公务员期刊网 精选范文 人工智能技术定义范文

人工智能技术定义精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能技术定义主题范文,仅供参考,欢迎阅读并收藏。

人工智能技术定义

第1篇:人工智能技术定义范文

论文关键词:人工智能技术,电气自动化,自动化控制,策略

智能化技术是技术领域的一种革新,使得各个行业都实现了全面发展。在电气自动化控制中应用人工智能技术,可以使得电气设备的系统运行更加简单智能,对系统可以进行优化处理。与此同时,人工智能技术的应用也为电气自动化控制提供了技术保障和安全保障,减少了各种电气设备操作对人员带来的伤害,在节省人力和物力的基础上提高了工作质量。在电气行业的发展过程中,自动化发展就必须要利用人工智能技术。

1 人工智能技术概述

1.1 人工智能技术的定义

人工智能技术指的是借助计算机技术对人脑进行模拟,并且发出类似人类的行为指令,从而对各种操作进行完成的过程。人工技能技术是多个领域的研究结果的融合,比如传统的数学和计算机,同时还结合了人文学科、自然和社会学科的知识,在很多领域中都有十分广泛的应用。计算机技术可以实现对人脑的有效模拟,因此使得工作的效率更高,系统的运行更加灵活也更加稳定,能够增强各种设备的自动化处理水平。

1.2 人工智能技术在电气自动化应用中的功能

第一,实现数据的采集和处理。人工智能技术在电气自动化控制中进行应用的时候,可以实现对设备中的一些数据进行采集,根据功能的不断完善,还能对一些数据进行存储。

第二,监视运行系统,并及时发出报警。人工智能技术可以对电气设备在使用过程中出现的一些问题进行有效地监控,而且还能对电气系统进行有效地模拟,对设备的开关量进行监视,防止出现异常情况,一旦出现了异常情况,要自动启动报警装置,同时还能对一些电气设备进行切断,从而使得电气设备处于安全状态。

第三,对电气设备的操作进行控制。电气自动化过程中,人工智能技术的应用,可以使得电气设备的操作过程变得更加简单,通过鼠标和键盘可以实现对断路器和电动隔离开关的控制,还可以对励磁电流进行调整。通过这种技术的应用,就可以极大地减少工作人员的工作量,降低劳动强度。

2 人工智能技术在电气自动化过程中的应用

2.1 在电气设备中的应用

电气设备的设计要符合自动化操作的要求,在进行设计的过程中,也应该要加强对人工智能技术的应用。由于电气设备的系统比较复杂,包含了很多方面的知识和技能,因此在进行设计的时候,有的系统设计也可以借助人工智能技术来完成,比如可以通过计算机设置一些算法,对电气设备系统设计中的一些参数进行计算,从而便于电气设备控制系统的设计,极大程度地提高设备的工作速率与质量。

2.2 在电气控制工作中的应用

在电气领域内,对电气设备进行控制是一个十分重要的部分,自动化设备是当前电气行业的主要发展方向,在设备的控制上,也要逐渐实现智能化,可以极大程度增强工作效率,缩减资金成本,并且降低从业者的劳动强度。比如人工智能技术中的模糊控制、神经网络控制、专家系统等,都是比较先进的控制技术,可以实现对各种设备的有效控制,韩剧热的反思而且控制的效果很好,产生的误差较小。比如在模糊控制中,较为常用的模糊控制方法有Sugeno与Mamdani两种技术,后者主要是应用在对设备的速度调节的控制上,模糊控制的方法能够以一种更高的效率来处理交流传动控制的相关问题,从而使得电气设备的工作质量和工作效率有很大的提升。

2.3 在电气设备的日常操作过程中的应用

电气行业与民众的日常生活与工作都存在紧密的关联,各种电网十分复杂、电气设备繁多,日常的控制工作也十分繁琐。传统的日常操作比较复杂,而且也会增加电气系统控制的时间,降低控制效率。对此,要积极加强对人工智能技术的应用,在日常工作过程中,可以通过人工智能技术设置一些基本的控制算法,应用在日常系统操作期间,能够将复杂的操作流程变得简洁,而且仅仅需要电脑就可以实现对各种操作的控制,最重要的是,通过人工智能技术的深化,还能实现远程控制,可以将操作界面进行简化,及时处理并保存相关重要数据,为将来的查找与应用提供方便。在日常操作过程中,对于很多数据都要进行记录,比如电气设备的损耗情况、电量等,如果采用人工记录,则会有巨大的工作量,还容易出错,但是应用人工智能技术编制相应的表格和数据采集系统,则可以实现对数据的采集和有效保存,降低了工作强度,同时提高了工作效率。

2.4 在故障诊断过程中的应用

在电气运行过程中,无论是客观因素还是其他的主观因素,都会造成电气设备的故障以及事故,如果对于这些故障没有及时进行处理,找不到相应的原因,则很有可能造成更严重的危害,会有较大的经济损失。电气自动化过程中,对设备的使用性能、故障等方面的诊断也要逐渐实现自动化,而人工智能技术的应用,将使得故障诊断过程变得更加简单。神经网络、模糊理论及专家系统是人工智能技术在电气诊断过程中应用的三种方式,这三种方法在故障的诊断以及事故的发生过程中发挥了十分重要的作用。借助智能技术,将神经网路、模糊理论等系统的结合在一起,就能够处理电气故障检测耗费时间长、等待结果时间长等问题,可以对各种故障进行精准的判断,并且为后续的故障处理提供更多充足的时间和依据。

2.5 在简化自控流程中的应用

电气领域的自动化控制是一个十分复杂的过程,对于各个步骤的要求都比较严格,一旦某个环节出现了纰漏,则会造成严重的后果,引发较大的经济损失。人工智能技术的应用可以对各种设备使用情况、故障情况等进行分析,进而设计出合理的故障处理方法,尽可能确保电气自控工作的质量。而且这种技术的应用,还可以实现远程维修,简化了过程。

3 结语

综上所述,人工智能技术在电气自动化过程中的应用包括多方面内容,比如电气设备的操作、故障的诊断、自动控制流程的简化等,都可以借助人工智能技术,使得各个过程变得简单、快捷,促进电气设备的自动化水平不断提升。

【参考文献】

[1]胡燕来.浅谈电气自动化控制中的人工智能技术[J].建筑·建材·装饰,2015(03).

第2篇:人工智能技术定义范文

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1 人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2 人工智能的应用领域

2.1 人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

2.2 人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

2.3 人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3 人工智能的发展方向

3.1 人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

3.2 人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

第3篇:人工智能技术定义范文

关键词:人工智能;档案管理;应用

档案管理是一项重复繁琐、枯燥乏味、并容易出错的工作,但在人工智能时代,这种局面在未来将会有较大的改观。人工智能在档案管理领域的应用将推动档案资源数字化、管理网络化、智能化、用户使用便利化,对档案管理和社会服务的影响会是革命性的,呈现一种完全不同的情景。

一是存储数字化,档案柜架消失。这包括档案的数字化采集和数据库建设。档案数字化采集指使用专业化的数字设备,将实物与声像档案中的图文,转化为数字化信息,实现档案采集的目标;数据库建设则是用数据库将收集和编码的档案数据存储和管理起来。概括起来就是档案生产资料的智能化。

二是无人档案馆,档案的收集、整理、分类、归档智能化,这包括网络档案信息资源智能收集、数字档案信息资源智能分类与检索、智能化档案价值鉴定和智能化档案安全管理。在档案工作中可以应用人工智能,包括应用自然语言处理、模式识别和机器学习的相关科学技术对数字档案信息资源进行智能分类,以及应用神经网络算法来让计算机做档案开放鉴定,它通过模仿人脑的机制来解释和处理数据,建立大脑神经网络系统传递信息,分析图像、声音和文本。机器鉴定档案会有以下三个优点:鉴定标准统一,效率高, 无须相关专业知识即可鉴定。简单说,人工智能将使档案管理生产力大幅度提升。

三是档案管理关系将被重新定义,呈现的是全时空机器关系。常言说“生产力决定生产关系,生产关系反作用生产力,生产力与生产关系需要相互适应,并且在矛盾中相互促进发展”。人工智能进入档案管理领域,也将带来档案 管理关系的重大变化,这种关系的解读可以从人工智与档案工作者、人工智能与档案服务、人工智有与档案使用者。任何一种新技术在档案工作中应用的初期都会使档案工作者产生一定的抵触情绪,特别像人工智能这样的技术,可以应用到档案工作的方方面面,势会颠覆档案工作者的原始认知,这需要通过教育来改变。

近年来,随着大数据的快速发展,人工智能技术已经被广泛应用于人们的生活生产中,其应用也将为档案管理工作带来了一系列历史性变革与发展。人工智能技术应用于档案管理中可以实现智能分类检索与智能安全管理,满足用户对档案管理的多元化需求。如2019 年由浙江省档案馆与国家级AI+档案联合实验室(国家档案局档案科学技术研究所和科大讯飞股份有限公司联合成立)(以下简称“联合实验室”)共同签订战略合作协议,同时为“国家级成果应用示范基地”揭牌。一项用于档案管理的“黑科技”—科大讯飞档案机也在今天正式亮相。AI赋能,成效显著。目前实验室成功利用智能语音识别和实时转写技术实现口述征集,实现了智能语音档案著录,音、视频数字档案检索利用等这些革命性成果,极大的提升了档案工作的效率;用OCR技术识别民国繁体文书类档也取得突破性进展,识别率85%以上,达到可用级别;尤为重要的是,基于机器学习的档案数字化加工系统研制及知识库建设,利用OCR识别与智能语音“双结合”方式以及档案行业规则和知识库学习,对数字化加工应用的创新,整体效能提升40%以上。这些先进成果和技术应用,为联合实验室和浙江省檔案馆的合作奠定了坚实的基础。双方合作以后,联合实验室将利用自身的技术、人才、产品、服务等核心优势,浙江省档案馆提供权威、专业的档案管理研究资源支持,双方共同制订“人工智能+档案”科研成果应用及推广的可行性方案规划设计,共同推动相关成果在区域性国家重点档案保护(华东)中心和浙江省档案馆的国家重点档案保护与开发、口述历史采集室建设运行、音视频档案整理利用、档案开放鉴定、档案著录等工作中的成果转化及推广,创新档案管理工作模式,提升“智慧档案”建设水平。联合实验室首款产品—讯飞档案机,以档案信息安全为基础,具备高保密性。可随时随地进行口述史的征集整理;重大活动全过程记录建档。产品上手简单,操作便捷,是实验室首款既有颜值又有才华的档案专业人工智能创新型产品。浙江省档案馆目前正在进行一系列口述历史的抢救性采集整理工作,从此前走访浙江籍名人,到接下来走访浙籍老艺术家、抗战老兵,包括档案机在内的人工智能黑科技都将发挥巨大的作用。

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。自诞生以来,人工智能的理论和技术日益成熟,应用领域也不断扩大,基于技术革命的大胆预测,未来人工智能带来的科技变革,将会是人类智慧的一大挑战。综上所述,传统的档案提供利用服务方式一般包括阅览服务、展览服务和咨询服务等被动方式实现,而新型的档案提供利用服务方式主要是网站服务、新媒体服务、精准推送服务等主动方式实现。人工智能可以应用大数据人工智能对使用者的需求进行深度挖掘,及时准确地掌握使用者的个性化需求,真正地实现“以用户为中心”的现代档案服务,包括“万物互联”“万物智能”“无时不在”“无处不联” “无所不有”的等智能服务特点。

参考文献

[1]张江.浅析人工智能技术在档案管理中的应用与发展[J];决策探索(下);2018 年08 期.

[2]杨洋.人工智能技术的发展及其在教学中的应用[J];软件导刊(教育技术);2018 年07 期.

[3]李晓丹.人工智能技术在教育考试中的应用[J];教育现代化;2018 年28 期.

第4篇:人工智能技术定义范文

关键词:人工智能 计算机技术

一、人工智能的定义

“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).

第5篇:人工智能技术定义范文

1 引言

能够透彻地了解人类智能行为产生的机理并制造出可以模拟智能行为的智能机,是人类长久以来一个美好而强烈的愿望。从世界各国的古老传说到近代科学的不断尝试,都表明了人类希望征服自然进而征服自己的决心。人工智能学科的出现及迅速发展,为这一愿望的实现带来了希望的曙光。它的研究延长了人脑的功能,深化与拓展了人类的智能劳动,使科学技术革命的发展速度空前。目前,人工智能(Artifical Intelligence,简称AI)已被应用到社会生活的各个方面并已取得了令人瞩目的成就。

虽然体育实用计算机科学在短短十几年中已经取得了迅猛的发展并有力地促进了体育事业的进步,但是,我们也不得不冷静地看到,体育实用计算机技术还远远滞后于计算机科学的发展,在以“知识工程”为主的人工智能诸学科取得巨大成功的时候,体育实用计算机技术还在坚持“数据结构+算法=程序”的传统程序设计方式,显然已是大大落后于时代了。怎样在系统分析的基础上有步骤、有顺序地将计算机科学的最新发展成果应用到体育领域中来,从更大程度上挖掘计算机科学的潜能从而促进体育科学再上新台阶,就成了体育科研工作者一个重要的课题。本文分析了体育实用人工智能的现状,展望了体育实用人工智能的未来。目的是引发广大体育工作者对体育实用人工智能的兴趣,吸引更多的人参与到这项工作中来。

2 人工智能及其解题思路

人工智能是一门前沿学科,是在计算机科学、控制论、信息论、系统科学、哲学等多种学科基础上发展起来的。它的出现及所取得的成就引起了人们的高度重视,从而被称为是继第三次产业革命之后的又一次革命。尽管如此,目前还没有一个关于人工智能的确切定义。我们可以这样理解:人工智能是一门研究如何构造智能机器(智能计算机)或智能系统,使它能够模拟、延伸、扩展人类智能的学科。通俗地讲,人工智能就是要研究如何使机器具有能听、会说、会看、会写、可思维、会学习等人类思维能力的一门科学。

人工智能的研制者通过知识获取过程将专家知识变成计算机可以识别的代码(知识库),然后通过计算机程序设计使计算机模拟人类所特有的推理思维过程(挑选知识的过程),从而完成只有人类才能解决的智能问题。由于人工智能可以融合多个专家的知识并吸取了人类的直觉和经验,所以,人工智能更适合于解决现实中需要人的思维判断而难以量化的问题。对于体育领域而言,不论是运动员的选材、训练计划的安排、运动处方的制订还是运动技术的诊断,体育专家的知识和经验都有着举足轻重的作用,如果智能系统可以完成这些工作,对体育科学的发展将产生深远的影响。

3 体育实用人工智能的现状

象所有处于发展之初的学科与研究方向一样,人工智能与体育科学的完全交汇融合还有相当长的路要走,还需要我们保持清醒的头脑,采取实事求是的系统分析方法来对待它。惟有如此,我们才会既能发现不利因素而不至于盲目乐观,又能看到有利条件而不至于悲观失望,才能有的放矢地把握体育实用人工智能的发展进程。

3.1 体育实用人工智能发展过程中的问题

1.对大多数体育工作者而言,人工智能技术还相当高深,它需要开发者不仅具备专项知识,还必须具备系统工程、软件开发等多个领域的综合素养。这些条件不仅对缺乏计算机操作能力的许多工作者来说十分苛刻,即便是具有一定计算机应用水平的科研人员,对知识工程理论与方法的缺乏也会使其成为人工智能的门外汉。智能系统的核心和基础是人类的知识和经验,要想开发智能系统,就必须从传统的以数值计算为中心的程序设计转变到以知识符号处理为中心的程序设计上来。这种思维与观念的转变显然不是轻而易举的。此外,智能系统的开发是一个复杂的、旷日持久的系统工程,不仅需要相当的技术和足够的软、硬件支持,而且需要开发人员长期、艰苦的努力。与那些更易在短期内取得成果的研究方向相比,体育实用人工智能技术的研究可能更容易被人们所忽略。

2.人工智能与体育科学两学科发展的相对独立性阻碍着两者的交汇融合。掌握人工智能技术的科研人员还没有看到其在体育领域应用的广阔天地,人工智能的应用成果还集中在工业控制领域、社会经济系统或军事决策过程——相对来说,这些领域更易取得明显的经济效益和社会效益。体育实用人工智能研究的巨大潜力还没有被挖掘出来。与此同时,相当一部分体育工作者还在沿袭着传统的以“经验技能”为主的教学、训练模式,保守的思想也使他们看不到或是轻视或是不愿接受科技发展的新成果,这就加大了体育实用人工智能普及的难度。总的来说,相互渗透、相互吸引是两者的必然趋势,但目前人工智能与体育科学仍处于若即若离的境地,两者的交叉还需要一个强有力的桥梁和纽带。

3.人工智能技术本身的不完备性。尽管自80年代以来,对机器学习、分布式人工智能、知识表示、常识推理等基础性研究取得了可喜的成果,特别是人工智能的重要分支——专家系统的应用研究成果已取得了重大突破,但是从总体上来看,人工智能距其完善还有相当长的路要走。我们不得不看到,人工智能的大部分分支,如自然语言理解、模式匹配、可视化研究等等都还不完善、不成熟,许多研究成果还仅仅停留在实验室和书面报告里,并没有转化到应用上来,即使是在专家系统中,专家知识获取这一“瓶颈”技术也阻碍了它的进一步发展。

此外,我们也不得不考虑一下计算机软、硬件和资金方面的限制。一般一个大型的智能系统的开发需要强有力的计算机软、硬件支持和足够的资金投入,基本上以个人微机为主的体育科研及捉襟见肘的体育科研经费可能会从很大程度上限制着体育实用人工智能的发展。

3.2 体育实用人工智能发展的有利条件

尽管一系列理论与实际问题阻碍了体育实用人工智能的发展,但是我们也没有理由对体育实用人工智能产生悲观情绪,更多、更有利的条件则为人工智能技术在体育领域的应用开辟了道路。

1.计算机技术在体育领域的广泛应用以及它对运动成绩的巨大推动力,已经使越来越多的人们认识到程序设计的美妙前景。显然,体育实用计算机程序的设计就是对体育工作者脑力劳动的解脱。这不仅仅是已尝到程序设计甜头的教练员和运动员的迫切要求,也是广大体育科研人员的努力方向。

2.近年来,我国的体育教育,特别是高层次的体育教育取得了很大的进展,培养出一大批年富力强、有很强科研能力的硕士和博士研究生。他们大都具有较强的计算机应用能力和学习能力,对他们来说,掌握人工智能技术也并不是遥不可及。青年体育科技工作者的不断发展与壮大,为体育实用人工智能的发展提供了必要的人才支持。

3.“全民健身计划”的推广与实施,不仅使我国的群众体育走上了正规化的道路,而且吸引着越来越多的人参与到体育活动中来。这其中当然包括人工智能领域的研究人员,他们会在锻炼中逐渐认识体育、了解体育、发现体育中的问题并不断尝试用本领域的技术方法来解决它(事实上,许多行之有效的体育实用方法和技术都是非体育专业科研人员引进到体育领域中来的)。人工智能会象现在已经在体育领域得到广泛应用的灰色理论、模糊数学、系统工程一样,逐渐地被广大体育工作者所承认、理解和接受,进而逐渐渗透到训练、选材、规划、教学等日常的体育工作中。因此,“全民健身计划”的出台与推广,又为体育实用人工智能的发展创造了有利的外部环境。

此外,体育科研触角的不断伸展、体育科技投入的逐渐增加、体育科研人员素质的不断提高和人工智能技术的不断完善,都会在一定程度上加快体育实用人工智能的步伐。

4 体育实用人工智能的发展方向

就目前人工智能领域而言,人工神经网络技术与集成分布式智能系统是研究的热点。前者是以研究大脑的结构和认知模型为主,用以对智力活动进行模拟或处理海量信息。后者是一种大规模的集成环境,即把各种不同的专家系统、神经网络、数据库、数值计算软件包和图形处理程序进行有机集成,以解决复杂问题,是“大成智慧工程”。虽然这两者也可作为体育实用人工智能的研究方向,但对当前体育领域而言,应用性研究,即将各种已经成熟的智能技术应用到体育实践中来,有着更加重大的现实意义。

4.1 各种体育实用专家系统的开发与研制

专家系统是利用具有相当数量的权威性知识来解决特定领域实际问题的计算机程序系统。它根据用户提供的信息、数据或事实进行自动推理判断,最后给出结论及结论的可信度以供用户决策之用。之所以选择专家系统做为体育实用人工智能研究的突破口,是因为不论从理论上、技术上,还是从应用上,专家系统都可以算得上是人工智能最成熟的一个分支。一些成功的专家系统开发实例(包括已开发的体育实用专家系统)可以提供技术支持,各种理论研究又使开发过程有章可循。体育实用专家系统的开发,能够促使体育实用人工智能不断地从抽象走向具体,引导体育工作者循序渐进地了解和掌握智能技术,逐渐开发出智能化程度更高的智能系统来。惟有如此,才能符合事物发展的客观规律,才能保证体育实用人工智能健康、有序地发展。

4.2 体育领域自身智能技术研究人员的培养

由于受知识和技术的限制,在很长的一段时间内,体育实用人工智能的发展还必须依靠人工智能领域人员的引导。然而,只有培养出体育领域自身的智能技术研究人员,体育实用人工智能才会有光明的前途。新一代的开发人员,我们可以称其为智能工程师,应该首先是一个体育工作者,并已具有相当程度的体育专业知识和体育运动实践,再通过人工智能技术的学习和训练,就可以单独开发出自身领域高质量的智能系统。智能工程师及其工作,为人工智能技术向体育领域的渗透提供了必要的前提条件。

4.3 体育实用人工智能的基础理论研究

虽然体育实用人工智能技术和方法研究十分重要,而且往往能够在较短的时间内取得明显的效益,但是它们却根植于基础理论的研究,脱离了基础理论,技术和方法就会变成无源之水、无本之木。体育实用人工智能也只是昙花一现。知识只有形成体系,才能成为科学,一系列的技术只有被理论所串接和揉合,才会具有持久的生命力。因此,加强体育实用人工智能的基础理论研究(包括运动智能和竞技心理的形成、发展规律、技能知识的表达方式、体育专家的思维推理过程研究、技能知识的传递方式研究等),是这一新生学科存在和发展的根基所在。

5 结束语

体育实用人工智能离成熟还有很长的距离,还存在着一系列的问题,但同时又充满着希望,为迎接这一机遇与希望共存的挑战,广大体育工作者需要沿着正确的方向做出艰苦的努力。

主要参考文献

1 刘泉宝,等.关于人工智能的哲学思考.计算机科学,1995(2)

2 石纯一,等.人工智能原理.北京:清华大学出版社,1993

3 陆汝钤.专家系统开发环境.北京:科学出版社,1994

4 王永庆.人工智能—原理*方法*应用.西安:西安交通大学出版社,1995

5 刘有才,等.模糊专家系统原理与设计.北京:北京航空航天大学出版社,1995

6 Ming Rao,等.智能工程与控制技术:历史、发展与未来.控制与决策,1994(1)

7 高扬.体育院校课表计算机辅助编排系统的开发与应用.体育数学与体育.系统工程,1995(1~2)

8 程勇民,等.射击运动员肤纹特征及计算机选材模型的研究.体育科学,1995(5)

9 邵桂华,等.体育领域专家系统外壳的开发与研制.体育科学,1997(3)

10 邵桂华,等.赛艇项目技术诊断专家系统的开发与研制.系统工程,1997(4)

第6篇:人工智能技术定义范文

关键词:审计风险;人工智能;风险控制

人工智能(artificialintelligence)英文简称AI,是一种通过普遍使用的计算机编程软件来模拟和呈现出模拟人类智能的科学技术。人工智能的概念最早在1956年被提出,在经过多年的研究和应用发展后,目前的人工智能已经应用在生产和生活的各个方面,例如制造企业的自动化生产线、物流行业的智能匹配配送系统等。而审计作为社会治理中重要的一环,也必然需要进入到审计智能化领域中,智能化的审计管理模式和科学化的技术手段不仅有助于实现审计的全覆盖、提升审计效率、延伸审计内涵。但在智能审计的不断发展中,由于新的审计技术带来新型风险也不断暴露,想要更好地在审计中运用人工智能技术,正确识别风险并提出相应的解决办法是必不可少的。

一、人工智能在审计中的运用情况

(一)人工智能在审计中运用的理论基础

1956年8月,人工智能在美国达特茅斯会议上被正式提出。直至近十年来,计算机和芯片行业的发展,存储条件、处理器性能的更新以及新型技术手段的出现才为人工智能领域奠定了基础。2017年,国务院办公厅正式印发的《新一代人工智能发展规划》,提出的主要面向2030年的关于推进推动我国新型下一代工业人工智能产业发展的主要战略目标之一是加快推进建立一个创新型工业国家和大力推进建设世界性的高新技术产业强国[1]。随着越来越多的行业与人工智能技术的融合,审计作为国家和社会监管的最主要途径之一,也必须与人工智能技术相适应才能更好地监管和促进各部门各企业的良性发展。人工智能技术的应用,使审计人员从重复性较强的数据计算处理、分析等工作中解脱出来,审计人员可以更好地从事其他重要工作[2]。此外,智能审计借助于人工智能技术既可以对审计的流程和模式自主学习,也能够通过实时监测及时发现异常情况并进行处理[3]。我国传统审计流程主要分为三个阶段,即审计计划阶段、审计实施阶段和审计结束阶段。在与人工智能技术相结合后,这三个阶段的模式发生了一定的改变。在审计计划阶段,人工智能技术可以帮助审计人员从多渠道,以内外部结合的方式获取信息,分析被审计单位的内外部环境、风险水平、重要性水平等因素,同时根据审计机构的人力资源数据,分析匹配最合适该项目的审计小组,确定审计范围和时间。在审计实施阶段,人工智能主要可以用于审计证据的获取和工作底稿的自动生成。除了通过直接链接被审计单位财务系统外,还可以利用数据挖掘和OCR技术等将非结构化数据转换成易分析审计证据。同时结合了人工智能的持续监测、实时数据记录和区块链技术,可以自动定时地生成审计日志,降低数据被篡改的风险。此外,还可以通过提前设置或自动抓取审计文书模板的方式,自动生成审计通知书、函证书等。在审计结束阶段,可以根据审计过程和以前的审计结论自动生成审计报告和整改方案。

(二)人工智能在审计中运用的实例分析

实际上,国际四大会计师事务所对于智能化的审计已经进行了一些探索,如德勤在2017年推出的智能财务机器人“小勤人”,随后又推出了主要面向中小会计师事务所的智能审计平台,在这个平台上审计人员可以在输入审计数据和需求之后,由平台自动分析审计风险并生成审计报告。通过对德勤公开案例的研究发现其在风险评估和选择应对措施方面遵循的还是如图1所示的基本逻辑。但在数据收集方面则基本交由“人工智能”来进行,有效地提升了工作效率。根据德勤消息,其有效地减少了审查法律合同文件,发票,财务报表和董事会会议记录的时间达50%以上。而毕马威开发的“人工智能信贷审阅工具”则更为详尽地描述了人工智能技术如何与审计过程相结合。其主要功能如图2所示。首先,利用自然语言处理技术实现信贷文本的批量秒读,和自动化快速分类。其次,识别信贷文本与相关资料中的重要信息,实现对自动化摘要处理。再次,利用深度学习模型,自动识别资料中包含的各类风险信号,提取对应的关键风险信息。随后,运用大数据技术收集整合金融机构内部和外部数据,深度挖掘风险点,进行多维度风险信息分析。最后,可视化展示内外部整合数据的风险信息,提供更直观、更具洞察力的辅助决策。总的来讲,人工智能技术在审计中运用,可以根据对各种业务类型的划分归纳,自动对所涉及的业务数据和财务数据进行了采集、初步处理、分析及实时监测,自动产生各种预测和应急预警的信息,为被审计的项目提供了线索及相关资料。这些措施有利于审计人员明确审计的重点与审计范围,科学地安排年度审计工作,将有限量的审计资源合理配置投入至公司经营业务中存在较大风险的领域,实现了审计管理工作的科学化、信息化、规范化。

二、人工智能审计带来的新型风险

大数据审计是指面对大量的数据,运用大数据技术方法和工具,开展多层次、多部门联合的数据收集、分析和验证。与传统审计相比较,大数据审计所使用的数据更多源复杂,所使用的技术方法更科学高级。而人工智能审计则是在大数据审计的基础上,将审计过程智能化和标准化,可以说大数据是人工智能审计的基础,而人工智能是大数据审计的未来提升的必然方向。而在这种发展衍生的过程中,通过分析发现会面临以下三种新型风险:

(一)数据安全风险

人工智能审计的所有构建都基于大量的数据和数据模型,所以数据安全风险既包括数据源获取是否准确与全面的风险,也包括数据泄露的风险。我国目前各地管理标准不一、信息化智能化建设水平差异较大、各地和各部门出于信息安全性考虑对大部分数据保密等情况,造成了各级审计机关之间、审计机构与被审计单位之间数据流通不畅的问题。并且在大数据时代,信息量巨大,信息结构复杂,网络中充斥着大量的虚假信息、错误信息,如果数据源出现错漏,将影响整个审计过程和审计结果。而在进行数据储存和传输的整个过程中,一旦用户的数据库和服务器遭到黑客的袭击,很有可能就会造成数据泄露。例如,成本和原材料等信息如果被外泄,该企业会在供应链的定价战略等诸多方面陷入被动的状态。

(二)人机沟通障碍风险

在审计中的人机沟通的目标就是为了使得用户和计算机软件之间能够做到尽可能方便地进行信息交换。然而目前审计机构的审计方法大多都停留在基于SQL的数据查询和基于电子表格软件的数据查询两个层面。然而这两种方法都有其无法避免的不足之处。在SQL的数据查询方法中,需要根据不同的问题特征编写较为复杂SQL语句,这对于审计人员的电脑和编程能力有很高的要求;而这种分析的结果通常以二维表格展示,当所得到的结果数据量较多时,无法直观的展示筛查结果。而在基于电子表格软件的数据查询中,大多软件无法对大量的数据进行分析,同时半结构化的数据也很难用到传统的电子表格进行分析。而当今数据量不断扩大,数据类型和结构也更加复杂,很显然电子表格软件已经无法完全满足对于大数据审计工作的需求。

(三)人工智能代替职业判断的风险

审计的职业判断,是指审计人员在对于审计准则、财务报表的编制及其职业道德操守进行熟悉和掌握的基础上,将其相关知识、技术以及实战经验进行综合应用并针对具体审计业务做出的一种有根据性地决定的判断。目前的人工智能技术运用水平下,人工智能的运行还是要依赖以往的经验判断和设定的程序语言,再通过高速的运算,最终做出类人的行为,无法取代人脑的创造性解决问题的能力和对新事物探索定义问题的能力。尤其在被审计单位或人员不配合、刻意隐瞒作假、行为言语有异常引起审计人员警惕的情况时,人工智能则完全无法对审计人员起到替代作用。在不能够保证所有被审计单位都对审计机构保持绝对信任和完全的数据共享的前提下,人工智能想要完全取代审计人员,代替审计人员的职业判断,还需要在技术和制度两方面都作出更多的努力。

三、人工智能审计新型风险的应对措施

(一)靶向数据安全风险:加密技术和“区块链+审计”

针对数据安全问题、加密及安全技术的发展。比如,基于数据仓储单元的信息安全技术、查询方凭借设定的访问授权才能对所指定的数据记录或者是数据库中的文件进行查询。伴随着大量的数据搜索收集及分析,查询方的组织属性、访问类别等信息将以“安全标签”的形式嵌入至其中的原始数据,形成唯一的新型数据单元结构。将大量的数据仓储单元安全技术综合运用于监督信息共享的平台,可以直接通过对访问授权的方式进行控制,从而有效地保证了原始数据的采集存储、流通等相关信息的完整性及其安全,使得审计过程和审计成果的应用可以变得更加高效、便捷。而区块链技术是一种基于去中心化的全新分布式记账技术,区块链的去中心化特点,减轻了存储审计数据的管理压力,降低了审计数据存储的安全风险。同时,区块链也充分利用了时间戳技术来有效保障本地客户端与远程移动终端之间的数据实时更新顺序完全相符。时间戳技术能够直接作为对区块数据“存在性”和“真实性”的事实证明,确保了应用该技术的审计系统的安全性和可靠性以及相关信息准确真实性,大大增加了审计抵御技术风险和辨别真伪能力。

(二)靶向人机沟通障碍风险:数据可视化

数据可视化的应用在很大一定程度上解决了数据分析技术难度高和分析结果不直观的问题,数据可视化主要是通过各种易于理解的手段,将复杂的数据显示出来,从而能够清晰有效地直接表达出数据中的信息,审计人员通过数据可视化就能发现隐藏在数据之下的规律。基于SQL的查询方法、基于电子表格的查询方法,以及基于数据可视化分析方法的主要优缺点如表1所示。在对交通运输、地理资源、环境保护等领域进行审计时,其业务数据包括融合了几何、像素信息的图形和影像数据。此时,数据可视化分析的优势就体现在:第一,拥有友好的人机交互功能,可以实现数据分析的操作只需系统页面的简单点击就可完成。第二,具有丰富的图像功能,有助于审计人员掌握审计要求和重点。第三,具有强大的图形分析技术,可以交互地构建和调节曲线、表面、节点等各种数学模型,可以替代一部分编程工作,提取异常的数据。

(三)靶向人工智能代替职业判断风险:机器学习与审计经验结合

机器学习是现代人工智能的一个重要组成部分,它使分析模型的建立进入自动化的程序。机器学习用模型进行数据分析,其预测是否可靠,依赖于其所输入的历史资料质量。所以,人的偏好可能影响到为了训练人工智能所需要选择的数据集、为过程所选择的计算方法和对输出进行诠释。而为了使得审计智能化和自动化,不仅要及时地搜集到所有审计的数据,还要反复进行数据处理,推导得到可以广泛应用的公式。在数据库的选择与筛选中,任何一个数据如果出现错误都有可能直接造成最终分析结论准确性的下降,但人工智能在其现有的信息化和科技水平之下,无法通过自主机器学习的方式来弥补其中这一缺陷。换句话说,目前人们只能通过培训提升审计人员的业务水平和职业道德,减少甚至消除了劣质数据的形成和产生,再通过对数据的存储分析来积累优质审计人员和专家的经验,以此来应对人工智能无法代替职业判断的风险。

参考文献:

[1]杨明增,任庆玲.现代风险导向审计模式运用及其研究[J].中国注册会计师,2015(3):95-99+3.

[2]陈莉.加快会计师事务所信息化建设的六大任务[J].中国注册会计师,2019(11):34-35.

[3]李强,谢汶莉.大数据审计中的可视分析[J].中国内部审计,2016(2):79-86.

[4]宋夏云,周琬宇.大数据视角下智能审计取证模式研究[J].中国内部审计,2018(12):71-74.

[5]许汉友,汪璐璐.智能审计本质之问[J].商业会计,2020(23):4-8.

[6]国务院印发《新一代人工智能发展规划》[J].广播电视信息,2017(8):17.

第7篇:人工智能技术定义范文

【关键词】人工智能;计算机网络技术;运用分析

1人工智能的概况

我国经济水平在高速发展的同时也带动了计算机技术水平的提高,计算机技术的应用对于人们的生活品质和生活质量具有重要的意义。随着人们生活水平的不断提高,对于互联网技术的要求也在不断提高,人们对于计算机网网络使用也越来与熟练,应用水平也越来越高。如今,在一些高精尖的行业中,一些专业性较高、数据性强的工作传统的计算机技术已经不能满足工作需求,计算机网络技术改革是时展的必然趋势,因此人工智能计算机技术就出现在人们的视线中并且得到了广泛运用。机器的智能使用是人工智能使用的第一结果,将智能机器运用到人们生活中可以有效提升人们的生活质量和生活品质,同时也为人们解决了一些复杂烦琐的工作,简化工作程序,提高工作效率。基于人们对计算机需求量的增加以及计算机的应用满足不了人们生活的背景下,人工智能计算机网络技术就此产生,是时展的必然趋势,是满足人们生活要求的重要保障。人工智能计算机网络技术比传统的计算机技术更具有人性化以及智能化,功能也更加多样化,比如对表格、音频、图形的识别等。为了有效促进我国科技水平以及经济水平的不断提高,应该充分发挥人工智能计算机网络技术优势,切实保障人们的生活质量和生活品质。

2人工智能的特性

人工智能计算机网络技术比大脑储存的知识内容更丰富,数据处理更便捷、知识储存容量更大等,在工作中人们的大脑知识储备量是有限的,而且储备的知识层次也有限,处理工作时可能会碰到知识盲区,人工智能的应用便可以很好地解决这一问题。针对一些数据型或者是复杂性的工作,人工智能可以通过自身系统进行数据型处理从而交付一份满意的答卷,将人工智能运用到生活中可以有效提高人们的工作效率。其次,人工智能还具有拟人化的学习能力,通过自主学习不断丰富自身的知识储备量,这样在人们遇到一些难度较大的问题可以用有效用过人工智能计算机网络技术找到针对性的答案,而且人工智能计算机网络技术提供的答案往往是具有专业性的。最后,在数据整理工作中运用人工智能计算机网络技术可以有效简化数据整理工作。在传统的数据整合工作中,会占据大量的内存,造成资源浪费的情况,但是人工智能计算机网络技术的应用可以通过压缩的方式将复杂的数据简化,并且还可以在短时间内将数据整理、分析和核对,一样的工作内容,不同的工作方式,人工智能计算机网络技术不仅可有减少资源浪费的情况,还可以简化人们的工作内容,提高工作效率[1]。

3人工智能在计算机网络技术优势

基于全球科技迅速发展的背景下,互联网技术也得到了快速发展,成为人们生活的一部分。网络管理技术的要求因为网络的构造以及数据信息的繁杂也越来越高,因此,网络管理技术人员在进行网络技术管理时也具有一定的难度。在进行网络管理的时候传统的分级管理因为缺乏沟通已经不能满足数据管理的要求,人工智能技术便在这种背景下产生,在数据管理中运用人工智能技术可以有效解决数据管理难题,人工智能计算机网络技术的应用可帮助增加分级管理人员之间的沟通交流,经过多个部门之间的沟通协作实现人工智能计算机网络技术的管理,充分发挥人工智能在计算机网络技术运用。统筹在整体领域的学习具有重要的优势,人们的大脑知识储备量是有限的,而且储备的知识层次也有限,处理工作时可能会碰到知识盲区,这样会影响人们的工作效率,但是人工智能的应用可以很好地解决这一难题。人工智能本身具有储备量较大的知识库,而且知识库中储备的内容具有准确性和科学性,因此,人们可以直接使用数据信息。使用数据信息主要流程就是人们通过自定义检索,检索自身需要查找的内容,后台数据就会反映筛选,最后呈现的就是需要查找的内容。人工智能中的数据库是不断更新,自主学习,统筹各类专业知识,充分发挥人工智能在人类知识盲区的作用[2]。

4计算机互联网人工智能技术的应用

4.1计算机网络的人工智能识别应用优势

随着我国经济的高速发展,互联网技术已经和人们的生活密切相关,互联网技术在提高人们的生活水平和生活质量的同时也会被一些不怀好意的人利用,科学技术延伸生活的初衷是方便于人们,但是会被一些心理扭曲的人们恶意利用。互联网的使用使社会生产力获得了一定的解放,人类的生活方式在根本上发生了翻天覆地的改变,但是凡事的发展都会有双面性,互联网在改变生活的同时也产生了一些新的网络犯罪。网络犯罪对比于其他传统犯罪具有一定的智能性,在进行网络犯罪时,犯罪主体必须具有高智能的犯罪技巧才能运用网络科技手段进入他人或者是企业的系统窃取一些比较私密的信息,比如个人信息、企业的财务报表、企业的员工档案等。

4.2人工智能在计算机网络管理运用分析

计算机可以实现一些专业性知识和问题分析有效融合,以人工智能和信息技术为基础,充分实现智能化的管理模式,将人工和智能和信息技实现充分融合可以有效保障网络运行安全。计算机网络系统会随着时展需求而不断改变,并不是一成不变,因此,对计算机网络管理和系统评定工作会具有一定的难度,而人工智能的应用可以有效降低系统评定工作难度,提高工作效率。

4.3人工智能技术的运用

人工智能技术涵盖了计算机中的数据库、专业知识库等数据统计,它的另一个简称就是人工智能Agent技术,人们通过Agent技术之间的信息联系,运用数据处理功能将需要的检索数据进行分析和筛选,将需要的数据信息呈现,数据检索可以有效快速找到人们需要的内容,充分体现了人工智能计算机网络技术的人性化以及智能性,极大地缩短了人们检索数据的时间,提高了人们的工作效率[3]。

第8篇:人工智能技术定义范文

因为他相信,“未来是属于人工智能的。”

人工智能,Artificial Intelligence,英文缩写AI。在人工智能领域的经典教材,出版于2013年的《人工智能:一种现代的方法(第3版)》中,著名人工智能专家罗素和诺威格从4个方面对人工智能进行了定义,即:能够像人一样思考、像人一样行动、合理地思考、合理地行动的机器。

人机大战只是人工智能开始改变人们生活的一个小例子,事实上,以往只存在于科幻电影的未来世界,正在加速迎面而来,和现实热烈拥抱,甚至让人猝不及防。

“苹果Siri、新闻阅读软件、在线翻译等,都是人工智能技术的代表。”为人工智能摇旗呐喊的不止创新工场创始人李开复一人,微软CEO萨提亚・纳德拉、谷歌CEO桑达尔・皮查伊、百度创始人李彦宏、物理学家斯蒂芬・威廉・霍金……但凡人们叫得上名号的科技公司巨头、计算机科学家无不在向人们诉说着同样一个事实,“人工智能引领的第四次技术革命已经进入爆发的前夜”。

聚焦今天这个时间点,人工智能最耀眼的还是商业化的起步。随着国外科技大佬对于人工智能各种应用场景的开发,国内互联网三巨头BAT也在加速布局,一场真正的AI商业化战争,已经蓄势待发。

每一次技术革命都将带来全球竞争格局的重塑,这一次,中国幸运地与世界站在了同一条起跑线上。伴随着“人工智能”首次被写入全国政府工作报告,以及《“互联网+”人工智能三年行动实施方案》的出台,占据数据和场景优势的中国正在筹划部署人工智能的顶层设计。

第9篇:人工智能技术定义范文

关键词:人工智能;计算机网络技术;有效应用

随着我国科学技术的发展,计算机网络技术和人工智能作为新时期的科技产物不断被应用于社会发展的各个领域,对我国的经济发展起到了积极促进作用。特别是计算机网络技术在近年来出现了飞速发展趋势,其自身具有的高效性及跨时空特点等已经深层次地渗透到人们生活、生产、学习的各个方面。计算机网络技术的不断发展和应用,其自身存在的网络安全以及管理方面存在的问题已经表现出与现代社会发展不相符的特点,人们对于该方面问题的关注度不断提升。因此,出现了人工智能应用于计算机网络技术的研究和实践,深入分析人工智能带来的应用优势,加强研究及探析应用趋势,均可有效提升人工智能在计算机网络技术中的应用效果。

1 人工智能应用在计算机网络技术中的优势分析

人工智能是计算机科学技术的分支,是由多种不同领域构成的,例如机器人、计算机视觉等。在现代社会人工智能已经被应用在计算机网络技术中,并得到了不断关注和重视,例如计算机仿真系统、人工控制系统等领域的应用。人工智能技术的应用所具有的优势主要表现在以下几方面:一是人工智能具有更加高效特点,可以将所学各领域知识进行科学合理的应用。优良的思考能力通常是高等生物的主要特征,而人工智能在现代科学的支撑下同样具有思考分析与判断能力。因此将人工智能应用到计算机网络技术中,可以使其对计算机信息数据进行更为科学精准的计算机后期分析处理工作,进而获取到更为科学完整的信息数据,同时还提升了计算机网络的计算效率;二是人工智能提升了计算机网络自身的运行速度、时效性及流畅度。人工智能的应用可以促进计算机用户实现更多时间的处理,比如在模型计算处理过程中,可以应用人工智能具有更为先进的计算能力来开展相应的分析及处理,人工智能对于不确定的信息进行处理过程中具有更高的工作质量及效率,可以应用人工智能获取更为完整和准确的网络信息数据;三是能源消耗少。人工智能的应用可以降低计算机网络技术成本,起到节能减耗的作用。人工智能对于海量数据的计算具有更快的运算速度,节省了数据处理过程中的时间,因而降低了计算机在运行过程中所消耗的能源,节省了社会资源。

2 人工智能在计算机网络技术中的有效应用

2.1 人工智能在网络安全管理方面的应用

计算机网络技术的应用过程中,网络安全管理是每个用户最为关心和关注的问题,计算机网络技术虽然可以给人们的生活、学习、工作等带来便利,但是也会因为网络犯罪分子的存在而造成广大用户信息的泄露,造成用户自身利益被侵犯和损害,尤其是随着现代科技的发展进步,黑客技术也出现了提升,网络信息安全成为计算机网络技术中急需解决的首要问题。因此,相关技术人员不断研究人工智能技术在计算机网络安全管理中的应用方法和效果,通过实践发现人工智能的应用可以促进广大计算机用户成功拦截异常信息,从而更为有效地保证了广大计算机用户的信息安全。目前很多用户在计算机网络运行环境里安装了智能防火墙,通过该项人工智能技术的应用可以更好地做到智能识别,进而完成海量数据的分析和处理,该项技术的应用可以有效减少信息数据在匹配过程中的计算步骤,达到节能减耗的效果。智能防火墙的应用还可帮助广大计算机网络用户有效拦截网络中的各有害信息,遏制网络病毒侵入及传播,进而对广大计算机用户进行了全方位的保护,实现了计算机网络安全管理。再例如,很多计算机网络用户在日常的学习、工作过程中会使用到网络邮箱功能,为了更好地保护网络邮箱的信息安全,可以通过应用智能发垃圾系统,来进行垃圾邮件的分析和处理,保障用户邮箱的安全使用。该技术的应用可以通过对用户邮箱开展全面的信息扫描工作,通过其科学高效的信息分析和处理技术能有精准的发现用户网络邮箱中存在的相关病毒信息邮件、垃圾邮件及残存信息等,还可同时实现对有害邮件的信息分类,并通过信息提醒方式督促计算机用户进行有害邮件的定期处理,以防该类信息对计算机用户造成危害。人工智能入侵检测技术对于计算机网络安全管理起到了重要作用,可以借助其检测系统对存在安全威胁的信息进行预防和拦截。传统形式的防入侵检测技术应用过程可以分为信息采集、入侵信息判断、发出警告及控制几个阶段,该技术的应用有一定的局限性。智能防入侵技术具有规则产生式的专家系统、将神经网络作为技术基础、具有更为科学先进的数据挖掘技术,在这三种先进技术的共同应用和影响下,使得入侵威胁网络安全的有害信息得到了更为有效的检测,更好地控制了有害信息对计算机互联网造成的安全威胁。

2.2 人工智能在网络系统管理和网络评价方面的应用

计算机网络系统管理和网络评价环节的出现源于人工智能的应用,人工智能在计算机网络系统中的应用,可以运用科学使其技术具有人类的大脑思维特征,进而更为有效地帮助了广大计算机用户完成网络系统的分类、归纳及优化。计算机网络具有动态特性及顺便特点,在进行网络系统中的海量信息数据操作过程中,无法完全依赖人力去完成以及实现对计算机网络系统的优化和管理目标。人工智能则可更为高效和科学地完成网络系统的管理及评价,并且可将网络系统的自身运行状态及时向计算机用户反馈,进而提升网络系统管理效率和质量。Agent是人工智能的核心技术内容,指的是具有自主活动特征的软件或者软件主题,该技术涵盖了数据库、翻译推力器及相应的通信设备,其结构存在一定的复杂性。Agent技术应用于计算机用户进行实际问题的解决过程中,通常情况会使用一个Agent专门负责进行各种信息数据的接收,在与其他Agent之间通过沟通处理,进而在极短时间内实现指令任务的处理和完成。Agent还可以实施自定义式的个性化服务,Agent在接收到用户的指令信息之后,Agent系统则会对信息数据进行科学筛选,进而将较为精准的信息数据高效的传输给计算机用户,为计算机用户进行网络信息搜索节约了更多时间。Agent的科学应用还表现在可以帮助用户实现相应知识的深度挖掘,同时在系统中可以实现较完善的知识储备库从而为用户可以提供更先进的导航,并更具计算机用户的日常网络使用和操作特点,给计算机用户制定其所需要的个性化服务,以实现了计算机网络的智能化、便捷化、个性化发展。

3 人工智能在计算机网络技术中的应用趋势

3.1 人工神经网络发展趋势分析

人工智能是具有很大挑战特点的科学技术,从事该项技术工作的各环节工作人员不仅需要具备专业的计算机相关学科知识,还要具备心理学、语言学、生理学等多领域的知识。人工智能技术会随着人类社会的不断进步而不断发展,随着人们对于该技术要求的不断提升,为了更好地服务人类,其在未来的发展趋势中必将朝着更为科学和人性化方向发展。人工神经系统即是人工智能未来的发展趋势之一,其指的是丰富的处理单元,通过大量神经元的相互作用及联系使之成为一种神经网络。人工神经网络最主要的特点是具有更高的自学能力,可以实现自主解决多种多维非线性方面的问题,且在进行实际的解题过程和范围中可以突破传统的局限性,其不仅可以解决定量类型问题,对于定性类型的问题,人工神经网络同样可以实现有效解决。人工神经网络同时还具备和人类的大脑潜意识相仿的巨大信息储存容量,可以帮助各用户更好地解决各类问题,进而实现计算机互联网的有效管理,满足不同用户对各种信息数据的处理需求。

3.2 人工智能机器人具备学习功能

人工智能型机器人技术的开发和应用均是参照人类的大脑思维进行的,在人工智能的未来发展趋势中,实现机器人的自主学习将作为相关领域人员的研究方向。目前在我国科学技术水平支持下,人工智能具备了初级的学习功能,但是还无法与人类自身的学习能力相提并论,因此人工智能需要提升学习能力。人类的大脑神经系统要比人工智能技术中的结构复杂很多,人类可以进行感情、情绪的自由表达,而人工智能则只能通过脸部表情识别方式进行情绪的表现,使得人工智能有局限性。随着科技的进步,在未来的发展趋势中人工机器人的技术发展会越来越趋于人类大脑思维和方式。

3.3 人工智能识别功能领域的扩展

在我国目前的计算机行业中,电子设备已出现了多元化发展特点,计算机用户可选择的软件产品和种类也在日益增多,相关人员利用人类声音设计了不同的软件,还实现了人物图像及文字等的识别功能,但是缺乏外界感知功能。因此,在未来的发展趋势中人工智能会更加趋向于全面识别功能的开发和研究。

4 结束语

随着我国社会的发展和科学技术的不断进步,人工智能在计算机的网络技术中应用的范围和领域会越来越广泛。本文主要分析人工智能应用在计算机网络技术中的优势及有效应用,同时对于人工智能的未来发展趋势进行探析。通过分析与研究可以看到,人工智能在计算机网络技术中的应用目前主要体现在网络安全管理、网络系统管理及网络评价方面的应用,对于计算机网络技术起到了极大的促进作用。保障了计算机用户的信息安全,提升了管理效率和质量,提供了较为个性化的服务。还可看到人工智能在未来的发展趋势中会朝着人工神经网络、人工智能机器人具备自主学习功能及智能识别功能等领域发展,人工智能技术会随着社会的发展不断为人类提供更为科学、高效、个性化的服务。

参考文献

[1]刘哲良.浅谈大数据时代人工智能在计算机网络技术中的应用[J].数码世界,2021(1):260-261.