公务员期刊网 精选范文 人工神经网络的定义范文

人工神经网络的定义精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工神经网络的定义主题范文,仅供参考,欢迎阅读并收藏。

人工神经网络的定义

第1篇:人工神经网络的定义范文

人工神经网络(ANN)又称连接机制模型(ConnectionModel)或并行分布处理模型(ParallalDistributedModel)。作为人工智能的研究方法,目前已广泛应用于自然科学的各个领域,应用计算机程序来模拟这种特殊的数学模型并应用于实际流域的洪水预报研究中,无疑是一种新的尝试和有益探索。岳城水库是海河流域南运河水系漳河上的一座大型控制性工程,入库洪水突发性强,水猛多沙,为确保下游河北、河南、山东、天津广大平原地区和京广铁路的安全,对水库入库洪水进行精确预报,及时采取预泄和分洪措施显得极其重要,因此,用人工神经网络模型模拟预报水库的入库洪水过程,有重要参考和借鉴意义。

2.BP网络的构建

人工神经网络是一个高度复杂的非线性动力学系统,它有大量的简单处理单元(神经元)广泛连接而成,他对人脑的功能作了某种简化、抽象和模拟,具有很强的非线性映射能力,其中对多层前向神经网络bp模型的研究相对成熟,应用最为广泛,其模型结果如图:

结构中,输入层、隐层和输出层神经元的个数根据具体情况设定,其中隐层层数不一,不失一般性对输出层中只含有一个神经元的三层前向神经网络分析如下:假设输入层中有个神经元,隐层中有个神经元,输出层神经元的输出,即整个网络的输出为Y,网络中输入层的输入分别为,,…,则隐层神经元的输入分别是:

(i=1,2,…m)(2.1)

在上式中,为隐层神经元i与输入层神经元j的连接权,为隐层神经元的阈值,选择函数作为隐层神经元的激发函数,则隐层神经元的输出为:

(i=1,2,…m)(2.2)

输出神经元的激发函数取为线性函数,输出层神经元的输出及整个网络的输出为:

(2.3)

其中,Vi为输出层神经元与隐层神经元i的连接权。定义由、、组成的向量为网络的连接权向量(ij,i,i)。设有学习样本(,,…;)(=1,2…,p;p为样本数)。对某样本(,,…;)在给出网络向量后,可以通过公式(1.1)~(1.3)计算出网络的输出值,对于样本

定义网络的输出误差为:(2.4)

定义误差函数为:(2.5)

(ij,i,i)随机给出,计算式(2.5)定义的误差值较大,网络计算精度不高,在确定网络结构后,通过调整(ij,i,i)的值,以逐步降低误差,以提高网络的计算精度,下面给出根据误差信息调整(ij,i,i)的具体计算过程。

在反向传播算法中,是沿着误差函数随(ij,i,i)变化的负梯度方向对进行休整。设的修正值为:(2.6)

式中:为第n次迭代计算时连接权的修正值;为前一次迭代计算时计算所得的连接权修正值;为学习率,取0~1间的数;为动量因子,一般取接近1的数。将式(1.4)和(1.5)代入式(1.6)中,有(2.7)

定义=(,,),则:

(2.8)

(2.9)

(2.10)

采用迭代式对修正计算,得到新的连接权向量。对于所有的学习样本均按照样本排列顺序进行上述计算过程,然后固定的值,对于p个样本分别进行正向计算,从而求出学习样本的能量函数值:

(2.11)

这样结束了一个轮次的迭代过程,当满足某一精度要求时,就停止迭代计算,所得(ij,i,i)即为最终模型参数,否则就要进行新一轮的计算。

3.BP算法的VB程序实现

因程序代码太多,不再给出。网络学习程序界面如下图2:

4.洪水预报网络模型构建

4.1资料收集

岳城水库的入库水文站为观台水文站,该站上游有清漳河匡门口水文站和浊漳河天桥段水文站,距观台分别为66km和64km。上游匡门口、天桥段与下游观台的区间流域面积为1488km2,见流域水系图3。资料采用年鉴1962、1976、1977、1988年四次洪水和相应年份的区间时段降雨量共118组调查数据作为模型的学习训练样本,另取1971年和1982年两次大洪水作为模型的检验数据。

4.2预报模型构建

网络模型采用输出层中有一个神经元的三层前向人工神经网络,洪水预报模型的输出节点为岳城水库的入库站观台水文站的时刻的流量,即网络。考虑河道洪水演进时间和区间流域的产汇流时间,分别取清漳河匡门口站和天桥断以及流域平均降雨量、作为模型的输入节点值;隐层神经元节点数和输入层节点数相同取为4。

模型参数优化:计算中,学习率越大,学习速度会越快,但是过大时会引起振荡效应;动量因子取得过大可能导致发散,过小则收敛速度太慢。据有关文献介绍,取,算法收敛速度较快。本次计算取,;网络中的初始值取(0.1~0.1)之间的随机数(由VB程序产生)。

样本的归一化处理:为了有效利用型函数的特性,以保证网络神经元的非线性作用,对于数值型的学习样本要进行归一化处理。对样本(p=1,2,…p)定义,,归一化处理计算就是按照公式:

(4.1)

将样本转化为0~1之间的数据。对于网络的输出数据还应进行还原计算恢复实际值,公式为:

(4.2)

使用VB程序对网络模型进行训练学习,经102135次学习后,网络输出能量函数值为3.2×10-3,此时得到模型最优参数如表1。

表1模型参数表

序号

11.625608-2.361247-3.2047142.846384-2.718568-1.185164-1.029736

20.138017-0.041076-0.6707810.8445030.936162-2.7469741.546362

31.770369-6.0486571.1342710.7454760.58331-3.0635082.5033320.250.9

4-0.8183131.471144-1.4842650.875319-1.995911-2.6673082.075974

5-1.9730730.30147122.993124-0.160362-3.290356-1.59743-0.627028

5.模型检验

应用以上该区洪水预报的神经网络模型参数分别对1982年、1971年的两次洪水进行检验预测,相应洪水过程趋势线见图4图5。

表2预报考评指标表

序号序号

1982.10.0311982年前20h0.69

1982.20.00811982年后80h0.07

1982.30.040.51982年总过程0.19

1982.40.0421971年前11h0.7

19710.0611971年后50h0.12

aver0.0361.11971年总过程0.23

注:1.1982.1表示1982年大洪水的第一次洪峰,其它类同。

2.1982年前20h表示1982年大洪水的涨洪段前20h,其它类同。

图41971年预测洪水与实测洪水过程线图51982年预测洪水与实测洪水过程线

检验标准:

1)洪峰流量预报误,经计算、皆小于0.1,据《水库洪水调度考评规定SL224-98》,考评等极为良好(见表2)。

2)峰现时间预报误差,经计算考评等极为一般,其中一次良好。

3)洪水过程预报考评指标,从预报数据分析,两次洪水过程的预报考评0.23,,根据规范属一般,从洪水过程检验指标可分析主要是因为模型对涨洪期低量洪水预报精度不高造成,但峰值附近及后期预报精度较高,可作为洪水预报的一项行之有效的方案。

6.结论

岳城水库入库洪水过程的神经网络预测模型运行稳定,对峰高量大洪水预报较为准确,根据规范规定可作为水库自动测报系统的有益补充,为水库的防洪调度提供较为可靠的依据。

参考文献:

[1]焦李成.神经网络的应用与实现.西安:西安电子科技大学出版社,1993

[2]李春好等.人工神经网络bp算法的数据处理方法及应用.系统工程理论与实践,1997,17(8)

[3]赵林明等.多层前向人工神经网络.郑州:黄河水利出版社,1999

[4]丁晶等.人工神经前馈(bp)网络模型用作过渡期径流预测的探讨.水电站设计,1997,13

第2篇:人工神经网络的定义范文

Abstract: The technology of affecting the output accuracy of artificial neural network model has affected widespread ettention,and influence researches of sample quality to neural network output accuracy are very few,and the majority of these researcher about neural network structure. This paper analyses the influence of the sample to the output of artificial neural network,having important significance to improve accuracy of neural network output.

关键词: 人工神经网络;局部影响;BP神经网络;算法

Key words: artificial neural networks;local influence;BP neural network;algorithm

中图分类号:TP393.092 文献标识码:A文章编号:1006-4311(2010)07-0144-02

0引言

神经网络应用到预测有许多问题需要解决, 其中最为突出的问题就是没有一个确定的最合适的神经网络结构的标准方法,由于影响神经网络预测能力的参数很多,本文针对最为常用的BP神经网络,对影响神经网络预测精度的样本质量进行了详细分析和研究, 并在此基础上,给出优化样本后的具体例子。

1样本质量对网络的影响

用于神经网络的样本分为训练样本和测试样本,训练样本的质量在一定程度上决定着预测精度。首先,训练样本和待预测样本的均值存在较大差异, 预测误差会随着长时间的训练而增大。其次,训练误差会随着训练样本和待预测样本均值间差异的增大而增大。再次,训练误差会随着训练样本和待预测样本方差间差异的增大而增大[1]。下面是文献[1]对样本质量分析的方法。

文献[1]的人工神经网络预测误差为e=em+et+er,其中,e为预测误差;em为模型误差,它由所建回归模型与实际系统的差异引起的;et为最终的训练误差;er为人工神经网络训练和预测过程中引入的随机误差。et和er的存在是不可避免的,而em为:em=ef+ed,式中ef为实际输出值与预测输出值之间的误差,它反映了样本质量;为由不正确的嵌入维数引起的误差, 它可通过选择合适的输入神经元数来消除。

为了评价训练样本质量,根据ef提出“一致度”的指标。文献[1]定义了伪距离DCTP-D,但计算伪距离是相当复杂的,难于实现对样本质量的分析和应用。下面用协方差比统计量分析训练样本对预测精度的影响。

设训练样本为θ,是神经网络的输出,i是从θ中剔除第i个数据点的神经网络输出。则剔除第i个数据点的协方差比统计量CR=cv()cv()表明了剔除第个数据点对神经网络输出精度的影响,从精度方面刻画了第i个数据点的重要程度。CRi-1的值越大,对预测精度(神经网络输出)的影响越大。在使用PB神经网络预测时先对训练样本进行筛选,剔除对网络输出结果影响小的样本点。

样本精简:矩阵初等行变换能保持矩阵列向量之间的线性关系,利用这个结论我们可以用来进行样本数据的精简,这样精简后的样本数据能够保持各属性字段之间的线性关系。神经网络的训练实际上是一个通过给定样本实时调整网络连接权重的过程,样本预处理的结果对于网络训练的收敛性起到关键的作用。

2实例分析

本文采用麻省理工大学林肯实验室的测试数据KDDCUP99,它是专门用来进行入侵检测评估的。我们采用数据集上的一个子集10%作为实验数据源,它一共包含有494021条网络连接,其中正常连接97277 条,异常连接396744条。

下面我们针对DOS攻击类型数据(DOS攻击类型编码为“0 0 0 1”)进行分析。

设A为样本数据矩阵,其中每一行向量表示一条样本数据,则该行向量含34个数据,假设有a条样本,则A为a行34列矩阵;由于每条样本数据输入网络后都会有一条对应的输出,加上本实例为DOS攻击类型以编码“0 0 0 1”表示,则期望输出矩阵B为a行4列矩阵(暂时先不考虑阈值,只考虑权重问题)。本文BP神经网络的输入节点数为34个,隐含层节点数为15个,输出层节点数为4个虽然神经网络的连接权重可以用一个实数串进行表示,但在进行网络的训练时,还需要将实数串分为两部分,设输入层到隐含层的连接权重矩阵为W1,则W1为34行15列矩阵;同理,隐含层到输出层的连接权重矩阵W2为15行4列矩阵。于是我们可以得到公式(1)。

AWW=B(1)

如式(2)所示,A和B是系数矩阵 ,C是增广矩阵。经过带约束初等行变换后如式(3)所示。

C=[AB](2)

C=[AB]A′B′C D(3)

式(3)中,C、D为零矩阵,经过处理以后,由原先的A对应输出B变成了现在的A′对应输出B′,通过这样的处理,我们就可以将大样本变为小样本,从而使计算更加快速,样本数据更加精简。 为了能使样本应用于本文提出的分类检测器同步检测模型,我们将样本数据先进行归类合并,分别构造出DOS、PROBE、U2R、R2L四大类攻击样本数据集,这样四个检测器分别检测四大类攻击。为了降低可疑攻击数,即四大攻击类型数据集之间的重叠记录数要少。精度过大会增加计算量,从而会降低学习速度;精度过小,会使记录重叠数增加,从而造成可疑攻击数增加,影响训练结果。

对训练样本用上述方法进行优化后,利用矩阵初等行变换能保持矩阵列向量之间的线性关系这个结论,我们可以进一步对样本数据的精简,这样精简后的样本数据能够保持各属性字段之间的线性关系。神经网络的训练实际上是一个通过给定样本实时调整网络连接权重的过程,样本预处理的结果对于网络训练的收敛性起到关键的作用。

3结论

(1)分析神经网络进行非线性预测多变量预测的优越性以及神经网络用于预测的缺点所在。

(2)提出了影响网络预测能力的五个重要参数:样本质量、样本归一化、输人层节点数、隐层节点数及网络训练允许误差目标值。

(3)在一定允许训练误差的情况下,研究了无个参数对网络预测精度的影响,发现存在一个最优的样本、输入层节点数和隐层节点数,这样的网络具有较强的预测能力。

(4)本文用遗传算法构造了同时优化影响神经网络预测精度的参数(输入层节点数、隐层节点数及样本允许训练误差)的算法, 得到了较优的网络预测模型最后, 用算例验证了本文分析结果的正确性。

参考文献:

[1]陈果.神经网络模型的预测精度影响因素分析[J].北京: 模式识别与人工智能,2005,18(5):528-533.

[2]蒋林,陈涛,屈梁生.训练样本质量对人工神经网络性能的影响[J].北京:中国机械工程,1979,8(2):50-53.

[3]李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合[J].北京:系统工程理论与实践,1999(2).

[4]吴怀宇,宋玉阶.非线性回归分析中的神经网络方法[J].武汉:武汉冶金科技大学学报,1998,21(1):90-93.

第3篇:人工神经网络的定义范文

由于人体与疾病的复杂性,不可预测性,非常适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的所有方面,主要应用于生物信号的检测与自动分析,医学专家系统等。

在麻醉与危重医学相关领域的研究涉及到多生理变量的分析与预测,从临床数据中发现一些尚未发现或尚无确切证据的关系与现象,信号处理,干扰信号的自动区分检测,各种临床状况的预测,单独或结合其他人工智能技术进行麻醉闭环控制等。

在围术期和重症监护与治疗阶段,需要获取大量的信息,将可能在信号处理、基于动态数据驱动的辅助决策专家系统、数据挖掘、各种临床状况的预测、智能化床旁监护、远程医疗与教学、医疗机器人等各方面广泛运用到人工神经网络技术和其他人工智能技术。

一、概述

人工神经网络(Artificial Neural Network, ANN)是人工智能(Artificial Intelligence, AI)学科的重要分支。经过50多年的发展,已成为一门应用广泛,涉及神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学等多学科交叉、综合的前沿学科。

现代计算机的计算构成单元的速度为纳秒级,人脑中单个神经细胞的反应时间为毫秒级,计算机的运算能力为人脑的几百万倍。可是,迄今为止,计算机在解决一些人可以轻而易举完成的简单任务时,例如视觉、听觉、嗅觉,或如人脸识别、骑自行车、打球等涉及联想或经验的问题时却十分迟钝。也不具备人脑的记忆与联想能力,学习与认知能力,信息的逻辑和非逻辑加工能力,信息综合判断能力,快速的高度复杂信息处理速度等。

造成这种问题的根本原因在于,计算机与人脑采取的信息处理机制完全不同。迄今为止的各代计算机都是基于冯*纽曼工作原理:其信息存储与处理是分开的;处理的信息必须是形式化信息,即用二进制编码定义;而信息处理的方式必须是串行的。这就决定了它只擅长于数值和逻辑运算。而构成脑组织的基本单元是神经元,每个神经元有数以千计的通道同其他神经元广泛相互连接,形成复杂的生物神经网络。生物神经网络以神经元为基本信息处理单元, 对信息进行分布式存储与加工, 这种信息加工与存储相结合的群体协同工作方式使得人脑呈现出目前计算机无法模拟的神奇智能。

人工神经网络就是在对人脑神经网络的基本研究的基础上,采用数理方法和信息处理的角度对人脑神经网络进行抽象,并建立的某种简化模型。一个人工神经网络是由大量神经元节点互连而成的复杂网络,用以模拟人类进行知识的表示与存储以及利用知识进行推理的行为。一个基于人工神经网络的智能系统是通过学习获取知识后建立的,它通过对大量实例的反复学习,由内部自适应机制使神经网络的互连结构及各连接权值稳定分布,这就表示了经过学习获得的知识。

人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。

近20年来,神经网络的软件模拟得到了广泛研究和应用,发展速度惊人。1987年在圣地亚哥召开了首届国际神经网络大会,国际神经网络联合会(INNS)宣告成立。这标志着世界范围内掀起神经网络开发研究热潮的开始。

二、医学领域应用现状与前景

由于人体与疾病的复杂性,不可预测性,在生物信号与信息的表现形式、变化规律(自身变化与医学干预后变化),对其检测与信号表达,获取的数据及信息的分析、决策等诸多方面均存在大量复杂的非线性关系,非常适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的所有方面,主要应用于生物信号的检测与自动分析,医学专家系统等。

1、信号处理:

在生物医学信号的检测和分析处理中主要集中对心电、脑电、肌电、胃肠电等信号的识别,脑电信号的分析,听觉诱发电位信号的提取,医学图像的识别和数据压缩处理等。

2、医学专家系统

医学专家系统就是运用专家系统的设计原理与方法, 模拟医学专家诊断、治疗疾病的思维过程编制的计算机程序, 它可以帮助医生解决复杂的医学问题, 作为医生诊断、治疗的辅助工具。 “传统”的专家系统,通过把专家的经验和知识以规则的形式存入计算机中,建立知识库,用逻辑推理的方式进行医疗诊断。但一些疑难病症的复杂形式使其很难用一些规则来描述,甚至难以用简单的语言来表达;专家们常常难以精确分析自己的智能诊断过程。另一方面,基于规则的专家系统,随着数据库规模的增大,可能导致组合爆炸,推理效率很低。由于人工神经网络能够解决知识获取途径中出现的“瓶颈”现象、知识“组合爆炸”问题以及提高知识的推理能力和自组织、自学习能力等等, 从而加速了神经网络在医学专家系统中的应用和发展。

Sordo比较了采用不同网络结构和学习算法的神经网络在诊断胎儿唐氏综合征(Down’s Syndrome) 上的成绩。正确分类率为84 %, 超过了现今所用的统计方法的60 %~70 % 的分类率。

台湾DEU科技(德亚科技)开发的计算机辅助检测系统Rapid ScreenTM RS-2000为全世界最先通过美国FDA认证的早期肺癌辅助诊测系统。该产品采用人工智能神经网络ANN,自动标识数字胸片中可疑结节区。经台湾和美国的临床实验,可使放射专家检测T1期肺癌的能力明显提高(潜在提升约15 %以上)。

DeGroff等使用电子听诊器和人工神经网络制造了一种仪器,它可正确地区分儿童生理性和病理性杂音。用电子听诊器记录的儿童心音,输入能识别复杂参数的ANN,分析的敏感性和特异性均达100%。

3、其他:

生物信息学中的研究中可应用于基因组序列分析、蛋白质的结构预测和分类、网络智能查询等方面。

药学领域广泛应用于定量药物设计、药物分析、药动/药效学等方面。例如:用于预测药物效应。Veng-Pederson用神经网络预测阿芬太尼对兔心率的影响,对用药后180-300分钟的药物效应取得了较好的预测结果(平均相对预测准确度达78%)。分析群体药动学数据,以获知群体药动学特征和不同人口统计因子对药物行为的影响,对临床用药具有指导意义。

4、麻醉与危重医学相关领域的研究

手术室和ICU内是病人信息富集的地方,而且大量的信息处在动态变化中,随着医学技术的飞速进步,所能获取的信息越来越多,医护人员面临着“信息轰炸”。神经网络技术可以很好地帮助我们应对这些问题。例如:

1)可以用于分析多个生理变量之间的关系,帮助研究其内在的关系,或预测一些变量之间的关系:Perchiazzi在肺损伤和正常的猪容量控制机械通气中,用ANN估计肺顺应性的变化,不需要中断呼吸,与标准方法相比误差很小。

2)结合数据挖掘技术,可能从海量数据库例如电子病历系统中,发现一些尚未发现或尚无确切证据的关系与现象:Buchman 研究了神经网络和多元线形回归两种方法,用病人的基本资料、药物治疗差异和生理指标的变化预测在ICU延迟(>7天)。

3)信号处理:Ortolani等利用EEG的13个参数输入ANN,自行设计的麻醉深度指数NED0-100作为输出,比较NED与BIS之间有很好的相关性;

4)干扰信号的自动区分检测:Jeleazcov C等利用BP神经网络区分麻醉中和后检测到的EEG信号中的假信号,是传统EEG噪音检测方法的1.39-1.89倍。

5)各种临床状况的预测:Laffey用ANN预测肌肉松弛药的残留,发现明显优于医生的评估,还有用于预测propfol剂量个体差异的,预测术后恶心、呕吐,预测全麻后PACU停留时间,预测ICU死亡率等较多的研究。

第4篇:人工神经网络的定义范文

【关键词】沸点;饱和烃;模式识别;神经网络

引言

量子力学计算是了解性质与结构关系本质的最好方法,但由于条件限制要精确解方程组很困难,因此,我们应用经典的价键理论处理该问题,以了解分子中键的性质、原子间的结合顺序、分支的多少及分子的形状等拓扑信息,进而推出分子的一些物理性质。

1 模式识别与神经网络

1.1 统计模式识别的方法

统计模式识别包括:样本输入、样本统计、窗函数训练、监控与测试、识别及识别方法性能评价6部分。

1.2 神经网络的结构和模型

神经网络的结构是由基本处理单元及其互连方法决定的,一个人工神经网络的神经元模型和结构描述了一个网络如何令它的输入矢量转化为输出矢量的过程。其实质即体现网络输入及其输出间的函数关系。即通过选取不同的模型结构和激活函数,可形成各种不同的人工神经网络,以及输入和输出关系,进而达到不同的目的或完成不同任务。

1.2.1 人工神经元的模型

连接机制结构的基本处理单元与神经生理学类比往往称为神经元。每个构造起网络的神经元模型模拟一个生物神经元。

该神经元有多个输入,i=1,2,.. n和一个输出Y组成。中间状态由输入

信号权的加和表示,而输出为:式(1)中θj为神经网络的偏置,Wji为连接权系数,n为输入信号数目,yj为神经元输出,t为时间,f()为输出变换函数,也叫做激发或激励函数。

1.2.2 激活函数

激活函数是一个神经元及网络的核,网络解决问题的能力与功效除了和网络结构有关,很大程度上取决于网络所采用的激活函数。激活函数往往采用0和I二值函数或S形函数,它们都是连续和非线性的。

1.2.3人工神经网络的基本类型

1.2.3.1人工神经网络的基本特性

人工神经网络由神经元构成;这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单-输出,能够与其它神经元连接;具有诸多输出连接方法,每种连接方法对应一个连接权系数。严格地说,该网络每个节点存在一个状态变量、阈值并定义一个变换函数,且从节点j至节点i存在一个连接权系亥摧教。

1.2.3.2人工神经网络的基本结构

递归网络中,多个神经元互连而成一个互连神经网络。有些神经元的输出被反馈至同层或前层神经元。因此,信号能够从正向和反向流通。前馈网络具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通;神经元从一层连接至下一层。

3 神经网络计算饱和烃的沸点

采用三层拓扑结构为3-4-1的反向传播模型来建立预报导饱和烃沸点的人工神经网络。输入层以影响饱和烃沸点的3个参数为输入矢量,包括分子连接性指数,分子连接性指数,C原子数。训练时可根据计算误差自动地调整权重,待达到要求时即可固定权重值和偏置。

4 实验

4.1 实验步骤

拉制内径为1~1.2mm、一端封口、另一端有平整开口的毛细管做内管将待测液体式样装入微量沸点管的外管中,将一端封口的毛细管作为内管,开口朝下插入外管中,将外管固定在温度计上,试样部分位于温度计水银球中部。

将装好试样的沸点管用橡皮圈固定在温度计上,试样段靠在温度计水银球中部。将带有沸点管的温度计用一端有侧沟槽的单孔塞固定在盛有浴液的Thiele管内,温度计水银球位于上下侧管口中部。

以酒精灯加热Thiele管的倾斜部分,使浴液因温度差而形成对流从而使管中液体受热把带有沸点管的温度计放入熔点测定管内。加热熔点测定管,使温度均匀升高,见内管中有大量气泡冒出,则停止加热。当最后一个气泡缩回管内时,读取温度即为饱和烃沸点。

4.2 结果

通过实验测出19种饱和烃的沸点,经公式计算及实验测定得到的2组数据比较得出,神经网络模型所优化的数据的相对误差极小,精确到10-4,所做的图形和试验数据也是拟合的极好。

5 结论

神经网络模式识别的方法建立数据模型对饱和烃的沸点进行计算有着非常好的准确度,充分地利用了给出的参数。该模型在大大提高了计算精确度的同时并且具有很好的预测能力,而且其对于提高物质性质计算的效率和准确率有着重要的参考价值。

参考文献:

[1]杜红,刘强国.统计模式识别方法在录井油气评价中的应用[J].长江大学学报: 理工卷,2006(3).

第5篇:人工神经网络的定义范文

关键词:风电机组;matlab;人工神经网络;风功率预测

1 风电功率预测模型

1.1 径向基神经网络

神经网络算法是近年来发展起来的一种新型人工智能算法。不同于以往的数学算法,它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型,具有自学习、自适应和自组织能力的特点。

径向基神经网络(即RBF神经网络)是一种三层前向网络,由输入层、隐含层和输出层组成,网络结构如图1所示。由输入到输出的映射是非线性的,而隐含层到输出层是线性的,从而大大加快了学习速度并避免局部极小问题。

根据径向基函数中心选取方法的不同,RBF神经网络有很多学习方法,如随机选取中心法、梯度训练法、有监督选取中心法和正交最小二乘法等。这里,选用梯度训练法作为RBF神经网络的学习方法。

1.2 梯度训练方法

RBF网的梯度训练方法是通过最小化目标函数实现对各隐节点数据中心、扩展常数和输出权值的调节。使用一种带遗忘因子的单输出RBF网学习方法,此时神经网络学习的目标函数为:

(1)

其中,?茁j为遗忘因子,误差信号ej的定义为:

(2)

由于神经网络函数F(X)对数据中心ci、扩展常数ri和输出权值wi的梯度分别为:

(3)

(4)

(5)

考虑所有训练样本和遗忘因子的影响,ci、ri和wi的调节量为

(6)

(7)

(8)

其中,?椎i(Xj)为第i个隐节点对Xj的输出,?浊为学习速率。

1.3 数据归一化

数据归一化是神经网络预测前对数据常用的一种处理方法。数据归一化处理将所有数据都转化为[0,1]之间的数,其目的是取消各维数据间数量级别差,避免因为输入输出数据数量级差别较大而造成神经网络预测误差较大。

风速归一化:应用多年统计的极限风速对风速数据进行归一化处理

(9)

其中,Vg为归一化处理后的风速标量值;vt为应用于预测的历史风速值;vmax为风场气象观测到的历史最大风速,如不超过风场风机最大切除风速,则取为风机的切除风度。

风功率归一化:根据风电机组额定功率,采用与风速归一化相同的方式,对风电机组历史出力情况进行归一化,并对网络预测的输出功率进行反归一化,得到预测结果。

1.4 神经网络的构建

首先挑选几组数据风功率作为样本,将每个样本的前n个风速和风功率值进行归一化处理,将处理后的数值作为RBF神经网络的输入;可将每个样本的后n个风速和风功率值进行归一化处理,将处理后的数值作为RBF神经网络的目标输出,通过对RBF神经网络的训练学习,实现从输入空间到输出空间的映射。

2 短期风功率预测结果

将前10天的风功率数据作为训练样本,对风机功率提前1小时进行预测。图2预测风功率与实测风功率比较可知,可以看到神经网络预测风功率变化趋势与实际风功率变化基本趋势一致,并且预测功率比实际功率变化平缓。

神经网络在风功率预测时,每点的预报误差不尽相同,这主要与早晚温差造成的风速突然变化以及当天天气变化情况等有关,从预测曲线的总体趋势以及与实际曲线误差值大小来看,该神经网络模型预测结果基本令人满意。

3 结束语

采用人工神经网络进行预测精度较高、训练速度快,适用于在线预测的场合。但是由于所用训练数据为风速相对平稳时期的数据,所以该模型对于突变风速的处理能力仍然有限,为提高预测结果的精度,还需对模型进行进一步改进。总体而言,通过建立神经网络模型,对短期风功率进行预测,虽有一定局限性,但其预测精度满足工程要求。

参考文献

[1]Tony Burton,等.风能技术[M].北京:科学出版社,2007.

第6篇:人工神经网络的定义范文

关键词:遗传算法 神经网络 瓦斯突出 预测

中图分类号:TD712 文献标识码:A 文章编号:1672-3791(2017)01(a)-0000-00

预测煤层中的瓦斯含量是进行煤与瓦斯突出风险研究的重要一环,由于影响瓦斯含量的地质因素复杂多样,以及各因素间存在着复杂的非线性关系,迄今为止,对瓦斯突出的预测主要使用回归分析方法,预测的结果往往跟实际的情况差别较大,因此需要使用新的方法建立预测模型来实现对瓦斯突出高精度的预测。

1 利用遗传算法改进的神经网络建立瓦斯突出预测模型

(1)网络输入参数的确定:经查阅相关文献和咨询得知瓦斯突出的主要影响因素有:煤层底板标高、煤层到断层距离、煤层到最近剥蚀面距离、顶板砂岩比、统计单元中有无断层、基岩厚度、煤厚。

(2)网络输出参数的确定:选择二进制数0和1分别表征瓦斯不突出和突出。

(3)网络的构造: 一般地可以用一个三层神经网络实现预测功能,此神经网络的输入层有n个神经元,根据经验公式选取隐含层有(2n+1)个神经元,输出层有m个神经元,因此本模型中的神经网络可以采用3层神经网络。

(4)网络的训练:训练样本取自唐山开滦多个矿井具有代表性的10个突出点,利用突出点的数据训练神经网络,得到预测模型。

(5)网络的精确度验证: 利用已完成的人工神经网络对实际问题进行试验研究。把在开滦矿井采取的11~20组数据的瓦斯突出指标输入已经训练的网络中,验证人工神经网络的预测结果与实际突出情况的吻合度,如果吻合度低,就需要对网络进行改动,直至达到满意的吻合度。

(6)利用遗传算法对神经网络的权值和阈值进行优化

个体的编码:将神经网络各层之间可能存在的连接权值和阈值编码成实数码串或者进行二进制码串,每条码串中包含着网络中的所有权值、阈值其排列顺序可以随意定义,不受限制,组成一个染色体。

产生初始种群:随机生成一定数量的码串个体作为一个初始种群。

计算适应度:设网络有K个训练样本,让所有的训练样本依次通过解码后生成的神经网络,计算所有训练样本一次通过的平均总误差作为每条染色体的适应度, 其中, 为瓦斯含量的实测值, 为网络的输出值。

④将网络的所有连接权值和阈值进行实数编码,构成一个染色体,每条染色体代表一个神经网络模型的权值和阈值。设定初始种群规模为20,进化代数为220,交叉概率0.2 ,变异概率为0.1,为了防止遗传算法的早熟现象,变异概率先定义为0.1,然后在逐渐递增。算法运行到158代时获得最佳的连接权值,网络平均总误差为0.001。

2 实例分析及算例求解

选取唐山开滦煤矿为例,对该地进行瓦斯含量预测研究。对影响瓦斯含量的主要因素进行分析,归纳确定了神经网络的输入层神经元个数为7,对应为7个输入变量即7个影响瓦斯含量的因素。其中对输入变量中的顶板砂岩比、统计单元中有无断层、顶板基岩厚度、煤层厚度四个影响因素采用二变量比值法将其定量化。处理方法的划分条件如表1所示,输出层神经元个数是1。在开滦集团获得的相关数据如表2所示,其中1~10作为网络训练样本,11~20作为网络检验样本,用来检验模型的预测精度。

利用前10组数分别训练自适应的BP神经网络和与遗传算法结合改进的网络得到瓦斯突出预测模型,如图1和2所示。然后利用11~20组的样本对网络性能进行检验,并将检验结果和实测值的数据进行对比,对比后的结果如表3所示。 由图1、2可知用遗传算法改进的神经网络收敛速度更快,由表3可知用遗传算法改进后的神经网络预测的值跟实际的值更加的逼近即预测精度高。

3 结论

本文采用遗传算法与神经网络相结合的方法,通过优化神经网络的权值和阈值,使得预测的绝对误差从-0.0119~0.2000缩小到-0.0013~0.0611,提高了预测的精度,加快了收敛速度。对煤矿安全发展具有一定的意义。

参考文献

[1]曾文飞,张英杰,颜玲.遗传算法的基本原理及其应用研究[J],软件导刊,2009

[2]梁芳.遗传算法的改进及其应用[D].武汉理工大学,2008.

[3]彭海雁.影响煤与瓦斯突出的主控因素研究[D].东北大学,2013.

第7篇:人工神经网络的定义范文

关键词:神经网络 特征提取 模式识别

中图分类号:U495 文献标识码:A 文章编号:1674-098X(2017)01(a)-0115-05

随着通信技术的飞速发展,出现了适用于不同背景环境的通信标准,每种标准都有其特定的调制方式和工作频段,为了满足人们实现不同标准间互通的需求,软件无线电技术应运而生。它利用可升级、可替代的软件来完成尽可能多的通信功能硬件模块,将多种类型的信号处理基于一体。为了能够处理不同类型的调制信号,必须首先识别出信号的调制类型,然后才能进行下一步处理。因此,调制信号的自动识别技术,就成了软件无线电技术中的关键。

神经网络具有的信息分布式存储、大规模自适应并行处理和高度的容错性等特点,是用于模式识别的基础。特别是其学习能力和容错性对不确定性模式R别具有独到之处。其中BP网络长期以来一直是神经网络分类器的热点,由于它理论发展成熟,网络结构清晰,因此得到了广泛应用。基于A.K. Nandi和E.E. Azzouz从瞬时频率、瞬时幅度和瞬时相位中提取的特征参数,我们就可以用神经网络对常用的数字调制信号进行自动分类。

1 神经网络

根据T. Koholen的定义:“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体做出交互反应。”人工神经网络是在现代神经学研究成果的基础上发展起来的模仿人脑信息处理机制的网络系统,它由大量简单的人工神经元广泛连接而成,反映了人脑功能的若干特性,可以完成学习、记忆、识别和推理等功能。

2 数字调制信号特征参数的提取

计算机处理的信号都是对调制信号采样后的采样信号序列,因此设采样序列为(n=0,1,2,…,Ns),采样频率为。对采样序列进行希尔伯特变换,得如下解析表达式:

(1)

采样序列的瞬时幅度:

(2)

瞬时相位:

(3)

由于是按模计算相位序列,当相位的真值超过,按模计算相位序列就会造成相位卷叠。载波频率引起的线性相位分量,是造成相位卷叠的主要因素。因此,必须对进行去相位卷叠。去相位卷叠后的相位序列为,再对进行去线性相位运算,得到真正相位序列。瞬时频率为:

(4)

在上述基础上,提取下面5个特征参数。

(1)是被截取信号片段的零中心归一化瞬时幅度的谱密度的最大值,定义为:

(5)

其中为零中心归一化瞬时幅度在t=i/fs(i=1,2,…,Ns)时刻的值;为采样速率;为每一个信号样本采样点的样本个数。定义如下:

-1 (6)

其中:

, (7)

(2)为非弱信号段中瞬时相位非线性分量的绝对值的标准偏差,定义如下:

(8)

其中为经过零中心化处理后瞬时相位的非线性分量在时刻的值;为判断弱信号段的一个幅度判决门限电平,在门限以下信号对噪声非常敏感,这里取;C为全部取样数据中大于判决门限的样本数据的个数。

(3)为非弱信号段中瞬时相位非线性分量的标准偏差,定义如下:

(9)

(4)为零中心归一化非弱信号段瞬时幅度绝对值的标准偏差,定义如下:

(10)

(5)为零中心归一化非弱信号段瞬时频率绝对值的标准偏差,定义如下:

(11)

其中,,,,rs为数字序列的符号速率。

3 基于BP网络的数字调制信号的自动识别

把BP网络应用于数字调制信号的自动识别,是应用了其简单的结构和非线性映射的本质。将特征参数映射成与其对应的调制信号,是此方法的基本思路。

3.1 调制信号识别的基本原理

由上述得到的5个特征参数区分多种数字调制信号的原理,可用图1简单示意。

用于区分是否包含幅度信息的信号;用于区分是否包含绝对相位信息的信号;用于区分是否包含直接相位信息的信号;用于区分是否包含绝对幅度信息的信号;用于区分是否包含绝对频率信息的信号。

3.2 BP网络

BP网络结构上是一个多层感知器,其基本算法是反向传播算法,反向传播(BP)算法是一种有师学习算法,BP算法的学习过程由正向传播和反向传播两部分组成,在正向传播过程中,输入向量从输入层经过隐含层神经元的处理后,传向输出层,每一层神经元的状态只影响下一层神经元状态。如果在输出层得不到期望输出,则转入反向传播,此时误差信号从输出层向输入层传播并沿途调整各层间连接权值和阈值,以使误差不断减小,直到达到精度要求。

标准的BP算法如下(以单隐层结构为例)。

W和b分别为输入层与隐层神经元之间的权值和阈值;x为输入层的输入;u和v分别为隐层的输入和输出;为输出层的输入;为隐层与输出层之间的权值;y为网络的实际输出;d为网络的期望输出;e为误差。

(1)正向传播过程。

输入层:特征参数向量组x为网络的输入。

隐含层:其输入值u为输入层的加权和(当网络为单隐层时)。

(12)

输出为:

(13)

式中为神经元的激励函数,通常为Sigmoid函数。

(14)

输出层:输出层神经元的激励函数通常为线性函数,所以输出值为输入值的加权和。

(15)

由y和d求出误差e。若e满足要求或达到最大训练次数,则算法结束,网络完成训练,否则进入反向传播过程。

(2)反向传播过程。

首先定义误差函数:

(16)

BP学习算法采用梯度下降法调整权值,每次调整量为:

(17)

式中,η为学习率,0

①对于输出层与隐含层之间的权值修正量:

(18)

其中

②对于隐含层与输入层之间的权值修正量:

(19)

式中,则下一次迭代时:

(20)

(21)

(3)BP网络的设计。

由神经网络理论可知,具有至少一个带偏差的S形隐含层和一个带偏差的线性输出层的网络,能够逼近任意的有理函数。因此该设计采用3层网络结构。

①输入层:输入层神经元的个数就是输入向量的维数。

②隐含层:根据经验公式,隐含层神经元个数M与输入层神经元个数N大致有如下关系:M=2N+1,又考虑到计算精度的问题,因此隐层设计为5。一般说来,隐节点越多,计算精度越高,但是计算时间也会越长。

③输出层:一般说来输出层神经元的个数等于要识别的调制类型的个数,但是还要具体情况具体分析。

结合该次设计实际,网络采用1-5-2结构。

(4)神经网络方法实现自动调制识别的步骤。

在此将该文方法实现的步骤归纳如下。

①由接收到的调制信号求其采样序列,进而得到其复包络。

②由信号的复包络求其瞬时幅度,顺势相位和瞬时频率。

③由信号的瞬时参量求其5个特征参数。

④用信号的特征参数向量组训练网络。

⑤用训练好的网络对调制信号进行自动识别。

(5)MATLAB仿真。

为对用神经网络进行调制信号自动识别的方法进行性能验证,下面对2FSK和2PSK做MATLAB仿真试验:基带信号的码元速率为50 kHz,载波频率为150 kHz,采样速率为1 200 kHz,对于2FSK信号,载波之差为50 kHz。将网络调整到最佳状况,对网络进行了100次的仿真训练,随机抽取了一组数据的收敛均方误差曲线如图2所示。

对训练好的网络进行性能测试。仿真识别实验分别对2FSK和2PSK信号采用SNR=10 dB,15 dB,20 dB和∞ 4组数据进行。在对网络进行了100次仿真识别的基础上得到以下数据,见表1。

由表1可以看出,用标准BP算法训练出来的神经网络,对2PSK信号有着较理想的识别成功率,在信噪比等于10 dB的情况下,依然可以达到99.5%以上的识别成功率。而对2FSK信号的识别成功率就不尽如人意,虽然在信噪比等于20 dB的情况下可以完全识别信号,但在信噪比等于10 dB的情况下,识别率较低。

4 结语

基于神经网络的数字调制信号自动识别的研究虽然初见成果,但是整体上看,它未对更多的调制类型进行测试,而且对某些类型的调制信号识别的效果还不甚理想。在仿真试验中,不可避免地出现了收敛速度慢、存在局部极小值和概率极小的不收敛现象这3个BP网络本质上的缺陷。采用改进的BP算法或者其他神经网络可以改善网络性能和提高R别成功率。

神经网络用于调制识别方法的可行性已初见端倪,与其他方法相比,神经网络具有的信息分布式存储、大规模自适应并行处理和高度的容错性等特点,使其非常适合于调制识别,而且它简单有效,极易用软件或硬件实现,相信神经网络技术能够在软件无线电领域发挥它独特而重要的作用。

参考文献

[1] 黄春琳,邱玲,沈振康.数字调制信号的神经网络识别方法[J].国防科技大学学报,1999(2):58-61.

[2] 吴惠.数字信号调制方式识别技术研究[D].兰州交通大学,2014.

[3] 飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].电子工业出版社,2005:44-58.

[4] 兰雪梅,朱健,董德存.BP网络的MATLAB实现[J].微型电脑应用,2003(1):6-8.

[5] 姚亚峰,黄载禄.通信信号调制识别技术[J].通信技术,2003(6):43-45,52.

[6] 姜莉.利用神经网络实现调制信号的自动识别[J].电子测试,2014(7):71-73.

[7] 从爽.神经网络、模糊系统及其在运动控制中的应用[M].中国科学技术大学出版社,2002:17-31.

[8] 高隽.人工神经网络原理及其仿真实例[M].机械工业出版社,2003:44-53.

[9] 飞思科技产品研发中心.MATLAB 6.5辅助神经网络分析与设计[M].电子工业出版社,2003:64-69.

[10] 李峻.基于决策理论的软件无线电信号调制样式自动识别[J].大连铁道学院学报,2002(4):50-54.

[11] 赵知劲,庄婵飞,干立.调制样式BP神经网络分类器[J].现代雷达,2003(10):22-24.

[12] 林华东,庞伟正.软件无线电中数字调制信号的自动识别[J].应用科技,2004(6):25-27.

[13] 王康利,谢建菲,赵兰华.基于神经网络的软件无线电信号的调制识别[J].计算机测量与控制,2004,12(9):877-878.

[14] 姜立芳,刘泊,施莲辉.一种改进的BP算法及其在模式识别中的应用[J].哈尔滨理工大学学报,2003(3):90-92.

第8篇:人工神经网络的定义范文

信用评分模型作为信用风险管理的基础和核心,无论是对于建立社会征信体系还是对于金融机构的信贷资产管理,都有着不可替代的作用。其主要目的,在于尽量将能够预测借款人未来行为的指标加以整合,并统一成可以比较的单一指标,以显示借款人在未来特定时间内违约的可能性,所有的信用评分模型,无论采用什么理论或方法,其最终目的都是将贷款申请者的信用级别分类。为达到分类目的。当前,对个人信用评分模型的定义有多种,较为权威的种观点认为:“信用评分是预测贷款申请人或现有借款人违约可能性的一种统计方法。”这一观点指出了信用评分的作用和目的,不过随着信用评分模型的不断发展,信用评分已不仅是一种统计方法,也包含了运筹学,如数学规划法、非线性模糊数学(如神经网络方法)等。此外,信用评分的实际操作应用也与决策原则紧密相关,决策原则事实上决定了信用评分模型实现其目的和作用的程度。因此,对个人信用评分模型这一数学工具在金融和银行业中的应用来说,较为全面和恰当的定义应是,“信用评分是运用数学优化理论(包括统计方法、运筹方法等),依照即定原则或策略(损失最小原则或风险溢价原则),在数据分析决策阶段区分不同违约率水平客户的方法。

二、各类信用评分模型概述

1.判别分析模型

判别分析法是对研究对象所属类别进行判别的一种统计分析方法。进行判别分析必须已知观测对象的分类和若干表明观测对象特征的变量值。判别分析就是要从中筛选出能提供较多信息变量并建立判别函数,使推导出的判别函数对观测样本分类时的错判率最小。这种方法的理论基础是样本由两个分布有显著差异的子样本组成,并且它们拥有共同的属性。它起源于1936年Fisher引进的线性判别函数,这个函数的目的是寻找一个变量的组合,把两个拥有一些共同特征的组区分开来。

判别分析方法的优点:适用于二元或多元性目标变量,能够判断,区分个体应该属于多个不同小组中的哪一组。自身也存在不可避免的缺点:该模型假设前提是自变量的分布都是正态分布的,而实践中的数据往往不是完全的正态分布,从而导致统计结果的不可靠性。

2.决策树方法

决策树模型是对总体进行连续的分割,以预测一定目标变量的结果的统计技术。决策树构造的输入是一组带有类别标记的例子,构造的结果是一棵二叉或多叉树。构造决策树的方法是采用自上而下的递归构造。在实际中,为进行个人信用分析,选取个人信用作为目标属性,其他属性作为独立变量。所有客户被划分为两类,即好客户的和坏客户,将客户信用状况转换为“是否好客户”(值为1或0),而后利用数据集合来生成一个完整的决策树。在生成的决策树中可以建立一个规则基。一个规则基包含一组规则,每一条规则对应决策树的一条不同路径,这条路径代表它经过节点所表示的条件的一条链接。通过创立一个对原始祥本进行最佳分类判别的决策树,采用递归分割方法使期望误判损失达到最小。

决策树模型的优点:浅层的决策树视觉上非常直观,容易解释;对数据的结构和分布不需做任何假设;可以容易地转化成商业规则。它的缺点在于:深层的决策树视觉上和解释上都比较困难;决策树对样本量的需求比较大;决策树容易过分微调于样本数据而失去稳定性和抗震荡性。

3.回归分析法

回归分析法是目前为止应用最为广泛的一种信用评分模型,这其中以著名的logistic回归为代表。除此之外,线性回归分析、probit回归等方法亦属于此类。最早使用回归分析的Orgler,他采用线性回归模型制定了一个类似于信用卡的评分卡,他的研究表明消费者行为特征比申请表资料更能够预测未来违约可能性的大小。同数学规划方法中一样,假设已经通过一定的方法从样本变量中提取出了若干指标作为特征向量,回归分析的思想就是将这些指标变量拟合成为一个可以预测申请者违约率的被解释变量,自然就是违约率p,回归分析中应用最广泛的模型当属线性回归模型,它是对大量的数据点中表现出来的数量关系模拟出一条直线,回归分析的目标就是使目标变量值和实际的目标变量值之间的误差最小。因此最早将回归方法应用于信用评分研究的模型,就是简单的线性回归模型,目前基于logistic回归的信用评分系统应用最为普遍。

回归模型的优点:容易解释和使用;自变量可以是连续性的,也可以是类别性的;许多直观的统计指标来衡量模型的拟合度。缺点:不能有效处理缺失值,必须通过一定的数据加工和信息转换才能处理;模型往往呈线形关系,比较难把握数据中的非线形关系和变量间的互动关系,而且模型假定变量呈正态分布;模型受样本极端值的影响往往比较大。

4.人工神经网络法

近些年来,随着信用评分领域的研究深入,有学者将人工智能领域的一些模型算法引入到了信用评分研究中,人工神经网络模型为典型代表。人工神经网络是由大量简单的基本元件——神经元相互连接而成的自适应非线性动态系统,是一种把各种投入要素通过复杂的网络转换成产出的信息加工结构。神经网络模型本质上所解决的问题仍是分类或者说模式识别问题,但其原理却与其做方法迥然相异。人工神经网络有多种模型,比如BP神经网络、RBF神经网络、Hopfield网络等。BP神经网络为目前研究最为成熟、算法最为稳定同时应用也最为广泛的一种神经网络模型。

神经网络模型的优点:有效地捕捉数据中非线性,非可加性的数量关系;适用于二元性,多元性和连续性的目标变量;能处理连续性和类别性的预测变量。缺点:基本上是一个黑箱方案,难以理解;如果不经过仔细控制,容易微调于样本数据,从而不具备充分的抗震荡性和稳定性。

三、结语

信用评分作为一种严谨的基于统计学等理论的决策手段,正在逐渐被我国商业银行重视。信用评分系统的建设在我国属于起步阶段,应逐步建设适合我国特色的、高水平的信贷决策支持制度不但需要借鉴国外已有的理论研究成果和实践方案,更需要我国学界的创新或结合我国本土数据的实证研究。

参考文献:

[1]陈建:信用评分模型技术与应用.中国财政经济出版社,2005

[2]郭敏华:信用评级.中国人民出版社,2004

[3]孙薇:浅析信用风险评价方法.沿海企业与科技,2005

第9篇:人工神经网络的定义范文

关键词:汽车;底盘;检测;人工神经网络;数学模型;模糊

首先,来了解一下什么是人工神经网络。“人工神经网络是由多个非常简单的处理单元,彼此按照某种方式相互连接并由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态响应而进行信息处理”这是著名的神经网络研究专家Hecht-Nielsen给人工神经网络下的定义。随着这一技术的发展,逐渐开始应用到各种领域当中,其中汽车轮、轴松旷间隙的检测也开始应用了这一技术。

其次,再来分析一下汽车轮、轴松旷间隙对汽车产生的影响。汽车轮毂轴承、主销松旷间隙是汽车轮、轴总体间隙的主要组成部分,它的大小可以换算成轮缘的轴向位移量来,并使用这一位移量来表示。行驶在路上的汽车轮毂、主销间隙必须保持在一定的范围之内才能保证汽车安全可靠的行驶。如果间隙过大,则会导致汽车操纵稳定性变差,行车的会出现摇摆不定的情况。同是也会让轮胎与悬架零件加快磨损,也会出现转向不灵敏等后果,严重的时候还会将导致交通事故的发生,所以我们必须认真仔细并定期地对轮毂轴承、主销配合间隙进行检测和排除故障。

然后,再来了解T目前国内外汽车检测的设备。虽然汽车检测的设备目前有不少,但是在轮、轴间隙方面检测设备更是少的可怜,现在有的大部分还只是代替人工的摆动车轮,由人工观测其间隙大小,虽然目前对汽车轮、轴松旷间隙单项检测已经开发完成,基本上实现了自动化,在检测时,汽车要停在检测台上,由计算机控制检测台滑板来运动,从而带动汽车车轮的运动,使汽车轮、轴松旷间隙充分暴露,通过测控系统来检测轮胎受力和台板的位移量,最终通过计算可以得到它的间隙值。但是由于测得的力和位移与间隙类别之间没有明确的对应关系,所以对此间隙的类别判断还需人为地进行判断,这样的话,就影响了检测的智能化程度。因此目前急需要一种更为智能化的检测工具,人工神经网络的出现让我们看到了希望。

接下来,分析一下人工神经网络在汽车检测方面是如何应用的。①通过学习轮、轴松旷间隙检测的知识理论,可以测定力和位移的关系曲线,而根据曲线的变化特征,就可以测得轮、轴松旷间隙的大小。但是通过大量的实践操作,发现只有当主销间隙或轮毂出现间隙时,间隙类别的判断才需要人为干预。所以如果各曲线之间没有明显的特征差异,便无法用精确的数学模型来描述。所以,提出了一种模糊自组织神经网络模型,将模糊等价关系和类距离阈限引入自组织神经网络模型中,可直接从原始数据中归纳出诊断规则,实现对间隙的识别。②假定轮毂轴承有松旷间隙,主销处无松旷间隙,忽略车轮自身重力,台板不动。取车轮为研究对象进行受力分析,可以得出:轮毂内轴承静态径向支反力+轮毂外轴承静态径向支反力=地面对车轮的支反力(即轮荷)。当台板右移时,通过对其受力分析可以得出:轮毂内轴承动态径向支反力+轮毂外轴承动态径向支反力=地面对车轮的支反力(即轮荷)。③轮毂外轴承动态径向支反力随着检测台板施加到车轮边缘的侧向力的增大而逐渐减小,轮毂内轴承动态径向支反力却随之逐渐增大。当检测台板施加到车轮边缘的侧向力增大到一定程度时,则内轴承支承全部轮荷,此时轮毂轴承处松旷间隙开始暴露出来。由此开始从一个极限位置向另一个极限位置的转变。在此转变过程中,由于某些参数不发生变化,随着台板位移量增加,但轮胎变形增量为零,所以检测台板施加到车轮边缘的侧向力保持为恒定值。当台板位移一定距离后,其配合副转移到另一极限位置。此时,轮毂轴承处松旷间隙完全暴露出来,即为此处的松旷间隙。随着台板的继续右移,曲线从水平直线段产生转折,直至轮胎与上台板之间产生滑移,台板达到右侧最大行程,由于检测台板施加到车轮边缘的侧向力不能再继续增加,曲线又开始转折为水平直线段,直到右侧终点。④检测系统需要采集两种信息:开关信号和模拟信号。开关信号,即状态信号,其信号电平只有高电平与低电平两种。对于这些信号,只需要经放大、整形和电平转换后,即可直接输入计算机系统。而对模拟信号,由于模拟信号的电压或电流是连续变化的,其信号幅度在任何时刻都有定义。⑤选择传感器。根据我们检测系统所要实现的功能,来选择适合本系统所需要的传感器,本传感器需要能感受车轮所受的3个方向的力,并可以将其转换成电量的装置,这是测试系统中关键的元件,其质量和性能是实现准确测量的基本保证。当弹性元件受到截割力、牵引力、和侧向力3个方向的载荷时,其表面将产生伸长或缩短。这时,固定在上面的应变片将会发生变化。使用测量仪器测出其电阻的变化,根据变换的原理便可得到弹性元件三个方向的应变值,然后利用弹性力学中应力与应变的关系,便可求出被测3个力的大小。⑥由于传感器的输出信号比较微弱一些,所以一般还需要接入一个放大器,以便进行缓冲、隔离、放大和电平的转换等处理。同时,由于要度量传送过来的电信号,因此,对于测量系统中采用的放大器应当有精确和稳定的增益。通常,放大器的增益是通过它的外接电阻来实现的,所以获得精确的增益值也是可以很容易做到的。但更为重要的要在放大器的工作条件下保持增益值的稳定性,因此,要求对采用的放大器需要具有良好的线性度、低的漂移、高输入阻抗、高共模抑制比和低的输出阻抗。⑦本检测系统的控制系统的主要目标就是对液压站的控制,过程如下:控制信号由计算机发出,然后送到电路板上,驱动继电器动作,从而控制液压站的电磁阀进行运动,使液压缸进、排油驱动柱塞运动,即可使滑板发生运动。此时,装在设备上的传感器会发出电压信号到电路板上,再由放大电路放大后再送到A/D转换器,使计算机获得数据。最后经计算机的处理后再作下一步的处理。⑧抗“干扰”设计。“干扰”是本检测系统中的一种无用信号,它会导致在测量结果中产生一定的误差。所以,要获得好的测量结果,就必须对干扰来源采取一定的抑制措施。本检测系统主要应用于汽车维修站,现场检测时,很易受到汽车振动、环境气候、电源、磁场等干扰源产生的各种干扰因素的干扰。如果不对这些干扰采取一定的有效措施,本系统可靠运行就无法得到保证,严重时可能还会损坏元器件。

最后,通过构建的神经网络模型来实现汽车轮、轴松旷间隙的检测。本检测系统提出一种模糊自组织神经网络模型,将模糊等价关系和类距离阈限引入自组织神经网络模型中,可直接从原始数据中归纳出诊断规则,实现对间隙的识别。

(1)数据的归一化与模糊等价关系。

由于在测得的原始数据和经过信号处理后的数据的各自特征不同,取值范围也不一样而且物理单位也不同,所以不能直接对它们进行分析与聚类,所以在分析处理前,需要对原始数据进行归一化处理,还要将各自的特征值映射到指定的区间内。模糊匹配运算就是采用的点值的模糊等价关系方法,先计算输入的原始数据与聚类中心各特征值的模糊等价关系,然后再对所有特征值的模糊等价关系求最后的平均值,也就是匹配度。

(2)模糊自组织网络的结构。

本检测系统的模糊自组织神经网络是由匹配子网和竞争子网两部分组成的。在匹配子网中,使用模糊等价关系和类距离阈限以指导自组织聚类,这样方便实现对偶发故障模式的在线学习,同时还非常容易适应渐变的工作环境。匹配子网包括传统的前3层:第1层即输入层,主要用来输入数据的特征数,其神经元是线性的。第2层是全互联结,该层神经元的作用是实现输入数据和各聚类中心数据的模糊匹配运算,它的输出即为匹配度。第3层是聚类指导层,其作用是辅助上层即竞争层进行聚类的分析,这样可以避免由于权值初始化的不当,引起已聚类好的类权值被刚输入的数据所破坏,同时还可以对新增类别进行聚类。第4层为竞争子网,其输出矢量为最终分类的结构。神经元的输入由来自上一层的输入和来自竞争层内互相抑制的加权和2部分完成。竞争后只能有1个神经元获胜,也就是输入和为最大的神经元节点获胜。而输出层节点数则根据间隙的模式来确定,有几种状态可能就会有几个输出节点。

(3)网络的学习算法。

当得到获胜节点后,就需要对与获胜节点相连的第1层权值进行修正,使其与输入矢量的差越来越小,从而使可用权值来表示输入矢量的特征,进而对输入矢量进行分类,提取规则。

(4)提取的算法流程。