公务员期刊网 精选范文 垃圾填埋处理范文

垃圾填埋处理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的垃圾填埋处理主题范文,仅供参考,欢迎阅读并收藏。

垃圾填埋处理

第1篇:垃圾填埋处理范文

关键词:城市生活垃圾;卫生填埋处理技术

随着我国城市化建设的快速发展,城市人口剧增,城市垃圾产量也快速增加,使得垃圾处理难度增加,给城市发展和管理带来困难,并严重威胁着城市居民的健康和生存。目前我国城市垃圾以每年10%的速度增长,估计到2010年日产量60~70万吨,年产量2.52亿吨,人均年产量440kg,每年全国产生的城市生活垃圾超过1亿吨,并以每年6%的速度增长,全国200多座城市已陷入垃圾围城之中。【1】在这种严峻的情况下,要求我们采用适合我国现阶段国情的方法和技术,对生活垃圾进行无害化处理。

1.城市生活垃圾处理的主要技术

我国城市生活垃圾处理技术水平近年来不断提高,但总体水平还较低,长期依靠直接堆放和简单处理方式进行消化,污染问题日益严重,虽然我国已逐步展开垃圾综合治理技术,但是垃圾污染问题仍是大部分城市所面临的问题。通过无害化、减量化处理,把垃圾作为资源加以利用,是我国长期的指导方针,目前国内外较成熟的生活垃圾处理技术主要有:焚烧处理技术、堆肥处理技术、卫生填埋处理技术。【2】

(1)焚烧处理技术

焚烧处理技术是一种高温热处理技术,即以一定的过剩空气量和被处理的物质在焚烧炉内进行氧化燃烧反应,废物中的有毒有害物质在高温下氧化、热解而被破坏的一种可同时实现废物无害化、减量化、资源化的处理技术【3】。通过焚烧处理可以得到有效的分解,烟气中的有害气体达标排放。我国焚烧技术分两类,一类为流化床技术,一类为固定床焚烧炉和链条炉排式焚烧炉技术。【4】焚烧处理技术的特点是处理量大,减容性好,无害化彻底,并且有热能回收,但由于焚烧设备一次性投入大,运行成本高,对垃圾热值有一定要求,尾气处理要求严格,因此垃圾的焚烧处理在发达国家使用较多。

(2)堆肥处理技术

城市生活垃圾中含有的有机质在一定温度、湿度、含氧量等条件下可生化分解成没有腐败性的一种腐殖土状物质,以该物质为基质经烘干粉碎加入适当的无机肥料添加剂和生物菌种,在造粒机中制成颗粒,经干燥制成颗粒状有基复合肥和生物有机肥。堆肥按需氧程度一般分为厌氧堆肥和好氧堆肥两种。厌氧堆肥是依靠专性和兼性厌氧细菌的作用降解有机物的生化过程,此法有机物的分解速度缓慢、发酵周期长,占地面积大。好氧堆肥是依靠专性和兼性好氧细菌的作用降解有机物的生化工程,此法有机物的分解速度快、堆肥所需天数短、臭气发生量少,因此采用较多。【5】堆肥处理技术的关键是分选,是该技术所面临的一个难题,如果分选不彻底,用混合垃圾进行堆肥,有机废物发酵因素欠科学化,许多有害物质会随堆肥进入土壤造成二次污染。

(3)卫生填埋处理技术

卫生填埋是一种最通用的垃圾处理方法,特点是费用低、方法简单,在选定的处置场内,采用防渗、铺平、压实、覆盖处理垃圾并对填埋场沼气、渗滤液进行处理。经科学的选址、严格的场地保护处理,对渗滤液和填埋气体进行控制。卫生填埋场具有处理和终止处置生活垃圾的双重功能,采用焚烧处理的残渣和堆肥处理中的不可堆肥部分都需要卫生填埋处置。作为生活垃圾的最终处理方法,是大多数城市解决生活垃圾出路的最主要方法。

根据我国城市生活垃圾的性质、处理技术及经济发展水平,卫生填埋处理技术应作为我国现阶段城市垃圾处理技术的重点发展方向。

2. 卫生填埋处理技术介绍

卫生填埋一般可分为五种类型:

(1)普通厌氧填埋:工程设施简单,填埋作业简便,但不符合卫生标准;发达国家已没有这类填埋场,国内有早期建设的还有在使用。

(2)厌氧卫生填埋:无排渗导气系统,卫生标准较低;发达国家已不使用,国内原有垃圾填埋场大部分属该类型;

(3)改良型厌氧卫生填埋:卫生标准高,填埋作业简便,国外生活垃圾填埋场一般采用这种形式;国内新建填埋场如杭州天子岭、深圳下坪、南昌麦园、福州红庙岭和贵阳高雁等填埋场均按建设部技术标准《城市生活垃圾卫生填埋场技术标准》CJJ17-2001、《生活垃圾填埋场环境监测技术标准》CJ/T3037-1995和《生活垃圾填埋污染控制标准》GB16889-1997等进行设计、施工和运行管理;

(4)准好氧型卫生填埋:根据有关资料表明,本类型渗滤液有机物浓度略低于改良型卫生填埋,腐熟速度较快,但通气管路多,作业繁琐,比较少用;

(5)好氧型卫生填埋:卫生条件好,垃圾腐熟快,但通气管路多,且需设鼓风机鼓风,不仅作业复杂而且技术上尚处于未成熟阶段。我国包头有类似型式的填埋场建设尝试,该类填埋场适宜在少雨、干旱地区使用,可省去渗滤液处理系统。

现以目前使用较多的改良型厌氧卫生填埋处理技术为例对其工艺特点进行简述。

3. 改良型厌氧卫生填埋工艺特点

填埋分单元逐日覆土填埋。进场垃圾经计量后,进作业点按统一调度卸车,然后由填埋机械摊平、碾压。碾压作业要求分层进行,垃圾层的厚度是影响压实密度最重要的因素。为了获得最大的

密度,垃圾应分层摊平,每层厚度在0.45~0.8m并加以压实;分层越厚,机器能压实的程度越低,见图3-1。压实机械通过垃圾的行程次数也会影响垃圾的压实密度。机器在一个方向驶过垃圾一次定义为一个行程;无论什么机器,为获得最佳的压实效果都应完成3至4次行程,如附图3-2所示。

行程次数在5次以上并不能获得经济的附加密度值。填理厚度达到2.3m时,覆土0.2m,构成一个2.5m厚的填埋单元。根据国内已建成填埋场的运行经验,当土料供给困难时,为保护生态自然环境,可用其它材料,如塑料薄膜等作覆盖材料取代2.5m填埋单元的覆盖用土。1~2天,构成一个单元并做到逐日覆土,并进行喷药消毒灭虫,以减少和杜绝蚊蝇昆虫孳生。多个填埋单元组成2.5m厚的单元层。四个单元层组成一个大分层,高度10m,覆土0.3m,分层有一定坡面,各层外坡面应形成弧面,坡向填埋区周边截洪沟或边沟,以利于排除场区层面上地表径流,减少渗滤液量。大分层之间设宽度6m的控制平台,可通过填埋设备,并设有截排坡面径流的排水沟。填埋完成后的坡面总坡度为1:4,顶面坡度为2%。按不同的填埋阶段,覆土作业可分为三种:1)填埋单元覆土厚0.2m;2)分层覆土0.3m;3)最终覆土及封场顶面覆土厚1m以上,具体覆土方法视封场后使用要求来决定。

对于库区底层垃圾的填埋。为了保护库区防渗系统不受损坏,铺填第一层垃圾时应严格按照下列要求作业:

(1)底层垃圾应为松软性物质,如有长硬物料,如钢筋、铁管、竹木干等坚硬条状物,应全部挑出,以防碾压时破坏集渗系统及保护层。

(2)底层填埋垃圾的厚度为3~3.5m,由推土机一次布料,推土机应行走在垃圾层上,不允许直接压到保护层。

(3)场区填埋过程卫生管理采取措施主要是防止垃圾飞扬出垃圾场。经验表明,阻止垃圾飞扬出场的最佳方式是高低栅网联用;高网按总图布置(3m高),而低网(2.0m左右,顶部呈凹形)则在工作面上依风向变化而搬移;此外堤坝也有助于收集飞扬垃圾,并要定时在场内和场四周进行清扫散落垃圾的工作。

填埋达到设计标高时,需封场复垦,恢复植被,具体做法为:1)在填埋终了层面覆盖一层粘土;2)在粘土层上可根据需要再覆盖一层营养土,土表面可进行绿化,总覆土厚度为1m。实行逐次填埋逐次封场。

这样做能减少地表径流渗入垃圾体,减少渗滤液量,防止和减少废气逸散,减轻污染和病菌传播,避免蚊蝇、昆虫孳生。填埋期结束时,整个场地也完全封场。静置一段时间后,填埋场可以利用来植树、种菜或作休闲用地等。

3. 结束语

我国城市垃圾无机物多、有机物少的成分特点更适合采用卫生填埋处理技术[x]由于垃圾中无机物含量高,填埋后比较稳定,产生的臭味气体少,不会造成大气质量恶化;渗滤液相对较少。卫生填埋处理技术设备简单,运行成本低,就我国目前的经济发展状况是可行的。

城市生活垃圾卫生填埋处理技术具有的处理费用低,土地利用率高,对环境和人类健康影响小等特点,决定了从我国城市垃圾的成分和国家总体经济实力等方面考虑,卫生填埋处理技术应作为我国现阶段城市垃圾处理技术的重点发展方向。

参考文献:

[1]黄进 兰州市生活垃圾分类收集实施条件研究【D】,中国优秀博硕士学位论文全文数据库(硕士)2006

[2]刘天奇等编著 环境保护概论【M】,北京 高等教育出版社,1990 211-212

[3]聂永丰 三废处理工程技术手册【M】,北京 化学工业出版社,2000

[4]张景欣 霍演龙 城市生活垃圾的焚烧发电处理技术[J],黑龙江环境通报,2007,31(1):89-90.

[5]史征 城市生活垃圾处理技术研究进展[J],河北化工,2010,第33卷(11):34-35

Municipal solid waste sanitary landfill technology introduced

Songhui

(Guizhou East China Engineering CO.,Ltd. ,Guiyang, Guizhou, 550002)

Abstract: With China's rapid economic development, social progress and urbanization, humans have gradually realized that environmental protection for economic prosperity, to promote social progress and improving people's quality of life, the importance of municipal solid waste is becoming increasingly prominent, reasonable and effective suitable for national conditions of China's current waste disposal methods - sanitary landfill for a long period of time, will be our main way of Municipal solid waste.

第2篇:垃圾填埋处理范文

关键词:垃圾填埋场;渗滤液;处理技术;

垃圾处理常见的方法包括卫生填埋、焚烧、堆肥和综合利用等。卫生填埋法由于运输管理方便、处理费用低、技术成熟,因而成为我国处理垃圾的主要方式。但在垃圾填埋过程中产生的渗滤液是一种危害较大的高浓度的有机废水,对周边环境及填埋场场底土层污染严重,且污染持续时间长,造成严重的二次污染,因而对渗滤液进行有效的收集和处理已成为城市环境中亟待解决的问题,垃圾渗滤液的处理技术是国际上的研究热点问题之一。

1 垃圾填埋场渗滤液的产生及其水质特征

垃圾填埋后,在微生物作用下,垃圾中有机物经过好氧反应和厌氧反应发生降解。垃圾中溶解的氧气较少,好氧反应速度快,因而好氧反应很快终止而进入厌氧环境。垃圾中有机物的降解主要由厌氧反应承担。垃圾降解产生低分子有机物以及垃圾中的可溶性有机物进入垃圾渗沥液中,使得渗沥液中氨氮等有机物含量较高。且垃圾降解产生的CO2溶入垃圾渗沥液中使其程微酸性,这种酸性环境加剧了垃圾中不溶于水的碳酸盐、金属及其金属氧化物等发生溶解,因此渗沥液中含有较高浓度的金属离子。由于影响渗沥液水质成分的因素很多,包括水分供给情况、填埋场表面状况、垃圾性质、填埋场底部情况、填埋场操作运行方式、填埋时间等,因而渗沥液中污染物的种类、浓度变化范围很大。所以针对不同的垃圾渗沥液应采取适合的处理方法。

2 垃圾渗滤液处理方法

目前垃圾渗滤液处理方法主要有生物法和物化法,当垃圾渗滤液的BOD/COD大于0.3时,渗滤液的可生化性较好,可以使用生物处理法;对BOD/COD比值较小(0.07~0.2)、难以生物处理的垃圾渗滤液,以及生物法很难去除的相对分子量较小的有机成分,物化处理效果更好。

2.1 生物法

垃圾渗沥液的生物处理主要是指依靠处理系统中的微生物的新陈代谢作用以及微生物絮体对污染物的吸附作用来去除渗沥液中的有机污染物的废水处理方法,可分为厌氧和好氧处理两种。

2.1.1 预处理

渗滤液中污染物的成分变化很大,COD最大可达70000mg/L,BOD也可达到38000mg/L,而氨氮的质量浓度可达1700mg/L,甚至更高,重金属中则以Fe,Pb等的浓度最高。渗滤液中高浓度的氨氮会对微生物的活性有强烈的抑制作用,因此通过对渗滤液的预处理,去除一部分氨氮,对后续生物处理的顺利进行具有重要意义。

目前关于渗滤液预处理的研究有用空气自由吹脱和加石灰吹脱预处理方法,效果良好,此外还有化学沉淀和吸附的方法去除氨氮,都取得了不同程度的去除效果。

北方地区垃圾成分以无机物为主,垃圾自身含水率较低,渗沥液的产生主要来自于降水,渗沥液的产量及浓度受季节变化影响较大。常用的方法是设置渗沥液调节池,雨季时加大处理量,旱季时通过自然蒸发及渗沥液回灌等措施减少处理量,节省能耗。由于渗沥液主要来自于降雨,因此其有机物浓度较低。

2.1.2 好氧处理

好氧处理最普遍的方法包括延时曝气、曝气稳定塘等,这些方法对降低垃圾渗沥液中的BOD5、COD和氨氮都取得一定的效果,还可以去处另一些污染物如铁、锰等金属离子。好氧生物处理工艺较为成熟。目前,主要的厌氧生物处理工艺有曝气稳定塘、传统活性污泥法和生物膜法等。

2.1.3 厌氧处理

厌氧法包括厌氧污泥床、厌氧式生物滤池、混合反应器及厌氧塘等,它具有能耗少、操作简单、投资及运行费用低等优点。利用间歇式厌氧反应器将原液中83%的COD转化成甲烷气体;使用间歇和连续上流式厌氧污泥床处理垃圾渗滤液,使反应器有机负荷率在0.6~19.7g(L•d)的条件下操作,间歇上流式厌氧污泥床去除COD的效率在71%~92%之间,对于连续上流式厌氧污泥床反应器,COD去除效率保持在77%~91%范围内。

2.1.4 好氧与厌氧结合处理法

对高浓度的垃圾渗滤液,采用厌氧、好氧结合处理工艺经济合理,处理效率也较高。采用氨吹脱-厌氧生物滤池-SBR工艺对某填埋场的渗滤液进行了研究,渗滤液中COD,BOD5,NH3-N和TN的去除率分别达到95%,99%,99.5%和97%。此外,利用厌氧-好氧反应系统来处理“年轻”的渗滤液中有机物和含氮化合物,脱氮作用和甲烷生成均可在厌氧反应器中进行,有机物去除和硝化作用在好氧反应器中进行,效果良好。

由于生物法操作简便,运行费用较低,且技术成熟,因而具有广泛的应用前景,但是对于可生化性低、难降解的有机物,以及毒性高的废水,生物法处理效果较差,但物化法可弥补该方面的不足。

2.2 物理化学法

常见的物理化学法包括光催化氧化、吸附法、化学沉淀、膜过滤、土地处理等。

2.2.1 光催化氧化

光催化氧化是一种刚刚兴起的新型现代水处理技术,具有工艺简单、能耗低、易操作、无二次污染等特点,尤其对一些特殊的污染物比其他氧化法更具显著的优势,但目前国内外关于光催化降解有机物的研究尚处于理论探索阶段。。

2.2.2 膜处理法

膜处理法是用各种隔膜使溶剂同溶质和微粒分离的一种水处理方法,根据溶质或溶剂通过膜的推动力的大小,膜分离法可分为反渗透法、超滤、微孔过滤等。在韩国,为处理“年老”的渗滤液中难降解的有机物和高浓度的氨氮,使用综合膜处理工艺,包括一个膜生物反应器和反渗透装置。处理效果为COD去除率97%,总氮的去除率91%,运行成本仅为传统处理方法的60%。利用反渗透法处理不同的渗滤液,发现来自于普通填埋场渗滤液和含有可生物降解废物填埋场渗滤液的处理效果很好,COD和氨氮去除率超过98%,并发现透水量和传导性之间有显著线性的关系。膜处理的最大问题是膜污垢,会堵塞膜孔,对处理效率有很大影响。此外膜过滤技术费用昂贵,因此国内膜技术无法得到广泛应用。

2.2.3 化学沉淀法

混凝技术是一种重要的化学沉淀法,常常作为预处理并结合其他方法处理垃圾渗滤液,效果显著,但易受pH值等条件的限制。利用混凝-絮凝法作为反渗透法的预处理,可以解决膜污垢的问题。

2.2.4 渗滤液回灌技术

渗滤液回灌就是将渗滤液收集后,再返回到填埋场中,通过自然蒸发减少滤液量,并经过垃圾层和埋土层发生生物、物理、化学等作用截留污染物的过程。渗滤液再循环对废物降解、填埋场稳定性都有较大的促进作用,对有机物具有很强的净化能力,其中土壤结构、水力负荷、COD负荷、配水次数及配水浓度等对土壤净化能力均有一定的影响。然而,渗滤液再循环虽然可以降低其有机成分的含量,但氨、重金属及其他的无机物等仍保持在较高水平,因此在渗滤液再循环后有必要更进一步的处理,而且,过剩的渗滤液还要进行处理,对回灌法处理渗滤液的工艺流程、技术参数需要进一步优化。

第3篇:垃圾填埋处理范文

近些年来,随着我国经济高速发展,生态环境保护已成为社会所关注的话题之一,尤其是在我们的城市垃圾处理这一领域上。因为,随着我国城市化建设的不断加快以及城市人口的不断增加,工业、农业、生活等大量的生活垃圾被直接丢弃、填埋,由此产生大量的渗滤液,对土壤、资源等造成一定的污染,严重影响了人们的生活质量。为此,如何有效的处理这些问题,正日益地成为了我国当前社会发展所面临的一个重大课题,已被越来越多的学者所研究。文中论述了城市生活垃圾填埋场场污垃圾渗滤液对生态环境造成的危害,并提出了相应的防治对策,希望能给给为同行提供一些帮助。

关键词:生活垃圾;垃圾渗滤液;治理技术;

一、垃圾渗滤液的产生及性状特征

80年代末以来,我国的城市垃圾填埋处理技术有了一定的发展,全国相继建成了一批较为完善的城市垃圾卫生填埋场。但是垃圾填埋场产生的垃圾渗滤液给生态环境带来了一定程度的污染,大多数垃圾渗滤液未经任何处理直接排入河道,严重污染了周边环境。垃圾渗滤液是垃圾在填埋过程中由于垃圾中有机物分解产生的水和垃圾中的游离水、降水以及入渗的地下水,通过淋溶作用形成的污水。就渗滤液的性质而言,属于高浓度有机废水,且水质相当复杂。

垃圾渗滤液有以下特性:

(1) 滤液水质十分复杂,不仅含有耗氧有机污染物,还含有各类金属和植物营养素(氨氮等),如果工业部门使用的垃圾填埋厂,渗滤液中还会含有有毒有害的有机污染物。

(2)BOD 5、COD浓度高,最高可达几万,远远高于城市污水。

(3) 垃圾渗滤液中有机污染物种类多,其中有难以生物降解的萘、菲等非氯化芳香组化合物、氯化芳香组化合物、磷酸酯、邻苯二甲酸酯、酚类化合物和苯胺类化合物等。

(4)垃圾渗滤液中含有10多种金属离子,其中的重金属离子会对微生物产生抑制作用。

(5)氨氮含量高,C/N比例失调,磷元素缺乏,给生物处理带来一定的难度。

可见,垃圾渗滤液用常规的生物处理是难以达标排放的。治理的重点是COD和氨氮的处理,尤其是氨氮的处理。

二、 当前我国垃圾填埋场垃圾渗滤液处理现状

近年来,我国垃圾产生及填埋进入了高峰期,城市垃圾填埋场渗滤液渗漏污染地下水的现象屡屡发生。垃圾填埋后该垃圾场周围的地下水,无论是污染程度还是污染的范围,都有逐年增加的趋势。表现为有机物和细菌总数严重超标,三氮、硬度和矿化度等水化学指标升高,导致垃圾场周围十多平方公里范围内的地下水已不能饮用。因此,为改善人居环境、促进城乡经济发展,治理垃圾渗滤液已是保护生态环境的一项紧迫的任务,对于垃圾填埋场来说渗滤液必须自行处理达标后才能排放。

三、垃圾渗滤液污染治理技术

垃圾填埋场渗滤液是世界上公认的污染威胁大、性质复杂、难于处理的高浓度的有机污水。具有BOD5和COD浓度高、金属含量较高、成分复杂、水质水量变化大、有机物和氨氮的含量较高,微生物营养元素比例失调等不同于一般城市污水的特点。目前,垃圾渗滤液处理主要有以下几种:

(1) 预吹脱:

通过对渗滤液的预处理,去除部分氨氮,对后续处理的顺利进行具有重要意义。目前预处理的研究有采用空气自由吹脱和加石灰吹脱预处理,这种方法易造成二次污染。

(2)好氧生物处理:

好氧处理主要是活性污泥法。低氧、好氧活性污泥法和SBR等改进活性污泥法比常规法更为有效。

(3) 厌氧生物处理

厌氧法包括厌氧污泥床、厌氧式生物滤池、混合反应器及厌氧塘等,它具有能耗少,操作简单,投资及运行费用低等优点。已报道的有:间歇厌氧反应器、间歇和连续上流式厌氧污泥床、上流式厌氧过滤器等。但占地面积大,污泥量大,现场容易产生臭味,造成二次污染,影响环境。

(4) 厌氧与好氧结合处理法

氨吹脱-厌氧生物滤池-好氧生物滤池工艺对垃圾渗滤液的中试研究达到较好的处理效果。由于生物法操作简单,运行费用低,且技术成熟,因此具有广泛的应用前景,但对于可生化性低、难降解有机物及毒性高的废水,生物法处理效果差,可用物化法弥补。

(5)生物膜处理技术

醋酸纤维在上世纪60年代产生,其促进了膜分离技术的快速发展与应用,也应用到了垃圾填埋渗滤液的处理方面。常用的膜处理技术中包括反渗透、超滤和纳滤等分离技术。反渗透和超滤技术联合处理垃圾填埋渗滤液的效果十分明显,能够将COD与色度等进行有效的去除,效率达到98%以上。膜处理技术也由于操作简单、处理效果较高等优势而得到了广泛的应用。当前,在国内很多大型的垃圾填埋场都使用或者是筹划使用生物膜处理技术。但是其中所涉及到的工艺中,反渗透工艺的重点环节的成本较高,而且消耗量很大。为了减少膜表面受到机械或者是污水中毒素的影响,需要在使用膜处理之前对渗滤液进行一定的处理,才能够确保膜的使用性能得到充分的发挥,延长膜的使用寿命。另外,使用膜处理技术进行处理的渗滤液中会遗留大量的污染物需要进行及时的安全处理,这样才能有效的消除渗滤液对环境和土壤造成的污染。

另外,还有垃圾渗滤液的人工湿地处理方法,包括人工湿地的组成、污染物去除机理、影响处理效率的因素等。通过对人工湿地处理渗滤液的工艺和国内外应用实例进行总结、与传统处理方法相比,对其经济性进行分析。可以看出,垃圾渗滤液的人工湿地处理法有成本低、构建和运行维护费用低、处理效果比较好等优点,在我国的许多地区有一定的适用性。

四、垃圾渗滤液处理技术发展趋势

随着我国城市的生活垃圾总量急剧增加,垃圾渗滤液的处理已成为城市建设中急需解决的技术难题,也是生态城市建设,尤其是小城镇示范工程建设必须配套解决的关键环节。

垃圾填埋场渗滤液处理对选择垃圾渗滤液生物处理工艺的方案设计提出了更高的要求。垃圾渗滤液的生物法处理依靠微生物的降解作用达到去除污染成分的效果,是目前国内外研究的重点,由于其无需专门处理设施投资、出水稳定、管理方便、运行费用低等特点,生物法处理也是该领域的发展趋势。同时对城市垃圾填埋场的渗漏进行检测至关重要,且迫在眉睫。目前普遍采用的通过在填埋场内观测、井中采样分析进行的检测,只能监测垃圾填埋场浅层部分点位的地下水水质状况,而对于深层更大范围内地下水的水质检测,则难度很大,在检测填埋场是否发生渗漏时往往漏掉,这是当前值得十分注意的问题。一种能快速检测垃圾填埋场大范围内污染渗漏状况的地球物理方法,通过先进的地球物理仪器设备来检测渗滤液渗漏后地下介质发生的物性变化(如电磁场的变化),再配合适当的地球化学分析手段,便可进一步分析判断其渗漏范围和污染程度。这一技术的应用,将使我国的垃圾处理建立一个新台阶。

结束语:

随着城市化进程的快速发展,生活垃圾产生量不断增加,垃圾填埋场产生的垃圾渗滤液给生态环境带来了一定程度的污染,因此城市生活垃圾安全处置已成为生态环境保护的重要内容,必须重视对垃圾渗滤液的处理。

参考文献:

[1] 梅特卡夫等.废水处理工程处理及回用(第4版)[M].北京:化学工业出版社,2004,6.

第4篇:垃圾填埋处理范文

关键词:垃圾渗滤液;有机污染;厌氧工艺;生物处理法

中图分类号:Q958文献标识码: A

一、垃圾渗滤液处理的来源和特点

城市垃圾填埋场垃圾渗滤液处理工艺技术主要分为四大类,它们分别是:(1)生物处理法有传统活性污泥法、稳定塘法、厌氧固定膜生物反应器法等;(2)土地处理法。(3)物化处理法有絮凝沉淀、化学氧化、活性炭吸附、膜分离和电化学法等;(4)减量处理法包括减少进入填埋场的各种水分的方法、蒸发法、蒸馏法、回灌法等;当前主流的垃圾渗滤液处理工艺技术主要是生物处理法与物化处理法。

垃圾渗滤液污染物的浓度很高,BOD5含量最高可达普通城市污水浓度的几百倍。一个日处理1 500t左右的垃圾填埋场产生的渗滤液已经极其可观,其污染物负荷与一座十几万人口的城市所产生的生活污水不相上下。全国垃圾渗滤液的污染排放量约占年总排污量的1.6%,而以化学耗氧量核算却占到可见垃圾渗滤液排放量的5.27%,由此可见垃圾渗滤液虽然绝对数量较少但是其危害程度却较大。就一般概念而言,通常所指的垃圾渗滤液的概念是指外部雨水等流体进入垃圾填埋场后,通过与垃圾填埋场内的填埋垃圾层及上覆土壤所产生的污水及本身流体所含有的垃圾液体混合而成的具有较高浓度的污水。这种污水富含有机污染物及重金属离子和病菌等污染物和有毒物质。其具有成分极其复杂、污染物含量变化大、处理难度高、污染时间具有长期性等特点。且垃圾渗滤液排出量影响因素较多,排出量主要受外部水量注入量如降水等因素影响。

二、选择垃圾渗滤液处理工艺的原则

根据进水水质特点、排放标准要求、渗滤液处理的规模,结合当地自然和社会经济等条件综合分析确定,选择垃圾渗滤液处理工艺的原则如下:(1)处理工艺确保出水稳定并达到设计排放标准,处理技术先进、可靠;(2)工程运行费用低,管理、维修方便,运转自动化程度较高;(3)可根据进水水量、水质灵活调整运行方式和参数,最大限度地发挥处理装置和构筑物的处理能力。借鉴和参考国内外先进技术和经验,结合当地的实际情况,选择切实可行的处理工艺,保障垃圾渗滤液处理处理系统的正常、稳定运行。

三、某市垃圾渗滤液处理实例

本市生活垃圾渗滤液处理厂设计处理量600m3/d,设计进水指标CODcr 3000-8000mg/L、BOD5 1000-3000mg/L、氨氮1200-2500mg/L、总氮1400-3000mg/L,采用水质均化+膜生物反应器(MBR)+纳滤(NF)+反渗透(RO)的组合工艺,将生化和膜处理相结合,能将渗滤液中的污染物质分解,减少污染物的总量,同时具备脱氮除磷功能,可以处理不同“场龄”生活垃圾填埋场产生的渗滤液。出水指标执行《生活垃圾填埋场污染控制标准》(GB16889-2008)表二排放要求。

1、预处理系统

垃圾卫生填埋场产生的渗滤液汇入调节池中,渗滤液经提升后经篮式过滤器进入水质均化罐,水质均化罐起到调节进水水质,平衡渗滤液中营养物,提高渗滤液的可生化性的作用。

2、MBR系统

“反硝化(A)-硝化(O)-超滤(UF)”称为膜生物反应器(MBR)。垃圾渗滤液含有较高的有机污染物,选择工艺时既要考虑COD和BOD5的去除,又要强化氨氮和总氮的去除。MBR及其组合工艺的主要特点:①出水水质稳定,由于膜的高效分离作用,分离效果远好于传统沉淀池;系统内能够维持较高的微生物浓度,提高了反应装置对污染物的整体去除效率,保证良好的出水水质。②剩余污泥产量少,该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低,降低了污泥处理费用。③可去除氨氮及难降解有机物,由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。该处理工艺选择外置管式超滤膜,超滤用于去除废水中大分子物质和颗粒。超滤截留大分子物质和微粒的机理是膜表面孔径机械筛分作用,膜孔阻塞、阻滞作用和膜表面及膜孔对杂质的吸附作用,还可以去除一些胶体颗粒和微生物细胞。外置式管式超滤膜具有运行稳定可靠,操作管理容易,易于膜清洗、更换等优点。

3、纳滤(NF)

纳滤采用螺旋式卷式膜,是以压力差为推动力,介于反渗透和超滤之间的截留水中粒径为纳米级颗粒物的一种膜分离技术。它截留有机物的分子量大约为200-400左右,截留溶解性盐的能力为20-98%之间,对单价阴离子盐溶液的脱除率低于高价阴离子盐溶液。

4、反渗透膜(RO)

反渗透技术(RO)是以压力为驱动力的膜分离技术,其基本原理以压力差为推动离,施加超过溶液渗透压的压力于半透膜,将浓溶液中的水压渗到膜的稀溶液一侧,而浓溶液则不断浓缩留在膜的另一侧,达到浓缩液分离的目的。RO处理系统不易受环境的影响,对反渗透影响较大的环境因素主要是压力、温度、进水水质。RO处理系统能去除无机盐、重金属离子、有机物、胶体、细菌、病毒等,保证出水达标。膜分离在应用存在膜污染的问题,主要存在有无机污染、有机污染和微生物污染三种形式。由于污染物质在膜表面形成附着层或堵塞膜孔,从而导致膜通量减少、膜及膜孔结构发生变化。当进水污染物浓度较高时,进水的渗透压就特别高,需要进水有较高的压力克服渗透压,才能实现物料分离,这导致能耗较高。

5、其他处理系统

本处理工艺中生化处理产生的剩余污泥经脱水后运至垃圾填埋库区填埋;各处理工艺中产生的臭气统一收集进行处理;反渗透产生的浓缩液收集至浓缩液池,最终回灌至垃圾填埋库区。

总结,该渗滤液处理工艺运行以来,各处理单元处理效果较好,出水指标CODcr 14.6mg/L、BOD5 6.3mg/L、氨氮0.76 mg/L、SS 3.4 mg/L,根据监测结果显示水质指标均满足《生活垃圾填埋场污染控制标准》排放要求。

四、渗滤液处理技术的应用对策

在日常研究中,人们普遍根据m(BOD 5)/m(CODcr)的数值对垃圾渗滤液处理技术的适应性进行分类。(1)当值>0.3时适用生物处理法,这也意味着此时垃圾渗滤液的可生化性较好。如若垃圾渗滤液为高浓度的有机物时,对该垃圾渗滤液进行处理时应采用好氧、厌氧处理相结合为宜。(2)对于值

结束语

综上所述,垃圾渗滤液处理工艺必须加以整合,必须要考虑到多方面的因素,结合具体的渗滤液组份的变化综合应用多种工艺技术手段进行处理。尽量考虑在节省投资、提高效率、缩短处理时间方面有所突破。充分考虑到各种化学离子及组份的相互干扰性,并充分利用这种干扰性进行交联式处理,这样既可节约物化成本,也充分利用了渗滤液的化学组分,实现了利用式处理。从最重要的环保角度而言,物化法结合生物法进行综合处理是垃圾渗滤液的发展方向与必由之路。

参考文献

[1]张与兵,熊惠英.垃圾填埋场渗滤液组合处理工艺工程实践[J].工业安全与环保,2014,02:54-55+76.

[2]聂法臣.垃圾渗滤液处理工艺技术研究[J].辽宁化工,2014,03:285-287.

第5篇:垃圾填埋处理范文

关键词:生活垃圾;渗滤液处理;好氧生物处理;厌氧生物处理

中图分类号:X512

文献标识码:A

文章编号:1009-2374(2012)20-0137-03

垃圾渗滤液的水质构成成分很多,污染物分类也很多,污染物浓度和对应的变化都大。渗滤液中含有耗氧污染物、重金属和植物营养素等多种有毒有害物质及生物污染物。针对垃圾渗滤液中污染物浓度高、水质多变等特点,渗滤液处理技术的研究受到普遍的重视,并取得了一定的进展。

我国处理垃圾以无害、减量和资源为三个主要原则,将会新建设一批生活垃圾的填埋场。处理垃圾渗滤液能否达到排放标准,是衡量垃圾填埋场是否成为卫生填埋场的关键指标。渗滤液作为浓度高的有机物废水,其如何处理是近几年研究的热点。研究人员开展了大量试验,取得一些研究成果,目前正在开工建设一些垃圾渗滤液的处理厂。但由于渗滤液水质极为复杂,处理渗滤液还存在一些问题,本文对这些问题进行了详细总结,并针对存在问题提出相应的研究对策。

1 垃圾渗滤液处理中的常见问题

近年来,我国处理生活垃圾的渗滤液处理厂存在的常见问题具体如下:

1.1 渗滤液所含的高浓度氨和氮元素

高浓度的氨和氮元素是垃圾渗滤液的水质特征之一,根据生活垃圾填埋场填埋垃圾的方法及不同的垃圾成分,渗滤液中所含的氨和氮元素的浓度在数十到几千mg/L之间。随着垃圾填埋时间得到对应延长之后,生活垃圾中的有机氮成了无机氮,垃圾渗滤液的氨和氮元素的浓度会有所升高。

与污水比较,垃圾渗滤液的氨和氮元素的浓度要高出许多倍。一是因为高浓度的氨和氮元素抑制生物处理系统发挥作用;二是因为高浓度的氨和氮元素容易造成垃圾渗滤液中的氨、氮的比例不协调,无法开展生物脱氮,最终过滤的水质无法达标

排放。

在处理高浓度的氨和氮元素渗滤液流程中,多选取先吹脱氨后再开展生物处理,现在氨吹脱的主要方法有曝气池氨吹脱、吹脱塔氨吹脱和精馏塔氨吹脱。

我国常用的氨吹脱方法有两种,曝气池氨吹脱和吹脱塔氨吹脱。其中曝气池吹脱法因为气液的接触面积相对小,所以曝气池吹脱效率不高,适用于处理低氨、氮元素含量的渗滤液;采用吹脱塔氨吹脱可以产生高的氮去除率,但吹脱塔氨吹脱的运行成本大,且脱氨的尾气不好治理。

以渗滤液处理厂为例,氨吹脱的投资约占总体投资的三成,而其运行的成本却是总处理渗滤液成本的七成。因为在氨吹脱运行中,吹脱之前一定要把渗滤液pH值调到约11,吹脱以后为使其可用于生化,还要再把渗滤液pH值调回中性,所以在氨吹脱的运行中要加入大量的酸和碱调整渗滤液的pH值,以提供必须的气液所用的接触面积和风机供应足够的风量才能保持一定气液比再使用,进而使得处理渗滤液的成本相对偏高。

空气氮吹脱法在年平均气温相对不高的地区无法开展,因其低温条件时,吹脱没有办法正常实施,且在寒冷的地方吹脱塔会发生因气温低而结冰的现象。我国北方尤其是东北地区,无法推广应用。

选取汽提的方式虽能解决去除氨和氮元素,但因为要提升垃圾渗滤液的温度,所以其处理的成本居高不下。

表1 各种吹脱方式的对比

项目

吹脱方式 效率 尾气处理 占地 成本 气温

曝气池 低 难处理 大 低 有影响

吹脱塔 较高 难处理 较小 高 有影响

精馏塔 很高 较易处理 最小 高 无影响

1.2 渗滤液无法有效可生化性

渗滤液可生化性不好重点表现在两方面:首先,随着垃圾填埋场的填埋时间不断变长,渗滤液对应的生化性有所减小,在填埋的最后时段,其可生化性非常不好,BOD5/COD比值甚至<0.1,这样的渗滤液变得老化,无法继续使用;其次,在填埋开始的时候,垃圾渗滤液的可生化性还符合要求,但仅依靠生物处理也不容易把渗滤液的处理等级处理成二级或一级标准之内,通常来说,渗滤液的COD中每升会有500~600mg没有办法用生物

处理的东西。

2 垃圾渗滤液的生物处理技术

2.1 预处理

由于渗滤液在前面所说的特征,仅仅选用一般的生物处理方法及通常的运行无法达到理想的处理氮的效果,所以必须依照渗滤液的水质特征选用特定的对策和措施以提升生物处理渗滤液的效率。

(1)去除渗滤液所含的金属离子。垃圾渗滤液中含有很多种金属离子,若不开展金属离子的预处理,不但会发生抑制生化过程,而且还会产生沉淀,阻塞生化反应的进一步进行。在生物膜的表层结成沉垢,而影响去除效果。预处理中多是选取化学混凝沉淀的方法,以石灰和其他硫化物作为沉淀剂,除掉垃圾渗滤液中所含的重金属,同时清理掉大量的渗滤液的悬浮颗粒。预处理能够调妥渗滤液的酸碱值,把渗滤液调整成中性。

(2)减少生物处理对应的有机污泥负荷。垃圾渗滤液中富含有机物,通常要以适当减少污泥的有机负荷借以提升渗滤液的处理效率。加大污泥浓度、增加污泥的驻留时间、加大处理构筑物的处理容积等方法,可有效减少污泥的有机负荷。

第6篇:垃圾填埋处理范文

关键词:西北地区 填埋场 渗滤液 升级改造 新标准

中图分类号:X703.1 文献标识码:A 文章编号:1672-3791(2015)06(c)-0134-03

1 项目背景

该文涉及的生活垃圾填埋场位于我国西北地区,属于山谷型填埋场,东、西侧为山体,地势南高北低,在北侧山体出口地势较低处建有垃圾截污坝,坝下向北建有100 m3/d渗滤液处理站。该填埋场建于2003年,总占地面积110 hm2,总库容3 000万 m3,设计使用年限30年,日填埋垃圾2 000 t。

100 m3/d渗滤液处理站建于2007年,采用“厌氧+MBR+超滤”的二级膜渗透技术,排放标准执行《生活垃圾填埋场污染控制标准》(GB16889-1997)中的二级标准,即COD≤300 mg/L、BOD5≤150 mg/L、NH3-N≤25 mg/L,处理后出水回喷填埋场。由于对渗滤液产生量估算过于保守,填埋场渗滤液实际产生量远大于处理站设计处理能力,受过量渗滤液的冲击,各处理单元处理效率普遍下降,污水处理效果不稳定,长期超标排放。

2008年4月,国家颁布了新的《生活垃圾填埋场污染控制标准》(GB16889-2008),对渗滤液排放限值大幅提高并新增了TN指标,即COD≤100 mg/L、BOD5≤30 mg/L、NH3-N≤25 mg/L、TN≤40 mg/L[1]。原100 m3/d渗滤液处理站处理规模过小且出水水质无法达到新标准,受北方天气条件制约,年运行时间仅153d,出水采用回喷工艺,不利于渗滤液的及时处理,迫切需要对渗滤液处理工程进行升级改造并确保冬季运行,加快对场内积存渗滤液的处置。

2 工程概况

2.1 渗滤液水质特点

该填埋场采用厌氧卫生填埋方式,渗滤液产生量约470~520 m3/d,渗滤液水质呈现出成熟期填埋场特点,主要特征为:①填埋场处于产甲烷阶段,COD和BOD浓度均显著下降,但B/C比下降更为明显,可生化性变差,较难处理;②NH3-N浓度上升,C/N比相对不协调,色深,色度在200~4 000,恶臭显著;③成分复杂,含有As、Hg等重金属有毒有害物质;④渗滤液水质、水量季节性波动较大[2]。渗滤液原水水质及出水标准限值见表1。

2.2 渗滤液处理工艺比选

根据垃圾填埋场渗滤液产生量大、有毒有害物质浓度高的特点,对目前国内渗滤液的处理方法(包括生物法、物理法、组合处理方法以及深度处理技术等)进行比较,见表2。

由表2可以看出,单纯采用生物法无法确保处理效果。目前国内主流的处理工艺是由生物法和物理法组成膜生物反应器,然后再采用纳滤、反渗透等深度处理技术,确保出水达标。

2.3 工程内容

该填埋场渗滤液处理改扩建工程新建一座600 m3/d处理站,配套建设15000 m3地下调节池、7500 m3地下均衡池并加盖;原有100 m3/d渗滤液处理站的露天曝气池、调节池改造为事故池并加盖,防治恶臭污染;新建一座燃气锅炉房对处理站冬季供暖,延长运行时间至360 d/a;配套完善排水管线7.0 km,使出水进入城市二级污水处理厂处置,不再回喷垃圾场。

3 处理工艺

3.1 工艺确定

通过工艺比选,确定采用好氧生化(A/O)+物化(超滤)+深度处理(纳滤/反渗透)的渗滤液处理工艺,具体为:均衡池+外置式MBR(二级硝化)+纳滤,见图1。

3.2 工艺概述

渗滤液由调节池提升至均衡池,再进入后续MBR系统。为保护后续的膜处理单元,在布水系统前设有过滤级别为400~800mm的袋式过滤器,以防止小颗粒固体物进入后续的处理单元,外置式膜生物反应器由一级反硝化、硝化初级脱氮系统,二级反硝化、硝化深度脱氮系统和外置式超滤单元组成。

通过膜生物反应器(两级脱氮)处理后的超滤出水中BOD、NH3-N、重金属已达到排放标准,NH3-N去除效率超过99%。但是难生化降解的有机物形成的COD和色度仍然超标,出水没有悬浮物,满足深度膜处理纳滤膜的进水水质要求,再采用纳滤对出水进行深度处理,去除难生化降解的有机物,可以确保出水中COD达标排放。

3.3 各处理单元作用

3.3.1 均衡池

调节池的主要功能为调节水量,该工程建设水质均衡池,使新、老渗滤液在均衡池中进行调配以获得合适的碳氮比,极大地保证了渗滤液系统原水进水水质的稳定性,使进水的可生化性和碳氮比稳定在较好水平,有利于生物脱氮,并减少外加碳源的投加量,从而降低运行成本。

3.3.2 外置式膜生物反应器

“反硝化(A)-硝化(O)-超滤(NF)”称为膜生物反应器(MBR)[3]。该工程MBR由一级反硝化、一级硝化、二级反硝化、二级硝化和超滤系统组成。硝化池采用射流鼓风曝气,大部分有机物通过高活性的好氧微生物作用在硝化池内得到降解,同时氨氮在硝化微生物作用下氧化为硝酸盐。硝化池至前置反硝化池设有混合液回流(硝氮回流),硝氮回流至反硝化池内在缺氧环境中还原成氮气排出,达到生物脱氮目的。

考虑到出水中TN排放限值为40 mg/L,建设二级硝化和二级反硝化,当前置反硝化和一级硝化脱氮不完全时,在二级反硝化和二级硝化反应器中进行深度脱氮反应,通过控制硝化和反硝化反应的完全程度来控制出水中的TN。

硝化系统出水由超滤进水泵分配至超滤环路。超滤膜内表面为高分子有机聚合物的管式错流式超滤膜。超滤每条环路设一台循环泵,在沿膜管内壁形成紊流,产生较大的过滤通量,避免堵塞。

3.3.3 纳滤

MBR膜生物反应器出水中NH3-N、总金属离子、SS等指标已达到排放标准,但部分难降解有机物尚不能去除,采用纳滤可以进一步分离难降解的大分子有机物,进一步深度处理。

3.3.4 污泥处理系统

该工程生化剩余污泥和纳滤浓缩液混合后进入污泥池,由板框压滤机进料泵引入板框压滤机进行脱水,脱水产生的干泥运至填埋场,板框压滤机上清液回入生化池。

4 工程运行情况

4.1 水质达标情况

经过几个月的调试运行,处理系统能够稳定运行,出水水质良好。环境监测部门对该工程进行环保竣工验收监测给出的监测结果为:处理后出水中COD 12~19 mg/L,BOD

4.2 主要污染物处理效率

根据环境监测部门对该工程进行环保竣工验收监测给出的监测结果,核算该工程对渗滤液主要污染物的处理效率分别为:COD 99.7%,BOD≥99.9%,NH3-N≥99.9%,TN 99.6%,TP 99.9%。

5 结语

(1)经过渗滤液处理站改扩建,新建的600 m3/d渗滤液处理站采用先进处理工艺使出水能够满足《生活垃圾填埋场污染控制标准》(GB16889-2008)的标准限值,符合渗滤液无害化处理要求,出水不再回喷,经排水管线输送至城市二级污水处理厂处置,符合渗滤液减量化处理要求。

(2)原有100 m3/d渗滤液处理站的调节池、曝气池通过加盖减少恶臭污染,同时新建燃气锅炉对处理站各处理单元供暖,确保工程实现全年360d运行,加速处理渗滤液。

(3)针对国内其他生活垃圾填埋场的渗滤液处理中超滤膜易堵塞问题,该工程采用外置式膜生物反应器,通过制造紊流避免污泥堵塞超滤膜,是对目前主流处理工艺的大胆创新,效果显著。

参考文献

[1] .生活垃圾填埋场渗滤液升级改造项目案例分析[J].中国西部科技,2013,12(12):9-10.

第7篇:垃圾填埋处理范文

探讨通过利用畜禽废水中氨氮实现矿化垃圾中铵氧化菌的富集,再利用其对CH4同等氧化能力实现垃圾填埋场温室气体总量减排。研究结果表明:矿化垃圾对畜禽污水中氨氮具备较强的硝化能力,运行120 d内氨氮去除率高于60%;投加200 mg·kg-1氨氮后的培养研究中,120 h驯化后矿化垃圾硝酸盐氮的生成量分别为原生矿化垃圾样品和粘土样品的2.0倍和3.8倍;矿化垃圾和粘土样品中CH4消耗和CO2的净生成趋势可分别采用一级和零级动力学模型来表征(R2>068);与氮转化趋势类似,基于CO2的净生成速率,120 d驯化后矿化垃圾的CH4氧化能力比粘土样和原生矿化垃圾分别提高了59.3%和10.6%。矿化垃圾经高氨氮畜禽养殖废水驯化可有望提高其对CH4的氧化能力,而污水中其他组分(CODCr、SS及磷素等)富集对CH4氧化过程的影响还亟待进一步研究。

关键词:

甲烷氧化; 硝化能力; 矿化垃圾; 驯化; 变化趋势

全球变暖已成为世界关注的重大环境问题。《京都议定书》中急待减排的主要温室气体包括:CO2、CH4和N2O[12]。目前,相关研究主要集中在农田、草地、湿地及林地等生态系统[34],而对碳氮源丰富、转化更急剧的生活垃圾填埋场中CH4和N2O的释放研究匮乏。仅有的文献表明,生活垃圾填埋场是CH4和N2O的重大释放源[57]。张后虎等以季为时间尺度对中国上海和杭州生活垃圾填埋场3种温室气体(CH4、N2O和CO2)进行了全年同步监测,将结果统一换算成CO2释放当量后发现CH4释放量占主导,高达95%以上[78]。为此,垃圾填埋场温室气体减排的关键在于控制CH4的释放量。填埋气体收集系统可有效降低填埋场内的CH4分压,使其释放推动力减小。除此之外,CH4气体在经过填埋场终场覆盖层时在甲烷氧化菌的作用下被氧气氧化转化为CO2、水和生物质,从而减少甚至完全消除填埋场的甲烷释放[911]。

张后虎,等:利用畜禽废水中的氨氮驯化矿化垃圾填料氧化填埋场的CH4

除甲烷氧化菌外,Mandernack等在填埋场覆土和蔡祖聪等在农田发现铵氧化菌同样具备氧化CH4的能力[3,1213]。在适宜的环境条件下,甲烷氧化细菌可氧化铵态氮,铵氧化细菌也可能氧化甲烷,从而可考虑借助富集铵氧化菌于填埋场覆盖材料氧化CH4,为削减填埋场的温室气体释放量提供了技术途径。矿化垃圾填料硝化能力强、铵氧化菌群落丰富[1416],应成为首选覆盖材料。Barlaz等也尝试采用腐熟垃圾构建生物覆盖层(Biological active cover)来削减CH4的释放[9],而中国鲜见涉及垃圾填埋场温室气体减排技术的相关研究,更未能涉及矿化垃圾经高氨氮废水驯化后,富集铵氧化菌对CH4氧化能力的衍生研究。

研究旨在利用高氨氮浓度的畜禽养殖废水培养矿化垃圾,通过富集铵氧化菌氧化CH4降低垃圾填埋场温室气体的总释放当量,为控制生活垃圾填埋场温室气体的释放研究低成本、高效率的减排技术。

1材料与方法

1.1矿化垃圾与粘土土样

供试原生矿化垃圾取自南京城市生活垃圾填埋场,填埋龄为10 a。场内填埋的生活垃圾主要成分为60%厨余、20%塑料、15%其他物质(竹木,纸张,织物和渣石等),日填埋量为3 000~4 000 t/d。矿化垃圾开挖后,去除玻璃、渣石等,过200目筛供使用。供试粘土样取自宜兴某农田(N: 31°29′, E: 119°59′),其粒径分布为:粘粒43.5%,壤粒 32.1%和砂粒24.4%。矿化垃圾和粘土样的基本理化性质列于表l,样品理化特性测试方法见文献[17]。

1.2氨氮驯化矿化垃圾

畜禽污水采自江苏宜兴周铁镇某养猪场,存栏100头/年左右,养猪场采用干湿分离的方法排出尿液和冲厕废水,水质指标如下:CODCr, 655 ± 184 mg·L-1; NH3-N, 168 ± 26 mg·L-1; TN,248 ± 60 mg·L-1; TP, 18 ± 12 mg·L-1; pH, 7.6 ± 0.2。采用滴滤的进水方式对矿化垃圾进行驯化,将矿化垃圾填料填充于玻璃钢装置中,尺寸为30 cm×40 cm×20 cm (H×L×W)。每日按照序批式工艺状况(前期优化结果:进水-反应-出水-闲置/4-12-2-6 h)4阶段运行[16],矿化垃圾填充的体积为20 L,按照固液比1:20,水力负荷0.40 m3·m-2 ·d-1的工况运行,运行时间为2010年8月-12月,不间断运行共历时5个月后采集的矿化垃圾样品为:驯化后矿化垃圾。

1.3氮转化实验

所有的培养实验均在容积250 mL的具塞血清瓶内批式进行,矿化垃圾(或粘土)样品经风干(25 ℃左右,3 d)、过2.00 mm筛后,精确称取50 g于瓶中。每种样品共设置6组进行培养,分别对应于投加(NH4)2SO4溶液后的第1 d中第0.5、2、12、24 h以及72 h和120 h,至规定时间取出样品同时测定土样受纳(NH4)2SO4溶液后NH4+-N和NO3--N含量,考察样品中微生物对氨氮氧化和硝酸盐氮生成的能力,投加的氮负荷为200 mg·kg-1(基于矿化垃圾/粘土样干重,以下同)。加入矿化垃圾(或粘土)和(NH4)2SO4溶液后,调节蒸馏水的量保持含水率为15%,换算成孔隙含水率约为47%(低于60%);此条件下,矿化垃圾(或粘土)内部处于有氧条件,氮转化主要以硝化过程为主[8]。培养瓶先在恒温(25 ℃)摇床上振荡0.5 h,使样品与液体混合均匀,再放入生化培养箱中25℃下避光培养,每组样品均设置2个平行样[8]。

1.4CH4氧化能力

精确称取100 g风干矿化垃圾/粘土样品(过200 mm筛)置于250 mL的培养瓶内,再注入蒸馏水保持含水率15%。瓶内以橡胶塞密封后用注射器抽出25.0 mL空气,然后注入纯CH4气体25.0 mL,使培养瓶内CH4的体积初始浓度为10%左右。将培养瓶放在恒温(25±1 ℃)摇床上145 rpm频率摇动30 min,使土壤与所投加的液体和气体混合均匀,再放入生化培养箱中恒温(25±1 ℃)培养。除CH4氧化之外,样品中微生物因呼吸作用释放CO2;故另设不注入CH4的空白组,扣除呼吸作用释放的CO2计算净生产量,研究供试样品对CH4的氧化能力。所有样品均设置3组平行,取均值作为最终数据。气体样品中CH4和CO2的浓度测定参考文献[78]。为了考察矿化垃圾样品应用于工程现场对环境的适应性,设置我国华东地区填埋场覆盖土壤冬季低温(5 ℃)、春秋季中温(15 ℃)和夏季高温(30 ℃)进行实验室培养试验[78]。

2结果与讨论

2.1畜禽废水驯化矿化垃圾填料

传统的氮去除途径主要依赖于硝化反硝化,矿化垃圾颗粒中硝化菌群丰富,高达1×105个/g[14]。为此,畜禽废水滴滤矿化垃圾填料后,对水中氨氮去除率较高,保持在60%以上(图1(b));与氨氮的高去除率相对应,出水中硝酸盐氮的累积浓度高(图1(b))。相对进水而言,出水中硝酸盐氮平均值提高了十数倍不等。反硝化能力差主要源于矿化垃圾填充高度低(20 cm),缺乏有效的厌氧环境[16]。

图1畜禽废水氨氮驯化矿化垃圾填料

2.2矿化垃圾填料中氮转化

当氨氮投加于矿化垃圾/粘土样品进行培养研究,均出现NH4+-N含量下降及NO3--N含量上升的现象(图2)。而驯化后矿化垃圾中氨氮和硝酸盐氮变化幅度最大,培养至第120 h时,NH4+-N含量低于50 mg·kg-1,而NO3--N高于300 mg·kg-1;粘土样投加氨氮溶液后,NH4+-N和NO3--N转化强度远低于矿化垃圾样品,培养至第120 h时,其NO3--N含量上升幅度低于90 mg·kg-1(图2(c))。与原生矿化垃圾和粘土相比,驯化后矿化垃圾样品中NO3--N含量在120 h上升幅度分别提高至2.0和38倍。

2.3矿化垃圾填料氧化甲烷能力

注入CH4后,矿化垃圾/粘土样品中CH4消耗和CO2的净生成趋势类似,可分别采用一级和零级动力学模型来表征(R2>0.68,图3),其中空白组CO2释放量比例小于1%。与氮转化速率相同,矿化垃圾CH4氧化能力强于粘土,CO2的净生成速率为粘土的1.6倍左右,而120 d驯化后矿化垃圾对CH4的氧化能力较原生矿化垃圾提高了10.6%。

CH4和NH4+的正四面体分子结构类似,分子量相近,CH4单氧化酶和铵单氧化酶结构极为相似,而且分别是CH4氧化和铵氧化的关键因子,CH4氧化细菌和铵氧化细菌在底物利用、氧化酶等方面具有共性[3,12]。本研究中,120 d驯化后矿化垃圾相对原生矿化垃圾和土壤样品在氮和碳转化能力方面保持一致,同时,污水中CODCr、SS及磷素等其他组分富集对CH4氧化过程的影响将在后续研究中进行表征,限于篇幅本文不作讨论。

图2矿化垃圾投加氨氮溶液后氮转化趋势

图3矿化垃圾驯化后对甲烷的氧化能力

2.4温度

图4给出了粘土、原生和驯化后矿化垃圾样品在3种温度下对CH4的氧化能力比较,不难发现,3种材料对CH4氧化与CO2的生产趋势与培养温度成正比例关系,与相关文献研究成果吻合[8]。其中5 ℃培养条件下,120 h后仅50%的CH4被氧化削减,而CO2的生产量低于800 mg C·kg1。虽然30 ℃培养条件下,原生矿化垃圾与驯化后矿化垃圾对CO2 的生产趋势接近,但12~72 h内驯化后矿化垃圾的CH4削减量显著高于原生矿化垃圾。而在15 ℃培养条件下,120 h后驯化后矿化垃圾CO2 的生产量比原生矿化垃圾高出31%,为粘土样的6.68倍。

图4温度对矿化垃圾驯化氧化甲烷能力的影响

3结论

利用畜禽污水中高氨氮浓度这一基本特征,驯化矿化垃圾填料富集铵氧化菌,借助其对CH4的同等氧化能力,削减垃圾填埋场温室气体释放总当量,为垃圾填埋场温室气体减排提供新的技术途径和矿化垃圾填料处理污水后实现再次利用,初步探索研究结论如下:

1)矿化垃圾对畜禽污水中氨氮具备较强的硝化能力,120 h培养研究中,硝酸盐氮的生成能力为原生矿化垃圾样品和粘土样品的2~4倍左右。

2)矿化垃圾和粘土样品中CH4消耗和CO2的净生成趋势可分别采用一级和零级动力学模型来表征;与氮转化趋势类似,矿化垃圾CH4氧化能力强于粘土样品,120 d驯化后矿化垃圾CO2的净生成速率为粘土样的1.6倍左右,较原生矿化垃圾提高了10.6%。不同温度培养条件研究结果表明,驯化后矿化垃圾样品对温度变化适应能力显著强于土壤和原生矿化垃圾。其中,中温15 ℃培养条件下,120 h后驯化后矿化垃圾CO2 的生产量比原生矿化垃圾高出31%,为粘土样的6.68倍。

3)矿化垃圾经高氨氮废水(畜禽养殖、焦化废水和垃圾渗滤液等)驯化富集铵氧化菌可有望提高其对CH4的氧化能力。

参考文献:

[1]

IPCC. Climate Change 2001: The scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on the climate change; Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A, Eds. [M]. Cambridge: Cambridge University Press, 2001.

[2]Parry M L, Canziani O F, Palutikof J P,等. 技术摘要. 气候变化2007:影响、适应和脆弱性[R]. 政府间气候变化专门委员会第四次评估报告第二工作组的报告,剑桥: 剑桥大学出版社,2007.

[3]贾仲君, 蔡祖聪. 稻田甲烷氧化与铵氧化关系研究进展[J]. 农村生态环境, 2003, 19(4): 4044.

Jia Z J, Cai Z C. Methane consumption in relation to ammonia oxidation in paddy soils [J]. Rural Ecoenvironment, 2003, 19(4): 4044.

[4]周存宇, 张德强, 王跃思, 等. 鼎湖山针阔叶混交林地表温室气体排放的日变化[J]. 生态学报, 2004, 24(8), 17381741.

Zhou C Y, Zhang D Q, Wang Y S, et al. Diurnal variations of fluxes of the greenhouse gases from a coniferous and broadleaved mixed forest soil in Dinghushan [J]. Acta Ecologica Sinica, 2004, 24(8), 17381741.

[5]Rinne J, Pihlatie M, Lohila A, et al. Nitrous oxide emissions from a municipal landfill [J]. Environmental Science & Technology, 2005, 39(20): 77907793.

[6]Rjesson B G, Svensson B H. Nitrous oxide emission from landfill cover soils in Sweden [J]. Tellus, 1997, 49B: 357363.

[7]Zhang H H, He P J, Shao L M. Methane emissions from MSW landfills with sandy cover soils under leachate recirculation and subsurface irrigation [J]. Atmospheric Environment, 2008, 42 (22): 55795588.

[8]Zhang H H, He P J, Shao L M. N2O emissions at municipal solid waste landfills: effect of CH4 emisions and cover soil[J]. Atmospheric Environment, 2009,43: 26232631.

[9]Barlaz M A, Green R B, Chanton J P, et al. Evaluation of a biological active cover for mitigation of landfill gas emissions [J]. Environmental Science & Technology, 2004, 38: 48914899.

[10]Abichou T, Chanton J, Powelson D, et al. Methane flux and oxidation at two types of intermediate landfill covers [J]. Waste Management, 2006, 26: 13051312.

[11]Boeckx P, Cleemput O V, Villaralvo I. Methane emission from a landfill and the methane oxidizing capacity of its covering soil [J]. Soil Biology and Biochemistry, 1996, 28(10/11): 13971405.

[12]Mandernack K W, Kinney C A, Coleman D, et al. The biogeochemical controls of N2O production and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle [J]. Environmental Microbiology, 2000, 2(3): 298309.

[13]蔡祖聪, Mosi A R. 土壤水分状况对CH4氧化, N2O和CO2排放的影响[J]. 土壤, 1999, 31(6): 289294.

Cai Z C, Mosi A R. Effect of soil moisture content on CH4 oxidation, N2O and CO2 emissions [J]. Soil, 1999, 31(6), 289294.

[14]Zhao Y, Li H, Wu J, et al. Treatment of leachate by aged refusebased biofilter [J]. Journal of Environmental Engineering, 2002, 128 (7): 662668.

[15]Zhao Y C, Lou Z Y, Guo Y L, et al. Treatment of sewage using an agedrefusebased bioreactor [J]. Journal of Environmental Management, 2007, 82: 3238.

[16]田静思, 张后虎, 张毅敏,等. 矿化垃圾湿地处理畜禽养殖废水的研究[J].生态与农村环境学报, 2011,27,(2):9599.

第8篇:垃圾填埋处理范文

关键词:垃圾填埋场;水环境;污染控制

引言

随着我国城市的快速发展,城市规模日益扩大、人民生活水平也在不断提升,城市垃圾产量也随之不断增长,城市垃圾处理已经成为了重要的城市发展问题。城市垃圾卫生填埋已经成为了我国城市垃圾集中处理的主要方式,垃圾地下填埋成本较低、工艺简单,在国内得到了广泛应用,但在垃圾填埋的过程中,其渗滤液却可能会对水环境造成一定的污染,因此必须要针对垃圾填埋场水环境污染控制问题进行深入研究[1]。

1我国城市垃圾填埋场建设情况与渗滤液处理水平分析

我国城市垃圾填埋场卫生填埋工作发展较晚,从上世纪80年代才真正展开对卫生填埋场的建设,而对垃圾渗滤液的处理建设则要更晚。我国在垃圾卫生填埋场建设方面投入了大量的财力与物力,获得了较多成果,例如上海、北京等地区已经初步实现了对生活垃圾的无害化处理,反渗透出水也已经达到一级排放标准,但整体而言我国城市来及填埋场建设与渗滤液处理的发展仍然存在较多不足,许多垃圾填埋场在建设之初没有严格按照设计图进行建设,存在垃圾渗透液直接排放、防渗设施不达标等多个问题,给周围水环境带来了极大的负面影响。

2垃圾填埋场渗滤液对水环境存在的影响

城市垃圾填埋场在建设过程中必须采取有效措施对垃圾渗滤液进行处理,从而防止其向场外扩散,进而对周围水环境带来不可挽回的污染影响。根据中国环境科学研究院对此的研究,垃圾渗滤液中的污染物质主要包括以下几个方面:一是垃圾自身含有的有害物质;二是垃圾在地下发酵过程中产生的水分以及有害物质;三是地下水浸泡垃圾而产生的废水;四是回灌水。这些渗滤液是潜入地下的污染源,因此将给周围水环境以及人体健康都带来极大的损害,且这种危害是很难被及时发觉的,一旦污染问题开始凸显时,实际造成的损害将已经到了难以弥补的地步,因此必须要在垃圾填埋场的建设时就充分重视对水环境污染的控制,从而较好的防范这类污染问题[2]。

3城市垃圾填埋场水环境污染控制研究

3.1填埋场防渗层设置

城市来及填埋场在建设时必须重视对防渗层的设置,从而有效防止垃圾渗透液对周围水环境造成不可挽回的污染问题。垃圾填埋场的防渗层需要分为以下几个部分:基础、地下水导流层、膜下防渗保护层、土工膜、膜上保护层、渗滤液导流层以及土工织物层。其中土工膜自身的反渗透性较强,但是其缺点在于抗刺穿性能较差,因此在填埋场的垃圾填埋过程中极易出现破损而造成垃圾渗滤液的泄露,而膜下黏土保护层则具有较强的抗刺穿性能,因此即使土工膜出现破损也能够较好的维持防渗透层的防护功能。值得注意的时,在铺设土工膜层时,必须要对垃圾填埋场进行土壤渗透试验,确保其渗透系数符合施工要求。

3.2排水系统设置

垃圾填埋场的排水系统主要包括以下三个部分:地下水、渗滤液以及雨水。在进行排水系统设置时,要将地下水疏排系统设置在防渗膜之下,并通过设置树枝状穿孔的PVC管道来进行地下水的排除工作;而渗滤液导渗系统则要设置在防渗膜之上,与地下水疏排系统实施分流处理;雨水排除系统则需要结合当地的地理风貌等因素进行设置,根据当地的自然地形来设置分区,从而最大可能的降低进入到垃圾填埋区的降雨量,从而进一步降低了渗滤液水量。

3.3提高渗滤液处理水平

垃圾渗滤液的处理水平在一定程度上能够决定垃圾填埋场的卫生等级,垃圾渗滤液对周围水环境将造成极大的影响,因此必须要充分重视对垃圾填埋场渗滤液的处理工作。一般的垃圾渗滤液处理方法主要包括物理化学处理方式已经以及生物处理方式。物理化学处理又包含混凝沉淀、过滤、活性炭吸附以及离子交换等,而物理化学处理方法能够较为显著的去除渗滤液中的污染物质,且其处理效果相对较为稳定,但也存在处理成本较高的问题,因此必须有效结合生物法进行渗滤液的处理。在进行渗滤液的处理过程中,应该重视水质、水量对处理方法的影响,并尽可能的采用生化与物化方法相结合的形式,从而有效提升垃圾填埋场的渗滤液处理水平[3]。同时人工湿地处理技术在处理老化渗滤液方面也存在较多优势,因此也可以结合当地的自然地形、成本等因素选择最佳的渗滤液处理方法。

结语

本文首先简要分析了目前我国城市来及填埋场的建设情况以及对渗滤液的处理情况,同时也分析了垃圾填埋场渗滤液对水环境存在的影响,针对这些污染问题,本文对加强城市垃圾填埋场水污染控制问题展开了分析,认为要从填埋场防渗层设置、排水系统设置以及提高渗滤液处理水平这三个方面进行城市垃圾填埋场水污染控制。希望本文对垃圾填埋水污染问题的研究能够对降低垃圾填埋对水环境的污染影响提供一定的帮助。

参考文献

[1]曾无己,张协奎.城市垃圾填埋场水环境污染控制初探[J].基建优化,20114,01:66-68.

[2]罗定贵,张鸿郭,刘千红,苏贵臣,陈迪云.城市生活垃圾填埋场水环境污染效应研究———以广州市李坑垃圾填埋场为例[J].北京大学学报(自然科学版),2013,05:868-874.

第9篇:垃圾填埋处理范文

关键词:城市垃圾;渗滤液;处理技术

中图分类号:G202文献标识码: A

在我国,垃圾填埋法是目前广泛使用的处理生活垃圾、工业垃圾的方法 。而且随着城市填埋技术二次污染相关问题的深入研究,作为防治二次污染问题的渗滤液处理技术也引起了越来越多的人和相关部门的重视。今后,符合我国基本国情的、经济的、具有针对性的并切实可行的垃圾填埋工艺和渗滤液处理技术的研究,将是我国研究的重点课题。

1垃圾渗滤液的特点

垃圾填埋场中重力流动的产物液体即是垃圾填埋场渗滤液,渗滤液主要包括外来水(如地下水渗入、地表水、大气降水)和垃圾分解产生的源水。能够影响垃圾场渗滤液性质的主要原因包括:填埋场条件、填埋地点的水文地质条件、填埋地点的气候条件、垃圾的主要成分、垃圾填埋的条件等。在以上多种因素的影响下,形成的垃圾填埋场渗滤液的以下特点:

1.1渗滤液水质复杂

影响垃圾填埋场渗滤液水质的主要因素是垃圾的组成成分。渗滤液是高浓度的有机废水,且不同地方垃圾的组成不同,渗滤液的水质也可能相差很大。据我国相关部门测定,国内几大城市垃圾填埋场渗滤液水质的调查显示,渗滤液中含有94种有机化合物,其中5种可诱导致癌,1种可致癌,20余种进入美国和我国EPA环境优先控制的污染物黑名单。其次,填埋的时间也会影响垃圾渗滤液的水质。一般情况下,垃圾填埋时间越长,渗滤液水质的可生化性就越差。同时随着垃圾填埋时间的增长,渗滤液中金属离子的含量降低,氨氮含量、PH值增加。除以上原因影响渗滤液水质外,填埋场的降水量、土质等也是其影响原因。由此可见渗滤液水质的变化规律是极其复杂的。

1.2渗滤液金属含量高

在垃圾的降解过程中产生的二氧化碳溶入垃圾渗滤液中,极易造成渗滤液水质呈微酸性,即加剧了垃圾中金属、金属氧化物和不溶于水的碳酸盐发生溶解,最终造成渗滤液中金属含量升高。垃圾填埋场渗滤液中主要金属离子包括:钙离子、铝离子、锌离子和铁离子等。

1.3渗滤液中氨氮含量高

垃圾填埋场渗滤液中垃圾的组成成分和垃圾的填埋方式的不同,造成渗滤液中氨氮质量浓度从数千毫克每升到几千毫克每升的变化。并且,随着垃圾的填埋时间的增长,垃圾中的有机氮不断转换为无机氮,使得氨氮的含量不断的升高。

2垃圾填埋场渗滤液的处理建议

2.1运用合并处理法

合并处理法是指垃圾渗滤液和一定规模的城市污水厂的污水合并处理,合并处理法是一种最为简便的处理方法。合并处理法的优点是:其一,节省大量单独建立垃圾渗滤液处理系统的费用,降低渗滤液处理成本。其二,能够利用污水处理厂污水对垃圾渗滤液达到稀释、缓冲的作用,实现城市污水和垃圾渗滤液同时处理的目的。合并处理法也有其缺点,包括:第一,因城市污水厂与垃圾填埋场间距离的问题,造成渗滤液的输送成为巨大的经济问题。第二,渗滤液水质复杂、组成多变容易对城市污水处理厂造成冲击负荷,甚至影响到城市污水厂的正常运行。综合合并处理法的优缺点,想在利用合并处理方法时得到效益最大化,那么必须考察其工艺的可行性。

2.2场内循环喷洒处理法

场内循环喷洒处理法是一种比较简单有效的处理方法。场内循环喷洒处理法优点包括:第一,通过回喷将垃圾的含水率由20%-25%提高到60%-70%,明显增加垃圾的湿度,提高垃圾中微生物的活性,使甲烷产生增加,以达到加速有机物的分解和污染物溶出的目的。第二,循环喷洒处理可降低渗滤液的浓度。第三,喷洒过程的挥发作用可减少垃圾渗滤液的产生,对水质及组成起到稳定作用,便于废水处理系统的正常运行及节省费用。第四,加速垃圾中有机物的分解,使垃圾场的稳定化进程由原需的15-20a缩短到2-3a。循环喷洒法存在的问题:(1)不能够完全消除渗滤液。(2)循环喷洒后的渗滤液仍需处理才可排放。

2.3渗滤液的预处理法

渗滤液中的SS污染物、色度、氨氮和金属离子通过设定在垃圾填埋场的预处理设备进行首处理,则可以得到有效的减少。又或者首先通过厌氧处理,使其生化性得到改善,降低处理负荷。渗滤液的预处理可为垃圾渗滤液的再次处理创造良好的运行条件。

渗滤液有着不同的处理方法,就方法的选则来说,应符合我国基本经济国情且达到保护环境的目的。另外,为了更好的研究垃圾渗滤液的处理技术应全面考察垃圾填埋场周边的有关因素及相应的处理技术的支持,使得垃圾渗滤液得到有效可行的处理。

参考文献

[1]常有锋,唐杰.人工湿地在城市垃圾渗滤液处理中的应用.《西安文理学院学报(自然科学版)》.2013年3期