前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能技术的研究背景主题范文,仅供参考,欢迎阅读并收藏。
【关键词】大数据;人工智能;计算机网络技术
如今计算机领域掀起了人工智能的浪潮,许多行业和技术正向着智能化方向转型,人工智能技术也因此得到了迅猛的发展。同时大数据时代的到来也给计算机网络技术提出了更高的挑战,数据信息的爆炸式猛增,以及网络环境的日益复杂,都加快了计算机网络技术的升级转型。基于此深入研究人工智能技术在计算机网络中的应用对提高网络环境的安全性以及推动计算机网络技术的进步具有重要意义。
一、大数据时代和人工智能
1、大数据时代。所谓大数据是数据的种类和数量众多的数据集,在大数据中,数据种类繁多,数量庞大,比较传统的数据库数据的真实性更高,数据的处理速度更快。在大数据时代,互联网依靠数据信息的支撑,对于如何从众多的信息中快速获取有价值的数据提出了更高的要求。大数据给我们带来了新的机遇和挑战,深入研究大数据技术,合理地在各个领域运用,将会提高数据的应用价值,给我们的生活提供更大的便利。
2、人工智能的特点及优势。相比于传统模式,人工智能技术在信息处理上速度更快,准确率更高。在大数据时代这种优势会更加明显;人工智能具有成本消耗低的特点,人工智能技术基于专家系统创建知识库和推理机,有效降低资源消耗的同时,还提升了效率;具有超强的自我学习能力,从基础的机器学习到尖端的深度学习,从简单的模式到复杂的人工神经网络,人工智能都有着优异的表现,而且其发展速度是迅猛的,在某些领域甚至已经超越了人类。
二、人工智能在计算机网络技术中的应用分析
1、安全管理中的数据挖掘技术。数据挖掘技术是一种深层次的数据分析方法,它按照给定的任务,对大量的数据进行挖掘和分析,揭示隐藏的规律,通过对网络连接等技术的准确描述,完成同主机的对话,进而找到更加有效的方法。目前基于数据挖掘的技术越来越成熟,在数据化运营中的应用也越来越广泛。数据挖掘技术极大的促进了人工智能的发展,使其在各个领域得以实现。人工智能技术结合数据挖掘技术可有效排除计算机中的安全漏洞,提高系统安全性。
2、保障网络安全。如今计算机网络环境日益复杂化,计算机网络安全化管理的重要性是不言而喻的。人工智能技术的迅速发展,对计算机网络安全的防护起着重要的作用,其中智能防火墙技术就是一个典型的例子。智能防火墙能够自主的对网络上的信息进行筛选,有选择的为用户提供信息,能够拦截有害信息,防止病毒和垃圾信息进入计算机系统。在对垃圾信息进行处理时,人工智能的入侵检测技术可以提前对这些信息进行预览,使问题尽快的被发现处理。在计算机连接互联网时,人工智能技术会对数据进行分析处理,判断计算机网络的安全状态,并反馈给用户。这些检测机制对于提高计算机网络的可靠性和安全性起着重要的作用。
3、人工智能管理。所说的人工智能系统是由软件实现的,它以知识库为基础,通过对知识库中数据的分析处理完成相应的任务,同时还能保证及时性。人工智能管理系统在能够提高工作效率的同时还可以针对不同用户提供个性化服务,在一段工作结束后,管理系统会对信息进行分析处理,有针对性的为用户提供服务。在信息查找方面,人工智能管理技术提供了自定义设置功能,使查找数据和信息更加人性化。在日常实际的使用中,人工智能管理系统这些智能化和人性化的特点,对用户工作效率的提高和时间的节省有着非常重要的意义。
4、网络管理和系统评价。在网络管理方面,由于网络环境时时刻刻都处在动态变化之中,网络环境的复杂性大大增加了网络管理工作的难度。而人工智能技术能有效解决这一问题,基于人工智能技术的网络管理将更加智能化,通过网络内部的专家知识库和问题求解技术,能够建立起一个有着综合性能的管理系统。这种智能化的管理技术不仅可以将网络管理人员从繁重的工作中解放出来同时还能有效提高计算机网络管理的质量和效率。人工智能技术中另外一个重要组成部分就是专家系统。所谓专家系统其实是知识库和推理机的综合,利用专家系统技术能够模拟由领域专家才能解决的复杂问题,提供仿真该领域专家的帮助和指导,让用户花更少的时间和费用以更便捷的方式解决专业性问题。将专家系统合理的运用于网络技术中,能有效提高网络管理效率。
关键词 人工智能;电气控制;自动化系统
中图分类号TM92 文献标识码A 文章编号 1674-6708(2012)72-0083-02
电气自动化是一门以电气系统的运行、控制、研发为对象的实践应用性学科。人类社会发展到当代,解放人类的双手,最大程度实现机械运行与控制的自动化。全面应用人工智能技术的最新成就,充分推动电气设备自动化的进一步深化发展,提高其系统运行趋于智能化的同时,人工智能技术的应用还利于强化系统工作的安全性、稳定性,有利于企业生产效率的提升以及市场竞争力的增强。
1 人工智能技术研究与应用的现实情况
近年来,大量科研单位以及专业院校都在人工智能技术的创新与研究以及其电气设备控制系统中的应用上开展了大量工作,人工智能用于电气设备系统的结构设计、故障诊断、预警、监控以及自动保护等方面都达到了一定的水平。
以结构设计方面为例,因电气设备系统结构设计复杂性高,涉及到诸如电路、电磁、电机电器应用等等大量的学科专业知识,更要求工作人员有丰富的实践经验。目前,在数字技术空前创新发展的背景下,电气产品及其控制系统的设计工作业已转向了CAD,使得新产品新系统的构建周期显著缩短。在此基础上加入人工智能技术,系统设计的质量以及速度都可得到全面提升。
此外,人工智能技术在进行电气设备系统故障控制与预警方面也有非常独特的优势。电气控制系统出现故障之前征兆呈非线性,因此人工智能技术中的模糊逻辑、神经网络等等部分可以充分发挥其优势。
最后是人工智能技术在电气自动化控制系统中的运用,主要的技术方法有、神经网络、专家系统以及模糊控制三种,其中以最后一种控制技术最为简便,可应用性最强。人工智能技术在电气自动化控制系统中以AI控制器为主,其可以视为非线性函数近似器。与一般的函数估计设备相比较,AI控制系统在进行设计时不一定必须工作对象的具体模型,这就避免在设计时需要考虑控制对象模型本身的参数变等不确定性。此外,其性能提升的空间比较大,而且易于调节,一致性强,对于新的数据信息适应性良好;配置成本低而且更新简便、抗干扰能力强。
2 电气自动化控制系统中人工智能技术的具体应用
电气自动化控制系统当中,人工智能技术的应用有两种,一是直流传动控制;另一种是效流传动控制。
在直流传动控制中,人工智能技术的应用有模糊逻辑控制技术为主,有Mamdani与两种可用于调速控制系统。它们均具备规则库部分,规则库实质上是一个if-them的模糊规则集合。以后者为例,它最主要的规则就是“if x=A,且y=B,则z=f(x,y)z则z”。其中的都是模糊集。模糊控制设备以推理机为核心部分,它负责模仿人脑的智能化决策以及模糊控制命令的推理。除此以外还有模糊化部分、知识库部分以及反模糊化部分,第一个部分是通过多种不同形式的函数对所输入的变量做出测量,并将其量化、模糊化;第二部分就是由数据规则以及语言控制库构成所构成的知识库,本库设计时就是应用专家的知识与经验对电气设备进行控制,在建立设备模型时,模型操作设备依据人工神经网络系统的推理机制进行模型建设;最后是以模型参数量化与中间平均技术等模糊化技术的应用。
除了模糊逻辑控制技术以外,还有人工神经网络控制技术。这种技术主要用于不同模式的识别以及各种信号的处理,可以在电气传动控制工作中发挥有效作用。这种技术以并行结构为主,适用范围比较广,可以大大提升条件监控、诊断系统的准确性;该控制技术最常用的学习策略是误差反向传播,也就是说在网络具备充足的隐藏层、结点和恰当的激励函数的情况下,多层人工神经网络只要利用反向传播就可以计算出对应的非线性函数近似参数,大大提高网络运行速度。
在交流传动控制中,人工智能技术的应用也同样有模糊逻辑与神经网络两种具体运用。
就模糊逻辑而言,到目前为止均以模糊控制器直接代替原有的普通速度控制设备为主,不过西方某大学研发了一种高性能的带有多个模糊控制器的全数字化传动控制体系,该体系所带有的模糊控制器即可以用来代替普通的速度控制设备,又可以用于执行它控制任务。
就人工神经网络控制技术而言,实践研究中以其对交流电气设备及其驱动环境参数监测及诊断为主。人工神经网络用作步进电动机控制时,可采用一般的反向转波计算方法,就是通过实验数据的应用,通过电机负载转矩以及电机的初始速度最终确定智能监控系统可监测的最大速度增加值。这种设计方案的实现,要求神经网络具备识别三维图形映射的能力,以便达到比常规梯形控制计算模式强的控制成效。在此模式下,人工神经网络可以大大缩减电气自动化系统定位所需要的时间,并且强化对于负载转矩以及非初始速度变化范围的控制工作。人工神经网络的结构以多层前馈型为主,具体可分为两个系统:系统一是在辨识电气动态参数的基础上对通过定子的电流进行自动调节与控制,系统二是在辨识机电系统的运行参数基础上对转子速度进行自动调节与控制。
3 结论
电气自动化控制系统作为提高电气设备的生产能力、流通交换速度的重要环节,脱离了人力操作控制,最大程度实现智能化,不仅可以为企业节约人力成本,而且有利于生产效率的增加。人工智能技术是专门研究人类智能模拟的科学,其应用范围以问题求解、逻辑推理、语言理解、以及专业知识数据库和自动性强的机器人等多个方面,最大的特征就是自动化。即以推动机械向人类行为意识能力靠拢,从这个意义上来说,人工智能技术在电气自动化控制系统中的应用前景非常广阔,在数字控制理念的指导下,传统上使用的控制器设计技术将逐渐会为控制效果更好的人工智能软件技术所取代,因此有关单位与部门须加强这方面的技术研究力度。
参考文献
关键词:人工智能 技术 机器学习
中图分类号:TP181 文献标识码:A 文章编号:1007-9416(2016)11-0089-01人工智能技术,是一门诞生于在二十世纪中期的技术,对于社会和经济发展都有着长远的意义。人工智能这一科学,包含的学科领域比较广,主要包含计算机科学、信息科学、数学科学、工程技术以及哲学心理学等知识体系,其研究的核心问题主要在于能够令及其具备基本的学习、交流、输入和输出的能力,最终目的是实现机器和人类相似的认识世界和独立思考的能力,人工令机器具备更加“聪明”的属性,这也是能够令计算机具有智能性能的基本方式。
1 机器学习概述
1.1 机器学习定义
机器学习,主要就是指通过系统或者知识的识别,对于机械的学习能力进行提升,使其能够获得新技能或者新知识。与人类的学习方式类似,如果不进行系统的学习或者没能掌握合适的学习方式,那么机器学习的效果也会大打折扣,难以进行新知识、新作品的创造,机器学习也是相同的道理,只有通过学习掌握了分析问题、解决问题的方式,才能够获取创新能力。机器学习在人工智能发展领域是一个热门的研究领域,其研究的目的简而言之就是推动机器能够像人类一样不断获取新的知识,获得分析问题和解决问题的能力,建立起相关的知识体系,并且将这些能力运用在具体的实践问题解决中[1]。
1.2 机器学习研究目的
机器学习研究的主要研究目标有三个,首先,需要进行人类学习整体过程的模拟,在此基础上进行学习认知模型的建立,目标的实现对于科学知识的认知和发展存在着很强的相关性;其次,需要推动机器进行相关理论的学习与研究,探索多种学习方法,并且根据机器本身的特质进行特定的程序设计,体会其相似和区别性;最后,设定关于机器学习的相关程序,主要研究内容就是获取知识的工具以及相关系统,在机器发函系统建立的过程中建立起相关数据库,进行知识和经验的累积。不断进行自身知识的累计,提升能力掌握的水平,提升机器智能化的能力,令机器能够接近人类的学习能力。
1.3 机器学习方式方法
机器学习方式方法主要就是基于人类的学习方式,需要将机器和人类学习的方式进行综合学习,掌握更科学的学习方式方法,在人类思考方式和学习方式的基础上进行机械性能的扩展,能够实现快速、大内存、高复制性的工作,得到适合的机器学习方式方法。当前,机械学习的具体学习方式方法有两种思路,一种是演绎学习系统,从一般到特殊的学习方式方法,能够通过公理的推断得出相应的结论和目的;另一种属于归纳学习系统,主要思路就与演绎方法相反,特殊到一般的思维方式,其主要包含传统归纳和创新归纳两种模式,也可以包含完全和不完全归纳这两种模式,其中传统的归纳关系是根据事实思考方式,归纳出其中的共性,得到科学的机器学习方式方法。
2 基于人工智能的机器学习研究
2.1 环境适应性机器学习研究
机器与人类的很大一点不同在于,对于环境的适应性有所不同,机器对于环境的适应性研究也就成为人工智能技术研究的重要问题之一,环境能够位系统提供的质量高低对于机器学习的质量有着深远的影响,同时,机器内部体系存放的原则往往都是通过环境适应性的原则建立起来的,然而,外界环境通常都具有复杂性,学习过程中必须通过大量的数据进行支持,对于多余环节进行删减,在此基础上进行总结推广,设定成为系统的动作指导一般性准则,这样可能会导致机器学习过程繁杂,这对于整个系统长远发展是不利的[2]。
2.2 机器知识库的扩展延伸
机器知识库的设置对于机器学习的发展而言也意义重大,需要保障机器知识库种类丰富、表现形式多样化,其中需要包含基本的特征向量、规则化语言以及网络化关联等等,因此在进行机器知识库的设计中,需要做到知识库适当的扩展延伸,实现提升机器学习能力的目的,主要可以从三个角度入手,首先,要求逻辑简单、表意明确的机器表达模式,其次要求做到推理过程简单易懂,能够降低机械计算成本,这就要求机器学习的系统进行简单的推理过程,最后,要求实现知识的充分扩展和眼神,人工智能技术背景下的机器系统的学习不仅仅要求基础知识的掌握,更要求知识的表达方式以及表达效率的提升,甚至一个知识要求需要不同的表达模式,对于系统的构筑要求也有所不同。
2.3 机器学习反馈评价体系
基于人工智能技术的机器学习,需要建立起相应的反馈和评价体系,针对机器学习反馈评价体系而言,其反馈主要包含三重内容,其一是根据简单基础的规则进行基础反馈评价,其二是进行设计多个概念的复杂型评价反馈体系,最后就是设计小型的策略分析评价体系,分步根据实际任务进行机器学习反馈评价体系的建立。在此基础上,应当提升学习反馈评价机制的透明度,要求执行的过程和结果通过简明的方式表现出来,对于已有的知识库进行合理评价,在表达模式当中采取元级表述的方式进行反馈评价,这样的反馈评价体系有利于人工智能技术在机器发展中的应用,扩展机器学习范畴的同时提升其执行能力。
3 结语
综上所述,在人工智能的背景下,进行机器学习的研究势在必行,需要通过多种方式在研究机器学习定义、目的和方式方法的基础上,对于人工智能在机器学习中的认知进行深入思考和完善,通过环境适应性机器学习研究、机器知识库的扩展延伸和机器学习反馈评价体系的建立这三种方式进行人工智能的机器学习发展,推动人工智能技术在机器学习领域的深入发展,推动社会经济的发展。
参考文献
关键词:人工智能;Python程序设计教学;项目驱动混合教学模式
人工智能技术在教育领域的应用已经非常深入,它可呈现深度学习、跨学科融合、人机协同、群智开放、自主操控等诸多内容,并在教学中引发链式突破、推动教学内容的数字化、网络化与智能化跃升式快速发展。所以说在教育领域中,人工智能如鱼得水,它获得了更大的自我技术展现空间,也为学生学习新知识内容带来诸多福音。
一、高职院校Python程序设计教学引入人工智能技术的必要性
人工智能本身离不开算法,而算法的实现则需要语言做支撑,像目前高职院校的Python程序编程设计教学就可引入人工智能技术,Python作为AI时代的头牌语言其融合性教学也成为了培养AI人才的重要关键。目前国内许多高职院校都在全面推行人工智能技术背景下的Python教学,将其作为是数据分析、网络攻防的第一语言以及编程入门教学的第一语言。
换个角度讲,高职院校在Python程序设计教学中引入人工智能是非常必要的,因为它关系到高职生未来的就业生存、岗位专业能力创新与事业发展,考虑到人工智能领域的知识理论性偏强,且对学生的数学基础能力要求较高,整体学科学习难度较大,所以许多高职院校也在思考如何将人工智能技术内容合理融入到Python程序设计教学体系当中,为学校相关专业领域拓展教育新路,培养对路人才[1]。
二、高职院校人工智能背景下的Python程序设计教学方法应用研究
(一)教学应用概述与教学目标明确
Python语言作为高职院校守门程序设计课程教学语言,相比于其它传统计算机语言具有简单易学、程序可读性、可迁入性、可扩展性、逻辑结构缜密等特点。同时该编程语言采用了开放开源设计,拥有12万以上的第三方库,可有效避免编程重复问题,提高教学中的语言编程教学效率。另外Python是一种解释型语言,它的跨平台与可移植性相当之强,可在任何系统中拷贝运行,对环境配置要求不高。
为了确保某些没有编程基础知识能力的高职生也能学好Python语言程序设计课程,教师专门在教学中加入了人工智能技术内容,围绕该技术融合可开展的Python编程语言课程就包括了Python安装、Python输入输出、Python特性、人工智能编程等等知识内容。在教学中希望明确3点教学目标:
第一,要求学生初步具有利用Python初步编写基本程序的能力。
第二,要求学生掌握Python编程语言的基本特性。
第三,要求学生深入了解某些常用Python库,特别是了解人工智能的基本思想与编程方式,能够利用人工智能和Python编写出某些复杂的处理程序。
(二)创新教法设计应用
为切实达到Python程序设计教学目标,凸显学生在课堂教学中的主体地位,教师可采用任务驱动配合项目驱动的混合教学模式展开一系列的教学设计活动,引导学生循序渐进的完成各项教学任务内容,不断提升自身的Python语言程序设计水平。
具体到教学方案设计中,教师专门围绕学生中心、任务载体将教学内容相对巧妙的隐藏于具体的教学任务中,再通过Python编程语言新知识内容与新教学技能驱动学生深入学习展开基础章节任务,结合任务结果评价评价学生对知识点的掌握情况。这一教法的提出与运用希望解决传统程序设计教学中理论与实践相互分离的不利教学局面,希望将课堂中的所有理论内容全部转移到实践任务中,凸显教学中理论与实践过程的相互和谐统一。如下:
教师为学生设计教学任务,设计Python程序示例任务,将fileA和fileB两个文件各存放于不同的两行字母中,然后将两个文件中的信息数据内容完全合并,按照字母顺序排列并再次输出一个新文件fileC,以下给出该任务教学中的程序设计编写代码:
fp1=open(‘fileA.txt’)
data1=fp1.read()
fp1.close()
fp2=open(‘fileB.txt’)
data2=fp2.read()
fp2.close()
fp3=open(‘fileC.txt’,w)
data_all=list(data1+data2)
fp3.write(data_unite)
fp3.close()
采用上述项目任务驱动项目混合教学法可为学生构建一个相对完整的人工智能Python程序设计教学独立项目,将项目完全交由学生独立处理完成,教师负责设计教学方案,而由学生收集信息,实施项目并最后再由教师给出学生项目完成评价。它全面考验了学生对于Python基本库与第三方库的学习了解与运用程度,同时在融入大量人工智能编程思路后颠覆学生的语言编程学习认知思维,让学生了不但能够练习独立编程,也能共同学习协作编程,全面提高自己的的Python语言编程能力[2]。
总结:
综上所述,在高职院校中采用人工智能技术配合Python语言编程设计可有效拓展教学思路,而本文中所采用的的任务驱动项目混合教学模式则能有效激发学生的学习热情,促进他们合理运用所学习知识解决实际问题,彻底摆脱复杂语法及算法所带来的学习困扰,更好学习Python编程语言知识。
参考文献
工作中存在的不足网络舆情监测工作是指网络信息工作的部门或人员在特定时期或者在特定的事件中对公众在互联网上发表的言论和意见进行监视、收集、分析、整理及预测的行为,这些言论被称为网络舆情。
当前的网络舆情监测工作平台主要是基于信息采集、整合技术和智能处理技术,通过对互联网海量信息的自动抓取、自动分类聚类、主题检测、专题聚焦,实现对用户的网络舆情监测,并由相关部门形成舆情工作报告、舆情信息简报等,为舆论引导提供可靠的分析依据。
进入大数据时代,网络舆论呈现的新特点,促使网络舆情监测工作暴露出诸多不足之处,这为网络舆情监测工作带来了诸多挑战。
网络舆论信息格局发生变化,舆情分析质量亟待提高。据人民网权威的《2016年中国互联网舆情分析报告》显示,在2016年,伴随着移动互联网应用不断向社会各层面渗透,网络舆论的格局发生了很大变化,如网民结构与社会人口结构趋同,网民产生代际更新导致网络流行议题和文化热点发生转换,微博、微信平台化,专业自媒体步入兴盛等。在这样的变局下,网络舆情监测工作面临着新的挑战。然而,有些部门的舆情信息收集工作仍然停留在报刊、门户网站、BBS、微博等开源信息的收集阶段,并未将新闻客户端、微信、直播等平台打通,难以保证舆情信息分析的全面性以及舆情热度指标的准确性。《2016年中国互联网舆情分析报告》还对近五年来参与当年最具网络关注度的20个舆情热点事件讨论的320万微博用户样本进行了分析,发现关注新闻事件和聚焦热点话题的网民发生了代际交替,在性别方面,女性的比例明显上升;在地域上,三、四线城市用户增长迅猛。受众层面发生的这些变化,也将在舆情监测工作中体现出来。然而在目前的舆情监测工作中,相关信息部门的舆情信息报送在内容上只是就事论事、停留在现象层面,对受众的成分、热点事件的社会背景以及事件背后所反映出来的社会问题没有进行细致深入的研究分析;在形式上,网络舆情监测工作的报送还停留在工作动态报告或者事件日志等形式的报送上。这样就造成了网络舆情信息的价值作用降低、服务能力减弱的问题。
热点事件话语体系不可控,舆情预警能力亟待增强。纵观近年来发生的热点公共突发事件,可以发现,在以大数据为基础的社交平台上,公众的话语体系呈现出了一些全新特征,如舆论主体的匿名性、参与渠道的多元化、生成议题的自发性、交流观点的无界性、汇集意见的实时性、发展趋势的不确定性等。这些特征与舆论话语体系在传统媒体的呈现完全不同,网络舆论热点事件话语体系的不可控性大大增强。
在社交媒体平台上,自媒体呈现出来的话语体系最为庞杂。许多舆情信息不仅包含结构化数据,还涉及大量非结构化数据,若对其准确性、真实性逐一核查,既耗费人力又耗费时间。就内容而言,较多负面、虚假舆情具有较强的隐蔽性,单纯以关键词或主题词进行搜索容易产生误判、遗漏。话语体系的不可控性增加了舆情监测工作的难度,这要求工作人员必须具备过硬的专业敏感性以及较强的网络操作技能。但是目前大多数舆情监测工作部门的信息工作人员缺乏专业化的训练,舆情信息工作水平参差不齐。就舆情监测平台系统来说,对于舆情信息的跟踪分析灵敏度较低,在有些热点事件的处理上没有按照公共突发事件的分类标准进行准确的分级,从而导致网络舆情信息的分析判断力体现不出其应有的情报价值,预警能力也随之削弱。
舆情监测的技术体系落后,人机不协调问题亟待解决。网络舆论的实时性及其发展的不确定性要求网络舆情监测必须迅速、及时,但很多单位部门的舆情监测平台的方法技术体系滞后,部分单位采用了网络监控系统、有害信息过滤系统等方式进行网络舆情监测,而有些单位为了节省舆情监测设备的成本,甚至将网络舆情监测工作依托于人工网页搜索及浏览的“人工盯梢”方式上,这成为监测工作的一大阻碍,监测工作出现疏忽错判也在所难免。排除资金、人力等客观因素,现阶段的网络舆情监测工作中技术方法体系的不足主要归因于“人机不协调”。机器与人工的协同分工模式不成熟、机器的辅助力量不够,导致人工智能技术在预测监测体系中分析情感、预测走势、检查效果等方面应用还稍显粗浅、机械,而在需要人工进行的高级维度分析、提出应对策略等层面,机器的应用又显得粗糙以及同质化。
人工智能为网络舆情监测带来的三大变革
网络舆情监测要适应大数据时代人工智能的要求,就必须顺势而为,积极进行变革,主要包括网络舆情监测技术体系的变革、网络舆情监测研究范式的变革以及网络舆情监测管理思维的变革三个方面。
网络舆情监测技术体系的变革。将人工智能技术应用于网络舆情是为了更好地对舆情进行分析研判,通过直观、简明的方式描述网络舆情信息的产生,进一步推导信息传播主体的态度倾向性、情绪感染性以及初衷、意图等,从而预测网络舆情信息的发展趋势。
如果说在“小数据”环境下,网络舆情监测工作还可以依托于“人工盯梢”的方式来完成,那么在“大数据”环境下,当数据的量级达到了EB甚至ZB级别后,以人工监测来把握舆情脉络已成为不可能完成的任务。而那些隐含在网络舆情信息中的观点、态度及情绪的表达,更难以从泛滥成灾的信息碎片中被真正发掘出来。加之海量信息的不共享所带来的“信息盲区”,更使得舆情信息分析不够严谨,易偏离实际,而这些问题都需要依托搭建智能化的网络舆情监管平台来解决。在平台上可以通过三种人工智能技术实现数据分析与人工智能研判相结合,再借助如眼动仪、脑电仪等受众检验仪器对网络舆情信息进行综合化分析。三种主要的人工智能技术主要包括:一是Web挖掘技术,该技术把互联网与数据挖掘技术结合起来,对网络上结构化数据如文字言论,以及非结构化的数据如视音频、图像等信息进行采集,完成信息前期处理的第一步;二是语义识别技术,该技术是利用采集到的信息,通过对语句中的关键词进行词义推断处理以及句子语法结构的分析,从而将复杂信息简单化,这是对采集的信息数据做进一步识别推断的过程;三是TFDF信息聚类技术,该技术主要提升数据信息的分析和分类速度,使网络舆情监测工作的处理更加及时,反应更加灵敏,提高采取措施的时效性。
人工智能技术的介入将有利于对信息进行挖掘、采集、分类、整理,从而找寻出最核心的关键性数据。在此基础上,还可以运用人工神经网络预测模型,对网络舆情的性质、发展趋势进行正确描述,并提出相应的对策。
网络舆情监测研究范式的变革。人工智能和大数据对网络舆情监测工作及其研究产生了颇为深刻的影响,舆情监测的研究范式从多角度发生了转向。
第一,舆情监测工作视角的转向:从单一化到多元化。在社交媒体平台上,受众的角色首先发生了转向,由信息的被动接收者转变为信息的参与者和传播者。这一转向给网络舆情监测工作带来了新的挑战,当受众是单纯的信息接收方时,网络信息的可控性强,舆情监测工作形式单一,把关相对容易。而受众角色发生变化以后,网络信息传播的不可控性大大增加,信息传播速度加快,信息传播呈现多元化特征,把关难度增加,网络舆情监测工作也从单一转向多元化,还需要对信息进行疏导、研判处理。
第二,研究视角的转向:从内容研究转向“内容+关系”研究。传统的网络舆情信息研究最重视的是受众借助网络进行的话语表达,其研究视角主要集中在内容层面。随着人工智能技术的介入,这一单向视角将发生转变,潜藏在内容层面背后的网络受众心理、行为、动机、诉求等多方面因素都将被关注到。借助人工智能技术及大数据分析技术,网络舆情信息的研究视角将透过内容层面深入到关系层面,转向对网络受众社会心理描绘、社会关系呈现、社会话语表达等多维度的研究。
第三,研究重点的转向:由舆情监测转向舆情预测。当前的网络舆情监测工作主要通过对当下网络舆情的动态信息进行随机采样来收集、整理、分析,更多的是关注已经发生的事件在过去及当下的动向,对未来的发展预测难以兼顾。而借助人工神经网络预测模型,通过自然语言处理、模式识别及机器学习等人工智能技术,可以对网络舆情的性质、发展趋势进行正确描述,再结合大数据分析处理整群数据来实现预测功能。比如,著名的搜索引擎公司谷歌通过关注用户搜索中的“流感”关键词来预测实际流感发生的时间,往往可以提前两三个周对流感的爆发进行预报及预防。
网络舆情监测管理思维的变革。在以人工智能技术为支撑的网络舆情监测平台出现之前,相关舆情监测部门的管理者往往由一人或几人的小团队组成,在监测信息数据量级不大的情况下,这种小作坊式单打独斗、面面俱到的舆情监控管理思维可以基本满足需求。但是随着人工智能技术的发展及大数据时代的到来,这种小作坊式的舆情监测体系面临瓦解。当前,商业化运营的软件监测团队多达几百家,这些监测软件服务商通过开发相应的舆情监测软件为政府部门、企业主体以及科研院所提供服务,进行简单的舆情信息数据采集及分类处理工作。在数据开源的情况下,这些软件服务商的竞争逐渐由粗放型、低层次化向数据处理的优化、人机互动、机器算法的精进等层面转变。
在以上变化的基础上,舆情监测的管理思维也必须转向,组建一支人员分工明确、高度聚合集约的舆情分析团队势在必行。舆情管理的思维变革依托于人工智能监控系统改变团队的组织结构及管理方式,通过智能化的舆情监测系统代替低效的人工操作,其专业性要求颇高,而最佳处理模式就是专业化团队加人工智能技术。按照这样的管理思维,未来舆情监测团队的分工将更加明确,行业内部集约聚合程度将进一步提高,行业有机化程度也将逐步增强。
电气信息化技术分为三个层次:第一,信息基础技术,包括光子、微电子等相关元器件的制作技术等,为集成电路、计算机等技术的应用提供了前提与基础。第二,信息系统技术,指的是获取、处理、传输与控制信息的系统或者设备在实现的过程中所需的技术,其中信息获取技术包括遥感技术、传感技术等,信息处理技术包括优化与仿真技术、数据库技术等,信息传输技术包括多媒体技术、网络通信技术等,信息控制技术包括人工智能等。第三,信息应用技术。信息技术在社会的各个领域中都有着广泛的应用,例如工程控制技术、信息管理系统等。
2电气工程信息化应用系统的优势
2.1确保电气工程各个环节的一致性
在电力系统的运行过程中,检测、监控、管理等各个环节之间的相互协调与配合是电力系统有序运行的前提与基础。通过电器工程信息化应用系统,能够实现电力运行系统检测水平与控制水平的提高,进而实现电力系统运行效率与质量的提高,更好地改善运行系统的服务效率。
2.2实现电气工程监测模型的简化
实现电气工程信息化,能够对传统的电电气工程信息化应用系统的设计要点分析文/苑少军在信息时代背景下,电气信息化技术在电气工程中得到了广泛的应用。本文首先对电气信息化技术进行了分析,在此基础上提出了电器工程信息化应用系统中的信息技术及其设计要点,为实现电气工程信息化奠定坚实的基础。摘要器工程检测模型进行有效的简化,更好地确保电气工程控制的时效性。利用控制器进行控制的过程中,如果被控制对象比较复杂,将导致无法对其进行准确的把握,出现无法估量、无法预测等情况。因此,在电力系统的管理与控制的过程中,会由于电气工程出现的问题而面临困境。
3电气工程信息化应用系统的设计要点
3.1优化与仿真系统的设计要点
首先,计算机辅助电机电器优化设计。CAD在飞机制造、汽车制造与电机电器工业中最早得到应用,主要依靠的是计算机非常强大的计算功能,将传统经验转变成为计算机软件,从而实现了工作效率与质量的有效提高。其次,电力系统的优化与仿真。计算机在电力系统的可靠性、安全性等仿真系统中得到了广泛的应用。当前,优化与仿真技术主要在计算机辅助电力系统潮流计算、网络规划、可靠性分析、系统计划分析等方面得到了充分的利用。随着电力工业中模拟技术的应用,计算机的图形处理功能与逻辑分析功能得到了广泛的应用。在计算机屏幕上实现了实际电网的再现。无图板设计标志着电力工程计算机辅助设计发展到了新的阶段。
3.2人工智能技术的设计要点
3.2.1人工智能技术在电力系统中的设计
在电力系统的规划、监视、控制、分析等领域中,人工智能技术已经得到了广泛的应用。人工智能系统应用较为成功的包括电力调动操作管理系统、短期电力负荷智能预报系统、分布式电力网络故障模拟分析系统等。
3.2.2人工智能技术在电机中的设计
人工智能技术在各个领域得到了广泛的应用,电机控制领域的专家学者也开始关注与重视人工智能思想与方法,开始在控制系统的研究与应用中引入人工智能技术,解决各种传统控制方法无法解决的问题,完成各种传统控制技术无法胜任的任务。如电机智能控制器,水力发电机微机采样多参数新型控制装置,异步电动机微机矢量控制智能调速系统,转矩控制和电流跟踪的高性能智能变频高速系统,异步电动机矢量控制调速系统以及应用自适应神经元控制技术的电机PWM调速系统。
3.3网络技术的应用与设计
3.3.1管理信息系统
电力专用通信网在建设与管理方面都取得了一定的发展与成就,实现了电力调度系统计算机网络规划大纲的制定与完善。当前,已经逐步形成了包含多种通信方式的通信网络,一方面更好地满足了电力生产调度的需求,另一方面为全国电力信息网络的建立奠定了物质基础。
3.3.2过程控制自动化
在过程控制自动化指的是通过计算机监控系统实现自动化控制。很多电厂还建立了以计算机为基础的机炉协调控制系统、锅炉炉膛安全监视系统、汽轮机数字电液调节系统及各种辅助控制系统。并在单元机组分布控制的基础上,建立了值长系统、生产管理系统,实现了机组计算机监控实时信息进入管理信息系统网络,大大提高了机组的安全和经济运行。
3.4故障诊断技术的应用
电力设备在电气系统运行的过程中常常会出边各种故障。电气设备出现故障之前都存在一定的预兆,依据故障预兆能够对设备故障进行判断。随着信息化及时的不断发展与完善,利用信息化技术能够更好地对故障预兆进行判断,从而确保系统能够正常的运行。研究人员针对电气工程信息化系统中的变压器进行了科学、合理的维护,实现这一重要电力设备寿命的延长,但是并不能够对设备故障的出现实现完全的避免。
4总结
[关键词]人工智能,工程技术应用
中图分类号:TP 文献标识码:A 文章编号:1009-914X(2014)31-0221-01
首先,介绍下人工智能(Artificial Intelligence,AI)是一门综合了计算机科学、生理学、哲学的交叉学科。人工智能的研究课题涵盖面很广,从机器视觉到专家系统,包括了许多不同的领域。 其点是让机器学会“思考”
人工智能学科是计算机科学中涉及研究、设计和应用智能机器的一个分支。
1.20世纪80年代,专家系统技术的逐渐成熟及计算机技术的迅速发展,使得智能控制和决策的研究也取得了较大进展。计算智能是一种仿生计算方法,它从生物底层对智能行为进行模拟和研究,拓展了传统的计算模式,为复杂问题的求解提供了新的解决办法。为了提高计算智能的应用效率,本文分析了二进制遗传算法中早熟收敛的成因,指出了传统的变异算子在防止早熟收敛方面的不足,提出了一种能有效预防早熟现象的二元变异算子,并在此基础上提出了一种便于用常规逻辑门电路实现的遗传算法。鉴于参数选择对于遗传算法求解效率的影响。
2.人工智能在工程技术各行各业的应用
(1)工业过程中的智能控制。生产过程的智能控制主要包括两个方面:局部级和全局级。
(2)机械制造中的智能控制。在现代先进制造系统中,需要依赖那些不够完备和不够精确的数据来解决难以或无法预测的情况,人工智能技术为解决这一难题提供了有效的解决方案。
(3)电力电子学研究领域中的智能控制。电力系统中发电机、变压器、电动机等电机电器设备的设计、生产、运行、控制是一个复杂的过程,国内外的电气工作者将人工智能技术引入到电气设备的优化设计、故障诊断及控制中,取得了良好的控制效果 。
(4)人工智能在水利工程中应用。大坝安全监测自动化系统结构和大坝安全智能决策支持系统(DSIDSS)。
1)针对大坝安全监测系统的可靠性问题,将现场总线监测网络结构和基于现场总线的通信网络模型应用于大坝安全监测系统中,提高了系统的可靠性和系统组网的灵活性,使大坝安全监测自动化系统可根据现场条件灵活组网,增加了系统的实用性。重点研究了监控网络的系统结构、网络通讯模式和功能分布。
2)针对自动化监控系统的数据真实性和合理性检验问题,研究了大坝安全监测数据的预处理方法,应用灰色系统理论和过程突变理论建立了监测数据的在线检验模型,有效地解决了自动化系统监测数据的合理性和真实性的在线检验问题。
3)应用人工神经网络技术研究了大坝监测数据的分析方法,建立了基于自学习神经元的自学习即网络监控模型,为大坝安全监控模型的建立和预测提供了新的思路和方法。
4)针对合理处理DSIDSS中的不确定因素问题,采用模糊测度和模糊积分理论的基本思想和方法进行了处理。结合模糊集和可能性理论,提出了大坝安全等级划分和安全判据的表示方法。应用模糊测度和模糊积分理论,较好地解决了大坝安全综合评价中不确定性因素的计算机表示和处理方法。
5)探讨了DSIDSS中的知识表示和推理技术,应用知识的语义网络和模糊产生式规则表示方法,建立了大坝安全智能决策支持系统的知识库。所采用的模糊推理方法克服了传统Bayes推理方法的部分缺陷,在实际应用中表明是合理有效的一种推理模式。
人工智能的过程及在工程技术转化的顺序包含:
1.机器学习
机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新
的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。
2.模式识别
1). 模式识别概述
模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。
模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。应用计算机对一组事件或过程进行辨识和分类,所识别的事件或过程可以是文字、声音、图像等具体对象,也可以是状态、程度等抽象对象。这些对象与数字形式的信息相区别,称为模式信息。
2).模式识别的应用(1)文字识别(2)语音识别(3)图像识别(4)医学诊断
3.专家系统
1).专家系统概述
专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。
2).发展历史
专家系统的发展已经历了3个阶段,正向第四代过渡和发展。
第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。
第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统
第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略
3. 专家系统的基本结构
专家系统的基本结构如图所示,其中箭头方向为数据流动的方向。专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。知识库用来存放专家提供的知识。专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。
人工智能在物联网的应用
物联网智能是利用人工智能技术服务于物联网络的技术是将人工智能的理论方法和技术通过具有智能处理功能的软件部署在网络服务器中去服务于接入物联网的物品设备和人。
1.智能物联网
1)智能物联网概念
智能物联网就是对接入物联网的物品设备产生的信息能够实现自动识别和处理判断,并能将处理结果反馈给接入的物品设备,同时能根据处理结果对物品设备进行某种操作指令的下达使接入的物品设备作出某种动作响应.而整个处理过程无需人类的参与。
2)智能物联网的实现途径
要实现物联网智能化就必须让人工智能成为物联知终端、传输网络、具有人工智能的数据处理服务器。
2.物联网需要的人工智能技术
1)物联网中需要来自人工智能技术的研究成果.如问题求解、逻辑推理证明、专家系统、数据挖掘、模式识别、自动推理、机器学习、智能控制等技术。
2)物联网的智能控制
在物联网的应用中.控制将是物联网的主要环节.如何在物联网中实现智能控制将是物联网发展的关键。
3.物联网智能模型
基于对人工智能技术的认识和研究.依据人工智能模型.推演出了智能物联网智能化模型。智能物联网被分为五个层次机器感知交互层、通信层、数据层、智能处理层、人机交互层,共五层。
作者简介
机器人桑尼反问:你能吗?
如果你看过电影《机器公敌》,一定记得这个对白,并对电影中那个拥有自我思考能力、拥有人类情感的机器人桑尼记忆犹新。
让机器拥有学习能力,甚至能够像人类一样去思考、工作,这就是人工智能,这个概念自从1956年被提出之后一直都是科幻小说最火爆的主题之一。如今,人工智能已不是幻想。
作为人工智能实现方法之一,人工神经网络目前已在全世界范围内悄然诞生,而由谷歌XLab团队斥巨资打造的谷歌大脑(Google Brain)无疑是首屈一指的。谷歌大脑的缔造者名叫吴恩达(Andrew Ng),他是一位华裔,现任斯坦福人工智能实验室主任,真正的“X教授”。
重拾人工智能梦想
如果是对7年前的吴恩达提人工智能,他一定会用各种理由说服你放弃这个疯狂的想法。
吴恩达对人工智能技术的否定,源于当时的一种主流观点:人类智慧是由无数个负责简单功能的区域协同工作形成的,而这个过程如果用计算机的方式来完成就必须建立成千上万个独立的计算机模块,每个模块模仿一种功能,比如说话、味觉。
按照这个理论推演开去,实现人工智能所需的工作量是巨大的。因此,人工智能技术在发展了40多年之后还是处于初级阶段。
当时的神经学家们始终认为,人工智能属于大脑研究的范畴,他们不大愿意和其他领域的科学家进行合作。这样的结果就是,工程师们在对神经科学毫不了解的情况下,开始开发不完全模仿人类大脑运行的智能系统,最终的产品就是类似“Roomba”这样的吸尘机器,这种吸尘机器人在工作的时候可以自动绕过障碍物,并沿着墙角路线转弯,在如今的家电大卖场均有销售。Roomba只有按照程序躲避障碍的能力,并不能像人一样学习。在吴恩达看来,这是“伪人工智能”。
发明能像人类一样学习、思考的机器,是吴恩达从小到大的梦想,但是当他进入大学开始真正接触到人工智能技术的时候,却深受上述观念的毒害而放弃了研究。
直到有一天,吴恩达偶然接触到了一种崭新的理论,这种理论认为,“人类的智慧源于单一的算法”,人类的大脑在发育的初期,每一部分的职责分工并不是明确的,可以通过后期的调试执行特定的任务。提出这个假说的杰夫・霍金斯(Jeff Hawkins)是全球最大掌上电脑制造商Palm的创始人,也是一名有着神经科学研究背景的人工智能领域的企业家。
这个理论改变了吴恩达的人生轨迹,他重新拾起了儿时的梦想。“我有生以来,第一次感到自己有可能在人工智能的研究领域取得一点儿进展。”
谷歌大脑的缔造者
2010年,时任斯坦福大学教授的吴恩达加入谷歌开发团队XLab――这个团队已经先后为谷歌开发了无人驾驶汽车和谷歌眼镜两个知名项目。身为人工智能领域的权威,吴恩达的使命就是“以史无前例的规模,通过谷歌庞大的数据中心来打造人工智能系统。”
随后,吴恩达与谷歌顶级工程师开始合作建立全球最大的“神经网络”,这个神经网络能够以与人类大脑学习新事物相同的方式来学习现实生活。谷歌将这个项目命名为“谷歌大脑”。
吴恩达表示:“在我加入谷歌的时候,学术界最大的神经网络大约有100万个参量,而当时在谷歌,我们能够建造比这个规模大1000倍的神经网络。”
身处大数据时代,谷歌每年在超级计算机数据中心领域的投资达十亿美元,像吴恩达这样的大学教授,也只有在像谷歌这样的公司里才能完成这种研究。
谷歌大脑能够将所看到的图像或图片分解成10亿多个不同的参量,然后通过自主学习,学会如何将这些零碎的参量组合到一起。比如看到很多种花,再告诉机器这些是花,久而久之,机器就会将这类有颜色、有花瓣、有花蕊的物体自动和花这个单词联系到一起,从而从千万张图片中识别出花。这个过程好像教婴儿认卡片一样,神经网络学界将这个过程叫做“深度学习”。
去年6月,吴恩达所开发的人工神经网络通过观看一周YouTube视频,自主学会了识别哪些是关于猫的视频。这个案例为人工智能领域翻开了崭新的一页。吴恩达表示,未来将会在谷歌无人驾驶汽车上使用该项技术,来识别车前面的动物或者小孩,从而及时躲避。
为了利用谷歌的神经网络模型改善谷歌的语音识别软件,去年夏天,吴恩达为谷歌请来了杰弗里・辛顿(Geoffrey Hinton)――来自多伦多大学的“神经网络领域的教父”。杰弗里在谷歌花了数月时间对谷歌算法进行改进。当安卓Jelly Bean 4.2G版本软件去年底时,这些算法已经将其语音识别的出错率降低了25%。
今年3月,谷歌收购了杰弗里的公司DNN research,DNN是深度神经网络的英文缩写。
加入谷歌的杰弗里希望构建比其去年开发的10亿参量的神经网络更大的神经网络,杰弗里透露:如果能够建立比10亿参量神经网络大1000倍的神经网络,将会有机会教机器理解一些事物,甚至情感。
人工智能才刚刚开始
和人脑的灵活性及准确性相比,吴恩达的深度学习算法还相差十万八千里,但是吴恩达说,那一天会到来的。
吴恩达如此自信是有原因的,如今越来越多的科学家和科技公司开始意识到深度学习对于计算机科学发展的重大意义,他不是一个人在战斗。
在美国,随着奥巴马政府宣布将支持筹建一项跨学科的科研项目“基于神经科学技术创新的人脑研究”,许多类似的项目正如雨后春笋般涌现。
在谷歌发力神经网络的同时,IBM、微软、苹果、百度这些公司也竞相开始了对神经网络技术的探索。
关键词:智能制造;智能科学与技术;人工智能技术;机器人;实验平台建设
智能制造是基于新一代信息技术,贯穿设计、生产、管理、服务等制造活动各个环节。具有信息深度自感知、智慧优化自决策、精准控制自执行等功能的先进制造过程、系统与模式的总称。是信息技术和智能技术在装备制造过程技术的深度融合与集成。加快推进智能制造,是我国在全球新一轮产业变革竞争背景下出台的《中国制造2025》的主攻方向。广东省作为国内制造大省和全球重要制造基地,也对接印发了《广东省智能制造发展规划(2015-2025年)》。针对广东省制造业的创新能力、产业结构、信息化水平的缺乏竞争力的问题,大力实施创新驱动发展战略,推动智能制造核心技术攻关和关键零部件研发,推进制造过程智能化升级改造,实现“制造大省”向“制造强省”转变。创新驱动,智能化升级改造需要国际领先水平人才的引进和高等院校实战型工程技术人才培养。我院智能科学与技术专业就是面向广东智能产业的深度融合设置的。其专业实验平台的建设需要针对广东省高端装备、制造过程、工业产品智能化等领域的薄弱环节,以“机器智能”为方向,完善实验教学体系、整合实验教学资源,开设综合性、创新性的实验项目,培养学生实践能力和创新意识。紧密联系企业,针对智能制造关键技术协同创新。培养具有智能系统开发与设计、智能装备的应用与工程管理能力;能在智能装备、智能机器人、智能家居等领域从事智能系统的是开发与设计、应用于维护、运营与管理的“厚基础、强应用、能创新”的高素质工程应用型人才。
1专业实验平台建设思路
面向智能制造专业实验平台的建设,依据《广东省智能制造发展规划(2015-2025年)》中发展智能装备与系统,工业产品、制造流程智能化升级改造的任务,从智能科学与技术知识体系中提取专业发展方向的课程,建立完善专业实践教学体系。以“机器智能”为方向建设人工智能与机器人实验室为核心,以项目、科技竞赛、紧密对接企业协同创新为手段,培养学生能够运用工程基础知识和专业理论知识设计工程实验,分析实际问题的能力,培养学生查询检索资料文献获取知识的能力,培养学生能够综合运用自然科学知识、专业理论知识和技术手段设计系统和过程解决实际问题的能力。通过科技竞赛等活动,培养学生在团队里具有工程组织管理能力、表达能力和人际交往能力。通过与企业的合作,掌握基本创新方法,并让学生具有追求创新的态度和意识,以培养学生的综合素质和能力为重点。立足华软学院电子系电子信息工程嵌入式专业、自动化专业、通信工程专业现有的平台优势,按照“整合、集成、共享、提升”的基本思路,完善支撑体系,优化验教学资源配置,建设一个能够与广东智能产业深度融合的阶梯形层次化实验平台。
2实验平台建设内容
智能科学与技术专业实验实践平台的建设要依据实验教学体系的构建,突出面向智能制造工程实践为特色,按照学生的成长需要,建立阶段化、层次化、模块化的实验教学体系。
2.1专业实践课程体系建设
面向智能制造的智能科学与技术专业定位是以工程应用型人才培养为目标的,是在通识教育基础上的特色专业教育。专业课程体系的建设首先还是以培养学生具有扎实自然科学基础知识,人文社会科学知识和外语应用能力为基础,其次是智能科学与技术专业技术基础课程,如数字系统与逻辑设计、数字信号处理基础、信号与系统、电路分析与电子电路;c语言程序设计与算法分析、数据结构、数据库与操作系统、微机原理与接口、传感器与检测技术等。最后是专业方向类课程,也是专业的核心课程,如制造业基础软件中的嵌入式软件、工业控制系统软件,工业机器人中人工智能技术应用和智能控制技术。主要有知识获取模式识别;数据通信与网络;嵌入式系统移植和驱动开发;嵌入式应用开发;人工智能与神经网络;智能控制技术;机器人学等课程。培养学生具备计算机技术、自动控制技术、智能系统方法、传感信息处理等技术,完成系统集成,并配合专业实践课程体系如图1,完成电子工艺实习、技术基础课程、核心课程的课程设计和综合项目实验,并在工程应用中实施的能力。
2.2实践教学体系建设
依据专业实践课程体系,构建主要包括计算机基础、电路基础、信息与控制基础、嵌入式技术、机器智能系统五大模块开展不同学习阶段层次化的实验教学体系。主要包括基础类、专业实训类、综合创新类。
1)基础类实验注重开设与课堂教学中基本理论相结合的精品实验项目,并逐步提升基础实验课时的比例。从实践中启发引导学生牢固掌握基础理论知识。除此之外,还要注重工作方法和学习方法的能力培养,如收集信息查找资料、制定工作计划步骤、从基础理论到解决实际问题的思路以及独立学习新技术的方法和评估工作结果的方法。培养学生厚实的专业基础知识和能力。
2)专业实训类实验主要以项目教学、案例教学、情景教学方式培养学生利用专业知识及方法独立解决行业领域内的任务和问题并能够评价结果的能力。如智能传感应用项目,人工智能技术实验项目,知识表示与推理项目,计算智能项目,专家系统,多智能体系统;机器人项目,如最小机电系统组成,如何完成对电机的控制;利用单轴或双轴控制平台实现基本搬运装配作业。
3)综合创新类实验注重培养学生从理解问题域开始,获取数据和知识、开发原型智能系统、开发完整智能系统、评估并修订智能系统、到整合和维护智能系统六个阶段构建智能系统。如开展人工智能技术在智能制造中的应用包括产品设计加工、智能生产调度、智能工艺规划、智能机器人、智能测量等;直角坐标机器人实现码垛搬运、多关节串联机器人、弧焊机器人实训等。
4)科技竞赛、与企业协同创新,通过观察记录待智能化升级的工厂生产过程,发现定义问题、提出假设、搜集证据检验假设、发表结果、建构理论等实验过程设计的能力。培养学生掌握基本创新的方法,团队协作管理能力、表达沟通能力等。如嵌入式设计大赛、机器人大赛等科技竞赛;以及针对自动化生产线的嵌入式工业控制系统设计;针对原材料制造企业的集散控制、制造绦屑成应用;针对装备制造企业的敏捷制造、虚拟制造应用;工业机器人在汽车、电子电气、机械加工、船舶制造、食品加工、纺织制造、轻工家电、医药制造等行业的应用。
2实验教学保障
智能科学与技术实验平台建设以人工智能与机器人实验室建设为核心,结合目前学院嵌入式系统实验室、自动控制实验室、传感器技术实验室、通信原理实验室资源,仪器设备共享共建的原则,系统化筹备购置。人工智能机器人实验室主要针对智能系统设计开发和机器人应用,基于计算机系统的人工智能技术学习应用包括人工智能技术在智能制造应用和工业机器人仿真软件ABB Robot Studio。基于“探索者”机器人系统控制实训箱Rino-MRZ02(包含履带机器人、双轮自平衡机器人、5自由度机械臂、6自由度机械臂等)
可以开展的项目有:利用启发式算法、遗传算法、蚁群算法等模糊数学理论对工业产品设计进行性能模拟、运动分析、功能仿真与评价;利用人工神经网络自学习、自组织构造产品加工过程新能参数预测模型。利用模式识别、机器学习、专家系统、多智能体系统进行感知、并对环境的改变进行解读、动作进行规划和决策;利用专家系统、遗传算法、模糊逻辑集中式解决生产调度多目标性、不确定性和高度复杂性的问题,寻求最优规则,提高调度的速度;利用蚁群算法、遗传算法分布式多智能体系统进行问题分解、彼此协商、任务指派、解决冲突。
履带机器人可开展电机控制实验;运动控制实验;HD轨迹控制实验;无线通信实验。双轮自平衡机器人呢可开展自平衡模块实验;倒立摆算法实验;双轮载具运动实验。6自由度双足机器人可开展双足运动控制实验;步态规划实验;双足平衡实验;机构改装实验。5自由度机械臂可开展机械臂运动控制实验;颜色分拣实验。可扩展为8自由度双足机器人、轮腿式机器人等技能提高类课程设计。
通过ABB公司的机器人仿真软件RobotStudio进行工业机器人的基本操作、功能设置、二次开发、在线监控与编程、方案设计和验证的学习。