公务员期刊网 精选范文 对人工智能技术的理解范文

对人工智能技术的理解精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的对人工智能技术的理解主题范文,仅供参考,欢迎阅读并收藏。

对人工智能技术的理解

第1篇:对人工智能技术的理解范文

关键词:人工智能;智能营销;营销趋势;营销挑战

一、引言

随着人工智能技术的快速发展,越来越多的企业将人工智能技术应用到企业的日常生产经营活动中来。NarrativeScience和国家商业研究所的报告显示,在2016年仅有38%的企业表示引用了人工智能技术,而到了2017年这一数字迅速增长到了61%。与此同时人工智能技术在营销领域的应用也越来越广泛,在零售行业,人工智能可以通过自我学习,为消费者添加标签,描绘用户画像;在网络消费场景,智能人工助理可以帮助营销人员及时在线回答用户问题。人工智能的应用让消费者与企业的互动更加频繁,这也给企业营销活动本身带来了如隐私泄露、过度营销、用户倦怠等问题。如何正确处理人工智能技术在营销领域的应用问题,成为了学者们日益关注的重点。以往的研究已经从人工智能营销的技术基础、概念、隐私担忧等方面进行了分析,本文将从人工智能营销的内涵、趋势、挑战等方面进行梳理研究,希望能够对人智能态势下的市场营销有更加全面的认识,为企业应对人工智能营销活动中的问题提供有价值的参考。

二、人工智能态势下的市场营销

(一)智能营销的内涵

智能营销,是伴随着人工智能应用的发展而产生的一个新的营销概念。智能营销不等同于电子营销,它是建立在大数据、人工智能、云计算等综合技术基础上的一种智能化运作模式(汪涛2014),是可以模仿营销人员的部分行为活动的过程。随着人工智能技术在营销领域的应用,智能化的设备通过仿真、思考、行动等模式完成了营销人员所需要进行的一部分工作,深刻改变了营销思维和方式。作为智能经济条件下的新产物,目前学者们对智能营销还没有形成一致的概念界定。但是随着对人工智能的逐步深入了解,业界逐渐形成了一种共识,即它是企业借助计算机网络、移动互联网等智能技术来进行营销活动的各种新思维、新方法、新工具的一种创新营销新概念(常亚平2018),它包括智能识别、智能存储、智能执行等多个方面。

(二)智能营销的技术基础

人工智能营销的兴起离不开技术的支持,根据以往文献的研究,可以将智能营销发展的技术基础大致归为三个方面:首先,移动互联网和5G技术为智能营销发展提供了海量数据来源的保障。智能营销发展的重要基础就是数据,持续可靠的数据获取是智能营销所需的核心技术之一。随着移动互联网和5G技术的发展,营销活动借助虚拟现实技术、仿真技术、人工生物智能技术广泛深入到消费者的工作、娱乐、生活、消费等日常行为活动中,全方位地记录了消费者的行为数据,为智能营销的后续分析处理工作提供了海量的数据信息来源。其次,云计算帮助智能营销完成了复杂的数据计算和处理分析。移动互联网时代,大数据的发展使网络数据成几何倍增长,如何计算和处理分析这些海量数据成为了智能营销发展所必须解决的重要问题。云计算技术凭借强大的数据计算能力,很好地解决了人工智能技术应用过程中的海量数据处理问题,通过多维度数据的连接实现了万物互联,从而使消费者和智能设备的交互体验更加完善,营销场景也因及时准确的数据分析而更加智慧化。最后,人工智能商业化应用技术为智能营销发展提供了网络应用环境。德勤2019年《全球人工智能发展白皮书》显示,当前人工智能技术已进入全方位商业化阶段,并预测全球人工智能市场在未来几年会经历现象级增长(钱明辉2019)。我国也出台了相应政策来支持人工智能商业化应用的发展,2019年我国从事人工智能业务企业数量居全球第二。人工智能商业化的发展环境以及人工智能商业化应用技术的支持,为智能营销的发展创造了良好的外部网络应用环境。

(三)人工智能在营销中的应用体现

人工智能技术在营销中的应用,使营销活动体现出了新的特点,如:视觉、听觉、触觉等多种形态的新互动方式、个性化需求的预测等。根据营销活动的不同过程阶段,可以从四个方面来分析人工智能在营销中的应用体现。1.营销调查研究阶段。营销调查研究是营销活动的起点,通过提前的调研企业可以了解市场占有情况、消费者意愿、目标消费群体需求等重要信息。大数据技术以及人工智能技术的应用,极大地提高了企业营销活动前期的营销调研效率。消费者在各种生活消费场景中会留下自己的痕迹和使用信息,人工智能技术会帮助企业将海量的用户数据进行归类,如账户数据、交易数据、浏览数据等,并利用这些数据进行用户画像,从而准确分析出消费者的日常消费偏好、消费方式等信息,帮助营销人员获取营销调研后的第一手分类数据。2.营销策略的制定阶段。人工智能技术从全网智能抓取相关数据进行分析,并智能分析出最新热度关注点,帮助营销人员完成寻找吸引消费者的创新点环节,摆脱了以往只依赖于营销人员自身经验判断和小范围营销调研结果的限制。同时借助仿真技术、生物识别等技术,人工智能技术所创造的“人工脑”可以完成营销策略制定过程中的一部分思考工作,如创意筛选、优化等方面。3.营销执行阶段。以往的营销推广活动,需要营销人员提前进行宣传媒介的选择并且派大量人员进行实地配合,受限于地点、经费等外部因素。而人工智能技术根据网络热度数据分析,自行筛选出适合企业产品宣传的网络平台,并且根据用户使用偏好数据测算出适合的营销时间点、次数等,在用户进行相关网络访问时个性化推送符合该用户需求特征的营销方案,如喜马拉雅会根据用户年龄、性别、收听历史记录等自动推送相关收听图书资源和购买活动等。4.营销效果的评估阶段。以前的营销活动效果评估需要事后进行监测,而人工智能技术的应用帮助企业实现了实时监测,系统自动在全网络进行相关内容的数据抓取和分析处理,并将监测效果及时反馈给营销人员,方便营销人员根据消费者反应及时修改营销方案,降低了突发事件对企业营销活动的影响。

三、人工智能带来的营销管理新趋势

人工智能技术在营销领域的应用深刻地改变了企业的营销思维和营销方式,也让营销管理活动有了新发展,对于人工智能带来的营销管理新趋势可以从下面几个方面来理解:一是技术驱动营销变革。智能技术将成为下一代营销变革的新支撑。目前,仿真技术和人工生物智能技术的初步使用已经能够帮助智能设备进行部分营销工作中的思考问题。营销专家智能系统可以实现专业知识的传递和学习,在营销专家的训练下智能系统会增长解决问题所需的知识,并向用户提供解决问题的办法。电子自动订货系统,会根据企业线上线下的销售数据自动进行分析,智能识别畅销品和滞销品,并根据实际情况自动交换订单信息,减少营销人员在了解销售状况和消费者偏好等信息时所投入的时间成本。人工智能技术的应用带来了营销理念、方法、手段、工具等各个方面的改变,未来如何利用好人工智能技术来帮助企业进行营销活动是营销人员需要关注的重点。二是营销方式的多元化和营销推荐的大规模定制化。人工智能技术的应用给营销方式带来了巨大的变革,短视频营销、直播营销等新型营销方式使企业营销活动不再局限于传统线下和网络页面广告等方式。这种多元化的智能营销方式,可以更加广泛深入地获取消费者的各种使用数据信息,如抖音小视频会根据用户关注信息来自动推送相关产品宣传视频。智能化的营销方式让大规模定制化成为可能,企业可以借助智能技术和数据处理技术实现对每个用户的精准识别与记录,从而为其个性化推荐相关信息,实现营销个性化的批量自动生产。三是“AI+”智慧营销带来的跨场景营销。“AI+短视频”营销、“AI+KOL”的粉丝营销等不同营销策略,在人工智能技术的支持下各自发挥所长,应用到营销活动的各个环节当中。“AI+”的使用增强了消费者的互动体验感和真实感,如唯品会的智能试装功能可以帮消费者实现线上虚拟体验,大大提升了消费者从“看”到“买”的效率,缩短了购买转化时间。在移动互联网时代,消费场景碎片化、消费行为流动化,人工智能技术的使用可以帮助企业处理复杂的消费使用数据,系统整合消费者在不同场景的多维行为数据,从而精准识别不同消费个体在不同消费场景下的差异化需求,结合消费者的实时场景,为消费者适时提供跨场景的营销服务,突破圈层和场景的限制,扩大营销推广范围,提升企业的56品牌宣传度。四是基于智能识别、语音互动等技术的线上线下一体化智慧营销。根据2018年人工智能应用行业报告,目前人工智能技术已经可以应用到零售的全链条环节,既可以线上进行用户画像和精准个性化推荐,也可以线下智能物流、智能选址、优化消费者行为分析和商品运营环节等,这种线上线下一体化智慧营销,需要完整的人工智能技术体系的支持。通过分析消费者轨迹数据、可穿戴智能设备的身体数据以及社交消费平台数据等信息,利用线上线下信息的同步传输、人脸识别等技术,人工智能可以及时捕捉消费者行为及心理需求,并实现精准匹配。

四、人工智能时代市场营销面临的挑战

人工智能技术在营销领域的应用给企业和消费者都带来了极大的便利,但是技术都是具有两面性的,我们必须理性对待人工智能技术,正视人工智能应用过程中产生的问题。根据以往文献的研究,可以从以下几个方面来认识人工智能时代市场营销面临的挑战。一是人工智能背景下复合型营销人才的不足,带来的技术和营销的进一步对接问题。当前,智能营销领域的一个显著问题就是技术与营销的进一步深度衔接问题,懂技术、懂市场的复合型人才的不足使得企业在应用人工智能过程中出现很大障碍。一些机构掌握着最新智能技术,积累了海量数据;而另一些机构则了解市场,不掌握技术,技术应用与市场营销之间的衔接出现了隔阂。人工智能技术在营销的应用给所有领域的营销人员都带来了挑战,人才和工作需求双向失衡。企业必须培养复合型的营销人才,引进新技术培训课程,提升现有营销人员的整体技术素质,从而帮助企业解决智能技术与营销的进一步对接问题。二是人工智能营销过程中暴露的数据隐私保护和流量造假问题。各种数据隐私新闻案件的曝光,让越来越多的用户对新技术的使用保持着高度敏感。大量未经用户本人同意的数据非法监测和解读严重干扰着消费者的日常生活,一些企业甚至利用智能技术对用户个人信息进行预测分析来以此获取用户隐私。而流量数据造假问题更是进一步瓦解了消费者对网络消费活动的信任,一些企业为了短期的盈利,利用内容剪切等网络工具打造虚假流量信息,给消费者带来了误导,同时也严重干扰了正常的市场竞争秩序。为了能够让企业更有效地推进人工智能技术与营销活动的衔接,必须及时惩治非法获取消费者隐私的企业,营造良好的网络使用环境,同时企业也要在内部加强管理,提升营销人员的道德素养。三是全方位人工智能营销环境下的消费者心理倦怠问题。人工智能技术可以给消费者推荐各种个性化信息,但这种根据消费者使用痕迹来进行持续性的精准推荐很难不让消费者产生厌倦心理。随时随地的广告推荐、跨屏的无广告拦截、用户浏览记录的跟踪推荐等行为,在智能技术的推动下变得更加自动频繁。虽然人工智能技术可以帮助企业精准分析用户数据,但数据也不能完全反映消费者的内心,企业要避免对智能技术的完全盲从,以防消费者产生厌倦心理。营销活动是对人进行的活动,因此企业也要关注营销人员的营销经验,不能以技术决定一切,要将技术与人的主观感受相结合,真正做到从消费者本身需求出发。

五、结论

人工智能在营销领域的应用目前还处于初步发展期,企业在应用人工智能技术时必须理性看待人工智能技术。既要看到人工智能给企业营销带来的数据分析、精准识别等便利,也要看到人工智能应用带来的技术陷阱、用户隐私等问题。当然,人工智能技术在营销领域的应用未来还将有更进一步的发展,企业也要及时进行探索研究。本文仅从理论层面梳理分析了人工智能在营销领域应用的相关问题,未来还可以在其他方面进行深入研究:如何更好地解决人工智能应用过程中带来的隐私泄露问题,从而提升消费者的使用体验;人工智能的特征如何对消费者的行为产生影响;智能互动方式的改变对营销活动的影响,等等。

参考文献:

[1]高山行,刘嘉慧.人工智能对企业管理理论的冲击及应对[J].科学学研究,2018(11).

[2]常亚平,王良燕,黄劲松,等.3D(大数据、数字化和发展中)背景下的营销战略与转型专栏介绍[J].管理科学,2018(5):1-2.

[3]Shankarv.Howartificialintelligence(AI)isreshapingretailing[J].JournalofRetailing,2018,94(4):vi-xi.

[4]汪涛,谢志鹏.拟人化营销研究综述.外国经济与管理,2014(1):38-45.

[5]Wangtao,XIEZhipeng.Areviewoftheliteratureofper-sonificationmarketing[J].ForeignEconomics,Manage-ment,2014(1):38-45.

[6]钱明辉,徐志轩.基于机器学习的消费者品牌决策偏好动态识别与效果验证研究[J].南开管理评论,2019(3):66-76.

[7]王先庆,雷韶辉.新零售环境下人工智能对消费及购物体验的影响研究:基于商业零售变革和人货场体系重构视角[J].商业经济研究,2018(17):5.

第2篇:对人工智能技术的理解范文

1机械电子工程介绍

机械电子工程是一项涵盖各类科学的技术,其核心专业是机械电子,同时要结合信息技术、网络、智能化的相关知识,各类学科相互交叉形成的一类科学,这些学科的理论在机械电子工程中得到了广泛的应用。总体来说,机械电子工程包括计算机技术、网络技术等,机械电子工程实现了技术的多元化和技术的融合,其在使用的过程中必须借助其他学科。在对机械电子工程进行设计时,必须要将计算机技术与网络技术以及机械相关的技术融合,将机械中不同的元件组合,完善设计。机械电子工程在设计时运用的知识比较复杂,但是设计比较简单,结构不复杂,而且具有较好的性能。机械电子工程投入生产时的效率高,夕卜形小巧,从而取代了传统的机械。

2人工智能介绍

人工智能技术是在计算机技术发展的前提下得到应用的,其通过对计算机技术的分析,从而对计算机技术的功能进行进一步的完善而实现的智能化的技术,智能技术在机械电子工程中应用时,主要实现了对机械工程的自动化控制,人工智能在机械电子工程中应用不仅仅采用计算机技术,同时还要结合信息技术、心理学、语言学等知识。人工智能技术的发展经历了几个阶段,在人工智能技术发展的初始阶段,人工智能主要实现了自动翻译、自动推理,而后,人工智能技术进入了其停滞阶段,这时人工智能技术主要是以计算机视觉技术、对语言的理解、系统的研发和机器人设计等方面得到了广泛的应用。人工智能技术进入发展的第二个阶段后,其主要应用的领域是知识工程,知识工程促进了商业化的进程,在这个阶段,人工智能技术主要进行推理以及机器人中得到了广泛的应用。随后,人工智能技术进入了平稳发展时期,在这个阶段,人工智能技术朝着分布式的方向发展,其发展的形式比较简单。

3人工智能技术在机械电子工程中的使用

现在,随着我国信息技术的广泛应用,在机械电子工程中都开始使用人工智能的模型,而且能能够对大型机械进行故障的诊断,在机械电子工程投入使用后,机械工程本身的稳定性比较差,导致机械工程在使用的过程中会出现复杂的关系,如机械在进行输入或者输出时,如果不能建立合适的模型,就会导致输出困难。

在使用传统的机械进行生产时,信息系统的精确度比较高,如果系统出现了故障,不能正常的进行输入和输出工作,就会导致一系列的操作不能正常完成,但是,将人工智能技术在机械电子工程中使用,能够对机械设备进行自动化的控制,能够通过模糊的推理对系统进行操作,模糊推理主要是对人脑的模拟,从而分析系统发出的信号,在机械电子工程中,主要是通过对人脑结构的分析从而确定数字信号,实现对数字信号的分析,从而确定信号的参考值。

模糊推理主要实现了对机械电子工程中模糊的系统与神经网络的融合,能够实现神经网络系统与网络的互补融合,将神经网络系统与模糊系统有机地统一,使机械设备的神经网络系统能够自动的识别信号,进行推理,使机械电子工程的系统能够进行复制,使其具备学习的能九这样就使机械电子工程中系统的智能化水平有所提高。智能化技术实现了机械电子工程中功能相似的部件的融合,其主要是运用模糊系统中的信号,与神经网络中的信号进行相似性的对比,通过选择,使具有相似性的部件实现融合,从而可以提高系统的运作效率,简化了运算的程序,在机械电子工程中的非线性的信号与系统中的函数进行相似性的对比,从而能够实现对系统中函数的优化。在机械电子工程中,主要是通过非线性表达运行的,这样能能够实现机械中网络的强化能力,使机械中网络的空间增大,使机械运行的效率更快。

第3篇:对人工智能技术的理解范文

关键词:人工智能;电脑游戏

中图分类号:TP18文献标识码:A文章编号:1007-9599 (2010) 09-0000-01

Game Artificial Intelligence Technologies

Ma Zilong

(Civil Aviation University of China,Tianjin300300,China)

Abstract:This paper describes the game's artificial intelligence technology is the application status at home and abroad,and analyzed the major artificial intelligence game.

Keywords:Artificial intelligence;Computer game

一、绪论

初期的电脑游戏,因受到硬件,显卡及声卡等条件的限制,所使用的人工智能几乎全部都是依赖于编程者的编程水平,处理非常简单。但随着显卡及声卡技术的发展,游戏玩家们就期望更加自然更加有趣味性的游戏。因此,从1990年代后期开始,人工智能技术在游戏中所起的作用越来越重要了。以游戏中CPU的占有率为例,1997年只占5%以下,从进入2000年以来,其占有率增加到30%左右。

人工智能指的是可以自主思考并且根据周边环境或经验进行智能性行动,具有自律性的角色或是agent。那么人工智能在游戏中到底起着一种什么样的作用呢?游戏中的人工智能作为实现登场角色智能性动作的方式,可以实现玩家不必操作的NPC的自然移动或者起到玩家对手或是协助人的作用,游戏的核心部分就是与人工智能的对决。人工智能的目标并不是无条件战胜玩家,而是必须要起到跟玩家差不多水平的对象的作用。

二、国内外现状

(一)国外技术现状

美国开发的虚拟人生游戏中,登场人物使用了人工生命的技术,取得了极大的成功,由此也使得人工智能的重要性显现出来。在虚拟人生游戏的开发过程中,人工智能技术从初始阶段就受到了极大的重视,当然这也为游戏的成功打下了坚实的基础。美国艺电公司开发的NBA,FIFA,MVP等球类运动系列游戏也因人工智能技术的使用在游戏市场引起了很好的反响。与此同时,日本的KONAMI公司研发的“胜利十一人”系列游戏也因人工智能技术的应用取得了不错的成绩。

(二)国内技术现状

国内开发的大部分游戏基本都属于MMORPG系列,相对来说,运动系列的游戏在国内市场的开发不太活跃,也没有引起足够的关注。战略游戏的开发曾经非常盛行,但由于国内Package游戏市场的不确定性及网络游戏的上升趋势使得战略游戏逐渐没落,战略游戏是一种与别的玩家的一种对决,而不是与受电脑控制的人工智能间的一种对决。战略游戏中的人工智能角色难以构思大量的战略技巧,玩家可以很轻易地掌握人工智能角色的弱点。初期开发的运动类游戏也是如此,它最初也是被开发成一种休闲游戏。在运动类游戏中,人工智能起到非常重要的作用,但国内开发的同类游戏中人工智能技术使用非常缺乏,因此主要是玩家相互间的一种竞技。

国内到目前为止,运动类游戏一直没有得到应有的关注,开发工作也处于不活跃的状态。但随着MMORPG游戏市场到达饱和状态,需要开拓新的游戏市场领域,也开始需要把运动类游戏开发成网络游戏形态。。

三、游戏中的人工智能技术

FSM是现在广泛使用的人工智能技术中的一种。它是利用有限数量的状态来表现NPC的行动方式或管理游戏体系的方法。所谓的状态,就是行动处理的基本单位,各个状态根据所被赋予的条件可以转化为其它状态。例如,把一个怪兽的行动方式用FSM来表现的例子,怪兽的行动方式可以分为几个状态,根据现有状态及条件可以决定对付外界各种变化的方法。FSM非常容易理解,其实现也不困难,对于那些不太需要大量人工智能技术的游戏来说都是经常使用的一种方法。但如果游戏相对比较复杂的话,其状态的数量自然会增多,随之想要整理状态图表就是一项比较困难的工作。相应的,可引起状态变化的外部输入即条件例程也会急剧复杂化。

寻找路径,在游戏过程中最常见的问题之一就是如何正确寻找从现在位置到达目的地或目标物的通路或路径的问题。例如,在战略游戏中,如果用鼠标指明目的地的话,那如何快速找到最便利的捷径移动到要求场所不仅仅是战略游戏,同时也是几乎所有游戏都面临的问题。为解决这一问题使用的最为广泛的方法就是A*算法。这种方法就是利用预想费用有效地限定通路的探索范围。因为这种方法具有可以根据地图的不同特性,运用多样化的启发性的加权值的优点,所以在寻找路径方面得到了广泛的应用。flocking是指模仿鸟或者蜜蜂、鱼类等数量众多的个体聚集成群后整体移动并描写说明的方法。团队人工智能,最近的游戏都特别重视网络在线功能,因此,也就特别重视参与玩家间的团队合作精神。在此基础上,团队人工智能作为人工智能技术的很重要的问题登场了。首先战略层面上,围绕整个团队要达成的目标紧紧团结起来,在团队层面上,围绕要达成的各个目标所设立的计划紧密团结,在个人层面上,要根据个人的行动规则来展开。LOD AI,LOD AI是指对显示屏上可见的角色的人工智能处理使用具体的算法,不可见的角色的人工智能处理使用单纯简单的算法。人工生命,指模仿生命体的行动或行为,并适用于相关角色的技术。

四、结论

游戏中的人工智能正在逐渐发展,其必要性也显得日趋重要。对于游戏领域来说,比起单纯的胜负来,玩家们更喜欢通过各种不同的反应来体验最大化的娱乐性,同时通过behavioural cloning等技术的应用来缩小人工智能NPC和实际使用者间的行动方式的差异。

游戏中使用的人工智能的主要技术不仅仅是在电脑游戏领域,在虚拟现实,数字电影,动画,模拟实验等各种领域中也可以得到广泛的应用。对人工智能应用的研究不仅会提升电脑游戏层次,还会促进其他相关领域的发展。只有加大国内市场上仍处于初级阶段的游戏人工智能技术研究的投资力度,以后才有可能在娱乐市场上与先进国家进行竞争。

参考文献:

[1]于文莉.浅谈游戏开发中的人工智能技术.商场现代化,2008,1

第4篇:对人工智能技术的理解范文

关键词:电气工程;自动化控制;智能化技术;应用

Abstract: This paper introduces the concept of the artificial intelligence application, analyzes its advantage, and puts forward the artificial intelligence application in the electrical engineering automation control.

Key words: electrical engineering; automatic control; intelligent technology; application

中图分类号: S776.035文献标识码:A文章编号:2095-2104(2012)

社会的进步和人类的长寿要求生产力更加发达,要求人类的经济生活更加智能化,以节省宝贵的人类时间去做其它有益的事情。电气自动化控制领域的革新需要人工智能的大力支持,而人工智能在自动化控制方面的优势在这个领域也确实能够得到极大的发挥。促进自动化控制的发展进步,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。人工智能主要包括思维能力、行为能力和感知能力三个方面。人工智能指的是人类制作的机器所表达出来的智能,体现了自动化的特征。因此智能化技术在电气工程自动化控制中可以发挥最大的效用,促进电气的优化设计、诊断故障和智能控制等。

1 人工智能的概念

人工智能的概念在1956年首次提出之后,在研究领域得到了飞速的发展,逐渐形成了一套以计算机为主,包含了自动化、控制论、信息论、生物学、仿生学、心理学、语言学、数理逻辑、哲学和医学的一门综合性的科学。在人工智能领域,使机器拥有与人类智能过程相类似的系统,能够胜任人类智能所能完成的工作。人工智能理论是开发、研究如何延伸、模拟人的智能的理论。作为新兴的计算机科学的一个分支,人工智能技术解释了智能的实质,并在此基础上生产出一种与人类智能有相类似反应的智能机器。在此领域的研究主要包括:图像识别、语言识别、机器人、专家系统和自然语言处理等系统。电气工程主要是研究和电气工程有关的自动控制、系统运行、信息处理、电子电气技术、研制开发、信息处理和计算机与电子应用等。随着科学技术的不断发展,计算机技术已经开始应用在我们生活的每个方面。飞速发展的计算机编程技术加快了传播、自动化运输和传播的发展。人类大脑作为最精密的仪器,计算机编程也只能模仿其对信息进行分析、处理、交换、收集和回馈,所以对人类大脑技能的模仿会促进电气工程自动化的发展。电气自动化控制在增强交换、生产、分配和流通方面有重要的作用,实现电气工程的自动化,会降低人力资本的投入,使运作的效率不断提高。

2 人工智能控制器的优点

针对不同的人工智能控制,需要使用不同的方法进行讨论。但是一些人工智能控制器,例如:模糊神经、模糊、遗传算法和神经都是一种类非线形的函数近似器。采取这种的分类有利于对总体的了解,同时会促进对控制策略的综合性开发。上述的人工智能函数近似器具有常规的函数估计器所不具备的优势。首先,在很多情况中,精确的掌握控制对象的动态方程是很复杂的,因此控制器在设计实际控制对象的模型时,往往会产生很多不确定的因素,例如:非线性时、参数变化等,这新信息通常无法掌握。而人工智能控制器在设计的时候可以不需要控制对象的模型。依据下降时间、鲁棒性和响应时间的不同,人工智能控制器通过适当的调整可以提高自身的性能。例如:在下降时间方面,模糊逻辑控制器比最优秀的PID控制器要快4倍。在上升时间方面,模糊逻辑控制器比最优秀的PID控制器要快2倍。与古典控制器相比,人工智能控制器具有更容易调节的特征。即使缺乏专家的现场指导,人工智能控制器也能够使用响应数据来进行设计。还可以通过相应信息、运用语言等方式来进行设计。人工智能控制器具有很强的一致性,输入陌生的数据就能够产生很高的估计,可以忽略驱动器对它产生的影响。对于某些控制对象来说,虽然暂时没有采用人工智能控制器也可以产生良好的效果,但是对其他的控制对象来说,不一定会产生相似的良好效果,因此在设计上必须坚持具体问题具体分析的原则。在反模糊化和模糊化的过程之中,如果采用规则库、隶属函数和适应模糊神经控制器,能够精确的进行实时确定。在实现这个成果的众多方法之中,只有通过系统技术的使用才能得到稳定的解,配合简单的拓扑的结构配置,能够实现迅速的自学习和快速收敛。

3 人工智能在电气自动化中的应用

人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能完成的复杂的工作,电气自动化是研究与电气工程有关的系统运行。人工智能主要包括感知能力、思维能力和行为能力,人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面。而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题,即提高机械人类意识能力,强化控制自动化。因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。

随着人工智能技术的不断发展,很多研究人员展开了针对人工智能在电气工程自动化控制方面的研究,例如:应该如何将人工智能系统应用于故障的诊断和预测、电气产品设计优化和保护与控制等领域。在优化设计方面,设计电气设备是很繁琐的工作。它需要对电磁场、电路、电器电机等学科的知识综合性的运用,同时还要使用以往设计中的经验。设计以往的产品时,通常是在根据经验和实验的基础上,通过手工的方式开展的。这样的设计过程很难取得最优的设计方案。电气产品的设计随着计算机技术的发展,逐渐由手工设计向计算机辅助设计不断转变,使开发产品的周期大大减少。尤其是在引进了人工智能技术之后,更加促进了CAD技术的发展,大大提高了设计产品的质量和效率。人工智能技术在电气设计方面的应用主要包括专家系统和遗传算法。其中的遗传算法是一种优化的先进算法,在产品的设计优化上有举足轻重的作用。因此电气产品的人工智能化设计很多都采用了这种方式进行优化。电气设备的故障征兆和故障之间有着很多必然和偶然的关系,具有非线性、不确定性的特点,它的优势能够通过人工智能的方式得到最大的发挥。人工智能技术在电气设备诊断故障方面的应用主要由:专家系统、模糊逻辑和神经网络等。在电力系统之中,变压器因为重要的地位而受到很多研究者的关注。目前诊断变压器故障的常用方法主要是分析变压器油中分解出来的气体,通过这种气体分析找出变压器的故障范围。同时在电动机和发电机等方面,人工智能诊断故障技术也有了长足的发展。

4 总结

人工智能理论是开发、研究如何延伸、模拟人的智能的理论。作为新兴的计算机科学的一个分支,人工智能技术解释了智能的实质,并在此基础上生产出一种与人类智能有相类似反应的智能机器。人工智能的研究主要包括:图像识别、语言识别、机器人、专家系统和自然语言处理等系统。电气工程主要是研究和电气工程有关的自动控制、系统运行、信息处理、电子电气技术、研制开发、信息处理和计算机与电子应用等领域。人工智能主要体现在逻辑推理、问题求解、理解自然语言、证明定理、专家系统、设计自动程序和机器人学等方面。因此智能化技术在电气工程自动化控制中可以发挥最大的效用,促进电气的优化设计、诊断故障和智能控制等。

参考文献:

[1] 魏俊英, 曲炜.人工智能技术及应用[J].上海:同济大学出版社,2007.

[2] 邹国剑.人工智能化技术的现状、问题及建议[J].上海:电子科技大学出版社,2009.

[3] 院丕文.浅谈电气自动化控制中的人工智能技术[J].科技创业月刊.2010,8.

第5篇:对人工智能技术的理解范文

关键词:人工智能;电气自动化

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2013)29-6621-02

人工智能是近年来新兴起来的一种技术,其与传统方式的科学技术有着非常大的差异,它超越了传统方式的限制,让计算机扮演了非常核心的角色,通过对人类的智能行为进行模拟学习,然后用让计算机按照人类的思维方式独立地处理遇到的问题。人工智能新成果在实际工作中的应用使得电气自动化,特别是自动控制领域得到了非常快速的发展,人们对电气设备系统进行了升级改造,从而提高电气设备运行的智能化程度,同时也加强了系统的稳定性,提高了生产效率。

1 人工智能研究现状

随着人工智能技术的飞速发展,人工智能慢慢地被大量运用在电气产品的多个领域,比如优化设计、故障预测、控制与保护、故障诊断等。

1)优化设计

电气自动化产品的优化设计程序非常复杂,它不仅涵盖了电机、电路、电器、电磁场等相关内容,同时更要非常充分地利用电气产品设计实践过程中积累的经验,比如要按照安全设计的基本要求进行设计开发等。我们所知道的传统电气产品设计方式是在工业图纸上以手工设计为主,它的设计工程量非常大,而且周期比较长,特别是很难对其质量进行保证,且设计成本高昂。所以通过这种方式获得最优的设计方案难度相当大。计算机技术的出现和飞速发展加速了产品设计从手工设计向计算机辅助设计发展的进程,并且使得产品设计质量大幅度地提升,其设计过程更加简化、方便修改,整个研发产品的周期得到了大幅度地减少。近年来,人工智能技术的慢慢成熟,又促使电气产品的设计过程有了质的飞跃,对传统的计算机辅助设计技术进一步提升。人工智能技术对电气产品设计的优劣性有着决定性的影响作用,它将电气自动化产品的效率和质量都进行了全面的提高。

2)故障预测

电气自动化设备的故障常常表现出来的现象非常多,人们很难在这些表象上找到它严格的线性和确定性关系。如果我们通过人工智能技术来控制电气设备,这样就可以很好的解决这类难题。现阶段的人工智能技术在电气产品故障预测的运用主要是通过神经网络、专家系统、模糊逻辑等方法对电气设备的故障进行预测和诊断。比如电力系统中非常常见的变压器故障诊断,传统方式是收集和分析变压器油中分解的气体来完成对变压器的故障原因的诊断。这种传统诊断方法不仅效率低,而且费时又费力,并且故障诊断的准确性也有偏差。而我们如果通过人工智能技术将神经网络、专家系统、模糊理论等方法相结合运用在故障预测系统种,不仅能够快速准确地诊断出社保故障的起因,而且同时还可以提供合理的故障解决方法。

3)智能控制

人工智能技术在自动化的控制领域的研究已经非常成熟,但是电气自动化设备的控制领域里人工智能技术的运用目前还是比较少。这是整个行业非常期待和研究的一个大方向。人工智能技术在控制领域的应用主要有下面三种:神经网络控制、模糊控制、专家系统控制。我们以专家系统为例,它是一个对专业知识要求非常高的程序系统,其储存着大量某个专业技术领域的专家知识,这些知识经过预先学结和分析,然后按照一种特定的模式记录,同时该系统还有模拟领域专家对实际问题解决时所用的推理机制。专家系统首先对录入的数据通过预先总结的专家知识进行推理,最后给出决策和判断,所以在理论上,它解决问题的能力在一定程度上可以达到该领域专家的水平。专家系统的研究是人工智能技术中非常活跃的一个领域,它可以涉及到社会中各个领域,只要需要领域专家工作的地方,就可以对专家进行模拟,对专家知识进行总结,开发出专家系统提高工作效率。

人工智能控制技术的实现大致有下面几步:第一步,数据信息的采集和处理:首先采集设备端的开关量和模拟量等数据,然后对这些数据进行处理或者按照某种格式进行存储。第二步,界面展现:对设备和系统的运行状态进行显示,同时显示电压、电流、隔离开关、模拟量开关状态和一些挂牌检修的功能。第三步,系统监控和事件报警:对系统中的设备模拟量的大小、开关量的状态等进行实时地智能监控。一旦有事故发生就向操作人员进行报价。包含越限、状态变化等报警事件。同时可以对事件进行顺序记录,对事故的处理方式进行提示或者可以自动处理某类报警事件。另外,报警的方式可以有多方式,比如语音、电话、声光、图像报警等功能。第四步,操作控制的实现:操作人员可以通过鼠标、键盘等终端对断路器、电动隔离开关等进行远程智能控制。某一个操作可以同时完成多种复杂功能,简化了操作人员的操作流程,同时也减少了人为的生产事故。控制系统还可以对操作人员的控制权限进行设置,不同级别的人员可以做不同的操作,这样就可以达到各级人员按权限值班管理的目的。第五步,设备故障的录波:包含开关量变位,模拟量故障录波,顺序记录,波形捕捉等。

2 人工智能控制的优势

非线性控制器主要包括下面几种:神经、模糊、模糊神经以及遗传算法。通过这种分类方法,我们能得清晰的总体理解。同时对控制策略的统一开发有着很好的帮助。和常规的函数相比,AI函数近似器优势,首先,它不需要知道它控制的对象的具体模型。在很多场景下,因为实际控制对象模型在控制器的开发设计时,具有非常多的不确定性因素,所以设计时很难找到控制对象的正确的动态方程。其次,我们可以通过适当地调整下降时间、鲁棒性能等模式,在提高性能的同时,还可以提高计算所得结果的准确性。它与传统工业中用到的控制器相比较而言,调节方式更加简介方便。另外,如果它达不到专业领域的专家知识,我们可以通过响应数据设计AI函数近似器、通过运用语言和响应信息设计等方法对系统进行提升,这就使得该技术有更广泛的运用,同时也可以让更多的人参与设计。对技术的宣传也有着一定的意义。最后,系统能保持较为稳定的一致性,该一致性与驱动器的特征没有关系。所以,如果我们在设计的时候,加入新的未知数据也能保证数据的准确性,而且系统也可以很好地适应新的未知数据或信息,从而达到解决常规方法所不能解决的问题的目的。此外,它的设计价格非常低廉、抗噪声干扰能力强、设计容易修改。

3 结束语

人工智能技术是一门科技含量非常高的新兴发展科学领域,它是人类智力的延伸和应用。随着科学技术的日新月异,人们在人工智能技术领域的科研硕果必定会越来越多。而且人工智能技术必定会被大范围地应用到电气自动化技术中。同时,在日益成熟的人工智能技术支持下,电气自动化控制将会获得更好的发展。

参考文献:

[1] 翟辉.浅谈人工智能在电气自动化控制中应用[J].科技创新导报,2009(27).

[2] 陈洪峰.国内电气自动化发展状况与趋势[J].科技创新导报,2009(1).

[3] 杨状元,林建中.人工智能的现状及今后发展趋势展望[ J ].科技信息,2009(4).

第6篇:对人工智能技术的理解范文

关键词:人工智能;信息素养;信息技术

中图分类号:TP18文献标识码:A文章编号:1009-3044(2008)35-2417-02

Artificial Intelligence Education and Middle School Students Information Literacy

WU Wen-tie

(Mathematics and Computer Institute of Mianyang Normal University, Mianyang 621000, China)

Abstract: Information Literacy in the Information Age is a national basic literacy, artificial intelligence represents a cutting-edge information technology. Based on the analysis of information quality and substance of the definition on the basis of exploring the field of artificial intelligence research, as well as in education, put forward the theory of artificial intelligence and technology courses in secondary education should be in a more systematic, comprehensive Improve the information literacy of students.

Key words: artificial intelligence; information literacy; information technology

1 信息素养的定义及其内涵

“信息素养”一词最早产生于信息技术和信息产业发达的美国, 是随着现代信息社会的逐渐形成而对国民提出的一种兼跨人文和科学范畴的综合性个人素养要求的描述。随着研究的深入,人们对信息素养的认识也在不断深化。

1974年美国信息产业协会主席保罗・泽考斯基最先提出信息素养的概念, 他认为信息素养是“利用大量的信息工具及主要信息源使问题得到解答的技术及技能”。1992年美国图书馆协会提出:“信息素养是人能够判断何时需要信息, 并且能够对信息进行检索、评价和有效利用的能力。”同年, 道尔在《信息素养全美论坛的终结报告》中给出了一个较为全面的定义:一个具有信息素养的人, 他能够认识到精确和完整的信息是作出合理决策的基础, 他能够确定对信息的需求, 能够形成基于信息需求的问题, 能够确定潜在的信息源, 能够制定成功的检索方案, 从包括基于计算机的和其他的信息源中获取信息、评价信息、组织信息用于实际的应用, 将新的信息与原有的知识体系进行融合以及在批判性思考和问题解决过程中使用信息。

综上所述, 虽然研究人员从不同的视角界定了信息素养的定义, 但可看出, 信息素养既包括认知态度层面上的内容, 也包括技术层面、操作层面和能力层面上的内容。概括起来讲, 信息素养主要包括信息意识、信息能力和信息道德三个方面:

1) 信息意识。信息意识是信息素养的首要因素, 主要指人们对信息及其交流活动在社会中的地位、价值、功能和作用的认识, 换句话说, 就是指人们对信息的判断、捕捉的能力。信息意识的强弱将直接影响人们利用信息的程度和效果。人们只有有了信息意识,才有可能有信息的需求, 进一步去寻找信息和利用信息, 并主动学习与信息处理有关的技术。

2) 信息能力。信息能力是信息素养的重要方面, 是指人们获取信息、处理信息、利用信息、创造信息、交流信息的技术和能力。人们只有掌握一定的信息技能, 才能有效地开展各种信息活动, 有效地利用信息和创造信息, 充分发挥信息的价值, 变信息为动力和优势。

3) 信息道德。信息道德是指人们在整个信息交流活动过程中表现出来的信息道德品质。它是对信息生产者、信息加工者、信息传播者及信息使用者之间相互关系的行为进行规范的伦理准则, 是信息社会每个成员都应该自觉遵守的道德标准。

2 人工智能的研究领域

人工智能的研究领域非常广泛, 而且涉及的学科也非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在网络教育环境中常用的智能技术。

2.1 专家系统

所谓专家系统就是一种在相关领域中具有专家水平解题能力的智能程序系统, 它能运用该领域专家多年积累的经验与知识, 模拟人类的思维过程,求解需要专家才能解决的困难问题。

2.2 机器学习

“学习”是一个有特定目的的知识获取过程, 其内在行为是获取知识、积累经验、发现规律; 外部表现是改进性能、适应环境、实现系统的自我完善。所谓机器学习, 就是要使计算机能模拟人的学习行为, 自动地通过学习获取知识和技能, 不断改善性能, 实现自我完善。机器学习主要研究学习的机理、学习的方法以及针对相应的学习系统建立学习系统。

2.3 模式识别

所谓模式识别,是指研究一种自动技术。计算机通过运用这种技术,就可自动地或者人尽可能少干预地把待识别模式归入到相应的模式类中去。也就是说,模式识别研究的主要内容就是让计算机具有自动获取知识的能力,能识别文字、图形、图像、声音等。一般来说,模式识别需要经历模式信息采集、预处理、特征或基元抽取、模式分类等几个步骤。

2.4 人工神经网络

人工神经网络是指模拟人脑神经系统的结构和功能, 运用大量的处理部件, 由人工方式建立起来的网络系统。它是在生物神经网络研究的基础上建立起来的,是对脑神经系统的结构和功能的模拟, 具有学习能力、记忆能力、计算机能力以及智能处理功能。其中学习是神经网络的主要特征之一, 可以根据外界环境来修改自身的行为。学习的过程即是对网络进行训练的过程和不断调整它的连接权值, 以使它适应环境变化的过程。学习可分为有教师(或称有监督)学习与无教师(无监督)学习两种类型。对神经网络的研究使人们对思维和智能有了进一步的了解和认识,开辟了另一条模拟人类智能的道路。

3 人工智能技术在教育中的应用

3.1 智能搜索引擎

随着互联网站点和页面的激增以及网络用户队伍的不断壮大,信息检索成为人们利用Internet的重要途径。但是在浩瀚的网页海洋中寻找有用的信息并不容易,需要借助有力的检索工具如搜索引擎等等。目前一些著名的搜索引擎有:GOOGLE、YAHOO、EXCITE、INFOSEEK等,他们各有特色,但仍存在不足之处,如检索到的无关信息过多以及检索结果排序较混乱。智能化信息检索是信息检索的新分支,它是人工智能和信息检索的交叉学科。它在对内容的分析理解、内容表达、知识学习等基础上实现检索的智能化,这样可以节省学习者在检索中花费的时间,帮助学习者提高检索效率。智能化信息检索所用到的人工智能技术有专家系统、自然语言处理和知识表示。

3.2 智能体(agent)

agent技术早在70年代出现在人工智能领域,通过感知、学习、推理以及行动能够基于知识库的训练模仿人类社会的行为。随着其进一步发展,它在远程教育领域发挥着越来越重要的作用。一套完整的远程教育系统中包含许多子系统,如答疑、作业、考试、交互等等子系统。这些子系统都有各自的数据库用来存储信息。为了提高整个系统的智能性,可以引入智能技术,把众多子系统的数据库链接起来,实现信息资源的共享。通过分析这些信息,智能技术可以发现学习者的个别特征(如兴趣爱好信息、点击知识点信息统计、交互日志等等),并根据这些特征量身订做出适合学习者的学习方案,也有助于教师及时掌握学习者学习过程中的动态信息。

3.3 智能CAI(ICAI)

随着计算机技术的飞速发展,计算机辅助教学(CAI)已受到教育界的重视,成为学科教学改革的一种重要手段。许多学校都在开发CAI课件,但大多数CAI课件只是机械地按照教学设计者事先设计好的教学模式和内容向学生传授知识,并没有体现出个性化学习,无法做到因材施教。

智能CAI是以人工智能技术为核心,使CAI系统能够根据学生的学习情况等因素分析学生的特征,合理安排教学内容、变化教学方法去满足个别教学的需要。使用智能CAI进行教学能够克服传统CAI的不足,显著提高教学效果,是CAI课件发展的趋势。

3.4 智能教学系统ITS

智能教学系统(intelligent tutoring system,ITS)是涉及人工智能、计算机科学、认知科学、教育学、心理学和行为科学的综合性课题,其研究的最终目标是由计算机负担起人类教育的主要责任,即赋予计算机系统以智能,由计算机系统在一定程度上代替人类教师实现最佳教学。我国ITS的研究起步较晚,但近几年随着计算机的普及和教育软件需求增大,ITS的发展较快。ITS按照功能分为四个模块:专家知识模块、学生模块、教师模块、人机接口模块。

4 人工智能教育对学生信息素养的作用

人工智能(ArtificialIntelligence,AI)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科。换言之,它研究如何用计算机模仿人脑所从事的推理、证明、识别、理解、设计、学习、思考、规划以及问题求解等思维活动,来解决需要人类专家才能处理的复杂问题,例如咨询、诊断、预测、规划等决策性问题。人工智能也是一门涉及数学、计算机科学、控制论、信息学、心理学、哲学等学科的交叉和边缘学科。与一般的信息处理技术相比,人工智能技术在求解策略和处理手段上都有其独特的风格。人工智能研究处于信息技术的前沿,它的研究、应用和发展在一定程度上决定着计算机技术的发展方向。同时,信息技术的广泛应用也对人工智能技术的发展提出了急切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响。

综上所述,作为信息技术一个不可缺少的重要组成部分,人工智能的基本内容在中学信息技术课程中是不能不专门提及的,以往某些教材中用一两页篇幅作个简单介绍的方法根本不足以反映人工智能学科的全貌。因此,十分有必要在高中阶段的信息技术课程中专门设立人工智能选修课。我们认为,高中阶段开设人工智能课程可以在以下几个方面对学生的信息素养培养产生积极作用:

1) 多种思维方式的培养和信息素养的综合锻炼。

现实世界的问题可以按照结构化程度划分成三个层次:结构化问题,是能用形式化(或称公式化)方法描述和求解的一类问题;非结构化问题,难以用确定的形式来描述,主要根据经验来求解;半结构化问题则介于上述两者之间。一般说来,中学阶段开设的传统意义上的信息技术课程中所介绍的信息技术,例如多媒体技术、网络技术、数据库技术、算法与程序设计等,都是求解结构化问题的基本技术。而人工智能技术则是解决非结构化、半结构化问题的一类有效技术。

把人工智能课程引入我国现行的高中信息技术教育,可以让学生在体验、认识人工智能知识与技术的过程中获得对非结构化、半结构化问题解决过程的了解,从而培养学生的多种思维方式,达到提高信息素养的目的。通过人工智能课程的学习,学生还将了解人工智能语言的基本特征,学到智能化问题求解的最为基本的策略。

2) 体验人类专家解决复杂问题的思路,提高学生的逻辑思维能力。

这里以人工智能学科中“专家系统”技术的体验、学习与应用过程为例进行说明。在专家系统的应用过程中,一个实际的专家系统不仅能够为用户给出相关领域的专家水平建议或决策,而且能够通过解释机制,以用户容易理解的方式解释专家系统的具体推理过程。学生可以向专家系统提出诸如“为什么(Why)”、“如何(How)”、“如果……会怎么样”等问题,系统接受用户的问题指令后,可以根据推理的逻辑进程,即时将答案呈现给用户,整个过程如同教师与学生在进行面对面的教学。在该过程中,学生可以充分体验人类专家的求解思路和推理风格,有助于提高他们的分析、思维与判断能力。

另一方面,在专家系统的教学过程中,可以要求学生自行构建由产生式规则组成的知识库,或进一步利用工具软件来开发简单的实用型专家系统。为了完成该项工作,学生一开始就要编制开发规划、制定知识获取策略,并具体付诸实施,这是一个不断深化的过程。学生还得明确与系统有关的所有变量或相关的因素,并且将这些变量和因素转化为问题求解,得出相应的结论。在进行一系列问题求解分析之后,运用产生式规则来表示知识,以此建立起来的专家系统还可以让其他学生去运用和体验,具有一定的实用价值。

由于专家系统中的知识组织与推理过程是对人类专家思维方式的一种模拟,因此上述知识库的组织和系统的推理过程能够较好地体现学生的思维过程。在建造知识库过程中,学生需要将原来零碎的未成型的知识概念化、形式化和条理化,从而内化为学生自己的东西。所以,建造知识库的过程不但能反映学生的学习过程,而且有助于学生对该领域知识的深层思考并有利于长久记忆,同时也学会了专家系统的基本开发技术。正如美国著名的学习论专家Jonassen所指出的:那些自行设计专家系统的学生将会在这种活动中受益匪浅,因为这是一个对所学知识进行深度加工的过程。

3) 了解信息技术发展的前沿,激发对信息技术未来的追求。

人工智能技术在一定程度上代表着信息技术的前沿,通过人工智能知识、技术的学习与体验,高中学生能够对信息技术发展的前沿知识有一定程度的了解,这样有助于他们开阔视野,培养兴趣,激发对信息技术美好未来的追求,从而为今后进入大学或走向社会奠定良好的基础。

5 结束语

中学生的信息素养的培养是当前信息技术课的一个重要目标,而在现有的中学信息技术课程中,关于人工智能的知识只作了简单的介绍,学生们对于人工智能研究的广大领域不能有详细的概念,这对于中学生的信息化认识和信息素养的培养不够全面。因此在中学信息技术课中加大人工智能的知识介绍是信息技术课改革的重要内容。

参考文献:

[1] 雷晓庆.网络环境下大学生的信息素养及其培养[J].太原大学学报, 2004(2):38.

[2] 杜玉霞.美国信息素养教育与研究的启示[J].电化教育研究, 2005(10):42.

[3] 王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,2002,1-53.

[4] 潘瑞玲,余轮.Agent技术在远程教育系统中应用的研究[J].微型电脑应用,2002,18(4):28-30.

[5] 吴战杰,秦健.Agent技术及其在网络教育中的应用研究[J].电化教育研究,2003(3):32-36.

[6] 张剑平.关于人工智能教育的思考[J].电化教育研究,2003(1):24-28.

第7篇:对人工智能技术的理解范文

关键词:人工智能;建筑领域;计算机;应用。

1 引言

所谓人工智能技术,是指一门由控制论、计算机科学、神经生理学、信息论、心理学等学科相互渗透所和发展所形成的综合性学科。虽然学术界对于人工智能的定义在经过长久的争论之后仍然没有得出一个准确的定义,但是从本质上来看,人工智能技术就是通过研究和制造人工智能系统和机器来模拟人类智能行为,从而使人类智能得到延伸的一门学科。该学科通过计算机来完成智能系统的构建,并以此来实现定理的自动证明、程序的自动射击、语言的自动理解、模式的自动识别等智能活动。由于研究者对于人工智能的理解存在差异,所以就形成了不同的人工智能研究途径,其主要有三种,分别是联接主义途径、符号主义途径和行为主义途径。

其中,联接主义途径于1943年提出,它主要通过神经元来对脑模型和神经网络模型进行研究,不过目前仍处于基础性的研究阶段。符号主义途径是基于物理符号系统假设提出的,从上世纪30年代开始应用于智能行为的描述中,目前很多的自然语言理解系统、专家系统都是基于该观点研制的。行为主义途径的支持者则认为人工智能源于控制论,在该理论的指导下,研究人员于上世纪80年代成功构建了智能机器人系统,布鲁克斯的六足行走机器人是其中的杰出代表。

2 人工智能技术在建筑领域的应用

2.1 在建筑设计中的应用

在过去相当长的一段时间内,建筑设计师们都通过AutoCAD软件来完成有关绘图工作,但是这并不能从真正意义上体现出建筑设计,设计师们的灵感、创意、创新也无法通过AutoCAD得到更加全面的体现。随着人工智能技术在建筑设计行业中应用的不断深入,现在的设计师中的绝大多数都开始应用能够在设计全称提供二维图形描述和三维空间表现的理论及技术来完成日常工作,不仅提高了工作效率,也使得建筑设计的特点得到了更好的体现。

例如,Arch2010就是一款基于AutoCAD2002―2010平台的,专为建筑设计工作而量身打造的CAD系统,它集人性化、数字化、可视化、参数化、智能化于一身,将建筑构件作为最基本的设计单元,采用了非常先进的自定义对象核心技术,实现了二维图形与三维模型的同步。

此类系统的使用让建筑设计师再也不必趴在桌子上完成绘图工作,让他们的创意和设想能够得到更完美的发挥和实现。工程图档也不再是以往那种抽象的线条堆积,而是通过数字化技术转化成了直观的、可视的建筑模型,真正做到了构件关联智能化、构件创建参数化以及设计过程可视化。

2.2 在施工管理中的应用

工作人员在以往开展建筑工程施工管理工作的时候,主要是依靠手写、手绘的方式来完成有关施工档案的记录和施工平面图的绘制,而随着人工智能技术在建筑领域里应用范围的不断扩大,综合采用数理逻辑学、运筹学、人工智能等手段来进行施工管理已经得到了认可和普及。目前比较流行的基于C/S环境开发的建筑施工管理系统,已经涵盖了包括分包合同管理、施工人员管理、原材料供应商管理、固定资产管理、企业财务管理、员工考勤管理、施工进度管理等方方面面,使对供应商和分包商的管理工作得到了进一步的细化,从而使原材料的进离场、分包商及员工管理工作更加科学、准确、快捷,实现了资金流、物资流、业务流的有机结合。

另外,建筑施工管理系统的数据库也非常强大,具有极为强劲的数据处理和储存能力,不仅性能稳定,升级和日常维护也非常快捷方便。另外,针对建筑施工人流复杂、密集的特点,系统还相应设置了权限管理功能,保障了施工管理数据的安全和准确性。

2.3 在建筑施工中的应用

人工智能技术在建筑施工中的应用主要集中在砼强度分析的工作中。一般来说,28天抗压强度是衡量砼自身性能的重要指标,如果能够提前对砼的28天强度值进行预测,工作人员就可以采取相应的措施对其进行控制,进而提高砼的质量。在以往的工作中,工作人员往往采用基于数理统计的线性回归方式对砼的28天强度进行预测,但是对于商品砼来说,由于其中掺杂了大量的粉煤灰,因此砼各组材料与抗压强度之间的关系往往表现为明显的非线性关系,通过传统方式所得到的预测结果存在着很大的误差。

在人工神经网络技术应用于砼性能预测方面,我国天津大学的张胜利将传统的BP网络模型的预测结果与3中不同输入模型的RBF网络预测结果进行了比较和分析,最终证明了RBF网络模型具有较强的泛化能力和极高的预测精确度,是一种新型的、有效的分析商品砼性能的方法。

2.4 在建筑结构中的应用

汶川地震的发生以及这场地震所造成的严重危害,让建筑结构控制及健康诊断工作得到了前所未有的关注,以往建筑行业所采用的结构系统辨识方法存在着抗噪声能力差、适用范围较窄、难以进行线性识别的缺点,让此项工作的有效开展受到了极大的限制。近年来,随着人工智能技术的发展,出现了一种新型的基于人工神经网络的系统辨识方法,该方法通过模糊神经网络所具有的学习及非线性映射能力来获得实测结构动力响应数据,并以此构建起建筑结构的动力特征模型。模糊神经网络能够对建筑结构在任意动力荷载情况下的动力响应进行非常准确的预测,因此广泛的应用于建筑结构的健康诊断以及振动控制当中,具有很强的实用性和可扩展性。

2.5 在建筑电气中的应用

随着我国建筑业的迅速发展,行业的总体能耗急剧攀升,有一段时间在总能耗中所占的比例甚至超过了30%,所以,实行建筑节能对于实现我国的节能减排目标无疑具有巨大的促进作用,而电气节能技术则是当前效果最为显著的节能方式之一。

电气节能的评估模型建立之后,可以使用人工神经网络对其进行训练,提升其评估的准确性和网络泛化性,使建筑节能改造工作的实施能够具有更多的科学依据。其中,BP神经网络算法就是一种能够将输入/输出问题转化为线性问题的学习方法。传统的BP网络采用的是梯度下降法,该方法的学习速率是保持不变的,同时训练所需的时间较长,且在学习过程中可能发生局部收敛的情况;改进型的BP算法和L-M反算法则增加了动量因子,无论是在稳定性还是收敛性方面,都要优于传统的BP算法,因此广泛的应用于当前建筑电气节能评估模型的构建工作中。

使用该方法构建的建筑电气节能评估模型的权重,能够以相对联系的方式隐藏于网络当中,这种评价方式更加科学、简单、适用,所评估模型的适用范围也更为广泛。

第8篇:对人工智能技术的理解范文

    标识码:A

    收录日期:2012年8月6日

    随着网络技术和通讯技术的发展,人工智能以它强大的渗透力走进了社会生活的各个领域,极大地改变了社会面貌,深刻地改变了人们的思想和行为。探讨人工智能对人类进步的影响,对促进人工智能发展和对人类的进步有着重要意义。

    一、人工智能的含义

    人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出智能机器或智能系统来模拟人类智能活动的能力,以延伸人类智能的科学。

    人工智能领域的研究是从1956年正式开始的。这一年,在达特茅斯大学召开的会议上正式使用了“人工智能”(AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语音理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统。例如,能够求解微分方程、设计分析集成电路、合成人类自然语音,进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的IBM的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。

    当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷。但是,随着硬件和软件的发展,计算机的运算能力在以指数级增长。同时,网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且,现在的AI具备了更多的现实应用的基础。1990年以来,人工智能研究又出现了新的。一方面是因为在人工智能理论方面有了新的进展,一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。

    人工智能在发展过程中形成了几个学派,最主要的两个学派是符号主义和联接主义。符号主义,又称为逻辑广义、心理学派或计算机学派。其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理,代表人物是纽厄尔和西蒙。大量传统的人工智能研究是在这个学派的思想推动下进行的。联接主义认为人工智能源于仿生学,特别是人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克和数学逻辑学家皮茨创立的脑模型,即MP模型,开创电子装置模仿人脑结构和功能的新途径。在这个学派中,有着名的模式识别理论。20世纪八十年代末神经网络迅速崛起,在声音识别、图像处理等方面取得很大成功。

    二、人工智能研究和应用的领域

    (一)模式识别。计算机硬件的迅速发展,计算机应用领域的不断开拓,急切地要求计算机能更有效地感知诸如声音、文字、图像、温度、震动等人类赖以发展自身、改造环境所运用的信息资料。但目前计算机却无法直接感知它们,键盘、鼠标等外部设备,对于这样五花八门的外部世界显得无能为力,即使是电视摄像机和话筒等,由于识别技术不高,计算机并未真正知道所采录的究竟是什么信息,计算机对外部世界感知能力的低下,成为开拓计算机应用的狭窄瓶颈。于是,着眼于拓宽计算机的应用领域,提高其感知外部信息能力的学科——模式识别得到了迅速发展。

    (二)自然语言理解与机器翻译系统。语言处理是人工智能最早期的研究领域之一。人们之间用语言互通信息是一件非常简单的事情,而建立一个能够生成和“理解”哪怕是只言片语的计算机系统却是非常困难的。因为传递某一点的“思维结构”需要庞大的与该思维结构相关的公共思维结构,犹如一个人一样,需要有上下文知识并能根据这些知识进行推理。自然语言理解最重要的成果是机器翻译。现在,机器翻译真正推向市场还面临两大问题:一是准确性。由于科技文献和文学作品有许多专业术语,所以需要专家来进行译前处理和译后校正工作;二是翻译速度问题。翻译需要有庞大的字库系统,有效快速搜索是需解决的问题之一,如何减少翻译前的处理和翻译后的校正工作时间也是需解决的问题。 

    (三)自动程序设计。对自动程序设计的研究不仅可以促进半自动软件开发系统的发展,而且也使通过修正自身代码进行学习的人工智能系统得到发展。程序理论方面的有关研究工作,对人工智能的所有研究工作都是很重要的。我们所指的自动程序设计是某种“超级编译程序”,或者能够对程序要实现什么目标进行非常高级描述的程序,并能够由

    这个程序产生出所需要的新程序。这种高级描述可能是采用形式语言的一条精辟语句,也可能是一种松散的描述,这就要求在系统和用户之间进一步对话澄清语言的模糊,自动程序设计研究的重大贡献之一是作为问题求解策略的调整概念。

    (四)专家系统。专家系统是一个具有专门知识的智能计算机程序系统,它应用人工智能技术,根据某个领域一个或多个专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,解决该领域需要由专家才能解决的问题,专家系统一般由数据库和推理机构成。近年来,在专家系统的研究中已经出现了应用人工智能技术解决实际问题的成功范例。如“故障诊断系统”,这种系统设计了一个计算机界面,可以进行人—机“对话”,用户与专家系统进行咨询对话就像用户与具有这方面知识与经验的专家对话一样,解释和回答用户的问题。此外,还有情报检索系统、数据分析系统和结构优化设计系统等。

    发展专家系统的关键是如何表达和运用专家知识即构筑数据库,如何将那些来自人类专家的并已经被证明了的对解决有关问题有帮助的典型事例符号化后输入计算机。专家系统与过去的一些计算机系统不同,它是以符号处理为主的计算机程序系统,一般没有算法解,经常要在一些不完全、不精确、不确定的信息基础上做出结论。   (五)智能机器人。智能机器人是人工智能研究的另一个重要领域,其中包括对操作机器人装置程序的研究。至今,尽管已经建立了一些比较复杂的机器人系统,工业上也运行着成千上万台机器人,但这都是一些按预先编好程序执行某些重复作业的简单装置,大多数机器人只能“干”不能“看”,不具备“智慧”。如何摄取并处理视觉信息,研制能进行图像声音识别并进行拟人推理的机器人是人工智能的又一个十分活跃的领域。人工智能的研究促进了机器人研究和机器人学的发展;另一方面,智能机器人研究又促进了许多人工智能思想的发展。智能机器人的研究和应用体现出广泛的学科交叉,涉及众多课题。机器人已在各种工业、农业、商业、旅游业、空中和海洋以及国防等领域获得越来越普遍的应用。

    (六)智能控制。人工智能的发展促进自动控制向智能控制发展。智能控制是一类无需人的干预就能独立地驱动智能机器实现其目标的自动控制。它是自动控制的最新发展阶段,也是用计算机模拟人类智能的一个重要研究领域。智能控制是同时具有以知识表示的非数学广义世界模型和数学公式模型表示的混合控制过程,往往是含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的非数学过程,并以知识进行推理来引导求解过程。

    三、人工智能对人类社会的影响

    随着计算机技术的快速发展和广泛应用,人工智能的思想和技术对人类的影响与日俱增,人工智能的发展将会对人类社会产生深远的影响,并将深入到人类社会的各个方面。

    (一)人工智能的发展改变了人类的社会面貌

    1、财富迅速增加。从财富的数量看,由于计算机、控制论和自动化技术的发展,正在迅速提高自动化的程度。同样数量的劳动力在同样的劳动时间里可以生产比过去多几十倍、几百倍的产品。从财富的质量看,由于计算机的推广应用,新兴产业以前所未闻的速度和前所未有的规模发展起来。

    2、人际联系日益紧密。现在,任何社会制度的国家,由于人工智能的发展,生产社会化程度日益提高,使人际联系频度提高,距离缩短,Internet把整个世界联为一个整体。在这种条件下,生产国际化、贸易国际化、金融国际化、教育国际化、政治国际化和信息国际化,人们之间的往来将更加紧密。

    3、信息快速增加和更新。人工智能发展为人们储存和处理信息提供了方便。一方面人们利用计算机每天输入大量的信息,使信息以几何级数增加;另一方面使信息更新加速,人们利用计算机大量输入、生成和输出的信息,使储存在载体上的信息加速折旧,人们不断期待正在传输中的最新信息,为满足这种需要,越来越多的人进一步搜集和输入新的信息。

    (二)人工智能的发展,改变了社会的结构。人们一方面希望人工智能和智能机器能够代替人类从事各种劳动,一方面又担心它们的发展会引起新的社会问题。实际上,近十多年来,社会结构正在发生一种静悄悄的变化。人—机器的社会结构,终将为人—智能机器—机器的社会结构所取代。智能机器人就是智能机器之一。从发展角度看,从医院里看病的“医生”、护理病人的“护士”、旅馆、饭店和商店的服务员、办公室的“秘书”、指挥交通的“警察”,到家庭的“勤杂工”和“保姆”等,将均由机器人担任。因此,人们将不得不学会与有智能的机器和睦相处,并适应这种变

第9篇:对人工智能技术的理解范文

10月21日,2016英特尔中国行业峰会在珠海召开,来自医疗、金融、交通、零售、能源、教育等行业的企业代表分享了他们对于数字化变革的理解与实践。这本该是英特尔中国行业峰会的主旋律,但是实际是与会嘉宾对人工智能的话题表现出更大的热情,有点喧宾夺主的味道。

得AI者得未来

2015年底,许多机构在展望2016年度科技领域时几乎会不约而同地将人工智能列为重点方向之一。现在来看,人工智能的火爆程度让最乐观的预测者都大跌眼镜,这得归结于AlphaGo的推波助澜。

正如文章开始所说,人工智能的使命便是完成海量物联网数据的商业价值转化。根据相关预测,2021年,全球将会拥有18亿台PC,86亿台移动设备,157亿台物联网设备。而到2035年,物联网设备的数量将会超过1万亿台,相应的数据数量将会增长2400倍,从1 EB增长到2.3ZB。如何有效管理、控制和利用如此浩瀚的数据,人工智能是解决之道。

所以说,得物联网者得未来,而得人工智能者将执物联网之牛耳。只有人工智能才能为“万物互联”之后的应用问题提供最佳的解决方案。

2016英特尔中国行业峰会上,英特尔与科大讯飞公司签署合作备忘录,双方将在人工智能领域展开为期三年的基于英特尔至强处理器+英特尔至强融核处理器,以及英特尔至强处理器+FPGA为基础的机器学习/深度学习研究项目。科大讯飞联合创始人,讯飞研究院副院长王智国博士非常到位地点评了这一合作:“一直以来,我们双方都致力于人工智能技术的创新和行业的推动,一方擅长底层计算架构,一方擅长算法及应用。我们期待双方在人工智能技术上的深度合作能够推动硬件和软件的协同设计及优化,共同发现人工智能计算平台创新的解决方案,推动人工智能产业的发展,并通过这些创新的技术支持更多行业用户进行业务转型。”

作为全球最大的半导体芯片制造商,英特尔的公司定位正在悄然发生变化。如今,英特尔将自己定位为“一家致力于驱动云计算和智能互联计算的公司”。可见人工智能已经成为英特尔公司的未来战略方向之一。

人工智能对计算力资源的需求到底有多大,现在谁也无法预判,这就像是个“计算黑洞”。但有一点可以肯定,人工智能是高性能计算在现在和未来的进一步延展和进化,而这恰好是英特尔的优势所在。

对英特尔而言,进入人工智能领域是水到渠成的事情,也是技术上的自然演进。从另一个角度看,物联网和人工智能是历史摆在英特尔公司面前一次前所未有机遇,其空间和舞台远大于PC时代和互联网时代。送上门的蛋糕(要知道,当今世界90%以上的数据都是由英特尔处理器来承载的),岂能让它从嘴边溜走。

从资本到技术,从硬件到软件

基于新的公司定位,英特尔开始从资本层面进行帝国的战略布局。作为硅谷最大的企业风司,英特尔投资总裁Wendell Brooks 说“会把未来的投资聚焦于那些能够更好拓展公司业务发展的领域”,人工智能毫无疑问是重中之重。

9月宣布将收购计算机视觉创业公司Movidius,后者致力于研发低功耗的计算机视觉芯片;8月将Nervana收入囊中,后者主攻半导体、软件和AI深度学习技术;5月宣布将收购专注于计算机视觉技术开发的俄罗斯公司Itseez;4月收购意大利半导体功能性安全方案厂商Yogitech;2015年12月完成了对可编程逻辑器件厂商Altera的收购;2015年10月收购了人工智能公司Saffron Technology……

针对某一业务领域展开如此高密度地集中收购,无论是在英特尔公司历史还是整个IT行业都是十分罕见的。可见,英特尔布局人工智能的决心之大。

由于技术因素,专用领域的智能化是人工智能未来5到10年的主要应用方向,比如自动驾驶。在更远的将来,随着技术的进一步突破,通用领域的智能化有望实现。但无论是专用还是通用领域,人工智能都将围绕“基础资源-技术平台-业务应用”这三层基本架构形成生态圈。

在人工智能上,英特尔能做些什么?仅仅是提供计算平台吗?当然不是,这从英特尔的疯狂收购中也看得出。