公务员期刊网 精选范文 化学纤维的鉴别方法范文

化学纤维的鉴别方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的化学纤维的鉴别方法主题范文,仅供参考,欢迎阅读并收藏。

化学纤维的鉴别方法

第1篇:化学纤维的鉴别方法范文

关键词:铜离子;腈纶;定性

1 引言

铜离子纤维具有优良的抗菌性能,人体能将其代谢,且相对于银价格合理,目前各种铜离子纤维技术也日益成熟,有两种方式制得的铜离子抗菌纤维的耐持久性好:一是通过离子交换法在棉纤维上镀氧化铜,二是通过共混纺丝法在涤纶、腈纶、锦纶等化纤上引入铜离子基[1]。

由于铜离子基的引入,使得纤维大分子链改变,进而纤维原有的物理、化学性质发生改变,导致纺织品检测时纤维原标准检测方法与检测结果发生偏差,甚至相反,这给纺织品检测带来了困难和考验,例如本文涉及的这种功能性铜离子腈纶。

随着科技的飞速发展,人们对纺织品的要求越来越高,差别化纤维、功能性纤维等新型纤维层出不穷。所以纺织品检测要跟紧步伐,及时更新、制定纺织品检测标准十分必要。

2 试验部分

2.1 试验仪器及试剂

HD500温控振荡水浴锅,南通宏大试验仪器有限公司;WRX-1S熔点仪,苏州江东精密仪器有限公司;生物显微镜(纤维细度仪CU一6),和众视野;98%硫酸、37%盐酸、碱性次氯酸钠、浓硝酸、88%甲酸、99%冰乙酸、N,N-二甲基甲酰胺(DMF)、硫氰酸钾(AR,国药集团化学试剂有限公司);三级水。

2.2 显微镜观察法、燃烧法鉴别

将纤维刮散夹入盖玻片,滴入试剂制样,在放大400倍的显微细度仪下,观察纤维的纵向形态,加以鉴别;将纤维束慢慢靠近火焰,观察其燃烧性质、熔缩状态、气味以及燃烧残渣。

2.3 溶解鉴别

将少量纤维试样置于小烧杯中,加入配制好的溶液在特定的温度下振荡30min,观察纤维溶解情况,各试剂均按照FZ/T 01057.4―2007《纺织纤维鉴别方法第4部分:溶解法》配制。

2.4 熔点仪法

取少量纤维置于两片盖玻片之间,置于熔点仪显微镜上,调焦使纤维清晰成像,熔点仪升温速率为5℃/min,此过程中仔细观察纤维形态变化,熔点仪最高温度为280℃。

3 结果与推断

3.1 纤维的试剂溶解特性及前后显微镜下形态的变化

铜离子纤维的溶解情况见表1,纤维溶解前后的形态见图1。

由图1(1)溶解前纤维原始纵面形态可看出,纤维表面不光滑,有规则的菱形纹路,纵向粗细均匀,可以初步排除天然棉麻的可能。表1各试剂的溶解特性中纤维不溶解于碱性次氯酸钠,排除天然蛋白质纤维,即蚕丝和羊毛;浓硫酸不能将其溶解排除了纤维素纤维的可能。至此得出该纤维是一种化学纤维

3.2 纤维的燃烧特性和热学性质

将纤维束慢慢靠近火焰时,纤维熔缩,这验证了其化学纤维的判断;置于火焰中时纤维燃烧,放出辛辣味,类似于腈纶,但有异于传统腈纶;燃烧后形成易碎硬块残渣。由此初步判断为一种腈纶。

图2 纤维熔点仪加热至280℃后纤维形态

由图2可见,纤维加热至280℃仍未熔融,纤维无固定熔点,根据FZ/T 01057. 4―2007《纺织纤维鉴别方法 第6部分:熔点法》,可以进一步判断出这是一种腈纶。根据客户提供这是一种铜离子改性纤维,最终判断该纤维为铜离子腈纶。

4 建议

本文针对一种铜离子改性腈纶,采用了纤维镜法、燃烧法、溶解法、熔点法这4种检验室常用方法做了其定性判断的探讨,总结了一些纤维定性方面的建议:

(1)纤维定性工作要求试验人员耐心仔细,显微镜法观察时要勤滴试剂。若不加试剂或观察不够仔细则很容易将其误判为涤纶。

(2)纤维定性工作要不厌其烦,在一种方法不能确认时要采取多种方法配合,采用排除法推断,逐步缩小纤维的范围,最终确认。对照上述铜离子腈纶的溶解特性,普通腈纶溶解于浓硝酸、90℃DMF和煮沸的65%硫氰酸钾,而这种铜离子腈纶在这几种溶剂中并不溶解或只是溶胀,很多检验人员错误地将腈纶排除,这种腈纶在引入铜离子基团后其大分子链发生了变化,使得它的溶解性质发生改变,溶解法不能准确地对其定性;另外铜离子的引入也混淆了纤维原有的燃烧气味,进一步增加了定性的难度。

(3)本文涉及的铜离子纤维最主要的判断依据是它没有固定的熔点,在排除了其天然纤维、纤维素纤维的可能之后,没有固定熔点的只有腈纶。

参考文献:

第2篇:化学纤维的鉴别方法范文

本文介绍了拉曼光谱和利用化学计量学方法处理拉曼光谱的过程,简述了拉曼光谱应用于纺织纤维检测的可行性,最后介绍了本单位在应用拉曼光谱和化学计量学进行纤维检测方向的初期研究成果。

关键词:拉曼光谱;化学计量学;纤维检测

1 拉曼光谱的简介

印度物理学家C.V.Raman于1928年发现拉曼光谱并因此荣获诺贝尔物理奖。自此以后,拉曼光谱作为一种分子级别的物质结构分析手段被广泛应用。特别是在20世纪60年代后,随着高通量激光光源的产生、微弱信号检测技术的提高、化学计量学的高速发展和计算机的普及,拉曼光谱分析技术在很多领域得到了大力发展[1]。

拉曼散射是光照射到物质上发生的非弹性散射所产生的。单色光的入射光子与分子相互作用时可发生弹性碰撞和非弹性碰撞。弹性碰撞中,光子与分子之间没有能量交换,碰撞的发生只改变了光子的方向而不改变光子的频率,这种碰撞方式也称为瑞利散射。而非弹性碰撞过程中,光子不仅仅改变运动方向,同时光子的一部分能量传递给分子,或者分子的振动、转动能量传递给光子,从而改变了光子的频率,这种散射过程称为拉曼散射[2]。拉曼散射光和瑞利光的频率之差值称为拉曼位移。拉曼位移就是分子振动或转动频率,与入射频率无关,而与分子结构有关。拉曼光谱与红外光谱类似,同属于散射光谱中的一种,其信号来源于分子的振动与转动。但红外光谱与分子振动时的偶极矩变化相关,而拉曼散射则是分子极化率变化的结果。分子结构分析中,拉曼光谱与红外光谱是相互补充的[2, 3]。

拉曼光谱是一种振动光谱,与物质自身的结构相关,拉曼光谱技术对样品无接触、无损伤,测试前无须特殊前处理过程,可提供快速、简便无损伤的定性定量分析。在分析研究领域,拉曼光谱与其他分析方法相比,还具有以下的突出优点[4-6]:

(1)无损、快速、无污染。拉曼光谱是一种纯粹的光学检测方法,其分析过程无须制样、不破坏样品、不产生污染;分析过程快速,重现性好。

(2)检测灵敏度较高。新开发的激光拉曼分析技术和多种联用拉曼光谱技术,如显微拉曼光谱技术、表面增强拉曼光谱技术等,大大提高了拉曼光谱的探测灵敏度。

(3)不受水的影响。由于水的拉曼散射很微弱,适合含水样品的测试,对含水样品来说是非常理想的分析工具。

(4)高分辨率。拉曼光谱谱峰清晰尖锐,适合定量研究、数据库搜索以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。

2 国内外拉曼光谱技术发展状况及其在纺织纤维检测中的应用

随着拉曼光谱技术的迅速发展以及与化学计量学的紧密结合,拉曼光谱越来越多地被应用于过程监控、反应机理研究、材料分析等方面[7]。拉曼光谱技术除了应用于众多的科研项目外,还被广泛应用于医药、环境、食品、宝石鉴定等快速分析检测领域。康颐璞等[8]利用电解法制备银膜,使用在氯霉素拉曼光谱中,可快速检测出食品中残留的对人体骨髓有重大伤害的氯霉素。陶家友等[9]直接测量居室环境中的甲醛分子产生的拉曼光谱,快速测定了密闭环境中的甲醛浓度,为挥发性有机物的快速、准确检测提供了一种新方法。马寒露等[10]使用便携式拉曼光谱仪,结合化学计量学的方法,较好地鉴别了苹果汁中掺入梨汁的造假行为,建立了鉴别方法,为其他掺伪问题的解决提供了借鉴。

除了上述的分析检测领域,纺织品纤维成分定性鉴别和定量分析也是拉曼光谱分析技术应用的另一热点。棉、麻、毛、丝等大多数天然纤维及再生纤维素纤维等都具有较显著的吸湿性能,一小部分合成纤维的吸湿性能也较显著,若应用红外光谱法进行检测,须进行一定的前处理才能得到较好的结果,而由于拉曼光谱对水分子不敏感,且拥有上述优点,拉曼光谱不需要繁琐的前处理过程,被视为未来纺织纤维材料检测的一种新手段。乔西娅等[11]通过直接测取织物、纱线或纤维的激光拉曼光谱,结合光谱预处理技术与特征峰提取、匹配识别方法定性鉴别了涤纶、腈纶、锦纶、粘胶等纤维,并利用94份测试样品验证了其算法的有效性。吴俭俭[12]等针对当前纤维定性鉴别方法存在的缺点,开发拉曼光谱定性鉴别方法,通过对纺织纤维原始拉曼谱图的特性分析、光谱预处理等得到了信噪比更高的标准拉曼谱图,建立了拉曼谱图特征表数据库,初步验证了拉曼光谱定性分析纤维纺织材料的可行性。

3 化学计量学在拉曼光谱中的应用

拉曼光谱技术引入分析化学领域以来,以其独特的优势吸引了分析化学家的注意。拉曼光谱虽从实验中较易得到,但其反映的分子振动信息是以一种复杂的形式加和在一起,因此给拉曼光谱的解析带来了很大困难。随着化学计量学的引入,大大地降低了提取物质相关信息的难度,使拉曼光谱分析技术的应用范围得到了拓宽。为了得到有效的拉曼光谱,使所建的模型稳健可靠,有足够的预见性,在进行数据分析前须对实验所得到的拉曼光谱进行预处理,预处理过程包括信号平滑和背景扣除两部分。

3.1 拉曼光谱的信号平滑算法

拉曼光谱获取的过程中,由于拉曼散射效应信号微弱、仪器自身设计和操作者水平等原因,采集得到的拉曼光谱或多或少都会存在噪声。噪声是无用信息,还会对有效信息造成干扰。噪声可分为三类:第一类是没有规律的,与测量技术和环境影响相关,多次测量叠加后取平均值时噪声没有线性增加,可通过增加测量次数提高信噪比;第二类是有规律的,随着测量次数的增加,噪声也增加;第三类是前两种的结合,即无规律噪声。拉曼光谱中某些样品的光谱漂移就是第三类情况。化学计量学上常用信号平滑来消除随机噪声,提高信噪比。信号平滑算法主要有窗口移动多项式最小二乘拟合[13-16]、窗口移动中位数[17, 18]、快速傅里叶变换、惩罚最小二乘[19]、小波系数收缩[20]等算法。

3.2 拉曼光谱的背景扣除算法

对拉曼光谱影响最大的背景,就是荧光响应,为了有效地提取数据信息进行多变量定性定量分析,在预处理时要先将无用的背景扣除。扣除背景分为硬扣除和软扣除两种。硬扣除指的是改进实验仪器性能或操作条件,如更换波长更大的激发光源、对不同的样品采取不同的试验条件等;软扣除指的是利用化学计量学方法扣除拉曼光谱的荧光背景,常用于扣除背景的算法有手动线性背景拟合法[21]、不对称最小二乘法[22]、全自动背景扣除算法[23]和自适应迭代重加权惩罚最小二乘算法[24]等。

3.3 聚类与分类算法(定性鉴别)

在光谱预处理完成后,就对数据进行分类,也就是常说的定性鉴别,在化学计量学上称这种方法为聚类与分类法。聚类是研究样品分类问题的一种统计分析方法。拉曼光谱数据通过化学计量学方法进行聚类或者分类分析建立模型,对新测定的样品数据进行已知类样本模型比对,以预测位置样品的类归属。聚类与分类算法常有以下几种算法:主成分分析[25]、偏最小二乘线性判别式分析、偏最小二乘判别分析[26]等。

3.4 回归分析(定量分析)

在定性鉴别完成后,可以进一步对样品进行定量分析。化学计量学常用回归分析算法进行定量计算,就是根据聚类与分类的结果,对数据信号进行深入处理,建立一个数据回归规律模型,以对其他未知数据进行定量分析,概括来讲就是用一个函数来表示应变量和自变量之间的关系。回归分析按照其自变量的多少,可以分为一元回归分析和多元线性回归分析;按照自变量和应变量的关系可以分为线性回归和非线性回归。不论是何种回归分析,基本都包含以下步骤:回归模型的建立、模型参数的求解、模型的评价、能很好模拟实测数据的模型选择、根据自变量对新样品的进一步预测。常用的回归算法有主成分回归[27, 28]、偏最小二乘回归[29]和支持向量回归[30]。

4 应用前景及研究进展

当前,分析测试技术受到越来越多的关注与重视,随着各种新型材料的出现,传统的检测手段在一定程度上难以适应新的要求。目前行业内常用的纤维鉴别方法有显微镜观察法、燃烧法、化学溶解法等,但这些方法耗时长,不适宜现场快速鉴定。而拉曼光谱是反映分子极化率变化与振动信息的一种散射光谱,不同的纺织纤维具有不同的拉曼光谱特征,可以利用这些特征结合其他定性鉴别的方法区分纤维种类。

本单位以开发床上用品纤维成分现场检验鉴定技术为目的,利用美国必达泰克公司(B&W Tek, Inc.)的便携式拉曼光谱仪i-Raman EX对超过1000个纯棉、纯涤样品进行测试。全部样品谱图通过Matlab进行信号平滑和背景扣除的数据预处理。通过对各种预处理方法的比较,我们认为运用自适应迭代重加权惩罚最小二乘算法对样品数据进行预处理可以得到最大限度保留样本光谱有效信息的数据,棉和涤纶的拉曼光谱图如图1和图2所示。

图1 预处理前(左)后(右)纯棉样品拉曼谱图

图2 预处理前(左)后(右)涤纶样品拉曼谱图

预处理之后的光谱包含有织物的特征信息,我们将大量的数据混合后通过主成分分析、偏最小二乘线性判别式分析、偏最小二乘判别分析等聚类与分类计算,尝试将它们分类,也就是我们常说的纤维成分定性。我们发现运用主成分分析法能很好地将纯棉和纯涤的混合光谱聚类分离,如图3所示,红色表示纯棉样品,黑色表示纯涤样品。结果表明,运用主成分分析方法,能将光谱的有效信息充分区分,并直观显示出来。主成分分析非常适合用对纺织纤维进行定性分析。

图3 300个纯棉、纯涤混合样品主成分分析图

化学计量学方法是拉曼光谱检测技术应用发展的重要推动力量,其与拉曼光谱检测技术的结合对纺织纤维的快速、无损检测有着至关重要的作用。随着数据分析的进一步深入,拉曼光谱技术将从纺织纤维的定性鉴别应用阶段跨入定量检测应用阶段,估计在不久的将来,以拉曼光谱为核心技术的纺织纤维定性定量分析标准将会诞生。

参考文献:

[1]朱自莹, 顾仁敖,陆天虹.中国拉曼光谱研究十年(1981~1991)[J].光谱学与光谱分析, 1993,(01):49-84.

[2]田国辉, 陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师, 2008:(01): 34-36.

[3]乔西娅. 拉曼光谱特征提取方法在定性分析中的应用[D].杭州:浙江大学,2010.

[4]程光煦.拉曼、布里渊散射: 原理及应用[M].北京: 科学出版社,2001:120.

[5]白利涛, 张丽萍,赵国文.拉曼光谱的应用及进展[J].福建分析测试, 2011,(02): 27-30.

[6]宫衍香, 吕刚,马传涛.拉曼光谱及其在现代科技中的应用[J].现代物理知识, 2006,(01): 24-28.

[7] 黄海平, 田英芬, 何尚锦, 等. 拉曼光谱在高分子中的应用新进展[J]. 热固性树脂, 2001, (02): 38-44.

[8]康颐璞, 司民真,刘仁明.氯霉素在电解法制备纳米银膜上的表面增强拉曼光谱的研究[J].光散射学报, 2009,(01): 25-28.

[9] 陶家友, 黄鹰, 廖高华,等. 甲醛浓度的激光拉曼光谱检测研究[J]. 光散射学报, 2008, (04): 346-349.

[10] 马寒露, 董英, 张孝芳, 等. 拉曼光谱法快速检测掺入梨汁的浓缩苹果汁[J]. 分析测试学报, 2009, (05): 535-538.

[11]乔西娅, 戴连奎,吴俭俭.拉曼光谱特征提取在化学纤维定性鉴别中的应用[J].光谱学与光谱分析, 2010,(04): 975-978.

[12] 吴俭俭, 孙国君, 戴连奎, 等. 纺织纤维拉曼光谱定性分析法[J]. 纺织学报, 2011, (06): 28-33.

[13]Gorry, P.A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method[J]. Analytical Chemistry, 1990, 62(6): 570-573.

[14]Madden, ments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data[J]. Analytical Chemistry, 1978, 50(9): 1383-1386.

[15]Savitzky, A. and M.J.E. Golay.Smoothing and Differentiation of Data by Simplified Least Squares Procedures[J]. Analytical Chemistry, 1964,36(8): 1627-1639.

[16]Steinier, J., Y. Termonia, and J. Deltour, Smoothing and differentiation of data by simplified least square procedure[J]. Analytical Chemistry, 1972,44(11): 1906-1909.

[17]尼珍, 胡昌勤,冯芳.近红外光谱分析中光谱预处理方法的作用及其发展[J].药物分析杂志, 2008,(05): 824-829.

[18] 夏俊芳, 李培武, 李小昱,等. 不同预处理对近红外光谱检测脐橙VC含量的影响[J]. 农业机械学报, 2007, (06): 107-111.

[19]Eilers, P.H.C.. A Perfect Smoother[J]. Analytical Chemistry, 2003,75(14): 3631-3636.

[20] Daubechies, I.Ten lectures on wavelets[M]. SIAM, 1992.

[21]陈珊. 拉曼光谱背景扣除算法及其应用研究[D]. 长沙: 中南大学, 2011.

[22]Eilers, P.H., H.F. Boelens. Baseline correction with asymmetric least squares smoothing[J]. Leiden University Medical Centre Report, 2005.

[23]Carlos Cobas, J., et al., A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data[J]. Journal of Magnetic Resonance, 2006,183(1): 145-151.

[24]Zhang, Z.-M., S. Chen, Y.-Z. Liang. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5): 1138-1146.

[25]Wold, S., K. Esbensen, P. Geladi.Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987,2(1–3): 37-52.

[26]Geladi, P., B.R. Kowalski. Partial least-squares regression: a tutorial[J]. Analytica Chimica Acta, 1986. 185(0): 1-17.

[27]罗文海, 万巧云,高永.主成分回归分析与多元线性回归的对比研究[J].数理医药学杂志, 2003,(02): 140-143.

[28]Jolliffe, I.T. Principal Components in Regression Analysis[J]. Principal Component Analysis, 2002: 167-198.

[29]秦浩, 林志娟, 陈景武.偏最小二乘回归原理、分析步骤及程序[J].数理医药学杂志, 2007(04): 450-451.