公务员期刊网 精选范文 卷积神经网络概述范文

卷积神经网络概述精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的卷积神经网络概述主题范文,仅供参考,欢迎阅读并收藏。

卷积神经网络概述

第1篇:卷积神经网络概述范文

关键词:机器学习;深度学习;推荐算法;远程教育

深度学习(DeepLearning),也叫阶层学习,是机器学习领域研究的分支,它是学习样本数据的表示层次和内在规律,在学习的过程中获取某些信息,对于数据的解释有巨大帮助。比如对文字数据的学习,在网络上获取关键字,对图像数据的学习,进行人脸识别等等。

一、深度学习发展概述

深度学习是机器学习领域里一种对数据进行表征学习的方法。一句话总结三者之间的关系就是:“机器学习,实现人工智能的方法;深度学习,实现机器学习的技术。深度学习目前是机器学习和人工智能领域研究的主要方向,为计算机图形学、计算机视觉等领域带来了革命性的进步。机器学习最早在1980年被提出,1984年分类与回归树出现,直到1986年,Rumelhart等人反向传播(BackPropaga-tion,BP)算法的提出,解决了感知模型只能处理线性分类的问题,1989年出现的卷积神经网络(ConvolutionalNeuralNet-works,CNN)也因此得到了一定的发展。在1990年至2012年,机器学习逐渐成熟并施以应用,GeoffreyHinton在2006年设计出了深度信念网络,解决了反向传播算法神经网络中梯度消失的问题,正式提出了深度学习的概念,逐渐走向深度学习飞速发展的时期。随后,各种具有独特神经处理单元和复杂层次结构的神经网络不断涌现,深度学习技术不断提高人工智能领域应用方面的极限。

二、深度学习主要模型

1、卷积神经网络卷积神经网络(ConvolutionalNeuralNetworks,CNN)是指有着深度结构又包含着卷积计算的前馈神经网络。卷积物理上理解为系统某一时刻的输出是有多个输入共同叠加的结果,就是相当于对一个原图像的二次转化,提取特点的过程。卷积神经网络实际上就是一个不断提取特征,进行特征选择,然后进行分类的过程,卷积在CNN里,首先对原始图像进行特征提取。所以卷积神经网络能够得到数据的特征,在模式识别、图像处理等方面应用广泛。一个卷积神经网络主要由三层组成,即卷积层(convolutionlayer)、池化层(poolinglayer)、全连接层(fullyconnectedlayer)。卷积层是卷积神经网络的核心部分,通过一系列对图像像素值进行的卷积运算,得到图像的特征信息,同时不断地加深节点矩阵的深度,从而获得图像的深层特征;池化层的本质是对特征图像进行采样,除去冗杂信息,增加运算效率,不改变特征矩阵的深度;全连接将层间所有神经元两两连接在一起,对之前两层的数据进行分类处理。CNN的训练过程是有监督的,各种参数在训练的过程中不断优化,直到得到最好的结果。目前,卷积神经网络的改进模型也被广泛研究,如全卷积神经网络(FullyConvolutionalNeuralNetworks,FCN)和深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNN)等等。2、循环神经网络区别于卷积神经网络在图片处理领域的应用,循环神经网络(RecurrentNeuralNetwork,RNN)主要应用在自然语言处理领域。RNN最大的特点就是神经元的输出可以继续作为输入,再次利用到神经元中循环使用。RNN是以序列的方式对数据进行读取,这也是RNN最为独特的特征。RNN的串联式结构适用于时间序列的数据,可以完好保持数据中的依赖关系。循环神经网络主要有三层结构,输入层,隐藏层和输出层。隐藏层的作用是对输入层传递进来的数据进行一系列的运算,并将结果传递给输出层进行输出。RNN可用于许多不同的地方。下面是RNN应用最多的领域:1.语言建模和文本生成,给出一个词语序列,试着预测下一个词语的可能性。这在翻译任务中是很有用的,因为最有可能的句子将是可能性最高的单词组成的句子;2.语音识别;3.生成图像描述,RNN一个非常广泛的应用是理解图像中发生了什么,从而做出合理的描述。这是CNN和RNN相结合的作用。CNN做图像分割,RNN用分割后的数据重建描述。这种应用虽然基本,但可能性是无穷的;4.视频标记,可以通过一帧一帧地标记视频进行视频搜索。3、深度神经网络深度神经网络(deepneuralnetworks,DNN)可以理解为有很多隐藏层的神经网络。多层神经网络和深度神经网络DNN其实也是指的一个东西,DNN有时也叫做多层感知机(Mul-ti-Layerperceptron,MLP)。DNN内部的神经网络层也是分为三类,输入层,隐藏层和输出层,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。深度神经网络(DNN)目前作为许多人工智能应用的基础,并且在语音识别和图像识别上有突破性应用。DNN的发展也非常迅猛,被应用到工业自动驾驶汽车、医疗癌症检测等领域。在这许多领域中,深度神经网络技术能够超越人类的准确率,但同时也存在着计算复杂度高的问题。因此,那些能够解决深度神经网络表现准确度或不会增加硬件成本高效处理的同时,又能提升效率和吞吐量的技术是现在人工智能领域能够广泛应用DNN技术的关键。

三、深度学习在教育领域的影响

1、学生学习方面通过网上学习的实时反馈数据对学生的学习模式进行研究,并修正现有教学模式存在的不足。分析网络大数据,相对于传统在线学习本质区别在于捕捉学生学习过程,有针对性,实现学生个性化学习。举个例子,在学习过程中,可以通过学习平台对学生学习课程所花费的时间,参与的程度,知识的偏好等等数据加以分析。也可以通过学生学习某门课程的次数,鼠标点击次数、停留的时间等,来推断学生学习情况。通过以上或类似数据汇总分析,可以正向引导学生学习,并给予积极的学习评价。这种利用计算机收集分析出来的客观数据,很好展示了学生学习行为的结果,总结学习规律,而不需要教师多年的教学经验来判断。对于教育研究者而言,利用深度学习技术可以更客观准确地了解学生,使教学工作良好发展更进一步。2、教学方面学习平台的数据能够对教学模式的适应度进行预测,通过学生的考试成绩和对教师的线上评价等加以分析,能够预测出某一阶段的教学方式发发是否可行,影响如何。通过学生与教师的在线互动,学生测验时完成的时间与完成的结果,都会产生大量的有效的数据,都可以为教师教学支持服务的更好开展提供帮助,从而避免低效率的教学模式造成教学资源的浪费。

四、成人远程教育中深度学习技术的可应用性

深度学习方面的应用在众多领域都取得了成功,比如电商商品推荐、图像识别、自然语言处理、棋类博弈等等。在远程教育方面,深度学习的技术还有很大的发挥空间,智能网络教育的实现是人们的众望所盼。若要将深度学习技术应用到远程教育平台,首先要清楚学生的需求和教学资源如何分配。1、针对学生的学习需求与学习特征进行分析美国斯坦福大学克里斯皮希研究团队的研究成果显示,通过对学生知识学习进行时间建模,可以精确预测出学生对知识点的掌握情况,以及学生在下一次学习中的表现。深度学习的应用可以帮助教师推测出学生的学习能力发展水平。通过学生与教学环境的交互行为,分析其学习风格,避免教师用经验进行推断而产生的误差。2、教学资源的利用与分配深度学习技术能够形成智能的分析结论。计算机实时采集数据集,对学生的学习情况加以分析,使教师对学生的学习状态、情绪状态等有更加清晰、准确的了解。有了上面良好的教学模式,教师对学生的学习状态有了更准确的掌握,对学生的学习结果就有了更科学的教学评价。基于深度学习的人工智能技术,还可以辅助教师实现智能阅卷,通过智能阅卷自动总结出学习中出现的问题,帮助教师减少重复性劳动,减轻教师负担。作为成人高校,远程教育是我们的主要教学手段,也是核心教学方式,学校的教学必定是在学生方便学习的同时,以学生的学习效果为重。通过深度学习技术,可以科学地分析出学生的学习效果,对后续教与学给予科学、可靠的数据支撑。我们可以在平台上为每位同学建立学习模型,根据学生的学习习惯为其定制个性化方案,按他们的兴趣进行培养,发挥他们专业的潜能。同时,可以将学生正式在线参加学习和考试的学习行为和非学习时间浏览网站的行为结合到一起,更加科学地分析出学生在学习网站上感兴趣的地方。采用深度学习算法,根据学生学习行为产生的海量数据推算出学生当前状态与目标状态之间的差距,做到精准及时的学习需求反馈。有助于帮助学生明确学习目标,教师确立教学目标,真正做好因材施教。基于深度学习各种智能识别技术,可以为教师的线上教学活动增光添彩,在反馈学生学习状态的同时,采用多种形式的教学方法吸引学生的注意力,增强教学活动的互动性,达到良好的教学效果。

第2篇:卷积神经网络概述范文

关键词:无人机 双目视觉 机器学习 姿态识别

中图分类号:TP391.41 文献标识码:A 文章编号:1007-9416(2016)10-0048-02

无人机的姿态测量方法可分两大类:一是在无人机上装载传感器,如陀螺仪、GPS等,把相关的数据传回地面处理,即所谓的遥测法,它的优点是可以不受空间的限制,但精准度会大大降低。本文采用基于双目视觉的无人机姿态测量方法, 采用全站仪和图像采集装置构建系统,利用全站仪数据进行三维标定,图像采集装置对无人机进行三维重建,利用双目直线原理重构机身、机翼的空间直线向量,再根据直线向量算出姿态参数,该方法具有精度高、适用范围高等特点。

1 系统设计概述

本设计利用四台全高清的摄像头、全站仪、时间同步器及PC终端组成。系统由四台摄像头分别处于边长为5米的矩形场地的(我给你新加的文字)四个角中,用以(我给你新加的文字)采集视频数据,再由全站仪提供的相关角度矢量参数,通过计算得出系统所需要测量的姿态参数:偏航角、俯仰角及翻滚角。最后把这些参数存储到数据库中,并进行BP神经网络算法机器学习,让该系统具有(新加)能够二次识别飞行目标参数的能力。该系统能广泛应用于无人机的主动测量领域,即不需要在无人机上安装传感器,也能够准确识别无人机的姿态参数,应用方便、快捷。

2 姿态参数计算分析

步骤一:利用双目视觉原理,对飞行物体进行三维姿态恢复。

步骤二:分离目标和背景。对飞行物体进行数字信息提取。统计每帧图像像素分布直方图,设此时像素分布直方图的灰度分布为gmin及gmax,在gmin及gmax中选择较合适的灰度值g作为分割的阈值,去分离目标和标景。

步骤三:分离机身及机翼。在做实验前,对飞机进行如下处理:机翼与机身处涂上不同的颜色。获取视频信息后利用直方图对灰度进行分析,把两者分离出来,并分别对两者信息进行存储。

步骤四:对机身进行边缘检测处理,构建直线向量。

(1)选用的是Sobel算子来对其图像进行检测。Sobel算子模板分为水平模板及垂直模板,利用此模板在每帧上的像素去卷积,那么就可以得到机身的边缘轮廓线段。(2)构建机身直线向量。利用双目摄像头在空间交汇产生直线,可构建直线向量。如图2所示,对于任两个摄像机,无人机在其摄像头所投影的图像平面分别为S1、S2,两摄像头在空间所形成的平面相交即会产生一直线,可以利用这一原理来计算机身直线向量。

本系统采用的是四台摄像机,可以排除更大的干扰,因此,可以利用构建一个关于的集合,为:

式中指的是摄像机的台数。

步骤五:对图像的机翼处理。图像的机翼部分可看作为梯形。由上述,利用Hough Transform进行边缘检测,求飞行目标的前后翼边缘,设其在图像坐标系下的直线方程为:

由上式,可以算出点’

由上述求的两点,就可以算出此机翼在图像坐标系下的直线方程:

同理,利用双目系统中两两图像平面相交可求得机翼向量

步骤六:利用构建的空间向量计算姿态参数。参数推导如下:

由向量得出:

3 实验

3.1 数据准备

准备的数据为训练集及测试集,里面的数据包括特征数据及样本标签。

训练集便是双摄像头采集到的视频数据,通过数字图像处理,提取图像的特征数据存储。测试数据集表示二次提取图像信息时所得到的图像特征信息,二者都需过相同的处理,所得的参数求法是一样的。

特征数据是根据双目视觉分析的图像的特征数据,这里选用了周长像素点总数、奇数链码数目、高度、宽度、周长目标面积、矩形度、伸长度、及七个不变距特征。

3.2 训练结果与分析

根据上述算法,对1241组特征数据进行训练,为了结果更为准确,本文从测试的的数据中拿了一部分数据作为输入的训练,这里取训练组的数据1000组,测试的数据241组。经过BP神经网络算法后,对测试的数据进行了测试,为了结果的显示,只从测试数据中随机抽出50组数据对训练结果进行测试。

图1中黑色空白圈表示测试的值,星点表示神经网络学习后所得的理想值。可以看出相对于某点的测试值与理想值相拟合程度相对较高,也就是说,在一定的范围内,系统可以正常测量无人机的姿态参数。但也有部分数据拟合程度不太好,这和实验设备及机器学习的算法都有很大的关系。

如图2所示,BP网络预误差图中可以看出,把测试样本增大到100个,测量误差也控制在30%之内,所以,系统具有一定的稳定性。

4 结语

本文论述了基于双目视觉的无人机姿态测量系统,该系统通过四台摄像头读取无人机数据,利用双目视觉系统对无人机三维形态进行恢复,通过数字图像处理技术提取无人机的特征信息并进行存储。首先利用直方图法分离背景及无人机,再分离无人机的机翼及机身信息,并分别进行数据存储。其次利用空间两图像平面相交得出了无人机的机身、机翼向量,然后利用这些向量进行了姿态参数的计算。最后把无人机的特征参数及姿态参数做上相应的标签,让其进行机器学习。由实验得出,该系统具有二次识别无人机姿态的能力,且此系统比较稳定。但由于实验设备及算法原因,该系统还存在一定的误差,但大部分数据误差率保持在30%内。

参考文献

[1]苏国中.基于光电经纬仪影像的飞机姿态测量方法研究[J].武汉大学,博士论文,2005.

[2]H.Mostafavi,M.A. Streicker.Rigid body attitude estimation from a single view.[J] SPIE Ultrahigh-and High- speed Phot ography,videography,and Phot oni cs,1992,290-297.

第3篇:卷积神经网络概述范文

关键词:铁路物资;物资管理;无人仓库;WMS;WCS

铁路企业通过融合物联网技术形成新型无人仓库模式,在物资入库、出库、盘点等作业环节,依托智慧物流技术,替代传统管库员工作,使铁路仓储管理模式进一步科学化、简约化、智能化,符合铁路物资工作智能化发展方向和铁路高质量发展方向,符合建设现代化物流体系运营模式的要求。

1无人仓库技术的概述及特点

1.1无人仓库技术概述

在“互联网+”时代,物联网技术促进仓储管理向智慧化、无人化发展,创新发展仓储管理是物流业的研究重点,无人仓库是仓储管理智能化应用的一个研究方向。无人仓库的核心就是仓库管理系统、仓库控制系统与智能物流设备集成。铁路企业根据物资管理实际,在不同场景下,合理使用智能设备,推进无人仓库技术深度应用,实现铁路仓库的智能化、无人化管理,可大幅提高物资的周转效率,减少人力成本,提高资产利用率,快速提升铁路物资的管理水平和物资供应链的整体效率,提高铁路企业整体运营效率。

1.2无人仓库技术的特点

无人仓库是一种基于管理系统、控制系统的综合物流系统,建设无人仓库虽然在仓库内达不到完全无人的情况,但可以通过人机高效协作创建智能仓库,最大程度地减少人员数量,降低人工成本。

1.2.1WMS系统的延伸。WMS是仓库管理系统(WarehouseManagementSystem)的缩写,仓库管理系统主要包括出入库管理、库存管理、盘点管理、货位管理等。目前全路使用的铁路物资管理信息系统属于MIS类型信息系统,包含WMS功能。无人仓库属于存储仓库的一种新类型,在普通仓库管理的基础上延伸应用范围,通过引进先进的物联网技术,实现减少仓库现场管理人员,甚至实现现场无人管理。

1.2.2WCS系统的发展。WCS是仓储控制系统(WarehouseControlSystem)的缩写,仓储控制系统的主要功能是在存储仓库中协调智能物流设备的运转,如机器臂、机器人、无人机、堆垛机、穿梭车、智能叉车等物流设备运转。目前铁路物资仓库管理技术发展尚需完善,特别是在WCS方面,建设或购买物流设备时没有考虑如何控制运转,基本没有发挥出现代物流设备的先进性功能。无人仓库是WCS技术的一个发展方向,集成仓库内物流设备,建立统一的数据接口,通过任务引擎分解任务指挥和监控各物流设备运转。无人仓库的特点是物流设备无需管理人员控制,通过信息系统指挥即可运转一个仓库,并且在控制物流设备的基础上,对仓库的其他设备进行集成控制,如智能门禁、灯光、空调、加湿器、除湿器等。

1.2.3WMS与WCS结合。无人仓库技术是智能仓储管理系统(IWMS)的一种关键技术,以WMS和WCS为基础,集成管理人员与仓库设备,集成管理系统与控制系统,减少仓库中管理人员的操作,最终实现建设无人仓库的目标。WMS与WCS集成模式见图1。

2无人仓库在铁路物资管理中的应用

通过对国内外大型生产、销售、物流企业的调查和研究,参考国内外其他大型企业各种无人仓库或者无人超市、无人店铺等的实践应用情况,在铁路企业物资管理中无人仓库可以应用以下3种模式。

2.1智能微库方式

智能微库是智能储物柜的一种方式,与智能售货机类似,通过集成生物识别、计重计件、计费收费等物联网技术,实现领料人或取货人自行完成物资或货物的出库作业,可以脱离仓库管理人员自动进行出库作业。智能微库技术在铁路行业应用较早,与仓库管理信息系统没有对接,并且在检修车间应用具有一定的局限性,在铁路企业应用不够理想。智能微库与无人售货机、丰巢快递柜类似,具有投资少、见效快的特点。智能微库技术成熟,其中WCS与铁路物资管理信息系统(RMMIS)对接后,与人员信息、物资信息、领料计划、预算数据等WMS数据相结合,共同完成出库管理作业,信息流与指令流相辅相成可发挥智能微库的最大作用。

2.2自助取料方式

自助取料方式是指领料人进入无人仓库进行自助取料,不需要仓库管理人员参与出库作业。自助取料方式的无人仓库技术与顾客在超市中选购商品后自助结账类似,不同之处是仓库属于集体或个人资产的存放地,不允许其他人员随便出入。自助取料方式通过集成智能门禁系统、RFID技术、电子料签、智能指示灯、电子计重等物联网技术,实现仓库管理无人的目标。

2.2.1领料人进门。目前人物识别技术已经非常成熟,人像识别、指纹识别、指静脉识别、虹膜识别、声音识别等,但识别技术需要单独购买,识别精度越高费用越贵,而且需要配备图像处理的专用服务器,会加大无人仓库的建设成本。在铁路企业,一般由内部员工领料,可通过移动端APP展示二维码进行身份认证。

2.2.2货位指引。无人仓库中可以通过设置地面指示标志、料架指示灯、电子料签进行物料位置的识别。如果领料人事先提报过领料计划,仓库工作指示屏上将显示领料人的领料信息,并且对应物资道路指引、货架及料签指示灯亮起,领料人拿取物资后在电子料签上确认,系统自动指示物资的下一路径。

2.2.3计件计重。无人仓库中领料人拿取的个数或重量是无人仓库解决方案的难点。重要物资的拿取可以通过RFID技术解决;一般非重要物资可以通过计重方式,在料架上安装电子计重装置,通过领料人拿取物资的重量与单重计算个数。

2.2.4出库核算。领料人拿取物资后,仓库工作指示屏上将自动显示拿取物资的品种及数量,领料人点击触屏确认后自动在WMS系统中形成出库单进行财务核算。

2.2.5库存盘点。无人仓库可以通过料架上的电子计重装置与RFID技术自动进行库存盘点,同时也可以使用盘点机器人或无人机通过高清摄像头和卷积神经网络技术进行物资实物盘点。

2.3自动出货方式

自动出货方式与自助取料方式不同,自助取料方式是“人到货”,自动出货方式是“货到人”。自动出货方式是指领料人无需进入仓库内部进行取料,同时也无需仓库管理人员出库作业,是通过机器臂、机器人将物资配送到领料人处。自动出货方式识别领料人后按照领料计划潜伏式机器人将物资对应的料架运送到领料区,领料人可以直接拿取,也可以配备机器臂将物资拿取到领料台上。

3无人仓库在铁路物资管理应用前景

中国铁道科学研究院集团有限公司电子所物资课题组利用2020年课题《无人仓库在铁路物资管理中应用研究》(合同编号DZYF20-10)的研究经验,开展无人仓库技术在铁路企业实际应用的研究,认为无人仓库技术可在铁路企业的一些场景广泛应用。

3.1车间库存管理

车间库存是铁路企业物资管理中的一个重要管理环节,在2018年铁路物资管理信息系统V3.0版本中首次引用车间仓库的概念,在系统中增加对车间仓库的库存管理。车间仓库的特点是仓库所在位置在生产检修车间内,不是在铁路企业物资部门的仓库内,而且车间没有专职的仓库管理人员,一般情况下由车间工作人员兼职仓库管理工作。车间仓库具备应用无人仓库技术的有利场景,特别是智能微库模式。智能微库设在车间工作区域,一般情况靠墙放置,既方便车间工作人员随时取料,又节约场地节约建设成本,同时也可以提高车间仓库管理效能,解决车间易形成账外料的难题。

3.2异地仓库库存管理

由于中国铁路线路长且分布广,一般情况下铁路企业负责管理的地区较大,特别是铁路工务段、电务段、供电段,异地仓库普遍存在。由于一些异地仓库地处偏远,地区用料少,工作量较小,达不到一个仓库管理人员的工作量。异地仓库具备应用无人仓库技术的有利场景。异地无人仓库采取自助取料方式,领料人按照车间领料计划进入无人仓库取料,自助取料、自动核算,可保证异地仓库物资发放的准确性和核算的及时性,极大释放异地仓库管理的效能。