公务员期刊网 精选范文 神经网络的现状范文

神经网络的现状精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的神经网络的现状主题范文,仅供参考,欢迎阅读并收藏。

神经网络的现状

第1篇:神经网络的现状范文

[摘要]该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。

[关键词]遗传算法灰色系统专家系统模糊控制小波分析

一、前言

神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个。神经网络具有以下优点:

(1)具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。

(2)并行处理方法,使得计算快速。

(3)自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。

(4)可以充分逼近任意复杂的非线性关系。

(5)具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。

二、神经网络应用现状

神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下:

(1)图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

(2)信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。

(3)模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别等。

(4)机器人控制。对机器人眼手系统位置进行协调控制,用于机械手的故障诊断及排除、智能自适应移动机器人的导航。

(5)卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。

(6)焊接领域。国内外在参数选择、质量检验、质量预测和实时控制方面都有研究,部分成果已得到应用。

(7)经济。能对商品价格、股票价格和企业的可信度等进行短期预测。

(8)另外,在数据挖掘、电力系统、交通、军事、矿业、农业和气象等方面亦有应用。

三、神经网络发展趋势及研究热点

1.神经网络研究动向

神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。

(1)神经计算的基础理论框架以及生理层面的研究仍需深入。这方面的工作虽然很困难,但为了神经计算的进一步发展却是非做不可的。

(2)除了传统的多层感知机、径向基函数网络、自组织特征映射网络、自适应谐振理论网络、模糊神经网络、循环神经网络之外,一些新的模型和结构很值得关注,例如最近兴起的脉冲神经网络(spikingneuralnetwork)和支持向量机(supportvectormachine)。

(3)神经计算技术与其他技术尤其是进化计算技术的结合以及由此而来的混合方法和混合系统,正成为一大研究热点。

(4)增强神经网络的可理解性是神经网络界需要解决的一个重要问题。这方面的工作在今后若干年中仍然会是神经计算和机器学习界的一个研究热点。

(5)神经网络的应用领域将不断扩大,在未来的几年中有望在一些领域取得更大的成功,特别是多媒体技术、医疗、金融、电力系统等领域。

2.研究热点

(1)神经网络与遗传算法的结合。遗传算法与神经网络的结合主要体现在以下几个方面:网络连接权重的进化训练;网络结构的进化计算;网络结构和连接权重的同时进化;训练算法的进化设计。基于进化计算的神经网络设计和实现已在众多领域得到应用,如模式识别、机器人控制、财政等,并取得了较传统神经网络更好的性能和结果。但从总体上看,这方面研究还处于初期阶段,理论方法有待于完善规范,应用研究有待于加强提高。神经网络与进化算法相结合的其他方式也有待于进一步研究和挖掘。

(2)神经网络与灰色系统的结合。灰色系统理论是一门极有生命力的系统科学理论,自1982年华中理工大学的邓聚龙教授提出灰色系统后迅速发展,以初步形成以灰色关联空间为基础的分析体系,以灰色模型为主体的模型体系,以灰色过程及其生存空间为基础与内的方法体系,以系统分析、建模、预测、决策、控制、评估为纲的技术体系。目前,国内外对灰色系统的理论和应用研究已经广泛开展,受到学者的普遍关注。灰色系统理论在在处理不确定性问题上有其独到之处,并能以系统的离散时序建立连续的时间模型,适合于解决无法用传统数字精确描述的复杂系统问题。

神经网络与灰色系统的结合方式有:(1)神经网络与灰色系统简单结合;(2)串联型结合;(3)用神经网络增强灰色系统;(4)用灰色网络辅助构造神经网络;(5)神经网络与灰色系统的完全融合。

(3)神经网络与专家系统的结合。基于神经网络与专家系统的混合系统的基本出发点立足于将复杂系统分解成各种功能子系统模块,各功能子系统模块分别由神经网络或专家系统实现。其研究的主要问题包括:混合专家系统的结构框架和选择实现功能子系统方式的准则两方面。由于该混合系统从根本上抛开了神经网络和专家系统的技术限制,是当前研究的热点。把粗集神经网络专家系统用于医学诊断,表明其相对于传统方法的优越性。

(4)神经网络与模糊逻辑的结合

模糊逻辑是一种处理不确定性、非线性问题的有力工具。它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。但它缺乏有效的自学习和自适应能力。

而将模糊逻辑与神经网络结合,则网络中的各个结点及所有参数均有明显的物理意义,因此这些参数的初值可以根据系统的模糊或定性的知识来加以确定,然后利用学习算法可以很快收敛到要求的输入输出关系,这是模糊神经网络比单纯的神经网络的优点所在。同时,由于它具有神经网络的结构,因而参数的学习和调整比较容易,这是它比单纯的模糊逻辑系统的优点所在。模糊神经网络控制已成为一种趋势,它能够提供更加有效的智能行为、学习能力、自适应特点、并行机制和高度灵活性,使其能够更成功地处理各种不确定的、复杂的、不精确的和近似的控制问题。

模糊神经控制的未来研究应集中于以下几个方面:

(1)研究模糊逻辑与神经网络的对应关系,将对模糊

控制器的调整转化为等价的神经网络的学习过程,用等价的模糊逻辑来初始化神经网络;

(2)完善模糊神经控制的学习算法,以提高控制算法的速度与性能,可引入遗传算法、BC算法中的模拟退火算法等,以提高控制性能;

(3)模糊控制规则的在线优化,可提高控制器的实时性与动态性能;(4)需深入研究系统的稳定性、能控性、能观性以及平衡吸引子、混沌现象等非线性动力学特性。

关于神经网络与模糊逻辑相结合的研究已有很多,比如,用于氩弧焊、机器人控制等。

(5)神经网络与小波分析的结合

小波变换是对Fourier分析方法的突破。它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。

利用小波变换的思想初始化小波网络,并对学习参数加以有效约束,采用通常的随机梯度法分别对一维分段函数、二维分段函数和实际系统中汽轮机压缩机的数据做了仿真试验,并与神经网络、小波分解的建模做了比较,说明了小波网络在非线性系统黑箱建模中的优越性。小波神经网络用于机器人的控制,表明其具有更快的收敛速度和更好的非线性逼近能力。

四、结论

经过半个多世纪的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功,但其理论分析方法和设计方法还有待于进一步发展。相信随着神经网络的进一步发展,其将在工程应用中发挥越来越大的作用。

参考文献:

[1]张曾科.模糊数学在自动化技术中的应用[M].清华大学出版社,1997.

[2]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨工业大学出版,1996.250-387.

[3]谢联峻.模糊控制在列车自动驾驶中的应用[J].自动化与仪器仪表,1999,(4).

[4]CollierWC,Weiland,RJSmartCarts,SmartHighways[J].IEEESpec-trum,1994,31(4):27-33.

[5]HatwalH,MikulcikEC.someInverseSolutionstoanAutomobilePathTrackingProblemwithInputControlofSteeringandBreaks,Ve-hiclesystemDynamics,1986,(15):61-71.

[6]KosugeK,FukudaT,AsadaH.AcquisitionifHumanSkillsforRoboticSystem[C].In:ProcIEEEIntSympOnIntelligenControl,1991.469-489.

[7]王小平,曹立明.遗传算法—理论、应用与软件实现.西安交通大学出版社,2002.

[8]ManiezzoV.Geneticevolutionofthetopologhandweightdistribution

ofneuralnetwork[J].IEEETransonNeuralNetwork,1994,5(1)35-67.

[9]HarraldPG,KamstraM.Evolvingartificialneuralnetworkstocombinefinancialforecase[J].IEEETransonEvolComputer,1997,1(1):39-54.

[10]邓聚龙.灰色系统理论教程.华中理工大学出版社,1990.

[11]吕宏辉,钟珞,夏红霞.灰色系统与神经网络融合技术探索.微机发展,2000,23(4):67-109.

第2篇:神经网络的现状范文

介绍了基于神经网络的故障针诊断方法和结合模糊理论应用的故障诊断。分析了小波变换的现代模拟电路软故障诊断的研究现状。

关键词:

模拟电路;软故障诊断;神经网络;模糊理论;小波变换

在最近几年,现代模拟电路故障诊断方法的研究成为了新的热点。其中有基于神经网络。并结合专家系统、小波变换、模糊理论和遗传算法。“小波神经网络”和“模糊神经网络”成为主流的模拟电路软故障诊断方法。

1基于神经网络的故障诊断方法

神经网络有自组织性、自学性、并行性、联想记忆和分类功能,这些信息处理特点使其能够解决一些传统模式难以解决的问题。其中模拟电路故障诊断中的非线性和容差问题就是运用神经网络的非线性映射能力和泛化能力来解决的,同时这也是专家门的较为感兴趣的研究热点。基于神经网络的模拟电路故障诊断方法有一些,其中包括测试节点的选择、确定被测故障集、故障特征的提取等步骤,这种方法与基于测前仿真的故障字典法雷同。前者用制作神经网络和样本集来储存特征信息,而且在测试完毕后定位故障是通过神经网络来处理。所以可以把基于神经网络的方法当作是基于测后仿真和测前仿真的延伸与综合。在故障诊断领域,误差反传神经网络(backpropagationneuralnetwork,BPNN)拥有较好的模式分类特性。然而仅仅以节点电压视作故障特征训练的BPNN只能适用于诊断模拟电路的硬故障。在软故障方面,一般需要基于神经网络和多种特征提取方法的综合应用来诊断。

2基于模糊理论应用的模拟电路软故障诊断

在一些故障诊断问题中,模糊规则适合描述故障诊断的机理。模糊理论中的模糊运算、模糊逻辑系统、模糊集合拥有对模糊信息的准确应付能力,这使得模糊理论成为故障诊断的一种有力工具。神经网络与模糊理论相结合,充分发挥了模糊理论和神经网络各自的优点,并以此来弥补各自的不足,这就是所谓的“模糊神经网络”。这种方法的基本思想是在BPNN的输出层和输入层中间增加一到两层模糊层构造模糊神经网络,分别利用神经网络和模糊逻辑处理低层感知数据与描述高层的逻辑框架,这样一来跟神经网络分类器相比,“模糊神经网络”对模拟电路软故障诊断效果的优势就非常明显。通过一个无监督的聚类算法自组织地确定模糊规则的数目并生成一个初始的故障诊断模糊规则库,构造了一类模糊神经网络,通过训练调整网络权值,使故障诊断模糊规则库的分类更加精确,实现了电路元件的软故障诊断。

3基于小波变换的模拟电路软故障诊断

小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的"时间-频率"窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。若满足时,则由经过伸缩和平移得到的函数成为小波函数族。小波变换具有时域局部特征,而神经网络具有鲁棒性、自学习、自适性和容错性。如何把二者的优势结合起来一直是人们所关注的问题。一种方法是用小波变换对信号进行预处理,即以小波空间作为模式识别的特征空间,通过小波分析来实现信号的特征提取,然后将提取的特征向量送入神经网络处理;另一种即所谓的小波神经网络或小波网络。小波神经网络是神经网络与小波理论相结合的产物,最早是由法国著名的信息科学研究机构IRLSA的ZhangQinghu等人1992年提出来的。小波神经用络是基于小波变换而构成的神经网络模型,即用非线性小波基取代通常的神经元非线性激励函数(如Sigmoid函数),把小波变换与神经网络有机地结合起来,充分继承了两者的优点。近几年来,国内外有关小波网络的研究报告层出不穷。小波与前馈神经网络是小波网络的主要研究方向。小波还可以与其他类型的神经网络结合,例如Kohonen网络对信号做自适应小波分解。

由于神经网络、小波变换、模糊理论在当今的发展上还不是很完善,例如在诊断中,模糊度该如何准确地定量化,对小波变换之后故障信号进行怎样构造能体现故障类别的特征等,因此这些基于神经网络的诊断方法或多或少地存在一些局限性。一般来说,神经网络方法的长处并不是提高诊断精度,而且无论运用什么方法,在选取状态特征参量和确定电路故障集方面,传统的故障诊断方法仍然具有理论上的指导意义。所以,抽取合理的故障特征比构造合适的神经网络更为重要。

参考文献:

[1]梁戈超,何怡刚,朱彦卿.基于模糊神经网络融合遗传算法的模拟电路故障诊断法[J].电路与系统学报,2004,9(2):54-57.

[2]谭阳红,何怡刚.模拟电路故障诊断的小波方法[J].电工技术学报,2005,20(8):89-93.

第3篇:神经网络的现状范文

[关键词]遗传算法 灰色系统 专家系统 模糊控制 小波分析

一、前言

神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则, 如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个。神经网络具有以下优点:

(1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。

(2) 并行处理方法,使得计算快速。

(3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。

(4) 可以充分逼近任意复杂的非线性关系。

(5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。

二、神经网络应用现状

神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下:

(1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

(2) 信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。

(3) 模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别等。

(4) 机器人控制。对机器人眼手系统位置进行协调控制,用于机械手的故障诊断及排除、智能自适应移动机器人的导航。

(5) 卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。

(6) 焊接领域。国内外在参数选择、质量检验、质量预测和实时控制方面都有研究,部分成果已得到应用。

(7) 经济。能对商品价格、股票价格和企业的可信度等进行短期预测。

(8) 另外,在数据挖掘、电力系统、交通、军事、矿业、农业和气象等方面亦有应用。

三、神经网络发展趋势及研究热点

1.神经网络研究动向

神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。

(1) 神经计算的基础理论框架以及生理层面的研究仍需深入。这方面的工作虽然很困难,但为了神经计算的进一步发展却是非做不可的。

(2) 除了传统的多层感知机、径向基函数网络、自组织特征映射网络、自适应谐振理论网络、模糊神经网络、循环神经网络之外,一些新的模型和结构很值得关注,例如最近兴起的脉冲神经网络(spiking neural network)和支持向量机(support vector machine)。

(3) 神经计算技术与其他技术尤其是进化计算技术的结合以及由此而来的混合方法和混合系统,正成为一大研究热点。

(4) 增强神经网络的可理解性是神经网络界需要解决的一个重要问题。这方面的工作在今后若干年中仍然会是神经计算和机器学习界的一个研究热点。

(5) 神经网络的应用领域将不断扩大,在未来的几年中有望在一些领域取得更大的成功,特别是多媒体技术、医疗、金融、电力系统等领域。

2.研究热点

(1)神经网络与遗传算法的结合。遗传算法与神经网络的结合主要体现在以下几个方面:网络连接权重的进化训练;网络结构的进化计算;网络结构和连接权重的同时进化;训练算法的进化设计。基于进化计算的神经网络设计和实现已在众多领域得到应用,如模式识别、机器人控制、财政等,并取得了较传统神经网络更好的性能和结果。但从总体上看,这方面研究还处于初期阶段,理论方法有待于完善规范,应用研究有待于加强提高。神经网络与进化算法相结合的其他方式也有待于进一步研究和挖掘。

(2)神经网络与灰色系统的结合。灰色系统理论是一门极有生命力的系统科学理论,自1982年华中理工大学的邓聚龙教授提出灰色系统后迅速发展,以初步形成以灰色关联空间为基础的分析体系,以灰色模型为主体的模型体系,以灰色过程及其生存空间为基础与内的方法体系,以系统分析、建模、预测、决策、控制、评估为纲的技术体系。目前,国内外对灰色系统的理论和应用研究已经广泛开展,受到学者的普遍关注。灰色系统理论在在处理不确定性问题上有其独到之处,并能以系统的离散时序建立连续的时间模型,适合于解决无法用传统数字精确描述的复杂系统问题。

神经网络与灰色系统的结合方式有:(1) 神经网络与灰色系统简单结合;(2) 串联型结合;(3) 用神经网络增强灰色系统;(4) 用灰色网络辅助构造神经网络;(5) 神经网络与灰色系统的完全融合。

(3)神经网络与专家系统的结合。基于神经网络与专家系统的混合系统的基本出发点立足于将复杂系统分解成各种功能子系统模块,各功能子系统模块分别由神经网络或专家系统实现。其研究的主要问题包括:混合专家系统的结构框架和选择实现功能子系统方式的准则两方面。由于该混合系统从根本上抛开了神经网络和专家系统的技术限制,是当前研究的热点。把粗集神经网络专家系统用于医学诊断,表明其相对于传统方法的优越性。

(4)神经网络与模糊逻辑的结合

模糊逻辑是一种处理不确定性、非线性问题的有力工具。它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。但它缺乏有效的自学习和自适应能力。

而将模糊逻辑与神经网络结合,则网络中的各个结点及所有参数均有明显的物理意义,因此这些参数的初值可以根据系统的模糊或定性的知识来加以确定,然后利用学习算法可以很快收敛到要求的输入输出关系,这是模糊神经网络比单纯的神经网络的优点所在。同时,由于它具有神经网络的结构,因而参数的学习和调整比较容易,这是它比单纯的模糊逻辑系统的优点所在。模糊神经网络控制已成为一种趋势,它能够提供更加有效的智能行为、学习能力、自适应特点、并行机制和高度灵活性,使其能够更成功地处理各种不确定的、复杂的、不精确的和近似的控制问题。

模糊神经控制的未来研究应集中于以下几个方面:

(1) 研究模糊逻辑与神经网络的对应关系,将对模糊

控制器的调整转化为等价的神经网络的学习过程,用等价的模糊逻辑来初始化神经网络;

(2) 完善模糊神经控制的学习算法,以提高控制算法的速度与性能,可引入遗传算法、BC算法中的模拟退火算法等,以提高控制性能;

(3) 模糊控制规则的在线优化,可提高控制器的实时性与动态性能;

(4) 需深入研究系统的稳定性、能控性、能观性以及平衡吸引子、混沌现象等非线性动力学特性。

关于神经网络与模糊逻辑相结合的研究已有很多,比如,用于氩弧焊、机器人控制等。

(5)神经网络与小波分析的结合

小波变换是对Fourier分析方法的突破。它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。

利用小波变换的思想初始化小波网络,并对学习参数加以有效约束,采用通常的随机梯度法分别对一维分段函数、二维分段函数和实际系统中汽轮机压缩机的数据做了仿真试验,并与神经网络、小波分解的建模做了比较,说明了小波网络在非线性系统黑箱建模中的优越性。小波神经网络用于机器人的控制,表明其具有更快的收敛速度和更好的非线性逼近能力。

四、结论

经过半个多世纪的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功,但其理论分析方法和设计方法还有待于进一步发展。相信随着神经网络的进一步发展,其将在工程应用中发挥越来越大的作用。

参考文献:

[1]张曾科.模糊数学在自动化技术中的应用[M].清华大学出版社,1997.

[2]李士勇.模糊控制・神经控制和智能控制论[M].哈尔滨工业大学出版,1996.250-387.

[3]谢联峻.模糊控制在列车自动驾驶中的应用[J].自动化与仪器仪表,1999,(4).

[4]Collier W C,Weiland,R J Smart Carts,Smart Highways[J].IEEE Spec-trum,1994,31(4):27-33.

[5]Hatwal H,Mikulcik E C.some Inverse Solutions to an Automobile Path Tracking Problem with Input Control of Steeringand Breaks,Ve-hicle system Dynamics,1986,(15):61-71.

[6]Kosuge K,Fukuda T,Asada H.Acquisition if Human Skills for Robotic System[C].In:Proc IEEE Int Symp On Intelligen Control,1991.469-489.

[7]王小平,曹立明.遗传算法―理论、应用与软件实现.西安交通大学出版社,2002.

[8]Maniezzo V.Genetic evolution of the topologh and weight distribution

of neural network[J].IEEE Trans on Neural Network,1994,5(1)35-67.

[9]Harrald P G,Kamstra M.Evolving artificial neural networks to combine financial forecase[J].IEEE Trans on Evol Computer ,1997,1(1):39-54.

[10]邓聚龙.灰色系统理论教程.华中理工大学出版社,1990.

[11]吕宏辉,钟珞,夏红霞.灰色系统与神经网络融合技术探索.微机发展,2000,23(4):67-109.

第4篇:神经网络的现状范文

关键词:BP 神经网络 教学评价 模型构建 评价方法

中图分类号:TP183 文献标识码:A 文章编号:1672-3791(2013)06(c)-0200-01

BP神经网络是一种单向多层前馈人工神经网络模型,可以实现任何复杂的、多因素、不确定和非线性的映射关系,是目前应用最广泛的人工神经网络模型之一。通过这种梯度下降算法不断地修正网络各层之间的连接权值和阈值,从而实现期望输出值与实际输出值之间的误差达到最小或者小于某一个阈值[1~2]。

本文的研究目标是通过对现有评价指标、评价方法的分析,建立有效的教学评价模型,并实现相应的网上教学评价系统设计。结合BP神经网络,给出了一种非线性的教学评价模型,训练好的BP网络模型根据测评数据,就可得到对评价对象的评价结果,实现定性与定量的有效结合。

1 BP神经网络模型

(1)输入/输出节点。输入/输出节点是与样本直接相关的。根据沈阳工业大学教学质量评估指标体系,将二级评价指标作为模型的输入神经元,因此系统的输入层神经元的个数为二级指标的个数。将评价结果作网络的输出,输出层神经元个数为1。

(2)层数。由于BP网络的功能实际上是通过网络输入到网络输出的计算来完成的,因此隐含层数越多,神经网络学习速度就越慢。但是只含有一个隐含层的BP网络就可以逼近任意的非线性函数。因此,本文选取结构相对简单的3层BP网络,即隐含层只有一个。

(3)隐含层神经元个数。隐含层单元个数与问题的要求以及输入输出单元个数有直接的关系。隐层单元过多将会导致神经网络训练时间过长、误差不易控制及容错性差等问题。本文采用公式2.1计算得出隐含层神经元个数。

4)激活函数 BP网络的非线性逼近能力是通过S型的激活函数来体现出来的,所以隐含层中一般采用S型的激活函数,输出层的激活函数可以采用线性或S型[3]。S型激活函数为

该函数值在[-1,1]范围内变化很剧烈,而超出这个范围即处于不灵敏区,变化则相当平缓。因此为使得进入不灵敏区的误差函数有所改变,迅速退出不灵敏区,保证训练网络的快速性,尽可能使所有输入值都在灵敏变化段中,一般需在该公式中引进参数。本文的神经网络算法即在此部分进行改进。

2 基于BP神经网络的教学评价模型构建

本文由公式2.1计算得出隐含层节点数为4(这里考虑了下述16个指标可以分为4组)。(见表1)

3 改进的BP神经网络算法描述

网络的拓扑结构和训练数据确定之后,总误差函数E的性质特征就完全由激活函数f决定了。改进激活函数,可以改变误差曲面,尽量减少局部极小值的可能性。BP算法的激活函数一般为sigmoid型函数,即。

改进的BP算法是对标准的S型函数引入新的参数,则函数变为,其中系数决定着S型函数的压缩程度。该非线性函数满足如下两个条件:一是连续光滑且具有单调性;二是定义域为,值域为,故符合激活函数要求。而且它使得激活函数曲线变得平坦,方便在或时,避开局部极小,因此该函数具有更好的函数逼近能力以及容错能力。

4 仿真计算与分析

以学生评教数据为输入值,专家评教数据为期望输出值,采用上述算法在Matlab下设计仿真程序对BP模型进行辨识,输入层、隐含层和输出层的结点数分别为16×4×1,激活函数采用变化的S型,学习率=0.99。

通过沈阳某大学教务处所提供的数据进行实验,采用10组样本进行网络训练,并对10位教师进行测评。10样本的评价目标和神经网络辨识分别为差(21.93),及格(44.64),及格(46.94),中(59.87),中(59.11),中(62.35),中(59.83),良(78.93),良(79.56),优(99.12)。结果显示,BP模型对评估的模拟结果比较精确,对整个考核的排序十分有用。因此该模型能较为准确地根据各评价指标来确定教学效果。

5 结论

结合国家高等教育的政策导向以及学校实际,建立了一个基于BP神经网络建立了教学评价模型,引用具有更好函数逼近以及容错能力的改进的BP学习算法,确定指标体系的权重,使评价结果科学合理。

参考文献

第5篇:神经网络的现状范文

关键词:

中图分类号: TP391.4文献标识码:A文章编号:2095-2163(2011)03-0043-04

Analysis of Training Results based on the Selection of

Parameters Influencing BP Neural Network

HAN Xue

Abstract: Pattern recognition includes two aspects : sample training and sample recognition. And sample training is the premise of sample recognition.Of course, there are lots of training samples and the samples are representative, whichis good, but not the more the better. In the process of training the neural network, it is very important how to determine various parameters that is beneficial to the training efficiency such as the weights and threshold values. This paper is aimed at the use of a simple sample for neural network training, changes parameter values for observing the training effect, thus obtains the different output results and the diagrams. Further study and comparison are carried outto find out the optimal parameter settings. And the experiment method and the conclusion are helpful for application in other identification system development.

Key words:

0引言

在对BP神经网络进行训练的过程中,很多时候,一些基本参数和训练函数参数是随机生成的,但是训练效率并不高。对于BP神经网络所应用的不同领域,这些参数的设置也有所区别。怎样才能使得训练网络的效率更高,就需要了解参数的变化对于训练结果的影响。本文要解决的问题就是变化其中的各项参数值,对得到的不同训练结果进行对比分析,并找出相关规律。

1研究现状

“神经网络”的研究内容主要包括人工神经网络、生物神经网络、认知科学和混沌。

在研究方法上,对于神经网络的研究已经收获了很多不同的研究方法,比较重要且已有一定成果的研究有多层网络 BP算法、Hopfield网络模型、自适应共振理论和自组织特征映射理论等。

在研究领域上也可以分为理论研究和应用研究两大方面。理论研究包括两个方面:其一是理论上的深入研究,通过对已有算法的性能分析来探索功能更完善、效率更高的神经网络模型,包括对稳定性、收敛性、容错性、鲁棒性等各个性能的最优化研究;其二是朝着智能的方向发展,利用神经生理与认知科学对人类思维和智能机理进行研究。应用研究也包含了两个方面,分别是神经网络的软硬件研究和神经网络在各个领域中应用的研究,其中包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等[1]。

BP神经网络是当前最流行、应用最广泛的神经网络模型之一。但是仍存在一些缺陷,如训练速度较慢,所以很多学者正在寻找快速有效的BP学习算法,而且也取得了一些成效,最重要的几种快速变体有QuickProp[Fah88]、 SuperSAB [Tol90]和共轭梯度法[Bat92][1]。

除了收敛速度较慢之外,BP神经网络还存在一些缺点:容易在优化的过程中产生局部最优解而不是全局最优解;在对新样本训练的同时容易遗忘旧的样本。基于对以上缺陷的改进,目前已有了一些行之有效的解决方法。

为了提高网络训练速度,在调整权值时增加了动量项,从而对某时刻前后的梯度方向都进行了必要的考虑;为了加快算法收敛速度,采用了自适应学习率调节的方法,如VLBP神经网络,后面的实验中还会进一步比较介绍。

目前,BP神经网络作为很重要的神经网络模型之一,在很多应用领域中发挥着重要的作用,包括图像压缩编码、人脸识别、分类、故障诊断、最优预测等。

2算法原理

BP神经网络的基本思想是通过不断地训练权值,并设有一个标准的输出,每次训练以后得到的实际输出与标准的输出比较,设置一个最小误差,达到这个误差就表示网络训练好了,否则继续训练;经过一定的训练次数后,若还没有达到这个误差标准,就表示网络的设置有问题。本实验通过对参数的改变,寻找出最优参数设置的规律。

3算法实现

使用matlab开发平台,程序编写分为定义输入向量和目标向量、创建 BP网络设置训练函数、初始化权值阈值、设置训练函数参数、训练神经网络五个部分。进行对比实验时,只需将相关参数进行修改即可。对基本的BP神经网络进行训练时,设置基本参数:权值、阈值;训练函数参数:学习率、最后达到的均方误差、最大步长。分别对学习率、均方误差、初始权值、初始阈值进行修改,对比实验结果;基本的BP神经网络中无法对学习率实现事先最优,所以用VLBP神经网络进行改进。

程序如下:

netbp.trainParam.goal=0.0001//设置最后达到的均方误差为 0.0001

netbp.trainParam.epochs=5000 //设置最大训练步长

[netbp,tr]=train(netbp,p,t)

4实验结果

初始训练样本的输入设为[1;3],期望输出设为[0.95;0.05],第一层的权值设为[1 2;-2 0],第二层的权值设为[1 1;0 -2],第一层的阈值设为[-3;1],第二层的阈值设为[2;3],学习率设为1,均方差设为0.0001。其实验仿真图如图1所示。

4.1改变学习率

只改变学习率的训练函数参数时,运行程序后的对比结果如表1所示。

从表1中的实验结果可见:在其他条件不变、学习率增大的情况下,所需的训练步长变短,即误差收敛速度快。但是学习率不可以无限制地增大,增大到一定程度后,误差收敛速度将减慢,甚至有可能达不到误差范围内,进入局部稳定状态。

表1中的各组实验仿真图如图2-图7所示。

4.2改变均方差

将均方差由原来的0.0001变为0.001后与原初始样本参数对比结果如表2所示。

均方差变为0.001后的仿真图如图8所示。

可见,在其他条件一样的前提下,将最后要达到的均方误差值设置较大时,网络训练步长变短,误差收敛速度慢些,最后的输出结果较为精确些。

4.3改变初始权值

将初始权值改变后的对比结果如表3所示。

改变初始权值后的仿真图如图9所示。

可见,后者的初始权值比较合适些,因此训练的时间变短,误差收敛速度明显快些。

4.4改变初始阈值

将初始阈值改变后的对比结果如表4所示。

改变初始阈值后的仿真图如图10所示。

可见,后者的初始阈值比较合适些,因此训练的时间变短,误差收敛速度明显快些。

4.5学习率可变的VLBP神经网络

用最基本的 BP 算法来训练 BP神经网络时,学习率、均方误差、权值、阈值的设置都对网络的训练均有影响。选取合理的参数值会有利于网络的训练。在最基本的 BP算法中,学习率在整个训练过程是保持不变的。学习率过大,算法可能振荡而不稳定;学习率过小,则收敛速度慢,训练时间长。而在对网络进行训练之前是无法选择最佳学习率的。

虽说学习率在训练前无法选最优,但是在训练的过程中能否可变呢?因此BP神经网络的一种改进算法VLBP可派上用场。也就是说,另外设置学习增量因子和学习减量因子,当误差以减少的方式趋于目标时,说明修正方向正确,可以使步长增加,因此学习率乘以增量因子k,使学习率增加;而修正过头时,应减少步长,可以乘以减量因子k,使学习率减小。

程序设计中加入下列语句:

netbp=newff([-1 1;-1 1],[2 2],‘logsig’ ‘logsig’,‘traingdx’)

netbp.trainParam.lr_inc=1.1//增量因子设为1.1

netbp.trainParam.lr_dec=0.65 //减量因子设为0.65

经过训练后最后的输出结果为[0.963 8;0.050 0],训练步长为50,训练后第一层的权值为[1.004 5 2.013 5;-1.408 4 1.774 8],训练后第二层的权值为[0.766 9 0.768 3;-1.544 7 -2.865 0]。

VLBP神经网络训练仿真图如图11所示。

观察网络的收敛速度,采用学习率可变的VLBP算法要比学习率不变BP算法收敛速度提高很多。以上两种算法都是沿着梯度最陡的下降方向修正权值,误差减小的速度最快。

5结束语

通过上述验证性实验,可以看出参数的选取对网络的训练结果有着很大的影响,当然BP算法还很多,但没有一个算法适合所有 BP 网络。在实际运用时,需根据网络自身的特点、误差要求、收敛速度要求、存储空间等来做具体选择。

参考文献:

[ 1 ] http://blog.csdn.net/zrjdds/archive/2008/01/02/2010730.aspx.

[ 2 ] 陈兆乾,周志华,陈世福. 神经计算研究现状及发展趋势. 南京

大学计算机软件新技术国家重点实验室,2008:3-7.

[ 3 ] 赵艳. 神经计算与量子神经计算的研究综述[J]. 计算机与信息

第6篇:神经网络的现状范文

关键词:模糊神经网络;水环境质量评价;监测点

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)20-4813-02

Application of Fuzzy Neural Network in Water Environmental Quality Assessment

ZHAO Xu1 ,CHEN Li-li2

(1.Geological and Mineral Resources of Liaoning Province Survey Institute, Shenyang 110031,China; 2.Heilongjiang Institute of Geological Survey, Harbin 150036,China)

Abstract: In order to ensure the safety of drinking water for urban residents, the fuzziness of classification of water quality standard, introduce the fuzzy neural network theory, establish the model of water environment quality evaluation. Selects the Jilin province Baishan City baiyunfeng reservoir as a study area, by sampling selected 6 monitoring points, the evaluation of the model evaluation results and the Nemero index analysis and comparison of results. The results showed that, fuzzy neural network evaluation of water environment quality is feasible, water quality evaluation result more accurate, to break the limitations of traditional methods. The model of fuzzy neural network has strong learning ability, can improve the accuracy of groundwater quality evaluation, provided the scientific basis for the protection and management of water environment.

Key words: fuzzy neural network; water quality evaluation; monitoring point

我国当前经济社会的发展正处在城市化、工业化、现代化进程中,有效地保护和合理利用水资源,防止项目建设和生产造成的人为水资源破坏,最大限度地减少和降低对水环境的影响,保证工程项目的顺利建设和安全运行,促进水资源的循环利用和生态环境的可持续维护,水环境质量科学准确的评价必不可少[1]。该文综合考虑神经网络的特点,把模糊理论引入评价模型中,以水质评价指标作为模型的输入变量建立模糊神经网络,以白山市白云峰水库为研究区,评价其水环境质量。

1 模糊神经网络

1974年,S.C.Lee以和E.T.Lee首次把模糊集和神经网络联系在一起; 1985年,J.M Keller和D.Huut提出把模糊隶属函数和感知器算法相结合。自1992年开始,J.J.Backley发表了多篇关于混合模糊神经网络的文章,它们也反映了人们近年来的兴趣点。

模糊神经网络是一种新型的神经网络,它是在网络中引入模糊算法或模糊权系数的神经网络。模糊神经网络的特点在于把模糊逻辑方法和神经网络方法结合在一起[2]。目前应用最广泛的是模糊BP网络[3],对于一个神经元,考虑其输入信号是以隶属函数表示,而不是以绝对值表示,基本处理单元为非线性输入-输出关系,输入层神经元阈值为0,且[f(x)=x];而隐含层和输出层作用函数为[f(x)=11+e-x]。

鉴于水质评价中水质分级存在模糊性,水质评价结果易受人为因素影响[4-5],因此本研究将将模糊理论中隶属度引入水质评价中,试图克服传统水质评价过程中存在的问题。按下式构造隶属度函数[6-7]

式中:a、b为评价水质样本相邻的上下两级标准水质级别;[f(x)]为标准的梯形隶属度函数。

2 实例

2.1 评价因子选取

研究区地处低山丘陵,远离居民点,附近无大的河流或流量较大的裂隙泉。当地自然环境良好。研究区气候属温带大陆性季风气候区。年平均气温在2.5℃左右。年最高气温38℃,多集中在七、八月份,昼夜温差较大。最低气温可达-40℃,集中在十二月下旬至翌年二月份。年平均降雨量为800mm左右,最大冻结深度1.60m。

根据水文局提供的水环境质量监测资料,本次研究选取总硬度、硝酸盐氮、挥发酚、六价铬、砷、铁等指标作为评价因子。

2.2 模糊神经网络的应用

经过标准化处理后建立6-3-1结构的模糊神经网络。由于活化函数值域范围在[0,1]间,故设定水环境质量级别的目标输出量是0.1、0.3、0.5、0.7、0.9(如表1) 。模型本次训练选取学习效率[η]=0.9,动量系数[σ]=0.5,经过7600次迭代,网络收敛,达到指定精度10-5。然后对输出结果进行隶属度计算,最终确定出水质级别,评价结果见表2。

2.3 结果分析

根据现有调查资料水库目前的水化学类型为:H―Ca型水、总硬度(以CaCo3计算)124.31mg/L、PH值8.01、为弱碱性水,水质良好,适合饮用。通过计算发现,采用尼梅罗综合污染指数法评价的水环境质量并无明显变化,而应用模糊神经网络计算后得出的结果水环境质量变化明显,与现有实际调查情况一致。因此应用模糊神经网络评价出的水环境质量结果是可靠的。

3 结论

本文将模糊神经网络应用到水环境质量评价中,它将模糊算法或模糊权系数引入到神经网络中,把模糊逻辑方法和神经网络方法结合在一起,是一种新型的神经网络。克服了传统水环境系统中变量间模糊性问题,该网络具有很强的自适应、自学习的能力。通过实例应用,验证了模糊神经网络在水质评价方面的应用是可行的,结果是准确可靠的,该方法具有良好的应用前景。为保证城镇居民饮水安全,及日后保护和管理水环境提供了科学依据。

参考文献:

[1] 夏军.区域水环境及生态环境质量评价――多级关联评估理论与应用[M].武汉:武汉水利电大学出版社,1999.

[2] 陈守煜,赵瑛琪.模糊模式识别理论模型与水质评价[J ].水利学报,1991 ,6 :35 ― 401.

[3] 尼探海,白玉慧.BP神经网络模型在地下水水质评价中的应用[J].系统工程理论与实践,2000,(8):124-127.

[4] 王士同,神经模糊系统及其应用[M],北京,北京航空航天大学出版社.

[5] 雪冬,邢建.新疆河流水质调查及评价[J].新疆环境保护,2003,25(2):37-39.

第7篇:神经网络的现状范文

关键词:小波分析;神经网络;故障定位;配电网

作者简介:李晓东(1975-),男,宁夏吴忠人,宁夏电力公司吴忠供电局,助理工程师。(宁夏 吴忠 751100)

中图分类号:TM726 文献标识码:A 文章编号:1007-0079(2013)26-0201-03

配电网直接联系用户,其可靠供电能力和供电质量既是电力企业经济效益的直接体现,又对应着不可估量的社会效益。配电网故障自动定位作为配电自动化的一个重要内容,对提高供电可靠性有很大影响,也得到了越来越多的重视。本文在分析研究小波神经网络特征的基础上利用小波的时频分析能力与神经网络的非线性拟合能力来建立故障特征与故障点的映射,确定故障点的位置。

一、配电网的故障特点

配电网络拓扑结构复杂,节点众多且分布广泛。负荷沿配电线路分布不均匀,而且负荷性质也有很大差异,因此配网故障定位是一项十分艰巨的任务。配电网发生故障的几率远大于输电网,因为配电网的设备为分散分布,采集信号相对困难,而且信号传输的距离越远越容易发生畸变。配电网直接面向广大的用户,最易受到用户端多种多样不确定因素的影响,所以配电网的故障频率及操作频率都较高,运行方式和对应的网络拓扑经常发生变化。[1]同时,配电网具有闭环设计开环运行的特点,有时会出现短暂的闭环运行,给故障定位带来困难。

二、神经网络在配网故障诊断中的应用原理

人工神经网络(ANN)是一种连接机制模型,它是由大量人工神经元广泛互联而成的网络,是在微观结构上模拟人的认识能力,其知识处理所模拟的是人的经验思维机制,决策时它依据的是经验,而不是一组规划,特别是在缺乏清楚表达规则或精确数据时神经网络可产生合理的输出结果。ANN的最大特点是依靠并行调节人工神经元之间的连接权值来隐含地处理问题,具有很强的自适应和自学习能力、非线性映射能力、鲁棒性和容错能力。

应用神经网络进行电力系统报警处理和故障定位能在保护装置误动、数据丢失以及出现其他未考虑的报警类型时也能给出较精确的定位结果。[2,3]还可以结合小波分析比较精确地定位出故障位置进行隔离。

由于神经网络自身具有很多的优点,应用现代数学工具通过准确地提取故障电气量特征信息作为神经网络的输入进行训练来提高神经网络的定位性能将是一个很好的发展方向。

基于神经网络的诊断系统结构图如图1所示。

三、小波变换

小波变换是继Fourier变换之后又一有效的时频分析方法,可以在一个时间和频域的局域变换所以能有效地从信号中提取信息,可以对信号进行多尺度的细化分析。

小电流接地系统发生单相接地故障时,暂态接地电容电流幅值经常大于稳态时的几倍到几十倍,补偿的电感电流也会增大。[4]这种情况下小波变换可以将暂态信号映射到由小波伸缩而成的一组基函数上。该函数具有很好地频带分割性,再根据小电流接地系统发生故障时零序电流分量的特点,即故障线路上的电流幅值比非故障线路幅值大得多且极性相反这一特征来进行故障点的定位。

四、小波神经网络

1.小波神经网络的拓扑结构

小波函数作为神经网络的激励函数与普通神经网络的激励函数在本质上是一致的,但是小波神经网络只要尺度、位移以及权重的初始值设置得当,其函数逼近的效果更优于简单的神经网络。

在文献[5]中对小电流接地系统单相接地故障暂态信号用prony方法进行分析时,已证实故障点位置不同时对应的故障暂态信号的特征分量也不同,它们之间存在着特定的对应关系。根据这个原理就可以利用小波分析来获得故障暂态信号定时频窗特征,将它映射到距离平面上实现故障定位。

小波神经网络的结构如图2所示,共有四层,分别为输入层、小波变换层、隐含层、输出层。小波变换层选取的神经元激励函数为Morlet小波:

则在函数空间L2(R)中,一个信号f(t)的小波变换:

对网络的输出并不仅仅是简单的加权求和,而是先对网络隐含层小波节点的输出值进行加权求和,再通过Sigmoid函数变换,最终得到的网络输出,有利于处理分类问题,[6,7]同时降低训练过程中发散的可能性。

小电流单相接地故障检测系统的小波神经网络模型如图2所示,输入层的每一节点对应故障暂态时序序列,输出包含的单个神经元,其值反映的是故障点的位置。

2.小波神经网络的学习算法

进行训练时需要在权值和阈值的修正算法中加入动量项,利用前一步得到的修正值来平滑学习路径,防止陷入局部极小值,加速学习速度。[8]当逐个对样本进行训练时会引起权值与阈值修正时发生振荡,为避免这种情况的发生可以采用成批训练方法。

在式(1)中,当a>0时,信号f(t)可离散化fN(i),式(1)变为:

式子中,N为电流序列点总和,为信号的时间窗宽度。

前向运算:输入采样时间序列,小波变换层的输出为:

按照上式的算法,分别计算出小波变换层的输出量,其中j为小波变换层的总节点数。

隐层的输入矢量,其中K表示隐层节点个数。;隐含层输出矢量:;故障距离输出。

给定P(P=1,2,3……p)组输入输出样本,学习率为,动量因子是目标误差函数为:

式中:——输出层第n个节点的期望输出;——网络实际输出。

算法要实现的目标就是不断调整网络的各项参数,使最终的误差函数获得最小值。

隐含层与输出层之间的权值调整式:

输入层与隐层结点之间的权值调整式:

伸缩因子调整式:

平移因子调整式:

五、小波与神经网络在配网故障诊断中的应用

1.系统整体设计

本文采用EMTP/ATP软件进行仿真。设计系统为中性点不接地系统,母线电压等级为35kV,仿真时间是0.1S,故障发生时间是0.05S,采样频率是4000Hz,可充分满足暂态电容电流自由振动频率的要求;线路参数:正序阻抗;正序容纳;零序阻抗;零序容纳。图3为小电流接地系统。

变化故障点位置和接地电阻形成的学习故障模式集为:在配电网全程线路上选择故障点,是距离变化的步长,;故障过渡电阻。

2.故障定位效果分析

为了较好地检测训练后神经网络的真实定位效果,需要选取网络的非学习样本来检验。选取故障点故障过渡电阻。进行组合20×2=40个测试故障模式,按照与形成学习样本相同的预处理方法形成输入矢量集合,经过网络的前向运算得到故障的定位结果。

接地电阻时,故障定位结果,如表1所示。

接地电阻时,故障定位结果,如表2所示。

由表1和表2可得,经过训练后的小波神经网络可以很好地拟合输入矢量和故障点的位置对应关系。对于神经网络测试的样本,该误差基本在1%以下,具有较满意的定位结果。此故障定位方案之所以精确是因为两方面的原因:一是小电流接地系统通常情况下是直接面向用户的,为单电源系统,虽然具有复杂多变的运行方式,但大多数运行参数可知,该方案在一定程度上降低了运行参数的模糊性;二是小波神经网络在故障之后暂态高频信息的提取与应用是定位原理的关键所在。因此,经过训练后的小波神经网络故障定位精确可靠。

六、结论

本文利用小波神经网络的特点解决配电网故障定位中的问题,小波神经网络具备小波与神经网络共同的特点,既具有对非平稳随机信号所具有的优越的时频局部特性又具有非线性拟合能力,具有充分的理论依据。在对所建立的小电流接地系统进行仿真的结果分析可知,该定位方案精确度较高、方便可靠。

参考文献:

[1]郭三中.基于小波神经网络的配电网故障定位研究J].电力系统自动化,2010,(12):27-30.

[2]季涛,孙同景,薛永端.配电网故障定位技术现状与展望[J].继电器,2005,33(24):32-37.

[3]张振飞,夏利民.基于神经网络的滚动轴承故障诊断智能方法[J].信息技术,2008,(8):35-55.

[4]李振然.基于小波变换与BP神经网络相结合的配电网单相接地故障定位方法[J].继电器,2004,32(9):24-26.

[5]郜洪亮,杨学昌.一种配电线路单相接地故障测距算法[J].清华大学学报(自然科学版),1999,39(9):33-36.

[6]李玉,潘亚平,魏海平.小波神经网络及其研究进展[J].科技信息,2006,(9):24-25.

第8篇:神经网络的现状范文

关键词:神经网络;全要素生产率;预测;生产物流

中图分类号:F513.2 文献标识码:A

未来经济发展状况一直是人们探讨的问题。经济预测是在一定的经济理论指导下,以经济发展的历史和现状为出发点,以调研资料和统计数据为依据,在对经济发展过程进行定性分析和定量分析的基础上,对经济发展的未来情况所作出的推测。由于经济现象纷繁复杂,能获取的统计资料有限,现有的经济预测理论与方法还不能对此给予完全合理的解释和有效的预测,经济预测的实效往往不佳,为此本文引入神经网络方法对中国制造业生产率进行短期预测,获取促进制造业生产率发展的具体途径,同时,也为经济领域同类短期预测准确性的解决提供一种可行的思路和方法。

一、BP神经网络的基本原理

BP(Back Propagation)网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小[1,2]。BP神经网络模型拓扑结构包括输入层(input layer)、隐层(hidden layer)和输出层(output layer)(如图1所示)。

二、BP神经网络训练程序的编制

借助于MATLAB神经网络工具箱[3]来实现多层前馈BP网络的转换,免去了许多编写计算机程序的烦恼。神经网络的实际输出值与输入值以及各权值和阈值有关,为了使实际输出值与网络期望输出值相吻合,可用含有一定数量学习样本的样本集和相应期望输出值的集合来训练网络。

1.训练参数的设定

训练参数的设定:一般先对如下参数进行赋值:

最大训练步数:net.trainParam.epochs=1000

最小梯度差:net.trainParam.min-grad=-3

精度目标值:net.trainParam.goal=1e-4

显示间隔:net.trainParam.show=20

动量系数:net.trainParam.mc=0.9

学习率:net.trainParam.lr=0.5

2.设计网络函数

设计网络函数newff:用于创建前馈式BP网络,调用语法为:

net=newff(PR,[S1 S2…SN1],{TF1 TF2…TFN1},BTF,BLF,PF)

PR―R×2矩阵,由训练样本R个输入的最大最小值构成

Si―第i层节点数,输入层节点数为3个,依次为制造业工业增加值、制造业全社会固定资产投资和工资;输出层节点数为2个,依次为当年和下一年的全要素生产率;这里主要问题是隐层的确定,从两个方面入手:

第9篇:神经网络的现状范文

关键词:高速公路;隧道施工系统;安全评价;模糊理论;神经网络

0引言

近年来,随着国家高速公路迅猛发展,隧道建设数量也越来越多,规模也越来越大。在隧道施工过程中,由于围岩地质条件的多样性和复杂性,其施工事故发生率比其他岩土工程高且严重,给隧道工程施工人员身心带来严重的危害,社会影响恶劣,有悖于国家建设和谐社会的宗旨。这就要求用科学的方法对隧道施工生产系统进行安全分析与评估,预测事故发生的可能性[1]。

在传统的公路隧道施工生产系统安全评价中,经常使用的安全评价方法主要以定性安全评价方法为主,如专家论证法、安全检查表法及作业条件危险性评价法等[2,3]。近年来,在公路隧道施工生产系统安全评价中,引人了模糊综合评价的方法,取得了较好的决策效果[4]。但是,该方法缺乏对环境变化的自学习能力,对权值不能进行动态调整[5],而神经网络具有非线性逼近能力,具有自学习、自适应和并行分布处理能力,但其对不确定性知识的表达能力较差,因此,模糊控制与神经网络结合就可以优势互补,各取所长[6],在这方面已经出现了一些研究成果[7~11]。为此,本文把人工神经网络理论与模糊综合评价理论相融合,研究建立了一种模糊神经网络评价模型,对公路隧道施工的安全管理水平进行评价。

1模糊神经网络

1.1基本结构原理

模糊神经网络是由与人脑神经细胞相似的基本计算单元即神经元通过大规模并行、相互连接而成的网络系统,训练完的网络系统具有处理评估不确定性的能力,也具有记忆联想的能力,可以成为解决评估问题的有效工具,对未知对象作出较为客观正确的评估。

根据评估问题的要求,本文采用具有多输人单元和五输出单元的三层前馈神经网络,其中包括神经网络和模糊集合两方面的内容。

1.2神经网络

为了模拟人脑结构和功能的基本特性,前馈神经网络由许多非线性神经元组成,并行分布,多层连接。Robert Hecht一Nielson于1989年证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近[12],因而一个三层的BP网络完全可以完成任意的输人层到输出层的变换。因此,本文研究的公路隧道施工系统安全评价模糊神经网络采用三层BP神经网络结构。输人层有 个神经元,输人向量 , ,输人层神经元 的输出是输人向量的各分分量 。隐层有个神经元 , ,若输人层神经元 与隐层神经元 之间的连接权值为 ,且隐层神经元 的阈值为 ,则隐层神经元 的输出为

(l)

式中 是神经元的激励函数,一般选取单调递增的有界非线性函数,这里选用Sigmoid函数:

(2)

由此,隐层神经元的输出为:

(3)

同理可得输出层神经元的输出为:

(4)

1.3学习算法

本网络采用BP学习算法,它是一种有教师的学习算法,其学习过程由信号的正向传播和误差的反向传播组成。基本原理是:设输人学习样本为 个,即输人矢量 ,已知其对应的期望输出矢量(教师信号)为 ,正向传播过程将学习样本输人模式 从输人层经隐含单元层逐层处理,并传向输出层,得到实际的输出矢量 ,如果在输出层不能得到期望输出 ,则转人反向传播,将 与 的误差信号通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而调整各神经元之间的连接权值,这种信号正向传播与误差反向传播得各层权值调整过程是周而复始地进行的,直到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。

网络的具体学习算法的计算模型如下:

对某一学习样本 ,误差函数为

(5)

式中: 、 分别为该样本的输出期望值和实际值。

对于所有学习样本 ,网络的总误差为

(6)

网络学习算法实际上就是求误差函数的极小值。利用非线性规划中的梯度下降法(最速下降法),使权值沿着误差函数的负梯度方向改变。

隐层与输出层之间的权值(及阈值) 的更新量 可表示为

(7)

式中: 为学习率,可取 。

将式(6)和(4)代入式(7),并利用复合函数求导的连锁规则,得

(8)

式中: 为迭代次数, 为误差信号

(9)

类似的,输入层与隐层之间的权值(及阈值)修正为

(10)

同理可得

式中 为误差信号

(11)

为了改善收敛性,提高网络的训练速度,避免训练过程发生振荡,对BP算法进行改进,在权值调整公式中增加一动量项,即从前一次权值调整量中取出一部分迭加到本次权值调整量中,即:

(12)

(13)

式中 为动量因子,一般有 。

1.4模糊集合

评估指标集由表征一类评估决策问题的若干性能指标组成。由于指标的量化含有不确定性,故用模糊方法加以处理[13]。评估指标的模糊集合 可表示为

(14)

式中: 是评估指标, 是相应指标的评价满意度, 。

评估指标集用其满意度表示,取值在[0,1]之间,作为模糊神经网络系统中神经网络的输人向量,这正好符合神经网络对输人向量特征化的要求。实践表明,经过对输人向量的特征化处理,可大大减少网络的学习时间,加速网络训练的收敛。

2隧道施工系统安全评价模糊神经网络

2.1指标体系与神经网络划分

实践证明,一个好的隧道施工系统安全评价方法应满足以下要求:评价指标能全面准确地反映出隧道施工系统的状况与技术质量特征;评价模式简单明了,可操作性强,易掌握;评价结论能反映隧道施工系统的合理性、经济性及安全可靠性;评价中所采用的数据易于获取,数据处理工作量小;顶层输出即为系统的专家评估,而每层各评估项目的子系统都可以用子结构表示。

每个子结构具有输人输出关系可表达为

(15)

其中 是子系统的输出, 是子系统的输人矢量, 为相应的专家(加权)知识。

评估专家系统中各子系统的评估由各自的模糊神经网络来完成。

这种对评估系统的结构分解和组合具有如下特点:

(1)每个子系统可以采用较少的神经元来实现神经网络的自学习和知识推理,这样既减少了学习样本数、提高了样本训练速度,又能够独立完成某一推理任务。

(2)分解的各子系统具有相对独立性,便于系统的修改、扩展和子系统的删除,从而具有良好的维护性。

(3)子系统的评估项目即为节点,在系统进行评估推理时产生的评估表示式可以很好地解释评估系统的推理过程,避免了神经网络权值难以理解所致的推理过程难以理解的弱点。

2.2网络的设计

评估问题是前向处理问题,所以选用如前所述的前向型模糊神经网络来实现。

(1)输人层

输人层是对模糊信息进行预处理的网层,主要用于对来自输人单元的输人值进行规范化处理,输出由系统模糊变量基本状态的隶属函数所确定的标准化的值,以便使其适应后面的处理。根据评价指标体系,对应20个指标构建BP网络的输入层为20个节点,将指标转换为相应指数后作为样本进入网络进行计算。

(2)隐层(模糊推理层)

该层是前向型模糊神经网络的核心,用以执行模糊关系的映射,将指标状态输入与评估结果输出联系起来。采用试探法选取模型的隐含层神经元数,即首先给定一个较小的隐含层神经元数,代入模型观察其收敛情况,然后逐渐增大,直至网络稳定收敛。通过计算该模型的隐含层神经元数为28个。

(3)输出层

输出层是求解模糊神经网络的结果,也是最后的评估结果。我们把评价因素论域中的每一因素分成5个评价等级,即

={安全( ),较安全( ),安全性一般( ),较不安全( ),不安全( )}

对应这5个等级,确定输出层为5个节点。这样就构建了一个“20―28―5”的3层BP网络作为评价体系的网络模型。

2.3模糊神经网络训练

网络设计好后,须对其进行训练,使网络具有再现专家评估的知识和经验的能力。样本数据来自我省已经建成的高速公路隧道施工的现场数据库,从中选取30组,其中20组数据作为训练样本,余下的10组作为测试样本。实际网络训练表明,当训练步数为12875时,达到了目标要求的允差,获得模糊神经网络各节点的权值和阈值,网络训练学习成功。根据最大隶属度原则进行比较,与期望结果相符,其准确率为100%。这说明所建立的隧道施工系统安全评价模糊神经网络模型及训练结果可靠。

3 工程应用实例

利用所训练好的模糊神经网络模型,对江西省正在施工的某高速公路A3合同段3座隧道(北晨亭隧道、洪家坂隧道和窑坑隧道)施工系统进行安全评价测定,评价出系统的安全状况与3座隧道施工实际情况完全相符。同时,实际系统的评价结果又可作为新的学习样本输入网络模型,实现历史经验和新知识相结合,在发展过程中动态地评价系统的安全状态。

4 结论

(1)本文对模糊理论与神经网络融合技术进行了研究,建立了一种公路隧道施工系统安全模糊神经网络评价模型,利用历史样本数据进行学习训练和测试,并对工程实例进行了评价。结果显示,该评价方法可行,评价精度满足工程应用要求,为公路隧道施工安全评价探索了一种新的评价方法。

(2)运用模糊神经网络知识存储和自适应性特征,通过适当补充学习样本,可以实现历史经验与新知识完美结合,在发展过程中动态地评价公路隧道施工系统的安全状态,可及时评估出施工系统的安全状况,尽早发现安全隐患。

参考文献:

[1]徐德蜀.安全科学与工程导论[M].北京:化学工业出版社,2005.

[2]刘铁民,张兴凯,刘功智.安全评价方法应用指南[M].北京:化学工业出版社,2005.

[3]田建,李志强,张斌.交通建设工程安全评价技术现状及趋势研究[J].中国安全科学学报,2008,18(6):171-176.

[4]张鸿,刘优平,黎剑华等.基于模糊理论的隧道施工安全预警模型研究及应用[J].中国安全科学学报,2009.19(4):5-10.

[5]刘辉,王海宁,吕志飞.模糊神经网络技术在矿山安全评价中的适应性研究[J].中国安全生产科学技术,2005,1(3):54-59.

[6]张吉礼.模糊-神经网络控制原理与工程应用[M].哈尔滨:哈尔滨工业大学出版社,2004.

[7]葛淑杰,李彦峰,姜天文等.基于模糊神经网络的煤矿安全评价综合评判[J].黑龙江科技学院学报,2007,17(4):321-325.

[8]郑恒,汪佩兰.模糊神经网络在火工品生产系统安全评价中的应用[J].安全与环境学报,2004,4:159-162.

[9田军.基于模糊神经网络的隧道围岩分级系统[J].湖南交通科技,2007,34(4):104-107.

[10]郭宇航,王保国.两类新型神经网络及其在安全评价中的应用[J].中国安全科学学报,2008,18(7):28-33.

[11]宋瑞,邓宝.神经元网络在安全评价中的应用[J].中国安全科学学报,2005,15(3):78-81.

[12]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007.

[13]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学,2005.

相关热门标签