前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的节能优化方案主题范文,仅供参考,欢迎阅读并收藏。
暖通空调系统的节能关系到人们的冷暖、健康、安全、工作效果和产品质量,并且影响到国家能源安全、资源消耗和环境污染,是关系国计民生和国家可持续发展的重要行业。为了发挥暖通空调系统的经济性、节能性、安全性、舒适性和美观性的作用,必须对暖通空调系统在节能方面存在的问题给予重视[1]。
1.建筑暖通空调系统高能耗的主要原因
1.1设计问题
现阶段在很多办公建筑和大型商厦中,由于通风、排风等造成暖通空调系统高能耗使室内外的冷负荷占到总冷负荷的50%以上。设计不合理、缺少对空调系统的有效调节方法使空调中的冷机、水泵、风机长期在低效率下运行,有些建筑外墙采用玻璃结构,有多个面朝向,都造成了大量能源的浪费。由于设计时很少考虑内外分区问题,设计技术的欠缺使冬季内区偏热、外区甚至偏冷。还有由于工作人员缺乏技术经验,对灯光、设备调节不当造成全年基本呈现冷负荷,需要常年供冷。外区也因此受到气象问题的影响,负荷随季节变化,夏季需供冷,冬季需要供热。
1.2管理问题
现在,建筑中的问题除了设计原因外最主要就是管理问题。空调设备中由于工作人员疏于清洗,过滤器、表冷器和冷凝器均有不同程度的堵塞现象,因此严重影响了空调系统的正常运行。冷却系统由于是水开系统常常混进各杂质使制冷机藏污纳垢,导致冷机出现力不足和COP值的下降,因此影响冷机的使用寿命。
1.3其他问题
某些水量特别小的用户温湿度得不到保证,影响房间的舒适度,这都是系统水量不平衡的问题。为了解决这些用户的问题,最有效的方法是降低冷水的供应温度,增加冷冻的水量,其他用户的冷量过剩能也会影响整个系统的稳定性。所以建筑空调系统的节能问题应该具体分析,如果发现一些无所谓的能耗小问题也应该及时修正[2]。
2.建筑暖通空调系统设计原则
2.1安全性
建筑暖通空调系统设计的时候安全性是我们首先考虑的原则。对于建筑而言,由于容易发生火灾等一系列问题,造成大量人员伤亡,所以安全问题使我们普遍关注的话题。在暖通空调施工过程中要远离易燃易爆的物品,并在施工过程中添加防火措施,防止火灾的发生。安全问题一个比较容易发生的是线路问题,因此必须注意线路的敷设与走势,避免因为此类问题造成安全隐患。在安全系统的设计过程中要注意运行安全,加强运行过程中相关问题的评估和研究,并采取一定措施来提高安全系数。供暖系统是一个庞大复杂系统,必须加强安全意识,设计一定安全报警系统和通风系统,避免运行过程造成损失。
2.2节能环保性
随着经济的不断发展,我们的各个行业都面临着能源危机,如何降低能源的利用率,提高节能意识是我们主要关注的。在暖通空调的系统设计过程中,如何实现有效的节能减排,提升建筑的节能型,一直是行业热点。同时,为了较少人工成本,减低运行费用,应该尽量采取自动化控制系统。而针对暖通空调系统,应当适当引入雨水收集和循环利用系统,利用雨水在系统中的有效流动,较少利用水的成本,减少对城市水资源的依赖程度。另外,在运行暖通空调系统过程中会产生一定的废水、废气,并且会有一定固体废物排出,如果直接排出会造成周围环境的破坏。所以在设计暖通空调系统过程中,废物处理环节是整个系统不能忽视的,为了达到环保目的必须对废物等杂质进行处理[2]。
2.3经济性
在设计建筑暖通空调系统过程中,需要对施工过程中的成本进行明确划分。为了使系统的成本有效的控制,应该合理、科学的设计系统。建筑暖通空调系统必须适用于建筑本身,建筑系统中设备的选择应该强调设备的适用和先进。设计方案可操作性要强,不能盲目的为了经济效益,减少工程成本,安全合理才是首要的。此外,对于设计人员来说,必须拥有良好的职业素养,要对系统设计的相关数据和信息准确性负责任[3]。
3.暖通空调系统的节能优化设计
3.1空调系统的节能设计
(1)蓄能系统设计。在设计空调蓄冷方面,是利用并凝固介质或者用水冷却当介质来将热能冷却,并存储于介质当中,在这个过程中,如果热能过高会造成很大危险。在系统的热源选取方面主要有电锅炉等,通过利用电低估时候的电力加热水,然后存储于冰箱中,这样可以在用电高峰时段,利用存储的热能。
(2)热能回收技术。排风余热能够有效提高室内的空气质量,它的原理是利用新风系统来实现对室内有害气体的稀释。在新风进入室内过程中要将旧风排出。在这个过程中,旧风也会带走一部分热量,而有效的暖通空调排风系统可以充分利用旧风带走的热能,通过交换器实现对新风的预冷或者预热。
3.2空调系统的能源利用设计
(1)自然冷源的设计。在设计空调系统过程中,自然冷源的设计是一项不可忽视的部分。先在版式的换热器就可以有效的保证水系统的清洁环境,达到供冷费用的有效利用,还能在其基础上实现冷水系统的有效运行。在设计供冷系统中,也可以引用新风引入方式,这样就能保证室内的温度和湿度,这种设计是合理有效的,可以最大限度的减少集中制冷系统的设计投入。
(2)水源热泵技术的利用。为了达到有效的节能目的,我们也可以利用水源热泵技术。这一技术作用是实现暖通空调系统的供热和制冷,并且利用地下水或河流湖泊的水源以及再生水源。在我们国家,水源热泵技术应用普遍,在快速实现低温和高温的转移上效果明显。在夏天的室内,可以温度余热储存在水体中,这些保存在水体中的热量将在冬季到来时释放出,来就能实现室内的供暖。同理道理,也可以在冬天蓄能,在夏天利用。
(3)太阳能供应技术。充分的对太阳能利用技术,在建筑的暖通空调的节能系统设计中可以有效实现。如果较为合理的布置,太阳能基本能够不占用建筑物太多面积。在普通的民用建筑上是比较适用,主要都在大型的建筑物中运用。在设计太阳能的采暖和降温系统过程中主要考虑由风机、散热器、储热设备以及集热设备这些部分[4]。
4.结论
通过上述研究,随着科学技术的不断发展,解决建筑暖通空调的系统节能的手段也越来越多,建筑暖通空调的节能新技术和新工艺也会越来越精湛。在实践中通过节能设计、能源利用设计和运行管理设计等手段结合新技术的运用,能够有效使得实现整个系统节能效果,这样才能最终实现空调系统的节能。
【参考文献】
[1]李明海, 鲁娟, 任庆昌, 等. 智能建筑暖通空调系统优化方法研究[J]. 中国科技信息, 2005 (15A): 161-161.
[2]沈彦辉, 王磊, 陈谦. 公共建筑暖通空调系统节能设计措施浅谈[J]. 科技资讯, 2010 (19): 86-87.
【关键词】抽水蓄能电站;下进出水口围堰;预留土埂;优化
1 工程概况
安徽响水涧抽水蓄能电站位于安徽省芜湖市三山区峨桥镇境内,电站由上水库、输水系统、地下厂房系统、开关站和下水库等建筑物组成。
下水库位于浮山东面的湖荡洼地,由围堤圈围而成。下水库进出水口采用侧式布置,设在下库西边靠近山体侧,底板高程-16.00m,前池以1:15的倒坡与库底(库底高程0.45 m)相连,尾水上平洞以8%的倒坡与进出水口相连、其上游为上弯段及斜井段。进出水口南北两侧分别布置有导堤,导堤由开挖预留形成,然后采用浆砌石护坡进行保护,顶高程1.95m。进出水口边坡顶部设截排水沟,在46.5m高程和31.35m高程分别设2m宽马道,马道布置排水沟并与顶部截水沟相连排除边坡和周边汇水,汛期山体汇水主要通过截排水沟引入主沟排洪沟或南围堤外排水沟,最终排入泊口河;进出水口施工区汇水面积内的雨水汇集至排水泵坑后抽排至南侧南围堤外排洪沟或北侧主沟排洪沟。
2 下进/出水口施工期度汛方案选择
2.1 工期要求
根据原投标文件导流工程施工进度安排,下库进/出水口施工挡水围堰于2009年1月1日至2009年1月15日填筑完成,2011年1月1日2011年1月10日拆除完成,施工挡水围堰经历两个主汛期,有效使用天数共计716天。
2.2 方案选择
下进/出水口挡水度汛方案选择的成败,直接影响到下进/出水口施工进度,关系到厂房汛期的度汛安全。为此,特对下进/出水口施工期度汛方案进行了技术经济比较。
2.2.1招标阶段
由于下进/出水口较周边库盆低,形成深基坑,需在尾水隧洞出口和进/出水口前池段下游端填筑施工围堰,围堰采用粘土填筑及编织袋子堰,确保库盆内暴雨积水不进前池,前池内雨水不倒灌进尾水隧洞。汛期库盆积水深度按0.8m计算,库盆护底厚度为0.5m,另考虑库盆面积较大风浪因素及安全超高0.7m,因此进出水口围堰高2.0m,顶宽2.0m,底宽4m;尾水隧洞洞口挡水围堰考虑50年一遇日暴雨降水量积水深度,堰高0.6m,顶宽0.75m,底宽1.5m。拟在进出水口靠左侧布置集水坑,选用2台300BX-24水泵(流量1450m3/h、扬程24m、功率110kw) 和2台150BX-20型水泵(流量500m3/h、扬程20m、功率45kw),将积水排向进出水口左侧排洪沟入口部位水塘,经排洪涵管排入泊口河。
2.2.2施工阶段
为确保度汛施工安全,最大可能减少施工成本,考虑到编织袋围堰防渗性及对施工交通的影响,拟将进出水口围堰由编织袋围堰优化为预留土埂。即在前池与库盆衔接部位预留土埂,并与导堤相接形成挡水围堰,防止库盆积水流入前池,挡水围堰设计顶高程2m,前池尾部导堤开挖时暂开挖至2m高程。由于进出水口较周边库盆低,形成深基坑,为避免周边库盆雨水流入前池,利用已形成的前池导堤将雨水截留并引至库盆排水沟网。具体如图2所示。
图2 下进/出水口围堰预留土埂示意图
2.2.3方案选择:招标阶段下进/出水口挡水度汛方案从度汛安全方面考虑可以满足保证厂房汛期的度汛安全,但较之施工阶段度汛方案,未考虑前池段下游端填筑施工围堰后,2009年1月15日至2011年1月10日期间,围堰对下进出水口开挖、混凝土、前池浆砌石、库盆干砌块石等施工项目道路运输、工作面布置的影响;而采取将进出水口围堰由编织袋围堰优化为预留土埂后,以上影响可完全避免,仅仅是将原开挖阶段的前池开挖部分的少量开挖工程量安排在下进出水口混凝土、浆砌石、干砌石施工基本完成时进行,在开挖工程量未增加的前提下,省去了围堰的填筑和拆除量,结束了成本,保证了有效地施工工期,通过以上技术验证和经济比较,采用预留土埂可在保证度汛安全的前提下,可以有效地节省施工成本。
3 施工阶段度汛方案
3.1根据以上两种方案的比较,施工时采取了将进出水口围堰由编织袋围堰优化为预留土埂,另外及时疏通、扩挖前池导堤外侧排水沟,保证导堤外侧排水沟、库盆排水管网通畅,靠前池部位库盆积水能及时汇入库盆泵坑进而抽排至泊口河,降低预留土埂部位的度汛压力。
下/进出水口主要集雨面积仅为下进出水口开挖面积,约49800 m2,根据合同文件,估算日最大降雨量为15338 m3,按1日排干积水,小时排水量为639m3。
2009年汛期在尾水隧洞洞口,设置挡水围堰,围堰高1m,每个尾水隧洞挡水围堰前分别设置1台WQ65-18-5.5型水泵(流量65m3/h、扬程18m、功率5.5kw), 并备用2台同型号水泵,保证洞口部位雨水能及时抽排至下进出水口前池部位集水坑,经过集水坑布置的1台WQN140-60-37型水泵(流量140m3/h、扬程60m、功率37kw)抽排至主沟排洪沟内,确保尾水隧洞贯通后雨水不进厂房,且在拦污栅底板0-042.75上增加一道粘土围堰,堰高1.5m,顶宽3m,两侧坡比1:1,进一步降低尾水隧洞度汛压力;前池泵坑内布置布置1台300S-32型水泵(流量790 m3/h 、扬程32m、功率90KW) 和1台150S-78型水泵(流量160 m3/h 、扬程78m、功率55KW)接引固定钢管至开关站侧水塘,从南围堤外侧排水沟排入泊口河。
2010年为保证度汛安全,在下/进出水口事故闸门井在浇筑至-4.944后4扇事故闸门全部提前沉放挡水,每个洞口布置2台水泵(1台5.5kw污水泵,流量65 m3/h,扬程18m和1台3kw潜水泵流量15 m3/h,扬程50m),确保洞内排水量达到80m3/h,上平洞、渐变段施工时,以及渐变段预留孔洞封堵前,洞内积水由水泵抽排至前池泵坑。前池泵坑内布置4台大功率水泵, 1台90kw离心泵(流量400 m3/h 、扬程44m)、1台55kw离心泵(流量160 m3/h 、扬程78m)、1台37kw离心泵(流量140m3/h 、扬程60m)和1台30kw多级泵(流量100 m3/h 、扬程66m),总排水量达到800m3/h,水泵接引固定钢管至开关站侧水塘和北侧16.15m马道排水沟,从南围堤外侧排水沟、主沟排洪沟排入泊口河。
3.2技术经济比较
下/进出水口围堰采用预留土埂,并与下进出水口左、右侧导堤相接形成挡水围堰,减少了围堰填筑和拆除施工内容,为进出水口及库盆施工创造了有利施工条件,且施工时段有了较大的调整空间,可以优先保证其余关键线路施工的设备和人员。
通过以上技术验证和经济比较,招标阶段施工费用约为22万元,而采用预留土埂施工费用基本为零,可减少施工成本约22万元。本工程下进出水口导流、度汛最终采用预留土埂,与下进出水口左、右侧导堤相接形成挡水围堰。
4 结语
通过施工阶段检验,下进/出水口2009年和2010年两个主汛期采用优化后的挡水度汛方案,确保了下进出水口和厂房的度汛安全,尤其是2010年6月4日成功抵御了超标洪水的考验,该优化方案是切实可行的。该项施工方案的优化,从实际效果来看具有以下优点:
建筑电气是建筑系统中的重要耗能用户,约占整个建筑总能耗量的1/3左右。城镇现代化水平的不断提高,对建筑电气节能要求也越来越高,一项完善可靠地建筑供配电系统的节能优化设计,不仅可以确保建筑内部各系统的高效稳定运营发展,同时还可以为建筑长期处于低能耗的高效运行工况奠定良好的基础。建筑电气系统的优化节能,对促进能源高效分配、合理利用、节能降耗等,均具有举足轻重的作用。建筑供配电系统节能是建筑电气节能优化设计中的重点,如何将有效的节能方案和节能技术合理运用到实际工程项目中,是建筑电气工程师研究的重要内容,非常具有工程实践应用研究意义。
1.建筑供配电系统节能优化设计主要参考规范及遵循原则
建筑供配电系统作为建筑电气系统中的核心组成部分,其在方案优化必选设计过程中必须严格遵照相关技术规范标准要求进行。目前,建筑工程中供配电系统节能优化设计主要参考规范有:GB50189-2005《公共建筑节能设计标准》;GB50052-2009《供配电系统设计规范》;JGJ16-2008《民用建筑电气设计规范》;GB50034-2004《建筑照明设计标准》;GB50411-2007《建筑节能工程施工质量验收规范》;GB/T50378-2006《绿色建筑评价标准》等。在实践工程项目节能优化设计过程中,应遵循以下原则,即:
(1)应确保建筑物的电气功能的正常高效运用,即:对于建筑照明系统而言,应满足建筑物空间内部照明需要的照度、色温、显色等技术指标指数要求;对于通风空调系统而言,要结合建筑物功能特性,确保系统为其提供舒适安逸的温湿度及恰当的新风量;对于电梯拖拽系统而言,要使上下、左右的运输通道畅通无阻;对于一些具有特殊功能的场所,如娱乐场所等,应确保供配电系统中电气设施的安全可靠用电、展厅应具备工艺照明及电力用电等功能。
(2)应充分考虑项目后期运营的经济效益特性,尤其应重视建筑供配电系统后期运行维护的可行性、可靠性和节能经济性。合理设计的出节能方案,减少建筑投运后的运行维护费用,充分挖掘建筑供配电系统内部存在的节能降耗潜力,提高节能方案的经济性。
(3)综合性建筑供配电系统的设计内容较多,综合考虑因素较复杂,要求高,其优化节能方案应从长远着手,充分贯彻安全、可靠、经济、合理、技术先进等设计理念,精心考虑进行优化设计,确保设计方案具有较高的精细精益化特性。
2.建筑供配电系统节能降耗技术措施探讨
建筑供配电系统是建筑电气系统中的电能分配的重要载体,同时也是智能楼宇综合服务水平有效发挥的重要保障性系统。在进行建筑供配电系统优化节能设计过程中,除了要保障建筑物内部各功能系统发挥出其优良高效的功能特性外,还应从的电气系统优化控制管理、节能经济运行维护等方面进行优化必选,确保建筑电气系统中各功能设备均能长期处于节能优良运行工况,降低建筑电气系统运行能耗,达到节能降耗的目的。
2.1 合理进行建筑变配电中心基址的选择
建筑变配电中心是电能分配调度的核心场所,合理的基址选择,可能获得较好的节能效果。在进行节能优化设计时,首先应根据建筑物内部负荷特性,详细准确的统计出建筑物内部的各负荷特性、供电容量和用电等级等,并结合城区供电网的区域分布,优选出技术上可行、经济上合理的安全可靠、稳定经济的建筑变配电中心基址。应尽量将建筑变配电中心设置在靠近用电负荷中心位置,这样一方面可以减少建筑供配电线路路径,避免长距离供电、迂回供电等不利现象。减少建筑供配电系统中动力电缆、控制电缆等的总长度,降低建筑供配电系统的整体投资,提高项目建设的经济性;另外,选择合理的建筑变配电中心基址,可以优化供电网络,缩短供配电线路半径,确保供电具有较高的安全可靠性,且能降低供配电线路的综合损耗,确保建筑电气系统中所有电气设备能够长期安全可靠运行在高效节能经济区域,提高设备综合能源利用效率,获得较好节能效果。
2.2 合理进行供配电竖井优化布设
要充分结合建筑物的结构和平面布置,经常同建筑结构工程师、建筑工程师等进行交流,合理布设各层的供配电竖井和层总控配电箱等的位置,尽量确保竖井、总配电箱处于用电负荷中心区域,减少分支供配电线路的长度,确保供配电系统的供电的安全可靠性,减少供配电线路的综合损耗。
2.3 供配电变压器的合理选型与应用
变压器是建筑供配电系统的核心设备,同时也是建筑电气系统节能降耗的重要研究对象。在建筑项目节能优化设计过程中,应优选S11、S13等高效节能型配电变压器。此类新型节能变压器通过对常规变压器内部结构的优化改良,可以降低变压器内部铁心磁阻,通常其空载电流仅有常规变压器的20%~30%,有效提高配电变压器运行的功率因数,同时可以降低配电变压器的综合运行能耗,这样可以从建筑供配电系统的配电源头获得较好的节能降耗效果。在进行配电变压器容量选择过程中,要充分考虑到建筑供配电系统后期扩容需求,避免出现配电变压器的负荷率取过高或过低等两种极端运行工况。工程优化节能设计过程中,配电变压器负债率应控制在75%~85%左右较为合适。
结束语
建筑电气系统中供配电系统优化设计中的节能降耗潜力非常大,在工程实际优化设计过程中,应充分结合建筑物功能功能特性,精心考虑,在设计方案中应尽量采用各种先进的节能设计理念、方案、技术和材料,确保设计方案具有较高的安全可靠性和节能经济性,实现建筑供配电系统节能、建筑电气节能以及建筑节能三者间的充分融合,推动绿色建筑的快速高效建设发展。
参考文献
[1] 王忠勇.高层建筑供配电系统节能设计分析[J].低压电器:现代建筑电气篇,2009,(22):64-67.
[2] 曹祥红,张华,陈继斌.建筑供配电系统设计[M].北京:人民交通出版社,2011.
关键词:热动系统;节能减排;环境保护
DOI:10.16640/ki.37-1222/t.2016.06.050
0 引言
在保护环境的大主题下,节能减排的工作一直在有序的进行着,随着我国环境污染越来越严重,空气质量越来越恶劣,节能减排的工作成为当代最为紧要的问题,社会的各个方面都在加大节能减排的力度。但是在发电厂热动系统的优化减排却没有被人所重视和关注,而现存的热能系统的节能减排的技术还存在着一些不足之处,并且也缺少一定的技术指导,导致很多的优化减排的方案在实际的操作中无法实现。所以在发电厂的发展进程中,对热动系统的节能优化减排的工作刻不容缓。
1 热动系统节能优化与减排的概述
热动系统的节能优化减排是对整个系统进行分析研究,找出可以优化的可能性,再以热动系统为主要的优化点进行设计优化,这是一种技术性的作业,在设计中不仅仅要考虑到节能减排,还要考虑系统的适用性和可靠性,最大限度的优化系统。所以在设计之前要做好规划,在对系统进行设计时一定要多方面的进行考虑,以节能减排为主要目的,在设计的过程中还可以针对不同的状况提出不同的方案,然后对各个方案进行对比,取彼之长,补彼之短,最后选出最佳的方案。热动系统的节能优化减排就是在发电厂的系统之中深入的贯彻节能减排的方案,优化电力系统,在保护环境的基础之上促进发电厂的效益的增长。
2 热能系统节能优化减排的现状分析
随着我国的科学技术的发展,发电厂的系统也在不断地发展与完善,在不断的完善的基础之上,热动系统的发展也在不断地趋向于完善。对热动系统的节能减排不仅仅是对整体布局的设计,因为发电厂的电气设备繁多,复杂多样,并且每一个系统与系统之间都有着密不可分的联系,所以如果只是照顾整体的节能效果,但是局部的系统可能并不是最优。所以在节能减排额设计布局中要从细节做起,把每一个细节做到最优之来完成整体的最优。在对发电厂热动系统进行节能减排改造设计时加强对此项目的节能管理,在设计环节就对系统做最大的要求,这样在改造的实施环节中给系统留出一些实施的空间。
我国的热动系统虽然正在不断的完善,但是仍然延续的是传统的管理方案,传统的管理方案是一种比较粗放额管理模式,无法照顾到系统的细节,并且没有重视节能减排的工作,所以在系统运行的过程中存在着许多的问题,其系统结构也存在着不合理的地方,这样每一个系统的细节之处都不能达到相应的标准,也就导致整个系统的节能减排的能力低下,因而影响能源转换的效率,为发电厂的经济效益到来阻碍。
所以,在未来的发电厂热动系统的发展方向中要深入的贯彻节能减排的工作,在对节能减排的方面进行优化改进时,要针对系统的整体进行设计、检测,抓住每一个细节,这样才能对整个系统的数据进行掌握,对节能减排的优化做好基础。在优化的过程中还要注意系统内部运行的结构和连接方式,细节决定成败。
3 电厂热动系统节能优化与减排的具体应用
3.1 对锅炉的节能减排
锅炉一直是发电厂中最主要的供电设备重要组成,所以锅炉在发电厂的使用率非常高,并且锅炉在正常运行中产生的热能非常的大,其温度可以达到150°~200°,从此不难看出锅炉在排烟的过程中会流失大量的热能,如果能够通过科学技术的手段对锅炉的排烟量进行控制,对从排烟的过程中流失的热能进行收集和再利用,会产生巨大的效益。所以在对锅炉的改造过程中在排烟处设置一些能量回收的装置,将回收到的热能进行再利用,就可以减少热能的流失,提高锅炉的能量转换的效率,增加发电厂的经济效益,减少能量的流失对于环境保护来说也是一项非常有意义的事情。
对锅炉的节能减排中除了对排烟量的热能的回收之外,锅炉在运行之中还会产生一些污水,这些污水从锅炉内排出自身会带有一些热量,所以锅炉在排污的过程中也会流失一些热量,所以要想避免这些热能的流失就要采取一些措施对污水中的热能进行回收,可以采取与排烟的回收方式对污水中的热能进行循环再利用。
3.2 对蒸汽的循环利用
在能量转化的过程中产生的大量的蒸汽,这些蒸汽中存在大量的热能和水,这个过程也会流失很多的能量,但是由于蒸汽中的温度太高,许多的工业中不需要太高的温度,所以很多的工业厂要将蒸汽进行降温之后才加以利用,这样就会流失大量的热量,形成资源浪费。所以在对蒸汽的降温过程中可以对资源进行循环利用,让含有大量热能的蒸汽进入汽轮机中做工,在这个过程之中蒸汽慢慢的将温度降下来,让蒸汽自然降温,然后在进入工业运动中,这样可以合理的利用资源,减少能源的消耗,提高发电厂的效率。
3.3 水系统的优化运行
在热动系统中,水系统采用的运行方式是母管制,母管制在整个系统的运行中的、影响非常大,所以要优化水系统的运行就一定要从母管制入手,优化母管制的调度方式和分配的方式,引入高科技的分配技术,为热动系统的运行效率进行优化,减少在运行中的能源流失。
Abstract: Firstly, the characteristics of green building construction are summarized, and the current green building construction management faced with pattern backwardness and lack of functional requirements and life cycle cost concepts, which make construction scheme optimization and selection confusion are put forward. Next, the value engineering is used to green construction according to green building construction characteristics, and the functional requirements and life cycle cost factors of green building are clarified. Then the construction schemes are optimized and selected via value engineering. Finally, taking the example of green demonstration project of China - Denmark Research and Education Center, the application of value engineering theory in green construction is introduced.
关键词: 绿色建筑;施工方案优选;价值工程
Key words: green building;construction scheme optimization and selection;Value Engineering theory
中图分类号:TU201.5 文献标识码:A 文章编号:1006-4311(2017)15-0050-04
0 引言
当下城市化进程加剧、基础建设量激增、节能减排及环境治理压力巨大等因素决定了中国建筑节能工作的重大意义和紧迫性[1]。然而,国内绿色施工大多采用传统方法,较少涉及绿色管理内容[2],并且在施工中缺少对绿色建筑全寿命期功能性和成本方面的考虑,致使绿色建筑各阶段的方案优化、选择比较混乱[3]。如此重要的管理内容必然要求有好的方法做支撑。价值工程(Value Engineering)是通过经济技术的协同,对研究对象进行功能及成本分析,持续创新,旨在节省成本、提高价值的资源节约型管理技术和思想方法[4],在国际上已有60余年实践,其低投入高回报的优势在制造业、农业、科研、工程方面取得很好的应用。因此,结合绿色建筑特点,将价值工程应用于绿色施工方案优化与选择,可为提高绿色施工效率提供一种新思路。
1 绿色节能建筑施工管理研究现状
绿色节能建筑施工是在保证工程安全、质量前提下,在施工中做到“四节一环保”,通过科学有效的技术和管理措施,优化用能结构、降低环境负面影响,以人为本,保障人员安全健康的施工方式[5]。结合绿色施工定义及国内外的绿色施工文献[2,6,7],总结出绿色施工4个特点:
①以客户为中心,在满足传统目标的同时,考虑建筑的环境属性。绿色建筑的出发点是节约资源、保护环境,满足客户的需求,管理人员需要更多地了解用户的需求、偏好及施工过程对用户的影响,优先考虑环境属性,讲究与自然和谐相处。将环境破坏程度降到最低,将不利影响转换为有利影响,不仅要交付一个舒适健康的内部空间,还要一个和谐的外部环境,最终追求“天人合一”的目标。
②最大限度利用被动式节能设计(Passive Design)与可再生能源。在建筑的运营阶段需要尽量使用可再生的能源与自身的节能。可以在方案中提倡被动式建筑设计,通过建筑物本身收集、储蓄能量使得与周围环境形成自循环系统。被动式节能设计的方法有建筑朝向、保温、体形、遮阳、自然通风、采光等。另外在决策设计中也要合理利用光能、风能、地热等可再生能源。
③注重全局、全寿命期优化。绿色建筑从项目的策划、设计、施工、运营直到筑物拆除过程中追求的是全寿命周期范围内的建筑收益最大化,是一种全局的优化,这种优化不仅仅是总成本最低,还包括社会效益和环境效益最大化,采取技术经济措施,做到一次投入,全寿命期受益。
④重创新,提倡新技术、新材料、新器械的应用。绿色建筑是一个技术的集成体,在实施过程中会遇到诸如能源优化、管线的优化、采光设计等的技术问题。这就需要利用多种先进技术、新材料及新器械,将同等单位的资源在同样的客观条件下,发挥更大的效能。国内外实践中应用较好的技术方法有BIM、采光技术、水资源回收利用等技术。
目前国内绿色施工多以传统的施工流程为基础,在应对绿色施工绿色节能、全寿命周期优化以及持续创新的特点时显得有些欠缺。选取国内外文献[8,9]及绿色建筑施工案例包括:北京某奥运场馆、深圳市康沃工业园、钦州市公安局指挥中心等进行深入研究。发现业主一般采用平行承发包的方式招标勘察、设计、施工、监理等单位,各方目标不一致,缺乏统一的绿色建筑成本节约目标和经济技术分析方法,致使很多勘察阶段的问题暴露在设计、施工、运营中,会增加返工补救措施,加之绿色节能指标和全寿命周期成本考虑不足,造成前期的方案优化、选择比较混乱,给后期的运营维护增添很大负担。因此,对绿色建筑施工方案进行优化是很有必要的。
2 价值工程在施工方案优化中的应用
目前绿色建筑施工与绿色建筑的需求不匹配,可以将施工流程向全寿命周期延伸,并考虑绿色功能和全寿命周期成本的均衡。鉴于价值工程强大的成本、功能分析,新方案创造及评估的作用,可从全寿命期的角度给出功能定义和成本的主要因素,确定绿色建筑的节能对象以及改进规划、设计、施工及维管等方案选择与改进,实现多目标约束下均衡、优化绿色管理内容。本文将价值工程方法引入绿色建筑施工方案的优化与选择。
2.1 价值工程的原理
价值工程中的价值是一个特定的概念, 它是功能与实现这一功能所耗成本的比值。其数学表达式为:
V=F/C(1)
其中:V 表示价值系数,F 表示功能系数, C表示成本系数。这一公式使功能和成本变成相互可比的数值,可以衡量工程、材料、构件等的功能与成本匹配问题,从而取得好的技术经济效果。一般存在5条提高价值的途径,见表1。
2.2 价值工程在绿色施工方案优化应用
价值工程的主要思想是整合现有资源,优化安排以获得最大价值,主旨是抓住和利用关键问题和主要矛盾,整合技术与经济手段,系统地解决问题和矛盾。因此,价值工程在绿色施工中主要用途有两方面:挑选出价值高、意义重大的问题,予以改进提升和方案比较、优选。其流程为:
①确定研究对象。在价值工程基础上常用的方法有ABC法和比较法而比较法,两种方法对比见表2。
②全勖周期功能指标及成本指标定义。在确定研究对象之后,进行功能定义和成本分析。参照LEED标准[10]、绿色建筑评价标准[11]以及实践经验总结绿色建筑研究对象的功能的主要内容,见表3。价值工程理论一般将功能分为:基本功能、附属功能、上位功能以及假设功能[12],基本功能关注的是使用价值和功能价值,即该产品能做什么;附属功能一般是辅助作用,一般是外观设计,关注的是产品还有其他什么功能;后两种功能超出产品本身,一般不在功能分析里讨论。
全寿命周期成本一般包括:初期投入成本和后期的维护运营成本[4]。细化来看初期成本包括:直接费(原材料费用、人工费、设备费用)、间接费、税金等;后期的运营费包括:管理费、燃料动力费、大修费、定期维护保养费、拆除回收费等。
③恶劣环境下样品试验。由于建筑物的绿色特性,在设计施工中常常会用到一些新材料、构件,此时需进行样品加工、交检,经检验员对样品进行恶劣环境下如高温曝晒、干燥、潮湿、酸碱等环境下试验,由质监员根据样品的性能指标做最终评审,并记录各项实验指标。
④价值分析。对研究对象进行价值分析,可以有效地避免功能过剩和功能不足。在计算价值系数时,需要进行功能分析确定F,成本计算确定C。
对于功能系数,首先根据功能定义,在试验中确定指标的大小,然后通过专家评判确定指标所占权重,最后计算功能系数,假设研究对象包含n个功能指标,为x1,x2,…xi…,对应的权重为w1,w2,…wi…则:
对于成本系数,需要先收集影响指标,然后确定指标大小以及所占权重,通过归一化处理得到无量纲数据,最后计算成本系数C:
C=C前期+C维护(6)
其中,C代表成本系数,C前期代表初期投入的成本,C维护为后期运营维护的成本,成本系数也是无量纲数据。结合式(1)、式(2)、式(3)、式(4)(或式(5))及式(6)可以计算各方案的价值系数,然后对价值量进行分析。
⑤方案评价及选择。依据样品试验以及所求的价值系数,利用价值工程原理对已有方案进行价值提升或者对于新方案进行优选。
3 案例应用
3.1 工程概况
中国-丹麦科研教育中心绿色示范工程为丹麦全额捐建,是其在中国投资的第一个科研教育建设项目,面积10865.48m2,工程造价为9310万元,由中铁建工集团总承包,从项目决策、设计、施工过程中严格落实LEED的绿色施工要求,项目部本着可持续发展的理念精心策划,科学组织绿色施工。工程集科研教育、教学、公寓于一体的综合性微能耗建筑,工程以其节能低耗环保而被称为“会呼吸的建筑”。从全寿命周期角度出发,在策划阶段初期就介入项目论证,参与了建筑策划、设计、施工等过程,应用价值工程进行关键问题改进优化和新技术、材料、机械等方案优选。在策划阶段将价值工程方法应用到高价值方案的审核;在设计阶段大到主体和各绿色方案,小到各单项工程、构件的对比,方案的优化与选择,如采光、通风被动式节能方案优化;在施工阶段可以将价值工程应用到绿色材料、新技术工艺的选用,通过对比,试制,确定可行方案以及选取关键主要的节能对象予以方案改进,比如天花吊顶材料、TABS管等材料选取,编织状耐候钢遮阳板施工工艺优化等。在之后的运营维护阶段,价值工程还可以用于运营维护方案的优化以及关键故障的维修。以下对价值工程在天花吊顶方案优选的应用做重点介绍。
3.2 价值工程在天花吊顶绿色材料方案选择的应用
天花吊顶施工方案根据丹麦设计风格及其设计特点、工艺要求、使用功能要求进行设计及深化改进。最初有芍址桨福悍桨1为木制天花,材料为松木聚合件,松木的生长周期长、木材的质地柔韧,而且本身的阴阳色分布均匀,美观、环保;方案2是竹天花,材料为南方的毛竹,利用竹材本身,做简单处理,其中竹材繁殖能力强、速度快、直径小、壁薄、木质素、纤维素组成特殊。以下对价值工程在两种方案中对比选优进行阐述:
3.2.1 圆形木桶天花功能系数计算
天花吊顶是一种特殊的装饰结构,包含诸多功能属性。借鉴文献[13,14]及实践中材料选择所用的功能标准,选取了F1到F9的功能指标,其中,F1到F7为基本功能,F8,F9为附属功能。通过对业主、项目部、设计部门以及供货商代表进行调查,采用专家打分法对功能满意程度进行打分,见表4;然后确认各功能的重要性系数,如表5;结合表4与表5的内容,对应相乘得表6功能得分。
根据式(2)求得:方案1的功能系数F1=8.35;方案2的功能系数F2=6.88。
归一化后:F1=0.548,F2=0.452。
从方案功能系数得分上看方案1要比方案2得分高,但从功能构成上看,方案1松木天花在环保、绿色及节能属性上不如竹天花,这和竹制天花是原竹加工,而松木天花是经过聚合加工有关,然而这也导致在其余属性上竹天花不如松木天花;从功能指标重要性上看,项目参与方认为材料的稳定性是最重要的,整体性、防火、防潮以及施工简易程度上也是比较重要的,竹天花选材使用的是南方的毛竹,对北方干燥的气候适应性不如松木,容易开裂,导致其在稳定性和整体性方面得分较低,同时,竹天花生产加工厂商少,属于定制产品,货源供应不充足,也增加了施工的难度。
3.2.2 圆形木桶天花成本系数计算
在充分考虑了方案1与方案2的材料成本、运输成本、施工成本以及运维保养成本后,采用竹天花的单位成本要高于圆形木桶天花,两方案的成本系数为:C1=0.429,C2=0.571。
3.2.3 圆形木桶天花价值功能系数计算
根据式(1)可求得:V1=F1/C1=0.548/0.429=1.279;
V2=F2/C2=0.452/0.571=0.791。
根据价值工程原理,方案1的价值系数大于1,说明各项功能重要程度要大于成本;方案2的价值系数小于1,说明成本的重要程度是高于功能。从两方案的实际成本以及项目利益相关方对两方案功能的评价上可以看出松木圆形木桶天花方案价格和功能上都要胜出,为物优价廉的材料,因此在施工中选用方案1。图1为天花吊顶的情况,图1(左)为吊顶的装饰效果图,图1(中)为天花单元的效果图,图1(右)为所选松木天花圆筒组件的实物图。
4 结语
梳理了绿色节能建筑施工特点,明确了当前绿色建筑施工对从全寿命周期的功能设计和成本考虑方面的不足;从绿色建筑施工特点出发,将价值工程引入到传统施工中,对施工方案进行优化和选择;通过在中国-丹麦科研教育中心绿色示范工程中的应用,取得了很好的效果。在对绿色施工方案优选的基础上,可进一步对其他关键问题进行深入研究,比如绿色节能建筑施工的管理模式,施工的进度、费用、信息、风险的协同管理以及知识管理等,从而提高绿色节能建筑施工的管理水平,为绿色节能建筑施工做好示范先导作用,为后续项目提供借鉴。
参考文献:
[1]肖绪文,冯大阔.建筑工程绿色施工现状分析及推进建议[J].施工技术,2013,42(1):12-15.
[2]N W, Y Y H, J H Z, et al. Elementary Introduction to the Green Management of the Construction in Whole Process[J]. Physics Procedia, 2012: 1081-1085.
[3]何小雨,王佳杰.价值工程在绿色施工方案优化中的应用研究[J].安徽建筑大学学报,2016,24(1):44-48.
[4]付建兵,邱菀华,易卫平.价值工程在建筑节能中的应用[J].中国能源,2006,28(6):14-16.
[5]鲁荣利.建筑工程项目绿色施工管理研究[J].建筑经济,2010(03):104-107.
[6]Hwang B G, Ng W J. Project management knowledge and skills for green construction: Overcoming challenges[J]. IEEE Engineering Management Review, 2013, 41(2):87-103.
[7]Lockwood C. Building the green way[J]. Harvard Business Review, 2006, 84(6):129.
[8]Wu P, Low S P. Project management and green buildings: lessons from the rating systems[J]. Journal of Professional Issues in Engineering Education and Practice,2010,136(2):64-70.
[9]薄卫彪,周明.常用工程项目管理模式在绿色建筑项目中应用的研究[J].工程管理学报,2010,24(1):46-49.
[10]张志勇,姜涌.从生态设计的角度解读绿色建筑评估体系――以CASBEE、LEED、GOBAS为例[J].重庆建筑大学学报,2006,28(4):29-33.
[11]中国建筑科学研究院.GBT0378―2006,绿色建筑评价标准[S].北京:中国建筑工业出版社,2006.
[12]斯图尔特.价值工程方法基础[M].机械工业出版社,2007.
关键词:石化企业仪表节能降耗
中图分类号:TE08 文献标识码:A 文章编号:
计量和数据是石化企业日常生产计划和能源管理工作的重要保障基础,稳定可靠、准确经济的仪器仪表,不仅能够适应生产工况的变化而提高生产效率和质量水平,同时可以达到节能降耗的效果,是石化企业节能降耗,提高经济效益所追求的重要目标。为了满足计量工作更高的技术性能要求,在仪器仪表规划布设、安装调试、运行维护等过程中,采取多种先进的技术措施和方案达到节能降耗的目的,就显得非常有工程实践应用研究意义[1]。
一、石化仪表节能减排集成自动化技术
石化企业仪表节能减排对集成自动化技术提出的进一步严格要求,也就是说节能减排已成为我国石化企业仪表自动化领域里重要的研究内容,不仅要积极优化升级改造石化企业现有的计量系统与测量仪表,同时还要注重仪表节能的集成一体自动化功能。
1.建立一体化综合测控节能仪表系统
通过先进的测控系统,进行生产工艺的优化调度和优化石化企业资源规划,尤其是生产过程中的重点能耗设备和重点污染源,采取先进节能的测控系统进行优化改进,可以大大节约生产过程中的能源效率,大大节能降耗的目的。
2.自动控制技术与数字信息化技术有机结合
利用工业一体化测控系统,结合自动控制理论、智能仪器仪表、计算机技术、网络技术等,对石化工业生产全过程进行在线实时检测、动态控制、全面优化、准确调度管理和可靠决策,在提高测控系统能源利用效率的同时,确保其功能高效稳定发挥,达到增加产量、提高质量、降低生产能耗、确保安全可靠生产等运行管理目标。
3.大力研发节能型仪表设备
利用先进的能源计量仪表或设备装置,如智能数字化热量表、智能超声波流量计、智能液位计等先进节能型仪表,可以大大提高石化产品生产效率,降低能源浪费,达到节能降耗的目的。
二、石化企业仪表节能降耗技术措施
1.仪表优化选型节能
对于一个规模较大的石化项目的生产工艺流程优化过程中,仪表优化选型布设过程虽然是其一项辅较强的工作,但其优化选型布设方案和质量水平的高低却是整个工艺仪表节能降耗的开始和节能水平的关键环节。如:在设置温度计时,很多布设安装人员在每一个换热器循环口入口部位均设置相应的温度计,但从大量理论研究和实际运行工作经验可知,完全没有必要在所有换热器循环水入口均设置相应温度计,只需在循环水进水总管处设置具备现场和远传功能相结合的智能温度计即可按照整个工艺测温需求,这样就可以大大节省仪表按照费用。假设对于一个中型规模工艺而言,如果节省约300支温度计,按照平均每支约160元进行计算,仅温度计这一种仪表就可以节约近4万元,可以大大提高工程项目综合投资经济效益,其直接节能效果十分明显。再如对于对压力控制要求不是太高(通常其调节精度在±5%~±10%范围内即可满足要求)的使用场合,此时可以优选考虑采用自力式调节阀进行压力控制,无须盲目提高测控系统自动化水平配置自动测控调节系统,这样可以有效节约自动化测控系统运行过程中的电能资源浪费,达到节能效果。随着石化企业节能降耗意识的进一步加强,加上仪器仪表生产制造技术的进一步提高,低压损或无压损仪表在石化生产工艺中得到广大工作人员的重视和普遍关注,尤其是近年来,阿牛巴流量计、旋涡流量计等在石油化工企业石化产品生产过程中的得到广泛推广使用,节能效果十分明显。如:阿牛巴流量计,由于其具备价格低、安装维护方便、压损小等优点,从技术和经济等方面进行综合分析,比其它流量计更为优越。从大量实践工作经验可知,在测量同一流量过程中,阿牛巴流量计其计量时所产生的差压为孔板的5%以下,而其压损也只有孔板的2%以下,同时阿牛巴流量计的压损随管道直径的增大占整个计量装置满刻度差压的百分数将会迅速降低,对于测量范围较大的复杂工艺流程中,其节能效果相当明显[2]。
2.仪表安装节能
石化仪表安装节能,只要是在仪表安装调试过程中,通过方案的合理优化和规范操作减少安装材料和附件的消耗量,同时提高安装调试质量水平,确保仪表安装调试具有较高质量水平,减少后期运行费用和维修维护费用。石化仪表安装调试过程中,首先要认真审查安装图纸、施工方案的可行性和经济性,确保其具有较高可行性和直接节能或间接节能水平。如在现场进行压力表和差压(或压力)变送器安装调试过程中,通常采用引压管方式进行取压调试,在实际安装调试时可以通过优化方案缩短引压管长度,对于差压管则需要尽量减小两引压管间距,这样可以在确保仪表测量的准确度基础上,减少安装材料消耗,达到节能降耗的目的。在实际安装调试过程中,应结合安装施工现场合理进行优化布局,尽量避免管(缆)出现弯路、转折点等不利情况,减少敷设信号电缆和附件数量,且缩短测管管长降低各种动力源的压力损失等,进而达到节能降耗的目的。
3.运行维护节能
为了确保石化工业生产设备装置长期稳定、高效可靠地运行,仪表设备装置的运行维护工作必不可少,也就是说仪表正常高效运行管理和维修维护工作,对仪表节能就尤为重要。通过经常清理、更换小部件等维护维修技术措施,改善不良设备装置运行工况,确保其高效稳定的运行发展,相应达到的节能效果显而易见。
4.管理节能
管理节能也是石化企业仪表节能中非常重要的技术措施。采取合理的管理制度和方案措施,杜绝或减少仪表“跑、冒、滴、漏”等不利现象发生,可以达到较为良好的节能效果。结合先进的石化企业ERP节能管理系统,可以将生产工艺节能、设备装置节能、仪器仪表节能、以及电气节能等方面有机结合起来,进而实现能源的优化配置,达到节能降耗的目的,有效提高石化企业产品生产运营经济效益。
摘要:在分析了钢结构住宅建筑面临的发展趋势后,对夏热冬冷地区高层住宅建筑钢柱保温节能设计要点进行了认真分析研究,最后对一种钢结构高层住宅建筑阳台挑梁保温节能设计方案的优点及其应用效果进行了详细归纳总结。
关键词:高层楼宇 钢结构体 保温层 节能设计 挑梁设计
钢结构住宅是高层楼宇住宅建筑的一个重要分支,与木制结构、砖混结构、以及钢筋混凝土结构等同为住宅建筑的重要组成功能单元。随着建筑节能步伐的不断加快,钢结构节能住宅已成为住宅建筑结构研究的一个热点。钢结构保温节能住宅是指在建筑结构体设计时,用钢材来构筑建筑物的柱、梁、析架等结构,通过各结构体相互牵连形成一个以钢材为原料的主体承重结构,并用环保、轻质、节能等新兴材料作其它围护结构与隔墙的居住类节能环保建筑。钢结构保温节能住宅建筑在设计过程中,必须满足当地民用建筑节能设计标准或国家相关规范要求,其节能效果必须达到65%及以上水平。因此,对高层楼宇建筑钢结构体保温设计要点进行详细分析研究,在满足钢结构住宅建筑相关节能要求的基础上,通过设计方案的优化,获得最优钢结构住宅保温设计方案就显得十分必要[1]。
1 钢结构住宅建筑面临的发展趋势
从高层楼宇建筑发展趋势来看,钢结构节能住宅必将是建筑发展的主要方向,也就是说钢结构节能住宅必将走上一条节能环保、标准化、产业化的道路。钢结构节能住宅相对于传统的建筑结构体及建造方式,具备设计科学合理、施工简单便捷、环境保护性强、管理有序、成本控制性较优越等优点。人们对智能化家居住宅建筑的需求,钢结构体系可以提供较大的安装操作空间,有效避免传统建筑结构体内部空间不足、管线布置复杂等弊端。可持续发展的钢结构节能住宅将在住宅建筑发展过程中,不断融入更多的新能源技术和智能化设施设备,不仅可以有效提高住宅家居综合舒适度、满意度,同时还可以在设计中,将各种节能技术措施充分运用到工程实际中,进一步提高钢结构住宅的综合节能效果[2]。
2 夏热冬冷地区高层住宅建筑钢柱保温节能设计要点
工程中常见的钢结构节能住宅的柱体形式主要包括H型钢、方钢管、方钢管混凝土三大类,文中将对H型钢柱和方钢管混凝土钢柱的节能设计进行分析。
2.1 H型钢柱外保温设计。
在进行钢结构外保温结构的节能设计过程中,由于目前尚无详细具体的关于保温层厚度做法的规范标准,因此,在钢结构体外保温层厚度设计过程中,通常采用2-3公分厚的保温层。但对于不同节能建筑工程而言,应该根据工程建设不同节能目标要求,适当设计保温层厚度。对于H型钢柱体而言,在绝大部分情况下是不需要采取任何保温处理措施,但设计过程中,在考虑到钢结构体实际运行条件时,即使不在钢柱上设计对应的保温层,也会要求在钢柱内外涂对应的防火涂料、饰面砂浆等材料,这类材料齐热导系统通常要比钢材低很多,在一定程度上也能起到保温作用效果。为了达到节能设计的目的,在进行H型钢结构体设计时,对于不结露的钢柱而言,一般尺寸不需进行保温设计,但对于有特殊节能要求的钢柱时,如节能目标为65%时,应归整个钢结构体进行系统分析并设计出热桥保温结构。在对H型钢柱进行节能设计时,除了要满足钢柱基本力学性能要求,还应充分分析钢结构体内部关系,通过减少腹板厚度、增大腹板厚度等设计方案,以提高钢结构体的综合节能效果。通过大量文献资料和实际工作经验表明:翼缘板设计厚度对整个钢结构体的节能效果影响不是很大[3]。
2.2 方钢管混凝土柱节能设计。
从钢结构体构造特点来看,影响方钢管柱节能保温性能的参数主要为柱宽、柱壁厚度、以及混凝土墙体厚度。对于方钢管柱体而言,方钢管混凝土柱的保温性较其它钢结构体较差,为了达到节能目的,应该对保温层的厚度进行详细分析计算,工程中常用的保温层厚度设计经验公式为:
D=λ(86-0.1b+2t)
式中:b为柱宽;t为柱壁厚度;λ为保温材料导热系数。
利用上式计算公式获得对应的设计保温层厚度可以保证在夏热冬冷地区的楼宇建筑的方钢管混凝土柱在冬季室内不会出现结露现象。
在工程实际设计过程中,要以冬季室内不结露为钢结构体保温层设计控制调节,从而设计出优化节能的钢结构体。
3 钢结构高层住宅建筑阳台挑梁保温节能设计要点
在工程实际应用中发现,单独加厚钢柱体外保温层厚度,来获得减小梁柱间局部热桥的方案在经济性方面效果不佳,因此需要对原阳台结构方案进行保温优化设计。
该节能设计方案一方面适当加厚了钢结构柱体的外保温层厚度,提高了钢结构体节能水平;另一方面在沿阳台挑梁根部向外延伸部位外包了一层长度为L、厚度为t2的保温层,通过两者保温层间的有机结合,达到了控制阳台挑梁节点热桥效果。该方案是在综合考虑钢结构的热工性能和经济性能等因素条件下,形成的一种科学合理的柱与阳台挑梁节点节能设计结构,有效解决了钢结构住宅建筑常用压型钢板-混凝土组合楼板容易产生的热桥效应问题,是一种优越的节能构造。
4 结束语
对于钢结构节能住宅结构设计过程中,设计人员应结合先进的技术措施,积极探索民用钢结构住宅建筑设计的新方案、新思路、新手段,不仅要在设计理念上贯彻钢结构住宅节能、环保等要求,向绿色节能建筑钢结构设计靠拢;同时还要在设计方案上实现节能优化设计,积极吸纳国内外先进的钢结构节能设计方案措施,从初步设计到施工图设计各阶段中,严格遵循统一规范标准和技术措施,并严格实现全过程监督管理,从而获得设计、业主、施工单位等各方均满意的钢结构节能住宅设计结果。
参考文献
[1] John H.Hacker,Julie A.Gorges.住宅钢结构设计与施工[M].北京:机械工业出版社,2008
关键词:港口电气;节能设计;设计方法;节能方案
在国家节能减排政策的持续推广和号召之下,港口码头作为新一轮的节能减排增长点受到广泛关注。港口工程的电气节能设计潜力巨大,有着极大的节能空间,因此,推动港口经济发展方式向可持续发展方向转变、发展港口循环经济必将成为港口工程和临港企业的未来发展趋势。港口码头由于要长期超负荷机械化作业,所以电能需求巨大。因此,优化当前港口电气的节能设计意义重大。下面本文将首先来分析港口电气设计方法以及耗电设备构成,并在此基础上阐述港口电气的节能设计方案,以期能够充分挖掘各种有效的节能举措,降低港口电气能耗,促进港口经济的绿色、可持续发展。
1港口电气设计方法及耗电设备构成分析
1.1港口电气设计方法分析
1.1.1码头变配电所的设计
码头变配电所的设计需要充分考虑变电所的数量、供电半径、负荷中心位置、供电距离、输电电缆布置及类型、输电线路电压电流等各个因素。一般来说,码头变配电所的设计需要突出变配电所的位置、供电电缆距离、供电线路的电压电流选择、大型机械的电功率等几大方面。由于在港口码头工作的大型机械都是超大电压供电,所以一定要选择好线路电缆的类型、供电电压的范围。在选用电缆时要根据线路电流的大小和线路长短来选择,建议选用载流量大、电阻小的铜芯电缆,尽量减少线路损耗。
1.1.2关于电缆的敷设
电缆的敷设要根据具体的电缆数量、地下水位分布状况、地质状况、港区未来发展规划等来选择。港口码头的类型决定着电缆敷设的类型选择,高桩梁板式和重力式、板桩式的电缆敷设有明显区别。高桩梁板码头一般使用电缆桥架、管沟来敷设电缆。重力式、板桩式码头的敷设方式比较多样,通常采用的是穿管埋地敷设、电缆沟、电缆隧道三种方式。
1.1.3关于电气照明的设计
电气照明的选择主要考虑灯具的布置、照明功率的选择两大要素。不同的照明要求对杆高、杆距和灯具功率的要求是不一样的,只有在分析这两大要素的基础上才能选定最佳优化方案。灯具选择一般分为以下几种情况:在仓库、车间等大型房屋内照明一般选用金属卤化物灯和高压钠灯;在室内室外一般用高效光源灯。
1.2电能耗能设备的构成
港口电能耗能设备主要有三大类:装卸机械设备、辅助动力设备、室内外照明设备。大型装卸机械设备主要用于大重量的机械化作业,这类大型装卸设备的装机容量一般都比较大,机器上一般会设有变压器。第二类是辅助动力设备,主要包括水泵、污水处理设备、风机等等。这些设备大多是长期工作制设备。室内外照明设备分布广泛、耗能很大,在港口各个区域都有分布,一般是白炽灯照明,个别地方用高压钠灯或金卤灯照明。
2港口电气的节能设计方案分析
2.1准确计算港口负荷,合理选择变压器的容量和台数
提升港口机械设备的负荷准确度是设计节能方案的开端。根据需要系数法计算港口的准确负荷范围,对于新型设备的工作负荷,不要采用经验估算,而应该用轴功率除以机械效率求得设备功率的方法来计算,并在此基础之上选择变压器的容量和台数。变压器在空载状态下会消耗定额的电能,所以最好的办法是使变压器能经常运行在最佳负载率附近,则可以有效减少空载消耗。此外,变压器运行的一般规律是,对于同一台变压器,它在负荷率一定的情况下,功率因数越高,变压器的运行效率越高。所以可以选择新型节能变压器,使它的保持它的运行负载率保持在最佳范围。
2.2优化配电系统的节能设计,合理选择配套电动机的功率
电动机功率是保证配套机械的启动和正常运转的根源,是各类大型机械设备正常运行的动力来源,因此,我们要合理选择配套电动机的功率,并且使电动机能够经常运转在最佳负荷率附近,这样既能提高电动机的运行效率,又能减少它的空载损耗。如果电动机的功率选择不够合理,便会出现大马拉小车的现象,这样不仅会损耗电动机的使用寿命,更会加剧电能消耗。
2.3改进电气配电线路和系统的节能设计,减少线路电能损耗
中、大型港区面积大、供电范围广、设备用电负荷大、供电电缆线路长,所以港区线路的电能损耗相当可观,因此也就存在着很大的线路节能空间。所以要合理布置变电所的位置,使之靠近负荷中心。还要优化供配电系统的线路设计,根据供电规律及机器设备的工作电压来确定供电电压。电缆选择也很重要,建议选用载流量大、电阻小的铜芯电缆。
2.4照明用电的节能设计
优化港口照明系统是港口电气节能设计方案的重点。由于照明系统分布广泛、用电负荷大、工作时间长,所以必须制定合理的照明标准,优化照明设计方案,根据港口规模、港口性质、夜间作业状况来确定照明标准。还要选用高效节能的照明工具,室外堆场的大面积照明一般采用高杆灯,并根据规律确定科学的杆高、杆距等。
3结束语
港口作为海上经济枢纽和交通要道,电能是支撑港口经济发展和秩序作业的能源保障。在我国节能减排进入新时期的今天,港口成为了新的节能减排增长点,发展港口循环经济成为必然趋势。通过上述本文的探讨,笔者主要了上述两大方面的内容,以期能够充分挖掘港口节能潜力,降低港口电气能耗,促进港口经济的绿色、可持续发展。
作者:张明 单位:曹妃甸港集团股份有限公司
参考文献:
[1]张振军.港口电力设备维护管理方法研讨[J].科技传播,2014(17):35.
关键词:建筑工程;暖通空调;节能设计
为提高建筑工程建设与节能降耗发展的协调性,在对建筑工程暖通空调系统进行设计施工时,就需要从实际情况出发,明确存在的问题,确定导致能耗高的问题,并基于此来采取合理的措施进行优化,降低各项因素的影响,提高工程施工方案设计的合理性。对建筑暖通空调进行节能设计,目的就是在保证系统基础功能的前提下,最大程度上降低能耗。因此需要在现有基础上,对各专业技术做更进一步的研究,将更多新型技术投入到暖通工程中去。
1 建筑暖通空调节能设计必要性分析
在社会经济快速发展的背景下,所消耗的资源量不断增加,对环境影响较大,基于持续发展理念,必须要就现状做更进一步的分析,采取合理的措施进行优化。对于建筑工程来说,施工建设能耗高,而暖通空调系统作为重要组成部分,能耗可以占到建筑总能耗的一般以上,因此必须要做好对其的节能设计分析。暖通空调系统可以为人们提供健康舒适的生活工作环境,为满足人们实际需求,在对其进行节能设计时,务必要保证系统的基础功能不受影响,然后在此基础上,降低系统运行产生的能耗。
2 建筑暖通空调节能设计要点分析
2.1 设计方案优化
对于很多建筑工程暖通空调工程来说,在对其进行施工设计时,更多人会采取估算的方式,并不会详细对室内结构进行精确的测量,导致设计方案中存在很多不合理内容。这样如果估算结果与实际情况相差比较多的话,势必会增加系统运行产生的负荷,造成能耗增加。再加上虽然现在逐渐有更多新型施工技术与材料被应用到工程建设中,但是受实际情况与经验等因素影响并不能完全保证施工效果,均存在相应的优势与缺点,还需要做更进一步的优化。因此,想要降低暖通空调系统运行能耗,就需要做好设计方案的优化,严格按照专业流程来进行设计,避免出现超赶时间而未对方案进行平衡处理情况的发生,而影响环境负荷与风量分配不均,不但会影响环境舒适度,同时还会增加能耗。
2.2 节能设备优化
很多设计人员在对暖通空调系统进行研究时,很容易受市场因素影响,将节能设计重点放在设备上,认为提升系统节能效果的主要因素为所选择的设备,这样不但不能保证设计结果,反而会造成资金数量的增加。节能设备的选择需要从实用性出发,做到具体问题具体分析,避免出现市场跟风现象,应以满足实际需求为目的,对各项因素进行综合分析,选择最为合适的设备,争取在满足基础功能需求的前提下,降低设备运行能耗,将节能设计落实到位。
2.3 设备维护优化
如果前期设计方案合理性比较低,即便是暖通空调系统建设完毕后投入使用,也会因为系统中存在缺陷,以及管理人员并不能完全掌握系统运行方式与特点,进而会影响到系统管理效果。如无法及时采取措施科学区分系统运行高峰期,一般会选择将正常期与高峰期机器运行参数设置为相同的方法,来降低系统运行能耗。另外,并不是所有的管理人员均具有专业维修技能,这样在后期管理过程中,就会出现各类问题,如风道渗漏引起的热损失,主要是因为前期对空调水系统水质处理不当,造成水系统堵塞,进而会影响到系统换热效果。因此,想要提高系统节能效果,除了要做好前期设计方案的优化管理,同时还需要做好后期系统维护优化。
3 建筑工程暖通空调节能设计优化措施分析
3.1 严格遵循专业设计原则
第一,节能化原则。为暖通空调节能设计首要原则,以建设健康舒适室内环境为目的,合理确定各项设计参数,提高设计方案的合理性与可实施性。设计时需要控制好各项参数的比例,包括温度高低、气体流速、空气湿度等,确保节能降耗与健康舒适共存。第二,人性化原则。降低能耗为节能设计的核心,但是同时也需要兼顾人性化原则,即满足人们对室内空间环境的要求,充分尊重每个人的温度舒适感。通过合理的设计来保证顺利实现分摊热量的功能,在热力入口位置安装调节装置,以及在支管上设置好温控阀,既可以降低系统能耗,同时也可以满足各方面人性化要求。第三,科学化原则。暖通空调系统比较复杂,想要将节能设计落实到底,并不会因为应用一种新型技术而实现,必须要做好各个分项系统的综合分析,与建筑设计、室内装饰设计等专业进行研究,利用最为科学的方法来达到节能的目的。例如合理设计门窗参数,既可以降低能耗,同时也要满足室内采光需求。
3.2 提高节能设计意识
暖通空调设计最终结果很大程度上与设计以及管理人员有关,尤其是设计人员其节能意识高低,决定了各项施工技术在实际施工中的合理性与可操作性。因此,必须要提高设计与管理人员的节能意识,并将其带入到设计、施工以及后期维护整个过程中,确保每个环节均能够展现对环保节能的追求。选择专业能力强并且具有丰富经验的人员负责,针对设计人员来制定相应制度,提高其节能降耗意识,可以在设计过程中首先选择节能效果好的方法,以降低能耗为核心,将节能理念贯彻到底。同时,设计人员应及时与施工人员、管理人员进行沟通,对各项设计参数进行合理的优化,缩小实际节能效果与设计预期效果之间的差距,减少资源的浪费。通过及时交流可以更好的发现设计方案中存在的漏洞,进而能够在最短的时间内进行调整,最大程度上减少资源的浪费。
3.3 提高可再生资源利用率
一方面,减少不可再生资源的应用量。建筑工程施工所需能耗较多,对于其中暖通空调系统部分的设计,想要实现节能效果,就需要减少不可再生资源的应用,在不影响基础功能的前提下,选择可在生资源代替,提高各类资源综合利用的效率。另一方面,加强可再生资源应用研究。现在逐渐有更多新型可再生资源被应用到社会生产生活中,如热泵技术、太阳能、地热能以及风能等,将其应用到建筑暖通空调系统节能设计中,可以更好的突出能源保护效果。同时,在选择应用可再生能源时,还应合理选择相应的系统设备,确保系统可以正常运行,真正营造出健康舒适的室内环境。
4 结语
对建筑暖通空调系统进行节能设计时,需要分析其所具有的特点,并从实际需求出发,确定设计要点,选择合适的设计方法,严格按照专业设计原则,合理确定各项参数,确保系统可以正常运行,在满足基础功能需求的前提下,降低系统运行能耗。
参考文献
[1] 张莉,李尧,朱玉明.暖通空调节能设计分析[J].山西建筑,2010,09.
[2] 刘晓飞.关于建筑暖通空调节能设计要点的分析[J].科技展望, 2015,08.
[3] 仲训禄.浅谈建筑暖通空调节能优化设计方法[J].中国新技术新产品,2013,09.