公务员期刊网 精选范文 生物医学工程应用领域范文

生物医学工程应用领域精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物医学工程应用领域主题范文,仅供参考,欢迎阅读并收藏。

生物医学工程应用领域

第1篇:生物医学工程应用领域范文

关键词:生物医学工程;嵌入式系统;教学方法

中图分类号:G64 文献标识码:A 文章编号:1009-3044(2015)33-0112-02

Abstract: This article takes the Bio-medical Engineering of AHUCM Specialty as an example to summarize the problems occurred in the course of Embedded System Course.It condensed out a teaching method which combines the selection of teaching materials and professional construction,combines the selection of theory course and training objectives, combines the training of practical ability and school running characteristics and builds a new evaluation system. It will improve the teaching and practice of Embedded System Course in Bio-medical Engineering in order to meet the needs of the society.

Key words: Bio-medical Engineering;Embedded System;Teaching method

生物医学工程(Bio-medical Engineering,BME)是综合运用多门学科的理论和技术,研究和解决人类健康、疾病预防、诊断和治疗等的新技术、新方法,是一门多学科交叉和渗透性强的新兴学科,也是一门结合其他学科和技术快速发展的学科,本身具有高度的前沿性和先进性,高新技术的突飞猛进,要求我们不断调整课程设置以适应社会的需求和时代的发展。随着嵌入式系统在各个领域表现出强劲的生命力,并且越来越多的应用到医疗器械中,在本校开设的生物医学工程专业(医疗器械方向)本科生教学中增加嵌入式系统的教学内容已势在必行[1]。

根据IEEE(电气和电子工程师协会)的定义,嵌入式系统是“控制、监视或者辅助装置、机器和设备运行的装置”。目前国内一个普遍被认同的定义是:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统[2]。虽然侧重点不同,以上两种定义却均体现出嵌入式系统是可以涵盖机械等附属装置的软硬件综合体。鉴于医疗器械自身的特点,嵌入式系统不仅能够在安全性、实时性、控制精度、数据处理能力以及与医院管理系统匹配性等方面增强其性能,并使医疗器械呈现便携式和网络化的发展趋势。

综上所述,如何开展我校生物医学工程专业的《嵌入式系统原理及设计》课程的教学工作,结合专业培养目标和我校办学特色,值得我们探索和研究。经过两年的教学实践,我们发现教学过程中存在的若干问题,并总结了一些经验。

1 教材选择与专业建设相结合

因为嵌入式技术很强的行业相关性,高校应考虑基于理论且面向应用的教材,教学不会与实践脱节。但由于新技术日新月异,导致很难找到一套普遍适用的系列教材。同时,嵌入式系统兼具软硬件方面的知识与应用,各类教材的侧重点不同。例如,以软件开发为主,包括应用软件和驱动程序开发,放弃硬件设计内容,并且在多种处理器、操作系统中选择主流、有发展前景的ARM微处理器和嵌入式Linux作为主要授课内容,可选择林晓飞等编写的《基于ARM嵌入式Linux应用开发与实例教程》;周立功等编写的《ARM嵌入式系统基础教程》是目前嵌入式系统课程最为成功的教材之一,其配套资源非常全面,但其教学内容偏重硬件,扩展内容和工程案例较少,适合工程人员查阅。生物医学工程既有侧重于电子专业的嵌入式系统硬件电路设计,又有侧重于计算机专业的嵌入式系统软件开发,对于开展专业建设,提升专业内涵,稳定学生的专业思想,有很好的示范引导用。基于以上,本教研室首先确定以市场主流的嵌入式微处理器ARM9作为教学内容,采用高等院校规划教材,北京航空航天大学出版社出版的《ARM9嵌入式系统设计基础教程》,并结合实验指导书、开发板使用手册、应用程序开发手册、系统移植手册等内容,使嵌入式技术被更多学生掌握,也保证了硬件和软件知识的完整性。为之后开展的医疗器械类专业课,建立了良好开端。

2 理论课程选择与培养目标相结合

目前,嵌入式系统产品应用到医疗器械各个领域。CT、核磁共振等大型成像设备,彩超、经颅多普勒等超声设备,心电、脑电等电子设备,全自动生化分析、免疫测试系统等检测设备,呼吸机、麻醉机等监护设备均需要嵌入式系统的支持[3]。我校生物医学专业主要偏重医疗器械方向,培养学生成为能从事医学电子仪器、医疗器械开发设计和研制、医疗器械质量检测和技术监督管理等工作。那么提高相关专业课与实际应用领域的关联性,让学生清楚地认识到嵌入式系统是如何应用到医疗器械领域的,是我们任课老师应该做到的。

所以,本人在教学过程中,穿插列举嵌入式系统在医疗器械中的应用实例,不但使学生更容易理解相关理论知识,将两者有机结合,而且为接下来开展的医疗器械方面专业课打下一定基础。例如,基于嵌入式系统开发设计的便携式电子血压计不仅能够有效缩小血压计的体积,还能够实现“傻瓜式”血压测量,所返回的测量结果也更加准确。电子血压计由气袖、气泵、传感器、嵌入式控制器以及显示器等部件组成。在使用其进行血压测量时控制模块主要是与气泵传感器相配合实现控制气压,采集、记录、显示参数的功能。依照血压测量原理,控制器分别记录血压测量过程中的收缩压和舒张压即完成了一次血压测量;基于嵌入式系统的多参数监护仪可以将传感器采集到的人体生理信号转换为可被嵌入式系统识别的数字信号,然后该数字信号经过滤波、放大、量化等预处理后即可被传输到处理模块进行处理和分析。分析时,若信号超出人体正常参数范围则系统将该信号所对应的参数标注为非正常,向相关医护人员进行报警,同时将出现异常的各项数据存储在存储模块中,以便于后续分析和诊断[4]。

3 实践操作能力的培养与专业办学特色的结合

国家科技部印发的《医疗器械科技产业“十二五”专项规划》提出,要紧密围绕疾病预防、临床诊疗、健康促进的需要,重点开发新型中医诊疗等医疗器械产品和系统等新型医疗器械产品。未来的几十年,随着医疗水平的逐步提高,医疗器械产业将进入高速发展的时代,我校应迎合国家和社会的需求,将高精尖的现代信息技术与自身具备的丰厚的中医理论知识等专业优势相结合,改进现有的并开发新型的中医诊断仪器[5]。在开展实验教学的过程中,可以根据学生具备的不同软硬件基础,也就是对先导课程(高级语言程序设计、微机原理与接口技术、单片机原理等课程)的掌握程度进行分组,基础较差的学生主要进行基础验证型实验,基础稍好的学生进行设计综合型实验,而基础较好并且对嵌入式系统兴趣浓厚的学生可以进行研究创新型实验,实现分层次教学。划分后,各个层次的学生均能对如何学习这门课做出自我定位,从而产生兴趣,反响良好。设计综合型实验和研究创新型实验需与具体项目结合、与相关竞赛结合、与中医诊疗设备的发展方向结合,充分体现出本专业的办学特色使学生深刻了解本专业的优势特色和发展前景,并清楚地认识到其身上肩负的使命,有助于增强学生的专业认可度,调动其学习积极性。

同时,课堂教学不能与具体实践脱节,医疗器械技术和设备发展很快,相关实验设备又价格昂贵。我校的附属医院可以为本专业的学生提供现场观摩学习的机会,其中各个科室配备的各类功能型号的医疗器械让学生们可以看得到、摸得到、学得到,在现场体会嵌入式系统是如何成为医疗器械整体结构中不可或缺的功能模块,发挥其特有的作用,使学生有更直观的感受。

4 构建“形成性+终结性”评价体系

与传统的终结性评价不同的是,本嵌入式系统课程的考核采用“形成性+终结性”的评价方式。包括分别占总成绩50%和30%的理论考核和实验考核,此外,平时考核占20%。这种考核方式改变了传统的一役定生死的考核方式,逐步建立“平时表现、理论掌握、动手操作”三者并重的考核模式。平时表现包括课堂考勤、提问、课后作业、答疑等,其目的是培养学生学习的主观能动性。理论掌握的考核主要通过期末考试的形式,其目的是督促学生增强学习的自觉性,建立正确的学习方法和学习态度。动手操作的考核主要是以学生做实验时的表现和实验的完成情况来评估的,制定一套可行的、量化的标准考核方法,定性定量的肯定学生的实际操作能力,可以有效提高其积极性和主动性。经过改良后的考核方式更加侧重于评估学生的自主学习能力,建立其主体意识,对于改善学习效果起到了立竿见影的作用。

5 结语

嵌入式系统是一门多学科交叉、涵盖内容广泛、软硬件兼有、产业前沿性较强、对实际应用能力要求较高的课程,不同类型的院校的不同专业,开展本课程的侧重点也不尽相同。所以,开展嵌入式系统课程的本科教学,要想达到理想的效果,需要任课老师下一番苦功。总结来看,本专业是中医类院校、医药信息工程学院中的生物医学工程专业,偏重医疗器械方向,培养既有医学基础又有工科背景的专业型人才是我们的办学特色,所以,在嵌入式系统课程中,加入中医理论和医疗器械产业方面的知识内容对于开展教学会有很大帮助。同时,在选择教材、设置课程内容、实验实践教学和建立评估体系等方面,也需要任课老师因地制宜,量体裁衣。

我国医疗器械产业是一个创新能力不断增强、市场需求十分旺盛的朝阳产业。与此同时,也要看到产业发展的不足,提高技术创新能力、加强研发的产、学、研结合,已经成为当务之急。建国几十年来形成的良好基础,人民群众保健康复对医疗器械的刚性需求,医疗器械相关学科技术人才的长期储备,国家对医疗器械技术创新的大力扶持,都是促进医疗器械产业高速发展的保障和动力。我们作为开展生物医学工程专业的院校和任课老师,应清楚认识到自己身上的责任与重担,迎着大好的形势,在探索中教学,在教学中成长,紧跟科学前沿,同时脚踏实地,总结经验,吸取教训,为产业输送人才,为国家的医疗卫生事业安全有序的发展做出自己的贡献。

参考文献:

[1] 邓军民,等.生物医学工程专业本科教育课程设置探讨[J].首都医科大学学报,2007:166-168.

[2] 黄智伟,等.ARM9嵌入式系统设计基础教程[M].2版.北京:北京航空航天大学出版社,2013:1.

[3] 袁宝芸,等.嵌入式系统技术在医学领域的应用[J].中外医疗,2011(22):182.

第2篇:生物医学工程应用领域范文

由此可以看出,《信号与系统》这门专业基础课在BME本科教育的过程中起着举足轻重的作用。同时,《信号与系统》要求学生具备一定的数学基础和电路分析基础。因此,我们在制定教学计划时,应该针对不同基础的学生制定不同层次水平的教学计划,以课堂教学与实践并重,以由浅入深、由粗到细、重点突出为原则,建立在实践中发现问题,在课堂中探讨问题,再回到实践中解决问题的教学模式,以利于学生更好地掌握课程的知识要点,为他们今后的工作和研究打下良好的基础。

把握课程思想,创新教学方法

《信号与系统》既承接了先修课《电路分析》等课程,又为《数字信号处理》、《医学图像处理》等后续课程奠定了基础。主要讨论连续时间信号与系统,研究确定性信号经线性、时不变系统传输与处理的基本理论。此课程由《电路分析》中的微观电路过渡到宏观系统,以系统的观点来研究信号处理过程及结果。因此,如何创新教学方法,以培养学生的整体系统思维方法,让学生理解课程理论知识在实际中的应用,提高学生的学习兴趣,成为我们的课程重点。我校坚实的医学、生物学研究基础,为BME专业的本科生提供了大量的研究问题与数据。2011年,我校BME系与美国通用电气公司(GeneralElectricCompany,简称GE)建立联合培养基地,加强BME专业理论及技术交流。

我们通过邀请医学、生物学和GE公司的相关专家针对医学信号问题、显微镜下的生物图像问题以及CT、MRI等设备的图像处理系统问题做报告,让学生了解《信号与系统》的应用领域,以及在此领域中可以解决哪些具体问题、如何解决这些问题,让他们带着问题去学习。在讲授课程的过程中,教师除了讲解一些重要基础理论之外,还要强调课堂互动,以某一信号的处理为例,激发学生们的小组讨论热情,在无形之中培养他们的动脑解决问题的能力和动口表达交际的能力。除了课堂授课之外,我们也需要重视课下交流,鼓励同学们针对自己感兴趣的问题提出一些想法,也可以通过电子邮件、群讨论、博客、论坛等形式增强交流沟通,让课堂学习与实践应用相结合,促进同学们对此门课程学习的积极性和主动性。

丰富教学手段,重视专业术语

《信号与系统》课程的突出特点是数学公式多,利用数学工具解决生物医学问题。如何把枯燥的理论学习和公式推导转化成易于理解的形象思维过程是我们需要探索的方向。我们根据课程特点,重视课件制作,适当地利用声音、动画等手段,增加课件的生动性。另外,可以结合教学软件的应用,实时演示一些计算过程或理论,如信号的相乘、相加、分解等,加深同学们对课堂内容的理解。为了更好地发展BME这一新兴学科,积极应对经济全球化、教育国际化挑战,培养适应地方经济发展和社会进步要求和具有国际合作意识、国际交流与竞争能力的复合型、外向型人才,提高人才培养质量,我们需要尽快转变传统的教学思想和育人理念,融会中西方先进文化和科学成果。因此,在《信号与系统》的教学过程中,有意识地让学生掌握一些信号处理方面的英文专业术语,为他们今后的学习、研究和工作打下一个良好的基础,是十分必要的。一方面,教师可以在课件制作上下功夫,将教材中出现的与BME相关的专业名词以图像加文字的方式加以显示,有利于学生对专业词汇的理解和记忆。另一方面,由于本课程的课时限制,课堂上只能分配少量的时间来学习英文专业术语,教师可以鼓励学生在课外阅读英文原版教材AlanVOppenheim的《signals&systems》(第二版),并结合麻省理工学院《信号与系统》公开课,边学习边思考,培养学生的思维方式,也可以鼓励学生阅读外文文献或心电图机、B超等医疗仪器说明书的形式来进一步学习,使学生初步具备检索、阅读国外专业书籍和文献的能力,拓宽BME本科生的学习视野,为将来先进医疗仪器的研发储备知识。

挖掘应用实例,强调实践教学

《信号与系统》教学离不开医疗仪器实验室。我校各大附属医院拥有先进的医疗设备,为BME专业的学生提供了得天独厚的资源优势。通过“看”各种医疗仪器如何采集人体信号,经过哪些变换之后显示在电脑屏幕上,来了解信号的产生过程,以及信号在各个系统中的处理过程。通过“听”医生对各种医疗仪器原理、使用方法及需要改善的功能等问题的介绍,了解信号处理领域亟待解决的问题,并在学习课程的过程中,分析问题、解决问题,提高科学研究的素质和开拓创新的意识。通过动手“做”各种小仪器,如便携式生理信号检测仪等,将课堂所学的理论知识与实践应用相结合,提高自主解决问题的能力。在进行此类设计性、综合性实验时,一方面可以巩固《电路分析》、《模拟电子技术》等课程中的硬件设计知识,另一方面可以学习Matlab和Labview等仿真软件,以此构筑软硬结合的实验教学模式,与实际应用紧密联系,在夯实学生的理论知识的同时,增强他们的实践技能和创新能力。

结束语

第3篇:生物医学工程应用领域范文

关键词:医学工程;医院管理;器材管理与维修

1医学工程科的现状

1.1医疗器械的种类和数量增多

各医院年度设备采购经费逐年递增说明了这一点,例如国内某医院从1987年设备采购经费仅600万元左右,到2007年则高达6000多万元。

1.2医疗器械的复杂性增加

表现为材料、生产工艺、维护和维修复杂;评估选型和采购决策困难;计量和质控要求严格,否则,医疗质量难以保障。

1.3学术和管理界已高度重视该学科

2002年11月科学出版社出版了由姜远海主编的《21世纪高等医学院校教材-临床医学工程技术》一书;2007年1月人民卫生出版社出版了由杨虎主编的《临床医学工程教程》一书;同年,中国医学考试网公布了《2007年临床医学工程技术专业考试大纲》[内容包括:(1)基础知识(医学基础知识、自然科学基础知识);(2)相关专业知识(管理基础知识、专业英语和计算机基础);(3)专业实践能力;(4)专业知识(医疗设备知识和医疗设备管理)]。

2临床医学工程学主要内容

2.1临床医学工程学基础内容

2.1.1临床需求与论证

临床需求主要包括购新、维修及医疗器械的改造升级等,不论那一种需求,都有必要对其学术效益、社会效益及经济效益进行全面的论证,其中学术效益是根本。就学科建设而言,可以把学术效益看作春天播种的种子,实际上也就是能否解决特定学科建设及其医疗、教学和科研的问题,同时兼顾医院整体发展的问题;经过夏天的辛勤劳动,到了秋天你才能收获经济和社会效益这两个果实。

2.1.2选型与评估

主要是一定要保证所采购医疗器械的技术先进性、可靠性和可维修性,为此对计划购置的厂商的医疗器械产品要进行纵横两个方向的评价;同时,对医疗器械的安全防护、节能性和配套性等问题也应当高度重视。

2007年10月国家卫生部办公厅就城市医疗机构卫生装备评估选型推荐了第二批32品目362种规格型号的医疗器械产品,在选型与评价时可供参考。

2.1.3采购计划

医疗器械购置计划应当有长远规划、中期计划和年度计划。制定医疗器械购置计划应当坚持经济性原则、有效性原则和先进性原则;其程序应当包括:(1)使用部门提出申请;(2)收集产品信息初步汇总;(3)分析研究产品信息确定方案;(4)拟定方案提出预算;(5)综合平衡确定计划。

2.1.4产品标准

医疗器械产品标准是一个完整的体系,包括有国家标准(GB)、行业标准(YY)和产品注册标准(有国产、进口两种);国际上一些非营利专业组织的相关标准具有重要的指导意义,而欧盟和美国标准也往往具有较大的参考意义。

2.1.5集中招标采购

可参考《招投标法》等相关法律法规以及各级管理部门的相关规定。

2.1.6安装、调试与验收

(1)安装与调试:主要内容一是使用环境的技术要求;二是安装调试的程序(验收合格后进行;参加安装调试的人员要做好安装调试的各项准备工作;对大型设备安装调试、使用和维修人员进行技术培训;调试时要按照说明书进行;调试过程中操作人员要多操作,多熟悉,尽快安排“考机”;安装调试完成,仪器能够正常运转,应予签收;医疗设备的保修)。(2)验收:一是验收前的准备工作:包括:验收资料的准备;验收人员和部门的准备;制定验收方案;建立验收记录和验收报表;做好辅助设备的准备;验收工具的准备;对于进口医疗设备需申请商品检验;对于进口计量设备需申请计量检定。二是验收的程序:包括:开箱;清点;查验外形;检查机内组件;重点检查精密易碎部件;在验收过程中,所有与合同要求不符的情况都应当做好有关记录并拍照、录像以备索赔。

2.1.7维护与维修

(1)维护:一般指周期性地对特定的医疗设备进行的预防性维护(PreventiveMaintenance,PM),这一系列周期性的科学维护工作主要包括:①操作性能测试及调整;②电气安全测试;③外观、控制部件及内部清洁、、更换易耗元件。(2)维修一般可分成下面三种情况:①保修:新机带的,或新机过保后买的,过保后买的则可能采购成本非常高,且服务情况也无标准可言;②自修:一般大型设备较难,主要由图纸、密码和备件供应所引起;③第三方维修:目前,医疗器械维修的社会化问题已被提上了议事日程,虽成本较低但风险较大。

2.1.8报废

要确定标准的技术鉴定程序和分级审批程序。

2.1.9信息和档案管理

(1)按国家《医疗器械分类目录》进行信息的收集和归档;(2)将医疗器械分为:医疗设备、手术器械、医用耗材、体外试剂、病房用具和医疗工程,在此基础上进行分类建档、管理,管理原则是按I、II和III类进行,以确保医疗质量。

2.1.10计量

加强医学计量监督管理是卫生法规建设的主要内容,也是提高医疗水平、促进医学技术发展的必要手段。医院应将计量工作纳入年度工作计划,加强法律、法规等文件的宣传教育,增强法制观念,对于计量检定不合格的设备应严禁使用,强制检定器具损坏修复后必须进行计量检定。对于设备陈旧老化、超过使用年限,经计量检定不合格的设备应进行报废处理;对超过使用年限,但计量技术指标仍然合格的设备应缩短计量检定周期,确保使用设备的良好运行。

2.1.11不良事件监测与报告

医疗设备不良事件是指获准上市的、合格的医疗设备在正常使用情况下发生的导致或可能导致人体伤害的任何与医疗设备预期效果无关的有害事件。伤害事件分一般伤害与严重伤害。严重伤害的含义是指下列情况之一:(1)危及生命;(2)导致机体功能的永久性伤害或机体结构永久性损伤;(3)必须采取医疗措施才能避免的永久性伤害或损伤。

2.2临床医学工程学要求

前面简述了临床医学工程学的基本内容,随着医院的发展,对该学科提出了更高的要求,主要包括以下几方面:(1)医疗器械质量安全控制的基本原则是:标准是基础,计量技术是手段,医疗器械的质量安全是目的。内容包括:①例行强检;②验收检测(新设备);③状态检测(日常工作之一);④稳定性检测(日常工作之二);⑤维修后检测(日常工作之三)。(2)充分发挥医疗器械的现有功能的基本原则是:用技术和管理手段保障设备正常和有效运行。(3)积极改进医疗器械的现有功能的基本原则是:应用新技术新方法优化现有性能。(4)积极开发医疗器械的新功能的基本原则是:应用新技术新方法拓展其新的应用领域。(5)医疗器械的临床试验。

上述要求,往往受人员水平、硬件条件和管理水平的影响,有一定难度,但通过努力在一定程度上是能够达到的。

2.3临床医学工程学高级阶段内容

为满足医院医疗、教学和科研的需要,对临床医学工程学科提出了更高的要求,也即设计或开发新设备、新器械和新耗材。是该学科的努力方向。

第4篇:生物医学工程应用领域范文

摘    要:现代生活水平的提升,离不开科学技术的支持,不仅可以满足日常生活需求,还对医疗行业提出较多要求。科技能够有效支持各行业领域进步发展,能够促进医学技术、电子技术的双发展。在当前发展中,医学技术能够结合电子技术,不断提升现代化、智能化水平,还能够优化完善医学精密仪器。医学技术、电子技术属于独立学科,然而两种技术具备相互辅助、支持关系。因此,应用电子医用设备,能够促进医学事业的发展,同时提供发展源动力。此外,科学技术能够有效支持医疗事业发展,融合电子技术精密设备,有助于加强医疗效果,全面满足日常需求。电子技术开始被广泛应用到医院精密医疗设备中,能够提升医疗事业发展水平,且技术应用的优势非常显著,具备广阔的发展前景。关键词:电子技术 医院 精密医疗设备 应用实践随着经济与科技的快速发展,相应促进了我国医疗事业的发展[1]。电子技术被广泛应用于医学仪器领域,标志着医院精密医疗设备的现代化发展,是医学事业发展的机遇和挑战。医疗机构应当高度关注医学仪器工作,制定科学的管理机制与制度,不断提升安全管理力度,以此发挥出电子技术在医疗设备中的应用价值,同时可以保障患者疾病治疗与康复。本文主要围绕电子技术在医院精密仪器中的应用展开讨论,具体如下。

电子医学概述电子医学是新型学科,属于电子技术、医学技术的结合产物,因此具备综合性特点,不能单独存在,涉及电子技术、医学技术、工业科学技术等,能够代表着医学领域的多学科、跨领域发展。在20世纪50年代,电子医学成为独立研究学科。随着电子技术的快速发展,医学仪器使用精细划分为分子,能够全面提升医学精密仪器的精细度。电子医学的发展前景广阔,有助于提升医学水平,缩短患者治疗时间。

电子技术对医学行业发展作用及重要性电子学属于复合型学科,是在计算机技术上发展起来的,涉及材料学、数学、生物化学、物理等知识。电子技术发展,属于电子学科的延伸,遵循科学化原理,优化设计电路模型,能够为社会生产与生活提供便利。在电子技术发展中,逐渐衍生出电子医学,成为现代生物医学工程的重要内容,是生物医学工程的分支。比如信息处理、大数据、计算机、电磁波射线与信号传输等,均属于核心技术。利用操作设备,能够对生物生命状态进行分析,实现量化检测效果,全面掌握生物机体结构,连恶化生理功能、疾病进展,制作科学的治疗方案。尽管电子医疗在国内的发展起步晚,然而经过长期开发与研究,获得了显著成果。如,精密注射泵仪器,联合了电子技术与医学技术,组成包括支架、丝杆、驱动器等,螺母与丝杆具备移动特性,因此被称为丝杆泵,只需将药液盛放在注射器内,以此确保液体传输的高精度与平稳性。电子医学的跨界性与复合型特点显著,属于科技的现代化标志。在20世纪50年代,电子医学划分到独立学科,可以有效作用于精密医疗设备,联合大数据技术张中,可以实现在线交互、数字信号传感、医疗传感等内容。比如,可穿戴式医疗设备,可以借助效率性与精确度优势,在线监控患者身体状态,集中上传生理信息,以此支持慢性疾病。

电子技术在医院精密设备中的应用类型电子技术在医疗精密仪器中的应用,主要基于电子学原理,通过多类型电子元器件,实行优化设计与制造,确保设备满足医疗检查功能与治疗功能。在医院精密设备中,开始广泛应用电子技术,全面提升医疗检测水平、治疗效果。随着现代电子技术的科学化发展,获得了显著的应用成果。电子技术具备便于携带、能耗低等优势,因此不再受到传统医用领域的技术限制。在现代医疗事业中,不仅针对疾病人员,也开始注重疾病前期预防、体检保健等领域,人们开始高度重视医疗保健领域。除过精密电子检查仪器外,电子技术也可以应用到高精密仪器中,全面提升医院检测仪器的准确度,进一步加强医疗技术水平,给予患者支持与帮助,降低漏诊率与误诊率[2]。所以电子技术在医院精密设备中的应用如下。传统技术的应用:基于宏观角度分析,电子传感技术属于新型电子科技,所以必须应用技术制造传感器。通过电子传感器,能够对被测物质的物理性能进行分析,同时通过专业系统,对物质物理性质进行分析,同时实行数字化转变,提供可识别信息数据。通过信息数据,能够帮助使用人员作出科学判断,同时将数据信号传输到网络系统内,使用计算机分析和处理数据信息。上述内容均为检测仪器的功能优势,既发挥出电子技术的应用优势,还涉及生物、物理、医学与化学学科,属于新型高科技产物。通过此种仪器,能够详细分析仪器输出信息数据,判断检查对象的身体状态。由于技术采用生物芯片方式,可以采集不同生物机体样本,开展化学排查、细胞检测等。芯片技术多采用硅类半导体材料[3],同时包含非金属材料,比如塑料和玻璃,能够广泛应用到医学领域。无线网络通信技术的应用:在医学精密仪器中,开始注重无线网络通信技术应用,应用优势显著。比如,技术操作距离近,成本低廉,且能源消耗量少,因此为多项结合、双向的电子技术。一般来说,技术多应用到传播速率高、近距离、低耗仪器中,距离增加、仪器复杂度、功效消耗之间,均具备正比。基于现状分析可知,无线通信技术具备较强实用性,且医疗环境内的无线通信技术可以应用到临床护理中,为医生、护士、患者提供交流沟通渠道,及时掌握和了解患者疾病进展、健康状态,提升治疗效果[4]。在便携式医疗仪器中的应用:随着医疗仪器的发展,逐渐出现了较多家庭便携式仪器,能够满足医院与群众需求。通过该医疗仪器,可以借助电子技术,利用蓝牙、无线网络实现信息传递,确保患者能够随身携带医疗仪器。便携式仪器的制造成本低廉,且价格适中,动作操作性非常强。患者使用便携式仪器,无需住院观察,就可以使医生实时监测病情,且仪器精确度非常高,可以确保信息传输的准确性。在数据监测、患者病情远程控制中,可以应用电子技术,在检查患者身体时,电子仪器设备的精度也非常高,可以保证检查与病情记录的全面性,制定有效的治疗方案,确保疾病治疗的针对性[5]。数字信号处理:在家庭式护理精密设备中,最常见的就是可穿戴式医疗设备,该类设备可以集合智能化信息技术、网络中断内容,通过数字信号处理技术,可以获得相关目标信息。比如,患者将仪器佩戴在身上,通过生物感应器可以感应心电信号,通过过滤处理之后,可以凸显出特征性数字信号。根据心电滤波计算公式,可以对心电参数进行判断,掌握心电信号是否处于异常状态,可以将信息数据传输到控制中心。家庭医疗设备可以实现无线网络、数字信号处理等功能,且体积小,成本低廉,患者无需到医院治疗监护,就能够确保医生掌握病情,精确度非常高,全面提升医护决策的有效性[6-7]。注重远程病情监控:随着现代电子技术的发展,精密医疗设备被应用到各行业领域,涉及病情远程监控、生物监测、放射治疗等。针对慢性疾病患者,电子技术能够远程监控病情,利用网络传感、数字蓝牙,就能够掌握身体状态,同时监测病情进展,全面提升信息传输准确性,患者无需长时间住院治疗或观察。

电子技术在医院精密设备中的应用展望在医院精密设备中,电子技术的应用领域非常广,包含病患远程监控、放射检测、人体检测等。电子技术被应用到前言医疗检测、诊断治疗设备中。比如,利用电子技术,能够提升X线仪器的运行效率、清晰度、分辨率,全面显示患者病变位置。电子技术还可以应用到超声检查、核磁共振、电子内镜中,通过对比度灰阶模式,能够降低患者在医学检查的损伤。在未来发展中,为了全面发挥出电子技术在医院精密仪器中的应用效果,还应当注重建立库房管理制度,业务人员利用电子系统,可以随时查看设备参数,确保工作流程数据的依据性。通过电子信息系统,可以详细记录设备出入库账目,维护医疗活动运行的有序性。通过电子信息系统管理,能够及时掌握设备需求与运行状态,提升设备运行有序化,减少费用支出。综上所述,电子技术在医院设备中的应用效果显著,对于现代医疗发展,不仅是机遇,更是挑战,所以医疗机构管理人员必须充分发挥出电子技术的作用,将其科学应用到精密仪器管理中,以此提升医疗高精密仪器的诊断治疗作用,为患者提供高精准的检查体验,优质的医疗服务,从根本上促进现代医疗工作的发展。参考文献[1]潘哲.设备器械图片管理对精密手术仪器管理质量的影响[J].中国医疗器械信息,2020,26(15):161-163.[2]为医疗设备精密制造提供最优设计加工方案[J].现代制造,2020,25(1):58.[3]羊月祺.基于物联网的医疗设备运行环境与状态监测系统设计与实现[D].南京:东南大学,2019.[4]史元靖.关于精密医疗器械设备维修与保养的必要性分析[J].全科口腔医学电子杂志,2019,6(8):26.[5]黄时航.应用PDCA循环原理提高医疗设备管理和维护能力[J].设备管理与维修,2019,10(4):5-6.[6]黄家富.精密医疗器械设备维修与保养的必要性探究[J].中国医疗器械信息,2019,25(2):175-176.[7]赵欣然.精密医疗器械设备维修与保养的必要性探究[J].黑龙江科技信息,2017,28(7):100.

第5篇:生物医学工程应用领域范文

关键词:基本概况及简要发展 ,常用方法, 实际应用 ,未来发展

Abstract: the digital image processing is to point to will image signal converted into digital signals and use the computer to the treatment of the process. Image processing first appeared in the 1950 s, when the electronic computer has developed to a certain level, people began to use computers to graphics processing and image information. Digital image processing as a subject about formed in the early 1960 s. The purpose of the early image processing is to improve the quality of the image, it with artificial object, to improve the visual result of the person for the purpose. The image processing, the input is the image quality is low, the output is to improve the quality of the images, common image processing method has image enhancement, recovery, coding, compression, etc. Nowadays, digital image processing is and the various aspects of society closely linked, inseparable. Let us know the digital image processing technology.

Keywords: basic situation and brief development, commonly used method, the practical application, the future development

中图分类号:TU74文献标识码:A 文章编号:

一、数字图像处理的基本概况及简要发展

数字图像处理,即Digital Image Processing,是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。20世纪20年代,图像处理首次应用于改善伦敦和纽约之间海底电缆发送的图片质量。到20世纪50年代,数字计算机发展到一定的水平后,数字图像处理才真正引起人们的兴趣。1964年美国喷气推进实验室用计算机对“徘徊者七号”太空船发回的大批月球照片进行处理,收到明显的效果。20世纪60年代末,数字图像处理具备了比较完整的体系,形成了一门新兴的学科。20世纪70年代,数字图像处理技术得到迅猛的发展,理论和方法进一步完善,应用范围更加广泛。在这一时期,图像处理主要和模式识别及图像理解系统的研究相联系,如文字识别、医学图像处理、遥感图像的处理等。20世纪70年代后期到现在,各个应用领域对数字图像处理提出越来越高的要求,促进了这门学科向更高级的方向发展。特别是在景物理解和计算机视觉(即机器视觉)方面,图像处理已由二维处理发展到三维理解或解释。近年来,随着计算机和其它各有关领域的迅速发展,例如在图像表现、科学计算可视化、多媒体计算技术等方面的发展,数字图像处理已从一个专门的研究领域变成了科学研究和人机界面中的一种普遍应用的工具。图像处理工具箱提供一套全方位的参照标准算法和图形工具,用于进行图像处理、分析、可视化和算法开发。可用其对有噪图像或退化图像进行去噪或还原、增强图像以获得更高清晰度、提取特征、分析形状和纹理以及对两个图像进行匹配。工具箱中大部分函数均以开放式MATLAB语言编写。这意味着可以检查算法、修改源代码和创建自定义函数。图像处理工具箱在生物测定学、遥感、监控、基因表达、显微镜技术、半导体测试、图像传感器设计、颜色科学及材料科学等领域为工程师和科学家提供支持。它也促进了图像处理技术的教学。

二、数字图像处理常用方法1、图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。2、图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。3、图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。4、图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。5、图像描述:图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

三、数字图像处理在生活中的实际应用

图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

1、航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了上面介绍的JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。

2、生物医学工程方面的应用数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效。除了上面介绍的CT技术之外,还有一类是对医用显微图像的处理分析,如红细胞、白细胞分类,染色体分析,癌细胞识别等。此外,在X光肺部图像增晰、超声波图像处理、心电图分析、立体定向放射治疗等医学诊断方面都广泛地应用图像处理技术。

3、通信工程方面的应用当前通信的主要发展方向是声音、文字、图像和数据结合的多媒体通信。具体地讲是将电话、电视和计算机以三网合一的方式在数字通信网上传输。其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达100Mbit/s以上。要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量。在一定意义上讲,编码压缩是这些技术成败的关键。除了已应用较广泛的熵编码、DPCM编码、变换编码外,目前国内外正在大力开发研究新的编码方法,如分行编码、自适应网络编码、小波变换图像压缩编码等。

4、工业和工程方面的应用在工业和工程领域中图像处理技术有着广泛的应用,如自动装配线中检测零件的质量、并对零件进行分类,印刷电路板疵病检查,弹性力学照片的应力分析,流体力学图片的阻力和升力分析,邮政信件的自动分拣,在一些有毒、放射性环境内识别工件及物体的形状和排列状态,先进的设计和制造技术中采用工业视觉等等。其中值得一提的是研制具备视觉、听觉和触觉功能的智能机器人,将会给工农业生产带来新的激励,目前已在工业生产中的喷漆、焊接、装配中得到有效的利用。

5、军事公安方面的应用在军事方面图像处理和识别主要用于导弹的精确末制导,各种侦察照片的判读,具有图像传输、存储和显示的军事自动化指挥系统,飞机、坦克和军舰模拟训练系统等;公安业务图片的判读分析,指纹识别,人脸鉴别,不完整图片的复原,以及交通监控、事故分析等。目前已投入运行的高速公路不停车自动收费系统中的车辆和车牌的自动识别都是图像处理技术成功应用的例子。

6、文化艺术方面的应用目前这类应用有电视画面的数字编辑,动画的制作,电子图像游戏,纺织工艺品设计,服装设计与制作,发型设计,文物资料照片的复制和修复,运动员动作分析和评分等等,现在已逐渐形成一门新的艺术--计算机美术。

7、机器人视觉:机器视觉作为智能机器人的重要感觉器官,主要进行三维景物理解和识别,是目前处于研究之中的开放课题。机器视觉主要用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人,装配线工件识别、定位,太空机器人的自动操作等。

8、视频和多媒体系统:目前,电视制作系统广泛使用的图像处理、变换、合成,多媒体系统中静止图像和动态图像的采集、压缩、处理、存贮和传输等。

9、科学可视化:图像处理和图形学紧密结合,形成了科学研究各个领域新型的研究工具。

10、电子商务:在当前呼声甚高的电子商务中,图像处理技术也大有可为,如身份认证、产品防伪、水印技术等。

四、数字图像处理未来发展

自20世纪60年代第三代数字计算机问世以后,数字图像处理技术出现了空前的发展,在该领域中需要进一步研究的问题主要有如下五个方面:1、在进一步提高精度的同时着重解决处理速度问题;

2、加强软件研究,开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法;

3、加强边缘学科的研究工作,促进图像处理技术的发展;

4、加强理论研究,逐步形成处理科学自身的理论体系;

5、时刻注意图像处理领域的标准化问题。

五、直方图规定化原理和算法

在直方图规定化的过程中, 正确地选择规定化的函数有可能获得比直方图均衡化更好的效果, 一般分为三个步骤:

(1)如同均衡化方法中,对原始图的直方图进行灰度均衡化:

………………………………………(1)

(2)规定需要的直方图,并计算能使规定的直方图均衡化的变换:

…………………………………………(2)

(3)将第1个步骤得到的变换反转过来,即将原始直方图对应映射到规定的直方图,也就是将所有的对应到去。因为在映射过程中有取整误差的影响, 所以采用什么样的映射规则在离散空间中很重要。常用的两种方法为单映射规则( single mapping law, SML) 和组映射规则(group mapping law,GML)。

单映射规则( single mapping law, SML) : 是从小到大依次找到能使式(3)最小的k和l,

………………………………………………(3)

然后将对应到去, 由于这里每个是分别对应过的, 故这种方法简单直观, 但有时会有较大的取整误。

组映射规则(group mapping law, GML): 设有一个整数函数,, 满足: , 确定使式(4)达到最小的。

………………………………………………(4)

这时, 如果, 则将其从到的都对应到去;如果, 则将其从 到都对应到去[5]。

我们采用MATLAB进行仿真运算,具体实现的MATLAB算法的流程图为:

图1SML算法流程图图2GML算法流程图

六、 仿真效果对比

设有一幅64×64,8比特灰度图像,其直方图见图3所示,图4为希望变换得到的规定直方图。我们采用MATLAB进行仿真,按照单映射(SML)和组映射(GML)规则分别进行计算,可以得到在这两种映射规则下的直方图分布,仿真运算结果见图5图6所示。

图3 原始直方图 图4 规定直方图

图5 SML规定化后的直方图 图6 GML规定化后的直方图

七、 结论

对比图5和图6表明,本文实现的GML算法可以改进在以往的直方图规定化算法中出现的规定化后的图像的灰度级不能与规定直方图的灰度级相似的问题。同时我们可以看出,SML映射规则是一种有偏的映射规则,因为一些对应灰度级被有偏的映射到接近计算开始的灰度级,而GML映射规则是统计无偏的。

量化的比较可借助映射产生的误差来进行,这个误差可用对应映射间数值的差值(取绝对值)的和来表示,和的数值越小,映射效果越好。以图5图6 的数据为例,对单映射来说,这个和为:;而对组映射来说,这个和为:。组映射所产生的误差小于单映射所产生的误差。

八、 参考文献

[1] 冈萨雷斯.数字图像处理(MATLAB版).北京:电子工业出版社.2004:58-64

[2] 章毓晋. 图像工程(上册) : 图像处理[M]. 北京: 清华大学出版社,2006.90-97

[3] Zhang Y J.1992.Improving the accuracy of direct histogram specification. IEEE Electronics Letters,28(3):213-214

第6篇:生物医学工程应用领域范文

【关键词】亲水性凝胶;医用贴剂;临床治疗;应用领域

亲水性凝胶贴剂(巴布剂)是一种科技含量较高、使用方便的新型外用贴敷剂,属于经皮给药系统,是以水溶性高分子材料为主要基质,加入药物,涂布于无纺布上制成的外用制剂。70年代首先在日本出现,20世纪80年代引入我国,并开展了其在外科疾病中的应用[1]。

传统的医用敷料主要包括海绵、纱布等,与传统的敷料相比,水凝胶贴剂能促进伤口更好地愈合、 减轻患者的疼痛, 改善创面的微环境、 抑制细菌的生长。并特别适用于常见的体表创伤,如擦伤、 划伤、 褥疮等各种皮肤损伤。改变了纱布易与皮肤伤口组织粘连,换药时常常破坏新生的上皮和肉芽组织,引起出血,不但不利于伤口的愈合,而且使病人疼痛难忍的缺点。

1. 亲水性凝胶医用贴剂的制备要点

1.1 亲水性凝胶医用贴剂基质材料

水凝胶贴剂的制备基材,通常采用高分子材料,而这些高分子基材又可以分为天然高分子材料、合成高分子材料和天然―合成复合高分子材料[2]。

其中,天然高分子材料包括透明质胶,海藻酸盐,壳聚糖,胶原蛋白,明胶,纤维素,葡聚糖,甲壳素,琼脂糖等;合成高分子材料主要包括聚丙烯酸(PAA),聚乙二醇(PVA),聚乙烯醇(PEG),聚乙烯吡咯烷酮(PVP),聚己内酯(PCL),聚甲基丙烯酸羟乙酯(PHGMA),聚乳酸(PLA),聚氨酯(PU)等;天然―合成复合高分子材料主要包括壳聚糖―聚乙二醇,壳聚糖―聚乙烯吡咯烷酮,胶原蛋白,聚丙烯酸等。每一种高分子材料都有其自身的优点和缺点,在实际应用中,可针对不同的治疗要求进行选择。

1.2 亲水性凝胶医用贴剂的制备方法

贴剂的制备一般分为两个步骤, 基质的制备和含药骨架贴片的制备[3]。

1.2.1 基质材料的制备方法

1.2.1.1 化学交联的方法

化学交联法是制备水凝胶最为常用的方法,是指在化学交联剂的作用下,通过共价键将高聚物链结合而成的网状结构,加热不溶不熔,也称为永久性水凝胶。孙莺等介绍了一种新型羟化聚天冬氨酸-乙基纤维素PASP―EC互穿网络水凝胶的制备过程,所制备水凝胶具有较明显的药物缓释效果[4]。

1.2.1.2 物理交联的方法

物理交联的水凝胶是通过分子缠绕、离子键、氢键及疏水作用等物理方法进行交联,形成的水凝胶也称为可逆水凝胶。物理交联目前报导中使用最多的是“反复冷冻解冻法”和“冻结部分脱水法”[5]。制备过程不需要交联剂,生产出来的胶体具有低毒(甚至无毒)、易生物降解的优点,特别适用于生物医学、药学等领域。关静等以聚乙烯醇(PVA)水溶液为原料,用物理交联方法制备的水凝胶烧伤敷料具有使创面处于湿性环境,有明显镇痛作用,降低组织代谢,减轻创面水肿程度的作用[6]。

1.2.1.3 辐射交联的方法

辐射交联是指通过电子束照射、―光子照射,使链状高分子聚合物交联,形成水凝胶的过程。具有反应过程中不需要添加引发剂、交联剂,产物纯度高,操作较方便,容易控制聚合物基材的形状和结构等优点。用辐射交联法生产出来的水凝胶较适合运用于医学材料领域。但由于辐射制胶法对设备要求很高,需要电子直线加速器或60Co治疗机,因此使其广泛运用受到了限制。饶志高采用辐射交联的方法,制备了一种水凝胶膜,该水凝胶膜透明度好、气泡少,溶胀度较高,并具有十分理想的抗张强度,可为临床不同类型的伤口提供性能适宜的新型水凝胶伤口敷料[7]。Keys[8]和Branca[9]等分别通过伽马射线和高能电子束辐照条件下制备了适用于蛋白质输送的星形 PEG 水凝胶。并分别证明所制备水凝胶具有较好的吸液性和溶胀性。

1.3 水凝胶含药骨架贴剂的制备工艺

凝胶含药骨架贴剂的制备主要是在优选处方后, 按处方量和先后顺序加入主药和辅料,以一定的搅拌速度和温度使其充分溶解,混合均匀。反应结束取出,超声脱泡,在一定的温度用模具铺成薄片,膜厚由胶浆加入量控制。干燥,控制一定的温度和时间在烘箱中干燥至表面固化有弹性,取出冷至室温,脱模,叠合保护膜,切割,即制得具有一定大小和含药量的贴剂[3]。李伟泽等采用设备满负荷规模生产中药水凝胶巴布剂,研究物料加入顺序、物料混合时间、静置条件(温度、湿度、时间)对于膏体涂布切割的难易程度和巴布剂的质量如凝胶强度、柔软性、黏性、残留、冷流与无纺布渗析等的影响规律,并通过3个不同的中药复方提取物进行验证[10]。田孝才等以生物相容性良好的亲水性高分子材料作为水凝胶的骨架材料,制备新型目标药物水凝胶贴剂,然后以亲水性高分子材料、填充剂、保湿剂、交联剂和交联调节剂等含量作为试验因素,以剥离强度和黏着力作为考核指标,采用均匀设计试验法优选制备目标药物水凝胶贴剂的最优方案[11]。雷宇将甲巯咪唑制成水凝胶贴剂能避免首过效应,降低毒副作用,且相比于市售软膏剂有减少给药次数、给药方便等优点[12]。

2.亲水性凝胶贴剂的医疗应用

水凝胶类似于生命组织材料,表面粘附蛋白质及细胞能力很弱,在与血液、体液及人体组织相接触时表现出良好的生物相容性,它既不影响生命体的代谢过程,代谢产物又可以通过水凝胶排出。水凝胶比其它任何合成生物材料都接近活体组织,它在性质上类似于细胞外基质部分,吸水后可减少对周围组织的摩擦和机械作用,显著改善材料的生物学性能[13]。因此,是一类具有较大开发潜力的医用材料。

2.1 创面敷料

伤口感染是术后伤口愈合过程中最严重的干扰因素。当伤口发生感染时,全身使用抗生素并不能取得很好的疗效, 而伤口换药所用敷料的选择对控制局部感染具有重要作用。水凝胶的优点是可吸收渗液形成凝胶,且吸收渗液后的凝胶不会沾粘伤口,可加速上皮细胞生长,加速新微血管增生;隔绝细菌侵犯,抑制细菌繁殖。Hajek M 等用藻酸钙纤维制成 Sor balgon 水凝胶,该敷料与伤口渗液接触后形成光滑的凝胶体,可有效清创且使伤口表面的细胞残屑、细菌、微生物等被包裹、锁定在凝胶体中,而且在藻酸钙与伤口渗液中的钠离子结合形成凝胶的同时将钙离子释放,伤口表面钙离子的大量集结可加速创面止血,促进创面愈合[14]。范小莉等研究了银离子联合水凝胶敷料,并证明银离子联合水凝胶敷料具有较好的控制伤口感染、促进伤口的生长及促进伤口愈合的作用[15]。

2.2 防粘连材料

在外科手术后,易发生组织粘连,这既是外科领域常见的临床现象,也是患者在愈合过程中必须经历的过程。 粘连是结缔组织纤维带与相邻的组织或器官结合在一起而形成的异常结构。如果粘连现象在腹腔、盆腔骨骼等手术中出现,就会引起严重的并发症,如腹部、盆腔等均可引起粘连性肠梗阻,甲状腺手术后引起喉返神经损伤以及因盆腔组织粘连而导致的女性不育症[16]。为防止粘连,过去常用黏稠的高分子水溶液、聚硅烷片、聚四氟乙烯片、羊膜、再生胶原膜、氧化纤维素布等,但这些材料会引起血栓,残留材料易引起组织损伤,过早被体内吸收,不够柔软,且对目标部位的固定困难等。近年来,为了解决上述材料所存在的问题,有众多研究者开始使用水凝胶基材作为原料,制备贴剂类防粘连材料。天津大学高春娟开发了一种在壳聚糖中引入天然蛋白质大分子(MIJ) 以提高壳聚糖的降解速度,同时还在复合膜中加入生物相容性大分子(JEC),以提高复合膜的亲水性,改善膜材料的表面性能的壳聚糖复合膜材料。所制备壳聚糖复合膜材料具有优良的防粘连效果[17]。

2.3 药物缓释方面的运用

药物缓释是一种控制药物释放速度和定向释放的技术。水凝胶常常被应用于该领域当中,主要是利用物理包埋固定化技术,将酶、药物等与聚合物单体的水溶液在室温下进行聚合和交联。水凝胶包埋药物之后,通过口服或植入的方式进入基体,药物在自身扩散和水凝胶降解的双重作用下,可以长期而缓慢地以所需剂量释放出来,长效的发挥作用。从而大大提高了药物的利用率,减少了药物对身体其它部位的毒副作用。目前对于水凝胶在药物释放方面的研究已经成为医药界的一大热点,成功研制了大量产品。岳凌等研制一种能加速伤口愈合的水凝胶药物缓释膜,应用冷冻―解冻法,将硫酸庆大霉素引入PVA/PEO的水凝胶中,并且证明掺加药物的水凝胶膜在6 h内药物快速释放达高峰,累计释放率为 59.57%[18]。张彦对新型聚乳酸一聚乙二醇水凝胶胸腺五胧药物缓释进行了研究,将水溶性的五肽一胸腺五肽,通过直接混合的方法包裹在水凝胶之中,未曾引入任何的有机溶剂或其它杂质,很好的保护了药物的药理学性能[19]。

3.结束语

水凝胶贴剂作为一种新型的外用医用贴剂,具有良好的临床疗效和市场前景,但目前该产品的生产尚未形成一定的规模。要实现产品质量的可控性,就需要透彻了解产品中各组分所起的作用以及相互影响的程度。因此,除了对水凝胶贴剂的基质辅料、基质处方、制备工艺、质量和质量评价标准等进行研究外,还需要进一步了解基质交联机制和药物释放机制。

参考文献:

[1] 函. 聚乙烯醇水凝胶制备及生物评价 [D]. 吉林:吉林大学, 2011.

[2] 陈向标. 水凝胶医用敷料的研究概况 [J]. 轻纺工业与技术, 2011, 40(1): 66-68.

[3] 钱丽萍, 林绥, 阙慧卿. 近年来贴剂的研究进展 [J]. 海峡药学, 2009, 21 (6): 26-29.

[4] 孙莺, 黄洪亮, 孙鑫, 胡和丰, 倪欢. 一种新型聚天冬氨酸水凝胶的制备及其药物缓释性能研究 [J]. 化工科技: 2012, 20(5):14-18.

[5] 李一凡, 刘 捷, 李政雄. PVA水凝胶制备、改性及在生物医学工程中的研究进展 [J]. 高新技术产业发展, 2012: 5-6.

[6] 关静, 黄姝杰, 志宏, 继民, 程鹏, 张西正. PVA水凝胶烧伤敷料的制备方法研究 [J]. 生物材料, 2005, 26 : 611-619.

[7] 饶志高. 新型高溶胀性水凝胶膜的研制及其治疗放射性烧伤的实脸研究 [D].苏州: 苏州大学, 2008.

[8]Keys K B, Andreopoulos F M, Peppas N A. Poly(ethy-lene glycol) star polymer hydrogels[J]. Macromol-ecules, 1998, 31(23): 8 149-8 156.

[9] Branca C, Magazu S, Maisano G, et al. Synthesis of polyethylene oxide hydrogels by electron radiation[J]. Journal of Applied Polymer Sciencem, 2006, 102(1): 820-824.

[10] 李伟泽, 张光伟, 赵宁, 孔朋, 焦晓彪. 中药水凝胶巴布剂产业化工艺技术攻关研究 [J]. 中草药, 2012, 43(10):1928-1933.

[11] 田孝才, 聂亚楠, 汪济奎. 一种医用水凝胶贴剂的研制及其性能研究[J]. 中国胶粘剂, 2012, 21(12):20-24.

[12]雷宇, 甲巯咪唑水凝胶贴剂的工艺优化及影响因素考察 [D]. 武汉: 华中科技大学, 2007.

[13] 杨连利, 梁国正. 水凝胶在医学领域的热点研究及应用 [J]. 材料导报, 2007, 21(2): 112-115

[14]H ajek M, Sedlar ik K M. Adv antag es of alg inate bandag es for coverage of extensive and poo rly healing wounds[J]. RozhiChir, 1992, 71( 3 - 4) : 152

[15]范小莉, 肖蔓, 吴英琼. 银离子联合水凝胶敷料对术后感染伤口治疗效果的前瞻性研究[J]. 中国普外基础与临床杂志, 2013, 20(2):209-211.

[16]谢新艺, 吕鹏举, 颜林. 可吸收医用防粘连材料及其性能要求研究进展[J]. 中国医疗器械信息, 2012, 5:10-18.

[17]高春丽. 术后防粘连材料的制备及性能研究 [D]. 天津: 天津大学, 2005.

第7篇:生物医学工程应用领域范文

[关键词]数字信号处理;优势;实现方法

中图分类号:TB559 文献标识码:A 文章编号:1009-914X(2015)44-0154-01

数字信号处理是一门涉及许多学科而又广泛运用于许多领域的新兴学科,它是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。数字信号处理一经问世,便吸引了很多学科的研究者,并把它应用于自己的研究领域。可以说,数字信号处理是应用最快、成效最为显著的新学科之一。在数字通信、雷达、遥感遥测、声纳、语音合成、图象处理、测量与控制、生物医学工程、振动工程等众多领域都获得了极其广泛的应用,它有效地推动了众多工程技术领域的技术改造和发展。而且随着科学技术的发展,其研究范围和应用领域还在不断地发展和扩大。

一、数字信号处理系统的优势分析

数字信号处理之所以发展得这样快,应用得这么广,是与它的突出优点分不开的。归纳起来,它有以下四个方面的优点:

1)精度高。模拟系统的精度主要取决于元器件的精度,一般模拟器件的精度达到10-3已很不容易。而数字系统的精度主要取决于字长,16位的字长可达10-4以上。

2)灵活性大。模拟信号装置一旦参数选定就不易改变,但是数字系统则不然,它的系数可调,甚至还可以具有可编程和自适应的能力。

3)可靠性高。由于数字系统只有“0”、“1”两个电平,使其受温度、环境以及噪声等的影响比模拟系统小。

4)时分复用。利用一套装置同时处理几个通道的信号。

二、数字信号处理系统硬件实现方法

数字信号处理的工作方式通常是:数据采集―>数据存储―>信号处理―>输出处理结果。随着数字信号处理理论的发展,其所要求的运算量越来越大,并且在雷达、电子对抗、通信、图像处理等领域,人们对信号处理的实时性要求也越来越高。这就要求在信号处理过程中,减少数据存储的次数,缩短信号处理的时间,因此高速的、实时的数字信号处理技术成为发展的必然。人们运用各种方法使数字信号处理理论算法能够实现高速的、实时的处理。目前,数字信号处理的实现大体有以下几种方法。

1) 在通用的 PC 上用软件实现

近来迅速发展的 Matlab,就几乎可以实现所有的数字信号处理的仿真。Matlab 下的程序可以通过转换成 C 语言,并通过DSP 的 C 编译器直接在 DSP 硬件上运行。但是这种方法速度太慢,不能用于高速实时系统。

2)用通用的单片机来实现

单片机的接口性能比较好,容易实现人机接口。但是由于单片机大多采用冯・诺依曼结构,数据寻址和程序寻址不能同时进行,运算速度比较慢,尤其是乘法运算。这种实现方式一般用于计算量不是很大的场合,如数字控制等。

3)利用专用 DSP 芯片实现

现在国际上已推出不少专门用于 FFT、FIR滤波、卷积等专用的芯片。如美国 TKW 公司 1990 年推出的超快单片 FFT 处理芯片 TMC2350,可以在 514us 内完成基 2 时间抽取法的 1024 点复数 FFT 运算。这种实现方式一般用于对速度要求很高的场合,但由于其功能专用,因此实现方法不灵活。

4)利用可编程的 DSP 芯片来实现

DSP 芯片采用超哈佛结构,有多条独立的程序和数据总线,内部有硬件乘法器、累加器等,使用流水线结构,具有良好的并行特性,并且有专门设计的适于数字信号处理的指令系统,DSP 芯片具有更适于数字信号处理的优点。

5)利用 FPGA 等可编程逻辑器件实现

FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、EPLD等可编程器件的基础上进一步发展的产物。通过对逻辑器件的编程,利用硬件实现特定的数字信号处理算法。这种实现方法具有通用性的特点,并且可以实现算法的并行运算。由于 FPGA 基于逻辑门阵列的特殊硬件结构,FPGA 还适于实现高速数字电路,例如高速的存储器接口。因此 FPGA 可以作为独立的数字信号处理器,也可以作为通用 DSP 芯片的协处理器。

6)DSP+FPGA 的实现方式

数字信号处理广泛应用于各种科学和技术领域中,在如今的数字信号处理中越来越重要的作用。随着信息技术、大规模集成电路和计算机的飞速发展,数字信号处理技术取得了快速的发展。尤其是专用数字信号处理器 DSP 和大规模可编程器件 FPGA 的发展更是促进了数字信号处理系统设计的快速发展。

在高速数字信号处理系统中,低层的信号预处理算法处理的数据量大,对处理速度的要求高,但运算结构相对比较简单,适于用FPGA进行硬件实现,这样能同时兼顾速度及灵活性。高层处理算法的特点是所处理的数据量较低层算法少,但算法的控制结构复杂,适于用运算速度高、寻址方式灵活、通信机制强大的DSP芯片来实现。随着大规模可编程器件的发展,采用 DSP+FPGA结构的信号处理系统显示出了优越性,正逐步得到重视。DSP+FPGA最大的特点是结构灵活,有较强的通用性,适于模块化设计,从而能够提高算法效率;同时其开发周期较短,系统易于维护和扩展,适合于高速数字信号处理。

随着系统向高速度、低功耗、低电压和多媒体、网络化、移动化方向发展,其对电路的要求越来越高,因此,传统的单一功能的集成电路设计技术已无法满足性能日益提高的整机系统的要求。这时候数字信号处理系统凭借其强大的功能优势,逐渐占据电子市场。

参考文献

[1] 祈业欣,孟宪元,吴建明.DSP 中 FPGA 实现的新思路.电讯技术,2001,(5):35-38

[2]刘韬 , 楼兴华 .FPGA 数字电子系统设计与开发实例导航 . 北京 : 人民邮电出版社,2005:51-83

第8篇:生物医学工程应用领域范文

【关键词】 智能水凝胶 分类 理论机理 应用

水凝胶是由高分子的三维网络与水组成的多元体系,是自然界中普遍存在的一种物质形态,生物机体的许多部分(如人体的肌肉、血管、眼球等器官) 都是由水凝胶构成的。它是一些高聚物或共聚物吸收大量水分,溶胀交联而成的半固体。水凝胶的性质不仅与聚合单体和交联剂的性质以及聚合工艺条件有关,而且还取决于溶胀时的条件。根据水凝胶对外界刺激的应答情况,可分为两类:一类是传统的水凝胶,这类水凝胶对环境的变化不特别敏感。另一类是环境敏感的水凝胶,这类水凝胶在相当广的程度上对环境所引起的刺激有不同程度的应答,具有智能性。智能水凝胶对外界微小的物理化学刺激,如温度、电场、磁场、光、pH、离子强度、压力等能够感知并在响应过程中有显著的溶胀行为或响应性。由于水凝胶的这种智能性,使其在药物控释载体、组织工程、活性酶的固定、调光材料方面具有良好的应用前景,另外,在化学转换器、记忆元件开关、传感器、人造肌肉、化学存储器、分子分离体系等方面也开始表现出良好的应用前景。近年来对它的研究和开发工作异常活跃,成为当今研究的热点。

1 智能水凝胶的分类

根据对外界刺激的响应情况,智能型水凝胶分为:温度敏感型水凝胶、pH敏感型水凝胶、光敏感型水凝胶、电场敏感型水凝胶、压力敏感型水凝胶、生物分子敏感型水凝胶等。

1.1 温度敏感型水凝胶

温度敏感型水凝胶对环境的温度变化能产生响应,即当周围环境温度发生变化时,凝胶自身的性质也随之改变。目前研究较多的是随温度变化而发生体积相转变的水凝胶,可分为高温收缩和低温收缩型两类。还有一种是无体积变化而具有温致变色的温度敏感水凝胶。

这种热敏特性的机理是凝胶体系中存在着一定的疏水和亲水基团,它们和水在分子内和分子间会产生相互作用。当T < LCST时, 凝胶溶于水, 凝胶与水之间主要是酞胺基团与水分子之间氢键的作用,此时由于氢键及范德华力的作用,大分子链周围的水分子将形成一种由氢键连接的、高度有序化的溶剂壳层。随温度上升,凝胶与水相互作用参数改变,其分子内及大分子间的疏水作用加强,形成疏水层,氢键被破坏,大分子链周围的溶剂壳层被破坏,在某一临界温度(LCST)水分子从凝胶中排出,凝胶产生相变,从而表现出温敏性。此时高分子由疏松的线团结构转变为紧密的胶粒状结构,发生了coil - globule 转变。这种相变是在很窄的温度范围内发生的,发生相变的温度称为最低临界转变温度(LCST),高于这个温度时溶胀的水凝胶发生收缩,而低于这个温度则再度溶胀。

聚N-异丙基丙烯酰胺(PNIPAM)水凝胶的温度敏感性相转变是由于交联网络的亲水性/疏水性平衡受外界条件变化的影响而引起的,是分子链构象变化的表现。然而,PNIPAM水凝胶存在的一些缺陷也极大的影响了其实际应用。存在的缺陷主要有两点:第一,响应速率慢,第二,机械强度差。因此近十几年来,这一领域的研究主要集中在PNIPAM水凝胶响应速率和机械强度的改善上。提高PNIPAM水凝胶的响应速率目前主要有三种方法:1缩小凝胶的体积尺寸,可制成微胶囊,制成纳米微粒网络。2合成具有孔结构的凝胶。3在凝胶基体中引入接枝链。而提高PNIPAM水凝胶机械强度的方法有:1引入机械强度高的物质作支架。2形成互相贯穿聚合网络(IPN)。3与疏水性单体共聚。

自1984年有文献报道聚N-异丙酰胺具温敏性以来,聚N-异丙酰胺及其衍生物已广泛用于药物释放研究。聚N-异丙酰胺中加入疏水性的甲基丙烯酸丁酯可增强凝胶机械强度,缩短对温度变化响应的时间。用聚N-异丙酰胺水凝胶包载药物的滴眼剂治疗青光眼,降压时间比普通制剂持久6倍。将包裹5-氟尿嘧啶的聚N-异丙酰胺水凝胶置透析袋中,释药受凝胶和透析膜双重控制,温度升高释药加快。

抗癌药置温敏水凝胶中,用抗体、糖作靶向基团运至靶区,并在外部施加物理刺激,可提高载体稳定性和靶向效果。温敏单体与磁性微球共聚,在外加磁场作用下具快速、简便的磁分离特性,可用于蛋白、多肽控释系统。对注射壳聚糖-β-甘油磷酸水凝胶及加入脂质体后的释药研究,后者在体温下快速胶凝。研究盐酸维拉帕米和硝苯地平在聚丙烯酰胺-瓜尔胶凝胶微球中的释药。泊洛沙姆可作为蛋白释药载体制备植入剂、纳米微球,用物理交联制备嵌段共聚水凝胶包埋大分子,透明质酸-泊洛沙姆凝胶用于人生长激素的控制释放。

近十年来,以PNIPAM为代表的温度敏感型水凝胶在理论和应用上均引起了人们越来越大的兴趣。其在应用领域的研究有待于进一步的开发。随着有关研究的深入,相信人们在不久的将来会在这一领域取得更大的成就。

1.2 pH敏感型水凝胶

具有pH敏感型的水凝胶是通过线形聚合物之间交联或互穿网络而形成体型大分子网络结构,网络中含有可离子化的酸性或碱性基团(羧基、磺酸基或氨基) ,随着介质pH值、离子强度改变,这些基团会发生电离,导致网络内大分子链段间氢键的解离,产生不连续的溶胀体积变化。在一定离子强度下,凝胶内外离子浓度差最大时对应的平衡溶胀度为极大值。这种凝胶溶胀对离子强度的关系,可以解释为在低离子强度下,因抗衡离子难以从溶液进人凝胶,所以可电离基团的电离度较小,随离子强度的提高电离度增大,凝胶溶胀加大,最后凝胶离子化达到最大,这时离子强度增加时,会减少凝胶内与溶液间的离子渗透压,而导致凝胶溶胀减少。根据敏感性基团的不同可分为阴离子、阳离子和两性离子三种类型。

pH敏感水凝胶中含酸、碱性基团,溶胀、收缩、渗透压随pH、离子强度变化,可实现靶向释药。凝胶膨胀度和pH响应性可用中性共聚单体如甲基丙烯酸酯、顺丁烯二酸酐等调节。聚阳离子水凝胶在中性pH膨胀小、释药少,可用于胃部释药及防止味觉差的药物在口腔等中性环境释放。用甲基丙烯酸甲酯和N,N-二甲氨甲基丙烯酸乙酯共聚水凝胶包载咖啡因,在中性环境不释药,pH3-5呈零级释药。一般聚酸类水凝胶在酸性下不解离,膨胀小、释药少,可设计治疗消化性溃疡药按pH调节释药速度。pH敏感水凝胶作为多肽、蛋白载体,保护药物在胃、小肠不被降解,在结肠被微菌群产生的酶如偶氮还原酶、糖酐酶等降解释药。聚丙烯酸分子上大量的羧基具亲水性,聚丙烯酸或聚甲基丙烯酸与偶氮芳香交联的水凝胶在胃内膨胀很小,几乎不释药,在小肠内羧基电离,膨胀度增大,但偶氮键不断裂,结肠内被偶氮还原酶降解释药。降解动力学受凝胶交联度影响,膨胀动力学受聚合物组成影响。

pH敏感的多糖凝胶,如藻酸盐、环糊精、壳聚糖等作为释药载体很有潜力。聚多糖类水凝胶由于良好的生物相容性和降解性,在医学领域的应用倍受关注。壳聚糖-聚氧乙烯凝胶在酸性更具膨胀性,可用于抗生素如阿莫西林、甲硝哒唑等定位释药治疗胃部幽门螺旋菌。Zhang Yongjun 等利用相反电荷聚电解质之间的静电作用,通过层层组装制备壳聚糖水凝胶微囊。以二氧化硅 (SiO2) 微粒为核,先在核上依次包裹PAA 和壳聚糖膜,形成多层的PAA-壳聚糖外壳,再选择性的交联壳聚糖,最后将PAA 和SiO2核逐一除去,得到了壳聚糖水凝胶微囊。形成的壳聚糖微囊具有pH敏感性,壳聚糖的交联提高了壳层的稳定性,微囊壁的交联密度对水凝胶pH敏感程度有重要的影响。

1.3 温度和PH双重敏感型水凝胶

由于环境的复杂性,近年来人们对具有多重敏感性水凝胶的研究越来越感兴趣,这方面的研究主要集中在对温度和PH双重敏感的水凝胶上。

将pH敏感单体和温度敏感单体通过接枝、嵌段共聚引入某些酸、碱基团或采用互穿网络技术可合成温度、pH双重敏感水凝胶,各聚合物链有独立的敏感性。利用聚丙烯酸的电离性与聚乙烯醇的弹性可制备双重敏感水凝胶。如将N-异丙酰胺、N-氨基丙基甲基丙烯酰胺分别与N,N’-亚甲基二丙烯酰胺交联合成了双重敏感水凝胶,研究其在不同离子强度、pH中二磺酸奈的释放,发现酸性中氨基与二磺酸奈键合强,释药少,释药加快。所形成的水凝胶在pH值为7.4下,温度为37℃时发生相变,胰岛素在其中的释放发生明显变化。另外,黄月文等合成了兼具温度及值敏感性的聚N-异丙基丙烯酞胺-共-丙烯酸水凝胶,并在此水凝胶中包埋抗结肠癌药物阿司匹林。研究表明,在PH=7.4的介质中,37℃时阿司匹林在水凝胶膜中的释放比25℃时快,而在37℃、PH=7.4的介质中,阿司匹林的释放比PH为1.0的快得多,因此可将阿司匹林大部分定向到肠中释放。

1.4 光敏感型水凝胶

目前,这类水凝胶的合成主要是在温度或pH敏感型水凝胶中引入对光敏感的基团。导致光敏水凝胶的响应机理有三种:一种是特殊感光分子,当有光照射时,这类水凝胶将光能转化成热能,使材料局部温度升高,当凝胶内部温度达到热敏材料的相变温度时,发生体积相转变现象。例如,将吸光产热分子叶绿素与温敏水凝胶PNIPA 以共价键结合,当用紫外线照射时,该凝胶出现相转变现象。另一种是利用光敏分子遇光分解产生的离子来改变凝胶内外的离子浓度差,造成凝胶渗透压突变,促使凝胶发生溶胀,从而实现响应性。第3种响应机理是水凝胶材料中引人了发色基团,由于光照,这些发色团的理化性质(如偶极矩和几何结构)发生变化,导致具有发色团的聚合物链的构型的变化,从而导致聚合物性能发生改变。光异构化反应包括偶氮基团等的反式—顺式异构、无色三苯基甲烷衍生物的解离等。这些发色基团可位于聚合物骨架,又可作为侧基,甚至可作为交联剂。如含对光敏感的无色三苯基甲烷氰基的PNIPA水凝胶,当无紫外线时,水凝胶在30℃出现连续的体积相变,当有紫外线时,由于氰基的光解离,温度升至32. 6 ℃时凝胶的体积突变。

偶氮苯及其衍生物分子是一类典型的光致异构的分子,含偶氮苯光色基团的聚合物可用于光电子器件、记录存储介质和全息照相等领域,可发展成为具有广泛用途的一类新颖的先进功能材料。陈莉等通过自由基共聚合方法,将侧链含偶氮苯基的丙烯酰胺基偶氮苯单体(AAAB)与丙烯酸(AA)共聚合成了一种新型功能高分子P(AA - co - AAAB),使聚合物结构内在具备偶氮生色团的同时也具有亲水性的羧基,这就使得此种高分子具有pH 和光双重响应性能,从而将光响应与pH响应很好地融为一体,拓宽了其可能的应用范围。

1.5 电敏感型水凝胶

电敏感型水凝胶一般由聚电解质高分子构成,它在直流电场作用下可发生形变。其响应机理是溶液中自由离子在电场下的定向移动造成凝胶内外离子浓度和凝胶内部pH的不均匀,从而引起渗透压和聚电解质电离状态的变化。绝大多数电场敏感型凝胶是电致收缩型,网络上带正电荷的凝胶水分从阳极放出,否则从阴极放出。研究表明:凝胶的溶胀性能和电响应性能受凝胶的单体配比,溶液的离子强度和所施加的电场强度等因素的影响。这里存在一个临界压力,低于临界压力凝胶膨胀,高于临界压力则凝胶收缩。例如聚丙烯酸/聚乙烯基磺酸共聚物水凝胶(PAAC/PVSA),在电场中,由于电压引发离子运动,水凝胶的体积发生明显的变化,可用于生物传感器。

为了解决以往电敏水凝胶只能在酸性或碱性条件下发挥作用,需要较高的电压和响应时间慢等缺点,Elizabeth A. 等将具有导电性的聚吡咯/碳黑复合材料加入到丙烯酸/丙烯酰胺水凝胶内,其能在低电压 (1V)、中性溶液中快速 (5s) 做出响应。通过改变丙烯酸的含量、导电性、共混材料浓度和电场强度来调节对电刺激的响应。这种新型电敏凝胶材料有望用于生物微电子机械系统。

1.6 压力敏感型水凝胶

水凝胶的压力敏感性最早是由Marchetti 通过理论计算提出来的,其计算结果表明,凝胶在低压下出现塌陷,在高压下出现膨胀。

最近钟兴等人研究了压力对聚N-正丙基丙烯酰胺(PNIPA)、聚N,N-二乙基丙烯酰胺(PNDEA)及PNIPAAM这3种凝胶溶胀性的影响,认为3种凝胶之所以表现出明显的压敏性,首先是因为它们具有温敏性,另外还因为其相转变温度随压力而有所升高。所以,当温度不变时,如果常压下处于收缩状态的凝胶因为压力的增加而使其所处温度低于相转变温度的话,凝胶将发生大幅度的溶胀。

此外,赵春顺等以羟丙基甲基纤维素(HPMC)和羧甲基纤维素铺(CMCNa)为骨架材料,以非诺洛芬(FC)为模型药物,研究了FC亲水凝胶骨架片释药机制的影响因素,发现压力对释药机制影响较大。当处方中含有20%淀粉时,FC骨架片释药受压力影响更为明显,释药速率随压力增加而减小。

1.7 生物分子敏感型水凝胶

生物分子敏感型水凝胶能对特定的生物分子 (如葡萄糖、酶和DNA分子等) 产生响应。

例如甲基丙烯酰胺水凝胶是一种用四肽 (CYKC) 作为交联剂所得到的对α-胰凝乳蛋白酶敏感的含有缩氨酸序列的水凝胶。当其遇到α-胰凝乳蛋白酶时,水凝胶上连接的缩氨酸序列发生分离,引起水凝胶从不溶的三维交联网络结构向可溶的结构转变。这项研究有望作为生物传感器用于蛋白酶-缩氨酸识别系统。

目前此类水凝胶主要用于自动调控胰岛素释放系统,研究较多的是葡萄糖敏感水凝胶。这种水凝胶实质为pH或温度敏感型材料,但可以通过感知由生化反应造成溶液组分的变化,从而产生如体积相变这样的响应。Joseph Kost等用羟乙基甲基丙烯酸酯(HEMA) 、NDMAEM、TEGDMA 和葡萄糖氧化酶在冷冻状态下,辐射交联共聚合形成凝胶,此凝胶浸入葡萄糖溶液后,可将葡萄糖氧化为葡萄糖酸,使pH下降,从而导致叔氨基质子化而使凝胶溶胀,且溶胀体积随葡萄糖溶液浓度的增大而增大。

1.8 其他智能水凝胶

如抗原应答式水凝胶,凝血酶诱导应答式水凝胶,印迹水凝胶等,都具有很好的特异性,具有诱人的医药学前景。

2 智能水凝胶的理论和机理

2.1 基本作用力

早期,学者们提出水凝胶体系的3种基本作用力,它们是橡胶弹力、聚合物间亲和力和氢离子间压力。作用在凝胶上的总压力就是这3种作用力的合力,被称为凝胶的渗透压,它决定着凝胶是趋于吸收液体还是排斥液体。

后来经过进一步的深入研究,人们又把诱导水凝胶体系发生相转变的分子间相互作用更准确地归纳为4类:疏水作用、范德华力、氢键、离子间作用力。

2.2 动力学研究

学者kato等对大孔隙水凝胶动力学的研究表明,N-异丙基丙烯酰胺在NaCl溶液中的去膨胀过程由两个因素控制:一个是氯离子间的斥力,另一个是盐析效应。

Hirose等对N-异丙基丙烯酰胺与丙烯酸共聚物水凝胶的体积相转变动力学行为进行了细致的研究,并提出去溶胀过程由3个阶段构成:1均匀收缩阶段,水凝胶的尺寸按指数规律减小。2平台阶段,柱状水凝胶的两端开始收缩而中间部分仍处于膨胀状态。3崩坍阶段,此时水凝胶的中间部分亦随时间而线性收缩。实验表明,对于带有少量电荷的水凝胶能较好的符合上述过程。

2.3 水凝胶的敏感性机理

Tanaka等通过测定聚合物链的持续长度b与有效半径a之比(即代表聚合物链刚性的度量)及敏感性之间的关系,提出了半经验参数s作为有无敏感性的判据:s=(ba)(2f+1),式中f代表单位有效链上可离子化基团的数目。他们认为s>290时水凝胶会发生敏感性相转变,而当s

吴奇等通过研究微凝胶与表面活性剂的相互作用,提出了与疏水作用不同的新的溶胀和收缩机理,并认为近年来观察到的大块凝胶的所谓非连续体积变化并不是源于理论上所预测的非连续体积相转变,而是由于内部不均匀收缩导致的内部应力同剪切模量之间的相互作用引起的。

3 智能水凝胶的应用

水凝胶具有三维网络结构,在水中能够吸收大量的水分溶胀,并在溶胀后继续保持其原有结构而不被溶解。水凝胶类似于生命组织材料,表面粘附蛋白质及细胞能力很弱,在与血液、体液及人体组织相接触时,表现出良好的生物相容性,它既不影响生命体的代谢过程,代谢产物又可以通过水凝胶排出,比其它任何合成生物材料都接近活体组织,在性质上类似于细胞外基质部分,吸水后可减少对周围组织的摩擦和机械作用,显着改善材料的生物学性能。因此,水凝胶在生物医药、组织工程等方面得到了广泛应用,如可作为组织填充剂、药物缓释剂、酶的包埋、蛋白质电泳、接触眼镜、人工血浆、人造皮肤、组织工程支架材料等。

3.1 分子器件

利用智能凝胶在外界刺激下的变形、膨胀、收缩时产生的机械能,可以实现化学能和机械能的直接转换,从而开发以凝胶为主体的化学阀、驱动器、传感器、药物控释系统、分子分离系统等微机械产品。用凝胶制作微机械元件,由于凝胶柔软有弹性,且其弹性模量可通过交联密度调节,可使微机械元件的尺寸进一步减小,并能保持足够的驱动力。同时,由于凝胶尺寸的减小,缩短了控制凝胶收缩与膨胀的扩散距离,大大提高了凝胶的响应速率。近来国外一些科学家正在探讨利用凝胶受环境变化而变化的特性来研制凝胶微机械元件,并已取得了一些重要成果,引起了人们的高度重视,但国内尚未见报道。

3.2 调光材料

利用智能型大分子和大分子水凝胶的环境敏感行为可以设计制作调光材料。它是一种温度敏感材料,当阳光照射到凝胶时,一部分转变为热能。水凝胶系统的调光性赋予了其“开关”温度TS ,在TS以下凝胶网络透明,而当温度升至TS以上则形成散光的微粒。MIT的Suzuki和Tanaka设计了一种对光敏感的PNIPPAM 凝胶。他们在凝胶中引入光敏成分叶绿素。光照时,叶绿素吸收光能使其微环境温度升高,凝胶收缩,反之,凝胶溶胀。测得直径为5Lm 的凝胶响应时间约为5min。

3.3 生物医学

医用高分子材料指的是在医学上使用的高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、医学、输血学等多种边缘学科,是生物材料的重要组成部分。目前,医用高分子材料的应用已遍及整个医学领域,如血液接触的高分子材料、组织工程用高分子材料、药用高分子材料、医药包装用高分子材料、眼科用高分子材料、医用粘合剂和缝合线、医疗器械用高分子材料等等。

3.3.1 药物传输控制系统

智能水凝胶具有传递药物分子的孔道,对生理环境敏感,特别适合作为不溶于水的药物和易被胃肠酶分解的蛋白类药物的载体。作为这些药物载体的水凝胶需有良好的生物相容性和生物降解性,在体内酶或胃内低PH环境中能够保护药物不被降解。研究较多的是温敏水凝胶和PH敏感水凝胶。

3.3.1.1 黏膜给药

黏膜给药包括眼部黏膜、鼻黏膜、阴道黏膜等部位给药。黏膜途径给药的pH敏感型原位凝胶研究得较多、也较为深入。

用流变学方法研究壳聚糖硫醇在体外的原位胶凝性质。pH5.5条件下,壳聚糖硫醇中巯基数量明显减少,表明已形成二硫键。所形成凝胶弹性的增强程度与聚合物中巯基的总量显著相关,巯基数量越多,弹性系数G越大。壳聚糖硫醇化衍生物在5-6.8的PH范围内原位凝胶,可以用于眼部、鼻腔和阴道的黏膜给药系统。

3.3.1.2 口服给药

胃肠道PH呈递增趋势,胃液PH为1-3,十二指肠PH为4-5,其余肠段PH为6-8。对于在胃内不稳定的药物,利用胃肠道PH的变化来开发肠道释放的剂型尤为重要。

用二缩三乙二醇双甲基丙烯酸酯 (TEGDMA) 交联制得pH 敏感的聚甲基丙烯酸 (PMAA) 水凝胶作为膨胀层,聚羟乙基丙烯酸甲酯 (PHEMA) 作为非膨胀层,将这两种骨架层交联得到一种具有双层结构并可自折叠的水凝胶微型装置。再将具有生物粘附性的药物粘附到非膨胀层的一面用于药物传输。当这种微型装置进入体内,pH敏感的PMAA层接触到体液后迅速膨胀,而PHEMA层无反应。由于膨胀层和非膨胀层的区别,这个自折叠的装置发生弯曲,从而延长了在靶部位的停留时间,增强了生物粘附性。另外,非膨胀的PHEMA层可以作为扩散屏障,给药物提供了更好的保护和减少药物在肠道中的损失。

聚乙烯醇与丙烯酸或甲基丙烯酸可形成共聚物,其凝胶具有PH敏感性溶胀行为。载有胰岛素的凝胶在人工肠液(PH6.8)中释放药物,而在人工胃液(PH1.2)中不释放药物。到达小肠之前,载药凝胶在胃酸环境中对药物胰岛素具有保护作用。凝胶在大鼠体内的释药行为表明胰岛素口服给药对控制葡萄糖水平有效。

3.3.1.3注射给药

将某些pH敏感型凝胶注射于机体组织后,在PH约7.4的体液环境中胶凝,形成药物贮库,缓慢持久释放药物。

在生物相容性共溶剂系统中制备聚甲基丙烯酸(PMA)和聚乙二醇(PEG)的水不溶性共聚物(IPC)的溶液,IPC溶液在生理PH条件下可转变为凝胶。共溶剂N-甲基吡咯烷酮/乙醇/水的最佳比例为1:1:2,IPC的浓度宜在30%-60%(W/V)。研究表明,该体系可承载、保护大分子药物如蛋白质和低聚核苷酸,并控制其缓慢释放。

3.3.1.4 葡萄糖响应的胰岛素释药系统

根据智能水凝胶对葡萄糖响应设计胰岛素自调式释药系统一直是研究热点。正常人体胰岛素的释放受机体反馈机制调节,维持血糖水平正常范围,糖尿病患者注射胰岛素有时会引起低血糖危急生命,目前研究较多的胰岛素智能给药系统主要包括:(1)载有葡萄糖氧化酶的智能水凝胶。(2)载有葡萄糖氧化酶的接枝多孔膜。(3)竞争结合型胰岛素释药系统。设计这一释药系统的最大挑战在于载体对葡萄糖有高度敏感性和自动开关能力,在特定时间定量释药。目前采用的水凝胶仍有不足,如响应较慢,或是响应后很难较快回到初始状态,重现性有待改进。

3.3.2 组织工程支架材料

水凝胶应用于组织工程支架要求具有生物相容性、生物降解性、高含水量和细胞膜粘附性等。高度膨胀的三维环境含有大量的水,类似于生物组织环境,可以促进细胞增殖和细胞活动。

医用聚丙烯酰胺水凝胶作为组织充填材料已广泛用于人体各部位,它是一类具有亲水基团,能被水溶胀但不溶于水的聚合物。水凝胶中的水可使溶于其中的低分子量物质从其间渗透扩散,具有膜的特性,类似于含大量水分的人体组织,具有较好的生物相溶性。而且聚丙烯酰胺水凝胶为大分子物质,不吸收、不脱落、不碎裂,在弥散的环境下能很好保持水分,有较好的粘度、弹性和柔软度,适合人体组织结构。

3.3.3 人工玻璃体

PVP 水凝胶是第一个用作病变的玻璃体替代物的合成高聚物。作为一种优异的病变玻璃体替代物,PVP水凝胶具有良好的生物相溶性和生物物理光学特性,其网状支架对眼球内的新陈代谢成分具有良好的通透性。另外,PVP水凝胶具有粘弹性,表现出良好的内填充作用,可以封闭裂孔,展平视网膜。

3.3.4 人工软骨

PVA 水凝胶的高含水性及其特殊的表面结构与天然软骨组织非常相似,具有良好的生物相容性和摩擦学特性,同时该水凝胶具有类似于天然软骨的多微孔组织,内含大量的水,是一种可渗透材料,其弹性模量和人关节软骨相近,有望成为理想的人工软骨材料。

3.3.5 医用敷料

敷料的主要类型有两种:干型,如纱布;湿型,如水凝胶。水凝胶的优点是可吸收渗液形成凝胶,且吸收渗液后的凝胶不会沾粘伤口;可加速上皮细胞生长,加速新微血管增生;隔绝细菌侵犯,抑制细菌繁殖。目前用水凝胶作创面敷料在美国、日本及欧洲一些国家已经商品化,但在国内尚属空白。

用藻酸钙纤维制成的水凝胶,与伤口渗液接触后形成光滑的凝胶体,可有效清创且使伤口表面的细胞残屑、细菌、微生物等被包裹、锁定在凝胶体中,而且在藻酸钙与伤口渗液中的钠离子结合形成凝胶的同时将钙离子释放,伤口表面钙离子的大量集结可加速创面止血,促进创面愈合。

当羧甲基纤维素钠微粒与创面渗出物作用时,剧烈膨胀形成一种不与创面粘连的凝胶,该凝胶具有较强的渗液吸收能力和良好的蒸发性能,并能快速溶解焦痂,清除腐败组织。

3.3.6 角膜接触镜材料

角膜接触镜俗称隐形眼镜,是一种兼具视力矫正、美容、眼睛防护和医疗作用的产品。使用α-甲基丙烯酸β-羟乙酯聚合物( PHEMA) 作为制造角膜接触镜的材料。用这种PHEMA 材料制造的水凝胶角膜接触镜配戴舒适度比较高,但含水量不高,氧气通过性能不好,不能长时间配戴。采用亲水性能更高的PVP共聚物水凝胶,作为制造角膜接触镜的材料,可解决上述问题。

3.3.7 组织培养

利用PNIPAM水凝胶的温敏性可将它接枝于固体表面,通过调节温度改变固体表面的亲水性。在培养皿内壁接枝PNIPAM,用此培养皿接枝培养细胞,成活率较传统的酶洗脱法高得多。

3.3.8 在分析和医学诊断方面的应用

根据水凝胶的环境敏感性,可将它与生物传感器物理元件相连,然后将生物分子固定在水凝胶表面或内部,便可得到生物传感器,用于诊断疾病及做日常监测。例如,利用水凝胶固定抗原,可用于免疫检测。

3.3.9 血红蛋白氧气载体

血红蛋白 (Hb) 作为血液代用品,具有高效载氧功能,但天然无基质Hb溶液不能直接作为红细胞代用品。目前血红蛋白氧气载体 (HBOC) 主要分为化学修饰Hb、基因重组Hb和包囊Hb。用脂质体包封Hb,易导致Hb变性,Hb微胶囊存在快速释放的缺陷,另外,这些微胶囊没有红细胞那样柔软的外壁,也不能在网状内皮组织系统中快速流动。用纳米水凝胶微粒包封Hb,具有机械性能稳定,装填能力高,膨胀收缩可控,质地柔软和在网状内皮组织系统中流动快等优点。

Jaqunda N. Patton 等报道了通过光引发聚合得到温敏性PNIPAAM水凝胶纳米粒包封牛血红蛋白 (BHb) 作为氧气载体,生理温度变化可引起PNIPAAM水凝胶纳米粒膨胀和收缩,对zeta电位、氧气亲和力和协同性都有影响。当温度从40℃降至29℃时,纳米粒水凝胶膨胀,减少了氧气传输时的阻力。AndreF. Palmer 等将BHb与pH敏感的PAAM交联合成HBOC。这种pH敏感的HBOC可以靶向的将高效载氧的血红蛋白运输到由于生理pH值下降而引发低氧状态的组织。

3.3.10 水凝胶微透镜

智能水凝胶微透镜是一种新型的蛋白质检验方法。聚-异丙基丙烯酰胺-co-丙烯酸(PNIPAM-co-AAC)微凝胶与生物素偶联制成动态可调式生物素化凝胶微透镜。这种可调式凝胶微透镜是通过静电作用吸附在氨丙基三甲氧基硅烷化的玻璃基片上制得。研究者将生物素化的凝胶微透镜与未生物素化的凝胶微透镜相对比,发现特定的蛋白质溶液能引起生物素化的凝胶微透镜平衡膨胀体积变化和折射率的改变,而未生物素化的凝胶微透镜则对其不敏感。另外,这些凝胶微透镜在受到外界刺激时 (如温度、pH和光子流量),其光学性质会发生相应的变化。

3.3.11 用于活性酶的固定

酶的固定化技术的发展给酶制剂的应用创造了有利条件。与自由酶相比,固定化酶的最显著的优点是在保证酶一定活力的前提下,具有贮存稳定性高、分离回收容易、可多次重复使用、操作连续及可控、工艺简便等一系列优点。温度敏感性水凝胶由于其在临界温度附近溶胀度显著变化的特点,使其已成为固定化酶的一种理想包埋载体。

4 展望

智能型水凝胶在许多应用方面具有很大的潜能,如pH敏感和温度敏感水凝胶可用于靶向药物的控制释放,对特定分子(如葡萄糖、抗原等)响应的水凝胶,既可用于生物传感器也可用于药物释放体系,光敏感型、压力敏感型及电敏感型水凝胶也有用于药物释放和生物分离的潜力。

虽然从理论上来说实现这些应用是可行的,但实际应用还要求对水凝胶的性能进行很大的改进。所有这些刺激响应型水凝胶的最显著的缺点是它们的响应速度太慢,因此制备快速响应性水凝胶是智能型水凝胶研究领域的一个重要课题。实现这一目标的最简单的方法是制备较薄和较小的水凝胶,但这种水凝胶往往没有足够的机械强度以满足实际应用。另外用于药物载体的智能型水凝胶还要求有生物相容性和体内降解性等,选用更理想的材料设计体积小、响应快、能依据人体生理环境调节的水凝胶仍是目前面临的一大挑战。凝胶在体内的代谢过程比较复杂,新材料的释药性、安全性需全面考察,凝胶与细胞黏连、蛋白吸附、生物排异等诸多问题亟待解决。

总之,研究开发具有优异性能的智能型水凝胶是一个富有挑战性的任务,如果能及时总结已有的成果并将其应用于未来的研究中,将低毒性、良好的生物相容性和生物降解性、优良的机械性能和环境敏感性这几点完美结合起来,制备出新型、绿色的智能水凝胶是我们努力的研究方向。

参 考 文 献

[1]王守玉,赵替,曹绪芝.智能型凝胶及其应用[J].石家庄职业技术学院学报.2003.15(6):18-20.

[2]王立君,等.智能水凝胶的发展现状[J].合成技术及应用,2007.22(3):43-48.

[3]范会强等.刺激响应性水凝胶的研究现状及发展趋势[J].上海化工,2003(06):31-33.

[4]查刘生,刘紫微.生物分子识别响应性水凝胶及其智能给药系统[J].智能系统学报,2007.2(6):38-47.

[5]郭锦棠等.水凝胶及其在药物控释体系上的应用[J].化学通报,2004(3):198-204.

[6]徐文进等.温度敏感型水凝胶[J].现代食品与药品杂志,2007.17(6):60-62.

[7]刘永等.药物控释用智能水凝胶研究进展[J].化工进展,2008.27(10):1593-1596.

[8]赵玉强等.智能水凝胶的应用[J].现代化工,2007.27(3):66-69.

第9篇:生物医学工程应用领域范文

早在1954年,美国的钱家其已将计算机应用于放射治疗,计算剂量分布和制定治疗计划;1959年,美国的Ledley等首次将数学模型引入临床医学,提出了可将布尔代数和Bayes定理作为计算机诊断的数学模型,并以此诊断了一组肺癌病例,开创了计算机辅助诊断的先例;1966年,Ledley首次提出“计算机辅助诊断”(computeraideddiagnosis,CAD),形成了计量医学;1976年,美国斯坦福大学的Short-liffe等研制成功了著名的用于鉴别细菌感染及治疗的医学专家系统MYCIN,建立了一整套专家系统的开发理论;1982年,美国匹兹堡大学的Miller等发表了著名的Internist-I内科计算机辅助诊断系统,其知识库中包含了572种疾病,约4500种症状;1991年美国哈佛医学院Barnett等开发的“解释”软件,包含有2200种疾病和5000种症状。

2医学专家系统的组成

专家系统是基于知识的系统(Knowledge-BesedSystem)。一个完整的医学专家系统应由知识库(Knowledge-Base)、数据库(DataBase)、推理机(InferenceEngine)、知识获取模块(Knowledge-AcpuisitionModule)和解释接口(Explana-toryInterface)组成。知识库中存放系统求解问题所需求的知识,数据库用来存储初始证据和推理过程中得到的各种中间信息,推理机是一组程序,用来控制和协调整个系统,它通过输入的数据,利用知识库的原有知识按一定的推理策略解决所提出的问题。知识获取模块就是学习模块,它为修改和扩充知识库存的原有知识提供相应的手段。解释接口是用户与专家系统交互的环节,负责对推理给出必要的解释,便于用户了解推理过程,为用户向系统学习和所作所为系统提供方便,具有解释功能是专家系统区别于其它计算机程序的标志。目前,已有一些知识表示型的医疗诊断专家系统。

3医学专家系统的设计

建立医学专家系统要求将专家的知识转换为机器处理。在系统分析工作中,要求完全崭新的基于知识的设计方法,使得计算机从数据处理过渡到知识处理,从计算和存储数据转为推理和提供知识。原型系统方法是医学专家系统实现的重要开发方法,其早期阶段的目标是迅速发展最终系统的模型,获得所有任务的初步方案,后继阶段进行测试和扩充,增加更多细节,如此逐步发展和求精,直到逼近最终系统,满足用户要求。原型系统方法的优点是:增进用户与开发人员的沟通;用户在系统开发过程中起主导作用;辨认动态的用户需求;启迪衍生式的用户需求;缩短开发周期,降低开发风险。由于专家系统分析层面难度大,技术层面难度相对较小,因此,原型系统方法是最为适宜的开发方法。原型设计阶段的目标是解决领域知识的形式化问题,定义事实、关系和专家的推理策略,建立原型模型。原型系统的设计分为以下三个阶段。

3.1识别和定义系统的概念模型本阶段的主要任务是知识获取,识别系统的主要任务,识别和获取有关的重要概念及其关系,定义概念模型。这些概念和关系对确定知识库的结构是很有用的。任务领域中的概念必须按照问题求解行为的具体例子抽象。专家的思考模式必须包含所有基本元素,并且能被修改和扩充。本阶段除了采访专家获取知识之外,大量信息可以从已存的书籍、资料等重要文献中获取。

3.2概念设计在建立概念模型之后,就可开始概念设计,选择合适的知识工程工具(如知识表示),正式地表示问题和解法。主要工作包括设计适合于专家智能活动的可执行的知识表示模式、推理机制和用户接口。知识工程师应尽快设计和建立一个原型系统,以便提供开始的侧重点。

3.2.1知识表示模式设计所谓知识表示模式设计就是根据医学领域中知识类型及特征,选择合适的知识表示方法,描述知识模型。一般来说,系统控制知识和专家的决策知识表示为产生式规则;如果对象各要素间的关系可通过逻辑运算去体现,可采用谓词逻辑表示法;对于较复杂的结构结象可使用框架或语义网方法,如专业概念知识。为了有效地表示各种知识,系统可以综合使用多种知识表示方法。设计的结果是应用知识表示工具描述的知识模型。

3.2.2推理机设计常用的推理方法有正向推理、逆向推理和双向推理三种,这三种推理方法又可分为精确推理和不精确推理。推理机设计包括根据应用领域选择推理方法,设计自动推理算法结构,以及其它控制结构和各部分之间的通讯机制。它涉及知识的选择和应用问题。例如,专家系统最成功的实例之一,是1976年美国斯坦福大学肖特列夫(Shortliff)开发的医学专家系统MYCIN,这个系统后来被知识工程师视为“专家系统的设计规范”。MYCIN主要用于协助医生诊断脑膜炎一类的细菌感染疾病。在MYCIN知识库里,大约存放着450条判别规则和1000条关于细菌感染方面的医学知识。它一边与用户进行对话,一边进行推理诊断。它的推理规则称为“产生式规则”,类似于:“IF(打喷嚏)OR(鼻塞)OR(咳嗽),THEN(有感冒症状)”这种医生诊断疾病的经验总结,最后显示出它“考虑”的可能性最高的病因,并以给出用药的建议而结束。概念设计中提供丰富的概念。各种概念隐含了程序设计方法及知识的表示形式。概念方法可以辅助知识工程师认清对象之间的关系,以使概念化专家决策处理中所使用的各种对象及属性。在概念设计中,要避免使用传统系统经验,例如基于个别实例或部分关系,企图画出一个决策处理的与/或树,这将导致失败。概念设计方法将知识工程师从“过分分析的陷阱”中解放出来,以便有效地设计原型系统。

3.3详细设计概念设计建立了系统的主架,详细设计阶段的目标是发展详细的信息处理模型,识别和获取与模型有关的微知识,例如概念、对象/实体的详细描述。主要的工作包括:识别逻辑命题、书写一些描述和过程的代伪代码,副出语义网络图;将与/或树转换为自然语言规则;画出直接表示图或模型;识别和命名表示的框架及槽;识别和命名数据库的款目等。详细设计应规定语法和语言的特殊限制,但不应开始实际编码,也就是说详细设计应独立于任何程序设计语言。自然语言规则提供详细的编码描述规格。应用自然语言表达规则,使所有设计者能容易地明白知识表示结构,便于参加编码和检测。

4医学专家系统的实现方法实现原型系统阶段的主要任务是选择合适的开发工具,完成原型系统的程序设计,即编码、测试和修改。

4.1系统开发工具的选择为选择合适工具,需要考虑如下问题。

4.1.1开发工具的通用性工具系统通用性越强,则在用其构造一个具体的专家系统时,知识工程师的编程任务越复杂,对知识工程师研制系统的能力及编程水平要求越高。例如ISP、OPS5,PROLOG等工具都是通用性较强的工具系统。使用通用性工具设计的系统,其使用范围较广,便于移植和推广。另一方面,工具系统的通用性越强,一般说来其领域针对性也越差。对于某些专业领域,某一个通用性工具所生成的专家系统的效率往往很低。因此,在选择开发工具时,必须在通用性与方便性,通用性与具体专业领域的针对性之间进行反复的权衡。

4.1.2开发工具的特性与专业领域特性的匹配程序

4.1.2.1与专业领域的问题特性的比较着重比较搜索空间的大小、数据的形式、问题的结构等。

4.1.2.2与求解问题的方法特性的比较例如搜索类型,知识表示法、不确定性的处理方法、控制结构形式等的比较。

4.1.2.3专家系统学习能力的强弱、知识库维护能力、知识获取能力、人机接口的友善程度、系统的扩展性与协作适应性等。目前大多数专家系统选用人工智能语言,如PROLOG,LISP。PROLOG的数据库能力较强。它们提供许多适于人工智能处理的功能。选用该类语言,系统设计的主要任务是设计知识库和人机接口。缺点是使用存储空间多、速度慢,因此,可部分使用C语言作为辅助工具。面向较窄专业领域的专家系统,多选用专家系统工具,可以迅速产生原型系统,由于医学专家系统的专业领域一般较窄,故大多采用专家系统工具。专家系统工具已与强有力的数据库系统相连接,可用性越来越强,它们成为建造专家系统的合适工具。若系统设计对于存储空间和速度要求较高,并且知识工程师人力较充足时,也可选用一般的程序设计语言,尤其是面向对象的程序设计语言,中VC、VB、JAVA等。在选择开发工具过程中,知识工程师起主要作用,并应与领域专家密切协商,全面考虑硬件、软件、领域问题和上述原则,选出恰当的工具系统。

4.2编码编码是应用选择的工具语言记录事件和知识。它将详细设计阶段产生的知识结构、推理规则、控制策略及其它部件的形式描述转换为工具语言形式。主要的工作是转换自然语言推理规则,构造知识库;转换推理算法为推理程序。尽管此项工作与非智能语言的编码没有区别,而这里一般使用的语言是LISP,PROLOG或专家系统工具语言。在编码中,知识工程师常发现详细设计中的问题,因此,详细设计和编码常是紧密相关的循环处理。编码中发现的问题也可能引起大范围的反复处理,例如,可能需要完全重新设计知识表示。

4.3测试与修改测试阶段的主要任务是评价原型系统及其实现形式是否符合设计者、专家及用户的要求,应用各种各样的实例,检测知识库和推理结构中的弱点,修改原型。

4.3.1检测推理检测推理就是检查无效的推理。主要工作是检测机制细节,如接口和内部流程。知识工程师构造人工模拟实例检测系统的详细部分,当系统违背设计得意愿,则发现错误。纠正无效推理中的错误,需要重新编码。产生无效推理的原因是程序员错误地转换知识。

4.3.2检测知识在知识系统中,正确的编码并不意味着知识正确。这种处理努力探测无效的和模糊不清的知识。除了人工实例,专家和知识工程师还可用真实实例检测,让系统作合适的决策,并可保留这些检测实例以备后用。无效知识的发生,是由于专家没有正确地描述事实或没有完全理解事实。当系统违背专家的意愿时,可发现这类错误。模糊知识的发生是由于专家不能识别所有的蕴含关系,如组合条件太多。当系统选择不同的解法(而专家要求相同解法)时,可发现这类错误。例如重复执行概念识别,以便发现错误的知识;重复执行概念设计来重新评估知识表示的选择,这两种处理又引起重复执行详细设计。当知识是完整一致的,仅要求重复执行详细设计和编码。若在检测推理机制中,专家发现了检测子问题的新条件,则重复执行问题定义、概念识别、概念与详细设计及编码。因而专家可用发现的新条件精炼已存知识表示。当专家对早期的知识检测不满意,将知识加入知识库时,发现一些错误,则他重新执行是识别和定义概念,处理和发现新概念。为此,概念设计、详细设计、编码和检测推理均需要新执行,调整由定义新概念所引起的变化。

4.4证实原型系统当专家和知识工程师相信推理和知识是正确的,则执行本处理。这种处理用执行大量的真实例检测隐含错误。知识工程师可将原型放入检查区域,工作一段时间,这种检测可能发现较少的小错误。证实也可发现专家和知识工程师的偏见。专家和系统的交互中可能存在盲目的缺点。因此,应邀请其他多位专家指导证实处理。他们的新观点可能会发现新问题。最后的证实工作是并行执行系统检测和人工检测(人工检查活动不与系统交互)。然后按要求逐个比较结果,并做客观地记录。这些检测将提供大量的宝贵意见。

4.5系统的发展与维护检测工作完成后,原型可被进一步修改和扩充,发展成为实用系统。维护的目标是评价和扩展系统,改进系统执行。由于在发展中迅速设计原型,可以避免和减少维护工作。如果系统中使用的规则和过程以常规变化为条件,则需要专家和管理者周期地检查系统的执行。一个知识系统模式化人类在特定领域中的专知,而专家和知识都不是静止不变的,因此系统中的知识库和推理模式必须继续检测和发展。这包括收集关于系统执行的知识、缺陷及定义的变化。主要方法是利用机器学习技术维护、扩展知识库,以改进系统执行。这种设计方法适用于所有的知识系统,对于复杂的综合型系统,还要考虑与其它分系统的通讯与协作。

5总结与展望

纵观国内外医学专家系统的发展,可从以下3个方面进行总结。

5.1人工智能、专家系统理论70年代,多用概率统计法,即所谓的数字计算法,从疾病—临床资料(症状、体征理化检查)的发生频率与疾病概率之间的明确统计学分析,得出最相似的诊断。此方法现已趋于淘汰。80年代后,则多用人工智能的方法,即以疾病的数值表叙与专家的推理相结合导致的一种决策方法。两种方法都要通过一定的数学模型来实现,常见的数学模型有Bayes公式,模糊数学及加权求和—阈值浮动(至80年代中期,国内2/3的系统采用了这3种数学模型,但这3种数学模型的应用,有一定局限性)。还有的研究是关于诊断系统的通用开发平台等方法学方面的,使医学诊断专家系统在解释方法学、评价标准、知识库建立以及因果定量推理等方面成为研究热点。关于医学诊断中推理的复杂性,有人提出,病人可能有相互关联的多种疾病,而表现出的症状并不确定与某一类疾病有关,一个症状是否会出现也不确定,因而复杂程度不同的推理,可以精密程度不同的模型中进行。此外,由于人类疾病的适时性,有必要在没有明确的诊断结论时给出有关诊疗建议。同时,用来监测、存储和显示大量数据的系统数据库应与推理有机的结合起来。启发式分类也是人工智能方法中的一种,即从一组输入数据中提取特征,并进行分类,根据分类特征在一组已知的诊断类型中选择。模糊逻辑原理尤其适合于医学应用,因为医学决策所需的许多信息都是不确定的。适于人工智能、专家系统应用的计算机语言,在早期有LISP和PROLOG,但到现在,尚无更新的、合适的语言出现。

5.2人工神经网络在医学专家系统中的应用人工神经网络是最近几年发展起来的一项新技术,是模仿生物神经系统中神经元的一种数学处理方法。由于它的并行处理方式、自学习能力、记忆能力、预测事件发展能力,因而可以起到专家系统的作用。特别在分类、诊断以及基于分类的智能控制和优化求解方面,神经网络专家系统比传统的专家系统(指上述用概率统计法,数学模型建立的专家系统)有更优越的性能。故人工神经网络代表着当前最先进的人工智能技术,但此项技术尚不成熟。如只适用于解决规模较小的问题,其性能受训练数据集的限制,以及无法解释推理过程和得出结论的依据等。