心转化为传授知识与培养能力并重,理论与实践相结合,提高了学生分析、综合、观察、想象等思维能力。

3.2基于案例的探究式教学法

基于案例的探究式教学法要求教师能够根据学生的认知水平和能力,创设引导学生进行探究活动的案例,以激发学生探究问题的兴趣,促进学生质疑、探求的创造性学习动机,通过选择与确定问题、讨论与提出设想、实践与寻求结果、验证与得出结论,发展学生的创造性思维,培养学生独立探究、研究能力和创新能力。探究式教学强调学生的积极参与,强调师生互动。对教师来说,必须转变传统的“传道”观念,以平等的心态与学生交流探讨。在课堂上,要努力营造民主、宽松、和谐的教学氛围,积极引导学生大胆设想,大胆探索。使学生树立研究型学习的观念,消除依附心理,养成勤于思考、善于思考的良好学习习惯,通过积极参与研讨培养学生自己获取新知、探求未知的能力,以及团队意识和合作精神。

我们在本课程神经网络部分的教学中,将基于BP神经网络的维吾尔文手写字母识别作为案例开展了探究式教学活动。在介绍了前馈多层感知器及标准BP算法之后,教师将科研项目中基于标准BP算法的维吾尔文手写字母识别实验及其结果详细地在课堂上进行演示,引导学生对实验提出质疑。在教学实践中,学生提出了大量问题,例如,输出层神经元个数如何确定,为什么输出层神经元个数对识别率会有影响?网络训练过程中出现震荡的原因是什么?如何解决?为什么有时误差较大,权值的调整量反而很小?等等。在教师事先准备好的实验演示的基础上,开展学生进行课堂讨论,让学生提出解决问题的各种方法,并现场通过实验进行验证,逐步让学生理解BP网络结构设计、输入输出数据的预处理、初始权值设计的必要性及其实现方法。课堂授课实践表明,这种方法极大地激发了学生的学习兴趣,使学生能够大胆设想,大胆探索,增加了学生的自信心和创新精神。本次课堂讨论结束后,教师根据学生的讨论以及实验结果演示,总结标准BP算法的局限性,例如,“易形成局部极小”,“训练次数多,学习效率低”,“训练时有学习新样本遗忘旧样本的趋势”等,并要求学生通过查资料、搜集必要的信息、积极地思索和实验验证提出解决上述问题的方法,将学生分组,让学生展开讨论,为下次讨论课作好准备。

传统教学方法是告诉学生怎么去做,在一定程度上损害了学生的积极性。而案例教学要求学生自己去思考、去创造,使得枯燥乏味的内容变得生动活泼,并且案例教学中,通过学生之间的交流既可以使学生取长补短、促进人际交流能力,也可以引导学生变注重知识为注重能力。

案例教学法的关键是案例的选择。案例是为教学目标服务的,因此它应该具有典型性,且应该与所对应的理论知识有直接的联系。案例最好是经过深入调查研究。来源于实践,不能只是一堆数据的罗列。教科书的编写应采用图片、表格、曲线等方式让学生看到算法的实验结果,启发学生思考。另外,案例应该只有情况没有结果,有激烈的矛盾冲突,没有处理办法和结论,由学生对案例提出质疑,从这个意义上讲,案例的情况越复杂,越多样性,越有价值。

案例教学法能够实现教学相长。教学中,教师不仅是教师而且也是学员。一方面,教师是整个教学的主导者,掌握着教学进程,引导学生思考、组织讨论研究,进行总结、归纳。另一方面,在教学中通过共同研讨,教师不但可以发现自己的弱点,而且从学生那里可以了解到大量感性材料。另外,案例教学法能够调动学生学习主动性。教学中,由于不断变换教学形式,学生大脑兴奋不断转移,注意力能够得到及时调节,有利于学生精神始终维持最佳状态。案例教学的最大特点是它的真实性。由于教学内容是具体的实例,加之采用是形象、直观、生动的形式,给人以身临其境之感,易于学习和理解。最后,案例教学法能够集思广益。教师在课堂上不是“独唱”,而是和大家一起讨论思考,学生在课堂上也不是忙于记笔记,而是共同探讨问题。由于调动集体的智慧和力量,容易开阔思路,收到良好的效果。

3.3加强研讨

鉴于研究生的培养目标和人工智能课程研究范畴的宽泛性、应用性、创新性和前沿性,根据我校计算机系硕士生指导教师的研究领域,我们在课堂教学中为计算智能、机器学习算法、机器视觉、自然语言理解部分增加了研讨会,要求学生上网进行文献检索、阅读和学术研讨,根据个人的研究兴趣和研究设想上台作报告。另外,我们还邀请相应专家和成果突出的各届研究生为学生做报告,介绍他们的研究实践、研究成果和心得体会。例如,在自然语言理解部分的课堂教学中,在介绍完自然语言理解的基本概念与原理之后,我们要求将来做这个领域的研究生在通过查资料了解所在研究小组工作的基础上,上台作报告。机器翻译研究组的同学在学习自然语言理解部分的内容之后,对其所在小组目前的工作及采用的技术、存在的问题做了分析,并通过阅读文献,提出了初步的解决问题的设想。与自己所在研究小组的科研相结合,开展文献检索和学术研讨,一方面让学生开阔了眼界,另一方面也提高了学生查阅文献、主动获取知识、独立思考的科研能力。

4结语

人工智能理论已经渗透到科学的各个领域,人工智能技术也得到了广泛的应用。人工智能课程具有多学科交叉、内容广泛、前沿性和应用性强等特点,课程开设能够很好地培养学生的创新思维和技术创新能力。教与学是教师与学生双方互动的过程,教学中要根据学生身心特征的实际情况采用相应的教学方法,并结合本校科研队伍的研究领域,不断地探索和提高,才能使教学工作更上一层楼,切实为国家、为社会培养具有创新能力、实践能力和创业精神的高层次人才。

参考文献:

[1] 陈白帆,蔡自兴,刘丽珏. 人工智能精品课程的创新性教学探索[J]. 计算机教育,2010(19):27-31.

[2] 谢安邦. 构建合理的研究生教育课程体系[J]. 高等教育研究,2003,24(5):68-72.

[3] 教育部研究生工作办公室,国务院学位委员会办公室. 高层次人才培养的研究与探索[M]. 北京:高等教育出版社,2000.

[4] 蔡自兴,徐光佑. 人工智能及其应用[M]. 4版. 北京:清华大学出版社,2010:113.

Exploration of Artificial Intelligence Course Teaching of Graduate Students

ZHAO Hui1, JIA Zhenhong1, WANG Weiqing2

(1.School of Information Engineering, Xinjiang University, Urumuchi 830046, China;

2.Graduate School, Xinjiang University, Urumuchi 830046, China)

第9篇:人工智能教学方案范文

文根据智能化技术在电气工程自动化控制中应用的方法做了详细的分析。

关键词:电气工程自动化 智能化技术 应用分析

中图分类号:TP11 文献标识码:A 文章编号:1672-3791(2013)07(c)-0119-01

随着我国电力行业的快速发展,我国的电气工程领域方面也得到了飞速的发展,智能化技术的应用在当今时代应用非常广泛,特别是对于电气工程中自动化控制,智能化技术在其中发挥着重要的作用,而电力系统中比较关键的一个环节就是电气工程的自动化控制环节,对电力系统的建设质量能够起到关键性的作用。

1 智能化技术概述

1.1 智能化技术应用

目前情况下,智能化技术的应用范围主要包括精密传感器、计算机、GPS定位技术等。在当前的市场竞争环境下,智能化的产品或服务都能够在现实的生产或生活中得到应用。智能化技术的主要优点有:使设备的可靠性能够有效的得到提高,同时还能有效的降低设备的维修成本;智能化技术能够对一些故障进行诊断;在一些重点项目或危险场所进行智能化技术使用时,可以保证其项目顺利的完成;智能化技术能够有效的提高工作的效率和工作质量。

1.2 智能化技术理论基础

最早提出人工智能是在1956年,其后,人工智能得到了快速的发展以及广泛的应用。智能化作为一种对智能方法进行延伸、扩展与模拟的技术,可以有效等的帮助人们完成一系列的工作。其中,电气工程是人们活动中重要的活动之一,相应的,智能化技术正被广泛的应用到其中,并取得了一定的效果。电气工程中智能化技术的应用,帮助电气自动化控制有效的提高了其工作效率,同时还降低了工程所投入的成本,保证了对施工人员的合理分配。

2 智能化技术在电气自动化中的应用

2.1 应用于故障诊断中

在实际的电气自动化运行过程中,电气设备经常会出现各种各样的故障问题,而在电气自动化故障发生时,通常也会引起其他一些故障的发生,所以,这就需要运用智能化技术对电气自动化进行全面的诊断,从而以最快的速度对电气自动化中所存在的故障问题进行诊断解决。智能化在电气自动化的故障诊断中,所应用的最主要的方式就是对变压器中渗漏油对分解气体进行分析,进而快速的找出变压器发生故障的范围,并以此来对故障范围进一步进行缩小检查。

2.2 应用与智能控制中

有效的在电气自动化的控制工作中进行智能化技术的加入,可以帮助电气化工程控制在无人操作、远程化、高效化以及自主化的情况下进行,并能够给智能化控制创造一个良好的发展空间。

2.3 应用与优化设计中

在传统的设计过程中,方案的达标率通常都比较低,这就导致了对方案修改的难度增大,而对于现在的方案设计来说,其主要运用的技术为CAD技术与计算机辅助软件相结合进行完成,这样,就大大的减少了设计所需要的时间,同时也对所设计出来的方案质量及使用性有效的进行了保证。因此,智能化技术因为其所具有的非常强的实用性和先进性,保证了其在使用过程中有效的对设计方案进行优化。

3 智能化技术在电气自动化应用中性能的发展方向

3.1 高速度高精度高效化

在电气自动化技术中,其关键性的指标就是速度、精度以及效率。在电气自动化系统中,在现代的电气自动化技术中,所采用的智能系统都是CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统等,因此,这就帮助电气自动化系统得到有效的改善,同时也保证电力系统的高速高精高效化得到了大大的提高。

3.2 柔性化

通常来说,柔性化主要包括两个方面,即:电气自动化群控系统和电气自动化数控系统。对于电气自动化群控系统来说,想要使其发挥出自身最大的效能,就需要对信息流和物料流进行动态的调整,对于同一个群控系统来说,必须要求其能够遵照每个生产流程的具体要求进行。

4 智能化技术在电气自动化应用中功能发展方向

4.1 用户截面图形化

在电气自动化应用过程中,用户所选定的截面通常为电气自动化数控系统与使用者之间对话的接口。智能化图形的应用对于用户来说大大方便了使用。在实际的用户使用过程中,人们通过窗口和菜单就可以进行操作,这就对蓝图编程和快速编程提供了方便,同时也方便了对三维彩色立体动态图形显示、图形模拟以及图形动态跟踪和仿真等功能的实现。

4.2 科学计算可视化

科学计算可视化的应用范围包括对数据的高效处理,这样就保证信息交流不再局限与运用文字和语言进行表达,而可以简单的运用图形、图像、动画等进行信息的可视性。同时,对可视化技术与虚拟环境技术进行结合,可以有效的对其如无图纸设计、虚拟样机技术等的应用领域进行拓展,这对于产品设计周期的缩短、产品质量的提高以及产品成本的降低都具有非常重要的意义。在现实的电气自动化数控技术领域的运用过程中,可视化技术的应用也相当广泛,可以用于CAD/CAM系统,其中,包括自动编程设计、参数自动设计、刀具臂长和刀具管理数据动态处理等。

5 结语

综上所述,我国当前许多的行业都对人工智能技术进行了应用,特别是在电气工程自动化中,智能技术得到了充分的体现。同时,智能化技术的广泛应用,还需要将现有智能化技术中与智能化理论不同的地方进行修改或改进。只有这样,才能保证智能化技术在电气自动化中的应用更加合理。如果智能化技术在电气工程自动化中能够得到充分的体现,那么我们电气自动化工程将会有一个美好的前程。

参考文献

[1]孙晓辉.电气自动化的发展现状与在机械采煤中的运用[J].科技资讯,2010(19):102-105.

[2]贾刚,张萌.浅谈电气自动化控制中的人工智能技术[J].中小企业管理与科技(下旬刊),2011(9):145-147.

[3]孙萍.建筑电气与智能化专业本科实践教学改革探讨[J].吉林省经济管理干部学院学报,2010(2):234-235.