前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的碳循环的主要形式主题范文,仅供参考,欢迎阅读并收藏。
关键词:水环境;噬菌体;碳循环;可溶性有机碳
中图分类号:Q939.48
文献标识码:A
文章编号:1007-7847(2014)03-0269-06
水环境面积约占地球表面的71%,可分为海洋、湖泊、河流等,是众多生物赖以生存的一类重要生态系统。在这个生态系统中碳循环是其中非常重要的一环,它支配着系统中其它物质的循环,也深刻影响着人类的生存环境,因此碳循环研究是生态系统能量流动的核心问题。目前的研究结果表明,在水环境的碳循环中除了化学平衡、物理泵参与了碳循环外,生物泵也是必不可少的一个重要环节,在生物泵环节中病毒尤其是噬菌体的重要作用逐步为人所知[1~4]。
病毒广泛分布于地球的各种生境中[1~4],它们不仅影响着宿主的生存状况和进化历程[5,6],而且通过裂解宿主快速释放有机碳而影响着系统中其他物质循环和能量流动[7,8]。当前,病毒(尤其是噬菌体)在维持可溶性有机碳(dissolved organic car-bon,DOC)平衡中的作用已成为生态学、微生物学和海洋生物学等研究领域关注的热点,其最新研究成果及评论纷纷登载在诸如NATURE、SCI-ENCE等国际著名学术刊物上[9~13]。
本文针对噬菌体在海洋、湖泊、冰尘穴及湿地有机碳循环中的作用进行简单介绍。
1噬菌体在海洋有机碳循环中的作用
海洋是地球上最大的碳库,含碳量为大气的50倍,生物圈的15倍,同时海洋还对调节大气中的含碳量起着非常重要的作用。由于海洋储碳对于应对全球变暖具有重要意义,生物泵储碳过程研究已成为近30年来海洋碳循环研究的焦点之一:海洋中的有机碳更主要的是以溶解有机碳(dissolved organic carbon,DOC)形式存在的,从过滤分离角度看,DOC占总有机碳的95%。病毒是海洋中数量和种类最多的生物,总量约l030个,是海洋微生物群落的重要组成部分,在全球生态系统调控、生物地球化学循环,特别是碳循环中具有重要的作用,也是一类不可忽视的战略生物资源。
“微食物环”是指海洋中溶解性有机物被异养浮游细菌摄取形成微生物型次级生产量,进而又被原生动物和桡足类所利用的微型生物摄食关系,海洋病毒主要通过“微食物环”介导了这一过程中的物质循环和能量流动。病毒通过裂解浮游植物和异氧细菌加速了颗粒性有机物(POM)向可溶性有机物(DOM)的转化,从而影响海洋系统的物质循环;而噬菌体半衰期很短,其死亡后又会形成溶解态的营养物质,在“微食物环”中形成一个“病毒回路(viral shunt)”,加快碳、氮等元素在微生物间的循环(图1)[9]。因此,噬菌体导致的细菌溶解成为初级生产者与消费者参与C、N循环最重要的途径之一[14]。
Shuttle等[9]在研究海洋病毒作用时发现:作为物质和能量流动的枢纽,病毒可以将碳和其他营养物质分流到可溶性有机物中。水体沉积物能较好保存环境中的有机物质存在信息,为探索古气候变化、追踪有机质来源、了解生态系统状况等提供了重要的线索。Danovaro等[10]对大西洋、南太平洋、地中海海底沉积物及覆水病毒的生态功能进行研究时发现:在深海沉积物中由于病毒的感染和裂解可以促使原核生物量减少80%以上,而在超过1000m深度时甚至可接近100%,将大量可溶性有机碳释放到深海中,从而大大缩短该生态系统的食物链,加快有机碳的循环和使用效率。在海洋中近70%的蓝藻和60%的游离异养菌及淡水中90%~l00%的细菌裂解死亡与病毒(噬菌体)密切相关[15,16]。据统计地球上约26%的有机碳循环是由海洋病毒完成的[l7,18]。因此海洋病毒直接或间接参与陆地生物碳循环、海洋碳固定以及大气间的碳交换[19]。
Evans等[20]测定了2007年夏季塔斯马尼亚岛亚南极带(SAZ)和澳大利亚南极海极前锋带(PFZ)的病毒丰度及病毒裂解产物总量。南极洋由两个明显的区域――亚南极带(SAZ)和极地前锋带(PFZ)组成:SAZ的硅酸盐、叶绿素含量低,而且是大气中CO2的碳汇,PFZ为低温、低盐、高营养盐和低叶绿素含量。结果发现:病毒感染导致的细菌裂解生物量在SAZ和PFZ西部很接近,分别为23.5%和23%,每天可溶性有机碳的释放量为3.3μg/L和2.3μg/L;而在SAZ东部,病毒感染导致的细菌裂解生物量可达39.7%,每天可溶性有机碳释放量为26.5μg/L。这些数据表明在SAZ和PFZ这些相互分割的区域中,病毒感染导致细菌裂解释放的可溶性有机碳是碳循环的重要途径。由于SAZ是大气中主要的CO2碳汇[21],因此对于研究病毒对碳循环的影响是很有意义的。Evans等对南极洋不同区域的裂解性和溶原性噬菌体的感染进行了调查,研究表明病毒感染导致细菌裂解每天释放的碳为0.02~7.5μg/L,病毒活性是满足微生物,尤其是威德尔海原核生物和SAZ浮游生物基本需求的主要贡献者[22]。
因此,病毒尤其是噬菌体在海洋生物地球化学循环尤其是碳循环和深海代谢方面扮演了重要角色。
2噬菌体在湖泊有机碳循环中的作用
噬菌体在海洋及其沉积物中的功能及作用,并不一定能反映其在大陆环境中的功能与作用。湖泊作为连接陆地与淡水环境的自然综合体,不仅是多种沉积矿藏赋存的场所,而且与大气、生物、上壤等多种要素密切相关,对气候、环境系统的变化史为敏感。
鉴于噬菌体对内陆湖泊日益重要生态功能的凸显,近年对大江(河)、湖泊(淡水及咸水)的噬菌体、细菌及其与DOC关系的研究也逐步受到人们的关注。Thomas等[23]对法国Bourget湖泊的病毒生态学功能展开了研究,发现病毒通过裂解每天释放的碳和磷分别可达56.5μg/L和1.4μg/L,这些有机质成为了浮游细菌营养需求的重要来源。在南极寡营养湖(Druzhby湖和Crooked湖)中,噬菌体裂解导致的细菌死亡率极高,可达251%,而释放的DOC为总DOC的0.8%~69%,其比率会随季节变化有所不同,在黑暗的冬季,病毒裂解造成的有机碳的释放量对总DOC的贡献率超过60%[24]。Fischer等[16]对多瑙河地区富营养湖泊中噬菌体及细菌数量关系的研究中发现:噬菌体感染而导致细菌裂解释放的碳为每天5~39μg/L,其中有29%~79%的有机碳能被细菌再利用,重新进入微生物环。因此病毒在湖泊中具有重要生态作用,尤其是细菌溶解产生的有机C的流动和再同化。
由此可见,虽然湖泊生态系统复杂,但病毒尤其是噬菌体在有机碳循环中同样扮演着非常重要的角色。
3噬菌体在冰尘穴有机碳循环中的作用
大陆上约10%的土地为冰川所覆盖,其中1%~6%被冰尘所沾染,冰川表面的无机和有机颗粒等统称为冰尘[25,26],而冰尘穴(croconite holes)就是指被冰尘沾染后导致冰川溶解后形成的圆柱形冰融水洞。冰尘穴广布于冰川及其消融地带,如南极、北极、格陵兰岛、加拿大、和喜马拉雅山脉等。由于冰尘的颜色较深,使得冰尘穴吸收的太阳射线也随之增加,促进了冰雪的融化,形成季节性的融水洞[27](图2)。当然,冰尘穴并不仅仅局限于大陆冰川,海洋冰川和湖泊冰川同样有冰尘穴的存在。
冰尘穴是在冰川生态系统中生命活动最活跃的栖息地,据估算仅北极冰川冰尘沉积物中生物含量就可达36g/m2。谢菲尔德大学、布里斯托尔大学和因斯布鲁克大学研究团队的学者发现格陵兰岛、斯瓦尔巴群岛和阿尔卑斯山冰尘穴中的微生物丰度甚至可与温带地区普通生态系统相当[25,26,28,29],比如每克冰尘中的微生物丰度与地中海每克土壤中的微生物丰度几乎是一致的,冰尘穴中的微生物主要包括病毒、细菌和微观植物。Sawstrom研究组也得到同样的研究结果,他们在研究北极冰川斯瓦尔巴特群岛Midre Lovenbreen冰尘穴中微生物时发现冰尘中的细菌丰度远高于冰尘穴中上覆水的细菌丰度。冰尘中细菌丰度为4.67×104/mL~7.07xl04/mL,是上覆水细菌丰度的2~6倍;其噬菌体的丰度规律也与细菌丰度类似[30]。Midtre Love-nbreen冰川冰尘穴上覆水和冰尘中病毒的丰度分别为0.6xl06/mL和20x106mL[31]。斯瓦尔巴特群岛冰尘穴噬菌体感染而导致细菌裂解比例(约l3%)远高于常温水域中噬菌体对细菌的裂解率(2%)[32]。因此,该研究团队认为:随着冰川的消退、融化,生物扮演的角色越来越重要。
冰尘中微生物的定殖加深了冰表而的颜色,其原因在于冰尘穴中的光合作用率远高于呼吸作用率,净吸收CO2,是一种负反馈机制,因此冰川表面能不断累积有机质,形成自我维持的生态系统,吸收的太阳射线进一步增加,促进冰的溶解,为微生物生长提供了必需的水份,并通过物理和生物活动将水和有机质进一步分散到冰川的其他部分,促进了微生物、有机质和碎屑转移到周边(如冰川底部),促进了其他生态系统的生命活动[26]。
冰尘穴中的光合作用率高于呼吸作用率,从而可以维持高的细菌种群丰度,而许多湖泊的光合作用低于呼吸作用,使得它们必须接收外源有机物质的输入才能得以维持平衡。从光合作用率分析,普通冰川融水的光合作用率为每小时释放碳0.60~8.33μg/L,而斯瓦尔巴特群岛MidreLovenbreen冰尘的光合作用率最高可达到每小时释放碳156.99μg/L,冰尘穴中上覆水的光合作用率则与普通冰川差不多[30]。考虑到冰尘穴的密度(约6%的冰川表面积或每m2 12个洞),那么可以确定冰尘微生物相关的碳固定和营养物质代谢是冰川生态系统物质循环的一个重要环节。
对于较简单封闭的生物地球化学微循环系统,如南极麦克马多干河谷冰川的冰尘穴,那里仅含有水、冰、矿物和有机碎屑,但也能长期维持微生物种群结构的平衡;Bagshaw等[33]系统研究了其中溶解物随季节变化而产生的化学演变过程。通过对DIC、DOC、K+和SO42-的检测发现:冰尘穴中DOC的产生速率为每年释放碳0.75μg/cm2,冰尘中代谢初级产物的溶解、周期性沉淀、次级碳酸盐的溶解、夏季的净光合作用和秋季冰冻时期净呼吸作用是左右冰尘穴中季节性变化和年溶解浓度的主要过程。
通过对格陵兰和阿尔卑斯山冰尘穴中微生物(噬菌体、细菌和藻类等)进行的研究表明:仅该地区微生物每年释放的有机碳就高达6400t[34]。所以在冰川生态系统中冰尘穴扮演着非常重要的角色。冰川覆盖了地球l5xl06km2的表面积,其生态系统同样对全球碳循环影响巨大。
因此,噬菌体感染而导致细菌裂解对冰尘穴生态系统中营养物质和有机质的循环起着重要作用。
4噬菌体在湿地有机碳循环中的作用
湿地狭义是指陆地与水域之间的过渡地带,广义上则被定义为地球上除海洋(水深6m以下)外的所有大面积水体。按照湿地的广义定义,它覆盖了地球表面的6%,却为地球上约20%的物种提供了生存环境,在维持全球生态系统平衡中具有不可替代的生态功能,享有“地球之肾”的美誉。湿地也是连接生物圈、大气圈、水圈、岩石(土壤)圈的重要纽带,位于陆生生态系统和水生生态系统之间的过渡性地带,具有独特的生态功能。
湿地是地球上能量流动和物质循环最活跃的场所,也是陆地DOC最大的储库。湿地面积虽只占陆地面积的2%~3%,但其储存的DOC却占到陆地土壤碳量的18%~30%[35]。在已知的湿地生态类型中,高原(或高纬度)湿地由于具有较高的生产力和较低的分解速率(由于温度较低所致),使之成为有机碳储备最丰富的碳库。我国科学家在对青藏高原和东北三江平原低温沼泽湿地释放的CO2/CH4观测研究中也发现其碳释放量巨大,并呈逐年上升的趋势,这充分表明高原(高纬度)湿地在全球碳循环中作用非常巨大[36,37]。然而,随着全球湿地的退化,其碳储备能力也正在下降,这一现象应该引起人们足够的重视。
湿地的储备的DOC往往通过季节性的融水或常年积水以及与小溪相连而向外部环境输出,DOC输出是湿地通过水文过程实现向土壤碳输出的一个主要途径。研究表明,在加拿大北部湿地,通过小溪迁移输出的溶解性有机物中,DOC大约为每年5~40g/m2[38]。湿地生态系统中的DOC是细菌及其他微生物养料的主要来源,DOC含量的变化将深刻影响湿地内所有微生物的生活及生长状况,而噬菌体不仅与细菌的活动密不可分,而且还可以通过裂解作用有效释放DOC进而影响湿地微生物的种群结构和组成,最终影响整个湿地生态系统的物质循环和能量流动。因此,探寻湿地中噬菌体、细菌与DOC的相互关系,也是未来研究的一个重要方向。
综上所述,病毒作为海洋中数量最多的生命粒子,一个重要的生态作用是作为其他微型生物的消费者,使得许多浮游生物细胞成为无内容物的“ghost”,同时把微生物POC转化为DOC,形成“病毒回路”,进而改变了海洋生态系统中物质循环和能量流动的途径,而病毒回路的存在可使系统中的呼吸和生产力较无病毒的系统高出约1/3 [39,40]。病毒尤其是噬菌体在在湖泊生态中对细菌溶解产生的有机C的流动和再同化过程起到重要生态作用。而在冰川生态系统中生命活动最活跃的栖息地一冰尘穴,噬菌体感染而导致细菌裂解对冰尘穴生态系统中营养物质和有机质的循环起着重要作用。所有的证据表明噬菌体在不同生态系统中对DOC的循环均起着举足轻重的作用,但在不同的系统中它们的贡献率和作用机制和调节方式又有着显著差异,因此,系统研究噬菌体在不同生态系统中对DOC的调节作用,将有利于全面理解和揭示噬菌体(病毒)在整个地球物质循环和能量流动中所起的作用。
5结语
水环境是人类社会赖以生存和发展的重要场所,碳循环的关键在于过程与机制,其中的生物过程机制是焦点之一。维持全球碳平衡的关键不应仪仅关注各个库的碳贮存总量,而应更多地研究碳的流向问题,以及“源”、“汇”不平衡的问题。噬菌体由于结构简单、基因组小、便于操作等优点,常常被用作生物基因复制及表达调控研究的模型,对近现代生物化学与分子生物学的发展做出了突出的贡献。尽管目前的研究已表明噬菌体广泛分布于各生境中,对全球的碳、氮循环均有重要影响,但对于噬菌体在水环境中的分布及生态功能方面的了解仍然非常有限。我国科学家开展了影响南海深海碳循环的底栖微生物氮营养盐补充过程和机制研究,以及南海水体中古菌的分布及生物地球化学功能的研究,但对水环境中噬菌体对有机碳循环的作用鲜有报道。昆明理工大学生命科学与技术学院对腾冲热海高温噬菌体和云南高原湖泊低温噬菌体多样性进行了研究,表明高温噬菌体和低温噬菌体均存在多样性,并对部分嗜极微生物噬菌体进行了全基因组解析和功能蛋白的高效表达及其热不稳定性分析,对云南高原湖泊低温噬菌体与有机碳循环的作用研究正在进行中。
对嗜极微生物噬菌体(尤其是嗜冷和嗜热微生物噬菌体)的研究有助于丰富人们对生命起源与进化、生命本质及环境适应策略的认识,而对嗜极微生物噬菌体中重要功能蛋白的开发与应用也将带来巨大的社会和经济效益。
参考文献( References):
[l]BETTAREL Y.SIME-NGANDO T,AMBLARD C,et al.Viralactivity in two contrasting lake ecosystems[J]. Applied and En-vironmental Microbiology, 2004,70(5):2941-2951.
[2]BREITBART M,ROHWER F.Here a virus, there a virus, ev-erywhere the same virus?[J]. Trends in Microbiology, 2005,13(6):278-284.
[3]ACKERMAN H W. 5500 Phages examined in the electron mi-croscope[J]. Archives of Virology, 2007, 152(2):227-243.
[4]SAWSTROM C, LISLE J, ANESIO A M, et al. Bacteriophagein polar inland waters[J]. Extrcmophiles, 2008, 12(2):167-175.
[5]SUTTLE C A. Viruses in the sea[J]. Nature, 2005, 437(7057):356-361.
[6]LOPEZ-BUENO A, TAMAMES J, VELAZQUEZ D, et al. Highdiversity of the viral community from an Antarctic lake[J]. Sci-ence, 2009, 326(5954):858-861.
[7]ANESIO A M, BELLAS C M. Are low temperature habitats hotspots of microbial evolution driven by viruses[J]. Trends in Mic-robiology, 2011,19(2):52-57.
[8]WEITZ J S, WILHELM S W. Ocean viruses and their effectson microbial communities and biogeochemical cycles[J]. F1000Biology Reports, 2012,(4):17.
[9]SUTTLE C A. Marine viruses--major players in the global e-cosystem[J]. Nature Reviews Microbiology, 2007, 5(10):801-812.
[10]DANOVARO R, DELL'ANNO A, CORINALDESI C,et al.Major viral impact on the functioning of benthic deep-sea e-cosystems[J]. Nature, 2008, 454(7208):1084-1087.
[11]ROHWER F,THURBER R V. Viruses manipulate the marineenvironment[J]. Nature, 2009, 459(7244):207-212.
[12]CHIARA S, LUCIANO N, ALFREDO S. DOC dynamics in themeso and bathypelagic layers of the Mediterranean sea[J].Deep-Sea Research II, 2010, 57(16):1446-1459.
[13]ZHANG R, WEINBAUER M G, TAM Y K, et al. Response ofbacterioplankton to a glucose gradient in the absence of lysis andgrazing[J]. FEMS Microbiology Ecology, 2013, 85(3):443-451.
[14]周玉航,潘建明,叶瑛,等.细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用[J].台湾海峡(ZHOU Yu-hang, PAN Jian-ming, YE Ying, et al.Relationship betweenbacterium, virus and phytoplankton and their effects to geo-chemical cycling in ocean[J]. Journal of Oceanograaphy in TaiwanStrait), 2001, 20(3):340-345.
[15]FUHRMAN J A. Marine viruses and their biogeochemical andecological effects[J]. Nature, 1999, 399(6736):541-548.
[16]FISCHER U R, VELIMIROV B. High control of bacterial pro-duction by viruses in a eutrophic oxbow lake[J].Aquatic Micro-bial Ecoogy, 2002, 27(1):1-12.
[17]WEINBAUER M G. Ecology of prokaryotic viruses[J]. FEMS Mi-crobiology Reviews, 2004, 28(2):127-181.
[18]CORINALDESI C, DELL'ANNO A, MAGAANINI M, et al.Viral decay and viral production rates in continetal-shelf anddeep-sea sediments of the Medilerranean sea[J]. FEMS Microbi-ology Ecology, 2010, 72(2):208-218.
[19]DANOVARO R, CORiNALDeSI C, DELL'ANNO A, et al.Marine viruses and global climate change[J]. FEMS MicrobiologyReviews, 2011, 35(6):993-1034.
[20]EVANS C, PEARCE I, BRUSSAARD C P. Viral-mediated ly-sis of microbes and carbon release in the sub-Antarctic andPolar Frontal zones of the Australian Southern Ocean[J].Envi-ronmental Microbiology, 2009, 11(11):2924-2934.
[21]MARINOV I, GNANADESIKAN A, TOGGWEILER J R,et al.The Southern Ocean biobeochemical divide[J]. Nature, 2006, 441(7096):964-967.
[22]EVANS C, BRUSSAARD C P. Regional variation in lytic andlysogenic viral infection in the Southern Oman and its contribution to biogeochemical cycling[J]. Applied and EnvironmentalMicrobiology, 2012, 78(18):6741-6748.
[23]THOMAS R, BERDJEB L, SIME-NGANDO T, et al. Viralabundance, production, decay rates and life strategies (lysoge-ny versus lysis) in Lake Bourget (France)[J]. EnvironmentalMicrobiology, 2011, 13(3):616-630.
[24]SAWSTROM C, ANESIO A M, GRANELI W,et al.Seasonalviral loop dynamics in two large ultraoligotrophic Antarcticfreshwater lakes[J].Microbiology Ecology, 2007, 53(1):1-11.
[25]EDWARDS A, ANESIO A M. RASSNER S M, et al, Possibleinteractions between bacterial diversity, microbial activity andsupraglacial hydrology of cryoconite holes in Svalbard[J]. Inter-national Society for Microbial Ecology Journal, 2011, 5(1):150-160.
[26]ANESIO A M, MINDL B, LAYBOURN-PARRY J, et al. Viraldynamics in cryoconite holes on a high Arctic glacier (Svalbard)[J].Journal of Ceophysical Research, 2007, 112(G04S31):10.
[27]SHELLEY M, SEAN F. The formation and hydrological significance of cryoconite holes[J]. Progress in Physical Geography, 2008,32(6):595-610.
[28]FOUNTAIN A G, TRANTER M, NYLEN T H, et al. Evolutionof cryoconite holes and their contribution tomeltwater runofffromglaciers in the McMurdo DryValleys, Antarctica[J]. Journalof Glaciology, 2004, 50(168):35-45.
[29]PORAZINSKA D L, FOUNTAIN A G, NYLEN T H, et al. Thebiodiversity and biogeochemistry of cryoconite holes from Mc-Murdo Dry Valley glaciers, Antarctica[J]. Arctic Antarctic andAlpine Research, 2004, 36(1):84-91.
[30]SAWATROM C, MUMFORD P, MARSHALL W, et al. Themicrobial communities and primary productivity of cryoconitesholes in an Arctic glacier (Svalbard 79 degrees N)[J]. PolarBiology, 2002, 25(8):591-596.
[31]SAWATROM C. GRANELI W, LAYBOURN-PARRY J, et al.High viral infection rates in Antarctic and Arctic bacterio-plankton[J]. Environmental Microbiology, 2007, 9(1):250-255.
[32]HODSON A J, ANESIO A M, TRANTER M, et al. Glacial e-cosystems[J]. Ecological Monographs, 2008, 78(1):41-67.
[33]BACSHAW E A, TRANTER M, FOUNTAIN A G, et al. Bio-geochemical evolution of cryoconite holes on Canada Glacier,Taylor Valley, Antarctica[J]. Journal of Geophysical Research,2007, 112(G04S35):8
[34]ANESIO A M, HODSON A J,FRITZ A,et al.High microbialactivity on glaciers: importance to the global carbon cycle[J].Global Change Biology, 2009,15(4):955-960.
[35]SMITH L C,MACDONALD G M, VELICHKO A A,et al.Siberian peatlands a net carbon sink and global methanesource since the early Holocene[J]. Science, 2004, 303(5656):353-356.
[36]王德宣,丁维新,勇若尔盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素[J].湿地科学(WANG De-xuan, DING Wei-xin, WANG Yi-yong. Influence of major en-vironmental factors on difference of methane emission fromZoige plateau and Sanjiang plain wetlands[J]. Wetland Science),2003, 1(1):63-67.
[37]HIROTA M, TANG Y H Hu Q W, et al.Carbon dioxide dy-namics and controls in a deep-water wetland on the Qinghai-Tibetan plateau[J]. Ecosystems, 2006, 9(4):673-688.
[38]SHURPALI N J,VERMA S B,KIM J,et al.Carbon dioxideexchange in a peatland ecosystem[J]. Journal of Geophysical Re-search, 1995, 100(7):14319-14326.
中国是全球陆地碳循环研究的重点区域,探明其生态系统碳收支不仅具有非常重要的全球意义,而且对保障中国国家安全和有关环境问题的外交谈判具有重要作用。净初级生产力(Net Primary Productivity, NPP)是指在植物光合作用所固定的光合产物或有机碳(Gross Primary Productivity, GPP)中,扣除植物自身呼吸消耗部分(Autotrophic Respiration,)后,真正用于植物生长和生殖的光合产物量或有机碳量,也被称为净第一性生产力[1]。它反映植被生产力状况,是生态系统能量与物质循环的基础,在研究区域乃至全球碳循环和碳存储中扮演着重要角色。模型模拟是当前在区域和全球尺度上进行陆地生态系统碳循环过程模拟和碳收支评估的主要研究方法。陆地生态系统过程模型的发展为系统分析、定量表达和预测陆地生态系统生产力、碳循环对气候变化和人类活动的响应等提供了有力支撑[2]。在过去几十年中,科学家相继开发了众多适用于陆地碳循环的动力学模型,这些模型主要分为生物地理模型、生物地球化学模型、陆面生物物理模型、全球动态植被模型和遥感模型等[3]。中国学者先后从国外引进和改良了CEVSA[4-5]、CASA[6-8]、GLO-PEM[9-11]、BEPS[12-13]等多个陆地生态系统碳循环模型,同时也自主开发了适用于中国陆地生态系统的AVIM2[14-15]、Agro-C[16]、FORCCHN[17]、DCTEM[18]等模型,对当前气候状态下中国自然陆地生态系统的净初级生产力和碳储量、未来气候变化和土地利用变化对中国陆地生态系统碳循环的影响等问题进行了模拟分析。
本文收集了不同学者利用过程模型和遥感模型模拟的中国陆地生态系统净初级生产力及其对未来气候变化的响应情况,旨在系统分析中国陆地生态系统净初级生产力的变化特征,进而为中国的碳收支研究、区域和全球尺度的碳循环模型模拟与发展提供数据支持。
2 中国陆地生态系统净初级生产力及其时间变化
自20世纪90年代末开始,中国学者利用生态系统过程模型和遥感模型就中国陆地生态系统NPP的估算先后开展了大量研究工作(表1)。由于所应用的模型、研究数据和研究时段等有所不同,不同研究结果间存在差异。但NPP的估算结果主要集中在1.43~3.30 之间,占表1中所有研究结果总数量的77.78%。年均NPP在3.30~4.00和>4.00 的数值个数分别只有4个。就不同研究所应用的模型来看,模拟结果的低值区主要集中在CASA、BIOME-BGc和BEPS等模型。综合不同研究者的研究结果可以得到,中国陆地生态系统NPP平均为(2.828±0.827)。
表1中加粗标记的研究结果除了朴世龙等研究指出,N沉降以及对农作物施加N肥两者可以共同解释1961-2005年中国陆地生态系统净碳增长的61%,同时大气增加和土地利用对碳储存起促进作用;但臭氧污染和气候变化降低了这一时期的碳汇储量。
3 中国陆地生态系统不同植被类型净初级生产力
由于采用的植被类型图和模型等存在差异,不同学者利用过程模型和遥感模型对中国陆地生态系统同一植被类型单位面积NPP的估算结果差别较大。本文对收集到的相关研究结果进行了汇总分析(图2)。结果显示,常绿阔叶林单位面积NPP为745.12 ,显著高于其他植被类型,但不同研究结果间变化范围很大,介于417.9~1086。之间。落叶针叶林、常绿针叶林和落叶阔叶林相差较小,变化在415.62~513.67之间。不同学者估算的农作物单位面积NPP差别很大,最低值不足最高值的1/4,其均值为458.25,低于阔叶林,但高于针叶林。灌丛与落叶针叶林较为接近,前者为365.08 ,后者为415.62。草地和荒漠均位于低值区,但前者显著高于后者,分别为217.90和16.52。森林生态系统单位面积NPP随林龄的变化而变化。Wang等[51]研究表明,落叶针叶林、常绿阔叶林、热带和亚热带常绿针叶林和落叶阔叶林单位面积NPP分别在54、40、13和122林龄时达到最大值,数值分别为462、889、620和625。由此可见,中国森林生态系统净初级生产力具有较大的增长潜力。
由于不同研究者在进行模型模拟时所用的植被类型图不同,因此相同植被类型所占面积存在差异。本文统一采用中国1∶100万植被类型图中不同植被类型的面积数据应用DLEM模型研究表明,如果综合考虑、气候、和土地利用的影响,1961-2000年中国草地NPP仅增 加了0.0003 PgC,但是去除的影响后,NPP则增加0.0143 PgC。同时,Ren等[47]指出,要想更全面地了解森林生态系统碳固持能力的变化及其应对气候变化和空气污染的能力,在未来研究中应考虑对流层浓度。
4 未来气候变化对中国陆地生态系统净初级生产力的影响
IPCC模拟了8种气候情景下中国陆地生态系统NPP到本世纪末的变化情况,结果显示,NPP将先增加,到2090年左右达到最大值,此后开始下降,其可能的原因是由于干旱的压力。
不同植被类型对未来气候变化的响应存在差异。Ju等应用Crop-C模型预测了2000-2050年中国农田NPP在A1B情景下将以0.0006 的速度增长。
图3 不同植被类型NPP总量
Fig.3 The total amount of NPP in different vegetation types
5 结语
综合分析表明,中国陆地生态系统NPP平均为(2.828±0.827) ,但不同研究者的估算结果差异较大,主要集中在1.43~3.30 之间。其中,CASA、BIOME-BGC和BEPS模型的模拟结果偏低。1982-1998年,NPP总体上呈现在波动中不断上升的趋势,从2.542 增加到2.976,平均每年增加0.027 ,增长率为1.07%。其中,80年代NPP的变化趋势较之90年代平缓。由于各植被类型所占面积不同,其单位面积NPP和NPP总量的大小分布存在显著差异。单位面积NPP表现为常绿阔叶林显著高于其他植被类型,但其估算结果的变化范围较大,平均为745.12。落叶针叶林、常绿针叶林和落叶阔叶林相差较小,变化在415.62~513.67。之间。不同学者对农作物单位面积NPP估算结果的最低值不足最高值的1/4,其均值高于针叶林,但低于阔叶林。灌丛与落叶针叶林的数值较为接近?草地和荒漠则均位于低值区,但前者显著高于后者,分别为217.90和16.52 。基于1∶100万中国植被图计算得到的不同植被类型NPP总量表现为农作物和草地居于前两位,两者之和高达总NPP的58.34%。其他植被类型中除灌丛和常绿针叶林外均不足总量的10%,其中,以荒漠和混交林的数值为最低。各森林类型NPP总量之和为0.779,占总NPP的29%。
在未来气候情景下,中国陆地生态系统NPP总体上可能呈现出先增加后减小的趋势,但不同研究结果间差异很大,甚至是完合相悖的结果。不同植被类型对未来气候变化的响应同样存在差异。
尽管过程模型和遥感模型在模拟陆地生态系统净初级生产力方面具有诸多优势,如:适用于区域和全球尺度的时空连续分析、有利于对未来气候情景的模拟预测等,但在模型应用中还存在着一定的不足,如:
(1)模型的不确定性分析
模型的构建是基于对现实过程的简化,在此过程中众多的假设和主观判断给模型带来了很多隐藏的误差。并且,模型参数和输入数据的不确定性同样影响着模型模拟结果的精度。但是,这些误差因素在传统的不确定性研究中往往被忽略[64]。尽管人们已经认识到对模型模拟结果进行不确定性分析的重要性,但是在目前的碳收支研究中,定量分析其模拟结果的不确定性仍然是一个亟待解决的问题。如表1中不同模型对NPP的估算结果差别较大,主要原因可能是模型结构、模型参数和输入数据的不同,但由此引起的NPP差异却可能掩盖真实NPP的大小,因此,对模型模拟结果的不确定性分析对模拟结果的准确性具有重要意义。
(2)模型过程机理的深入刻画
虽然目前的过程模型可以模拟出不同环境条件下植被冠层生理生态过程的动态变化,但是对这些变化的认识多停留在经验水平,并且我们对一些生态系统的过程机理还不是很清楚。如现有模型对生态系统碳、氮、水循环的耦合关系还没有较深入的描述,这需要建立在对这一关系的现实机理有较充分认识的基础上;对生态系统呼吸的模型构建往往受限于我们对其复杂过程的理解,因此,往往采用简化的方程形式[65]。
(3)碳循环模型与气候模式、水文模式的耦合
现有的陆地生态系统碳循环模型只考虑了垂直方向的通量,在空间上是相互独立的,并没有考虑水平方向的通量,如物质在大气中的平流传输、土壤水和营养物质在水平方向的移动等,这些不足均会给陆地生态系统碳收支模型的模拟结果带来很大的不确定性。
(4)遥感数据的准确性
由于遥感数据具有易获取,时空分辨率高,一些大尺度难于测量的数据信息可以通过遥感反演方式获得等特点,目前区域和全球尺度的过程和遥感模型多采用遥感数据作为模型的部分或全部驱动参数。但随着遥感技术不断发展的同时也暴露出以往遥感数据的质量问题,如,基于不同精度或质量的遥感数据可能会获得完全相反的结果。因此,基于遥感参数计算得到的净初级生产力同样存在着较大的不确定性,这需要我们在深入了解遥感数据的基础上对以往的模型模拟结果进行校正或剔除。而本文在对不同研究结果进行汇总 分析时,并没有考虑这一因素的影响,这将是下一步研究工作关注的一个主要问题。
前言
自18世纪工业革命以来,尤其二战之后,全球经济以科学技术为源动力,经济建设成就取得了飞速的发展。经济发展的同时给生态环境带来了严重的隐患,尤其是重工业的发展,化石燃料的燃烧排出大量的温室气体二氧化碳,超出了生态系统的承受能力,导致全球气温上升,各种极端天气出现。据研究,过去一百年来,全球地表平均温度(1906—2005年)升高了0.74℃,预计到2l世纪末仍将上升1.1-6.4℃。中国近百年来(1908—2007年)地表平均气温升高了1.1℃,自1986年以来经历了21个暖冬。近30年来,中国沿海海表温度上升了0.9℃,沿海海平面上升了90毫米。更令人忧虑的是,未来的气候变暖趋势将进一步加剧[1]。
1碳排放
碳排放即二氧化碳排放量。生态系统中的碳元素处于动态系统的碳循环中。地球上的碳99.9%以上来自于岩石圈和化石燃料。碳循环的主要过程:大气中的二氧化碳主要被海洋中藻类植物和陆地上的植物通过光合作用,形成植物体本身的碳化合物,然后通过生物、地质作用和人类活动,使得碳化合物又重新以二氧化碳气体的形式回到大气层中。然而,由于人类活动导致大量温室气体排放到大气中,碳循环的动态平衡被打破,大量固结在化石燃料中的碳元素最终以二氧化碳的形式被释放到空气中,而植物的光合作用又无法对过量的二氧化碳进行有效“吸收”,致使过量温室气体释放到大气中。
2温室效应
温室效应主要是指现代工业社会对化石燃料的消耗,致使大量的二氧化碳气体排放到大气中。而二氧化碳气体又有吸热和隔热的性质,使太阳辐射到地球上的热量无法向外发散,对波长比较长的红外线进行反射,最终导致地球表面温度升高起来。地球表面温度的升高带来了一系列问题,直接威胁着人类的生存空间。南极的冰川正在大幅度消融,过去的20世纪全球海平面上升了17cm。世界各地各种极端天气出现。在全球变暖的大背景下,中国气候变化的趋势与全球气候变化的总体趋势基本一致,近100年来中国年地表平均气温明显增加,升温幅度约为0.5-0.8℃,比同期全球平均值(0.6℃±0.2℃)略强。在最近的50年,我国平均地表气温增温速率为0.22℃/10年,明显高于全球或北半球周期平均增温速率[2]。如果这种情况不能妥善解决,到2050年左右,海平面会上升4℃,一些岛屿和沿海城市将永远的沉没在大海中。土地干旱进一步加剧,沙漠化面积增大,直接威胁人类粮食生产安全。一些病毒有条件滋生,并在全球蔓延。为了给子孙后代提供更大的生存空间,为了人类社会的可持续发展,减少碳排放已经刻不容缓。温室气体的过量排放引起了全球气候的变化日益引起关注,已经成为21世纪人类社会的最大挑战之一。1992年6月4日,在巴西里约热内卢通过了《联合国气候变化框架公约》,规定发达国家采取有效措施限制温室气体的排放,同时向发展中国家提供技术和资金支持。1997年12月,在日本京都通过了《京都议定书》,发达国家从2005年开始承担减少碳排放量的义务,而发展中国家则从2012年开始承担减排义务。我国1998年5月签署并在2002年8月核准了该议定书。目前,全世界已经有142个国家和地区签署了该议定书,为了人类免受气候变暖的威胁而努力。
3低碳经济
中国只有走低碳经济道路才能促进经济社会的可持续发展,也是建设资源节约型、环境友好型以及节能减排型的社会的必然要求。同时有助于我国树立负责任大国的国家形象,还可以为子孙后代创造更大的生存空间。在保持我国国民经济健康发展,人民生活水平不断提高的前提下,我们科学合理的减少碳排放,追求绿色GDP,走低能耗、低污染、低排放的低碳经济道路。下图为1975年至2010年我国GDP总能耗和万元GDP能耗走势图。随着我国政府和人民日益对低碳经济的重视,我国万元GDP能耗有了显著下降,然而近几年随之GDP的两位数增长,总能耗也随之增长,我们的碳排放总量也在不断增长,给生存环境造成了巨大压力。我们只有探索新的经济增长模式,探索新科技才能从根本上扭转这种局面。我国能源结构是以煤炭为主的,占我国能源结构68.7%。中国电力结构中,火力发电占77%发电量,也是我国碳排放的主要来源之一。这种情况迫使我们必须寻找新能源代替以煤炭为主的火力发电,开发清洁能源,有效控制缓解碳排放。粗放的工业技术是降低碳排放的最大瓶颈。我国钢铁、水泥和建材产量全世界第一,但是这些行业的能源消耗量占总能源消耗量六成以上。在满足国民经济发展的同时,必须依靠先进的技术降低产品能耗,促进企业向低碳环保型转变。对低碳经济的工业企业进行有效的财政补贴。构建低碳生产生活试验区,探索低碳生产生活模式,并向全国推广。低碳经济需要在高度发达的东部地区试点,淘汰更新一些高污染、高能耗、高排放的企业,引进先进的低碳技术调节产业结构,让广大人民感受到低碳经济给社会带来的益处。大力宣传推广公民节能环保意识,学做一个负责任的大国公民。大力开展植树造林项目,森林对气候有调节作用,可以通过光合作用吸收空气中的二氧化碳气体,形成碳汇集。森林每生长1立方米蓄积量,平均能吸收1.83吨二氧化碳,释放1.62吨氧气。据国际能源机构测算,用木结构代替钢筋混凝土结构,单位能耗可从800降到100[3]。大力发展可再生能源,优先发展风力和太阳能作为可再生资源,可再生能源占能源消费总量的比例将从目前的10%大幅增加2020年的15%。积极推进核电建设与科学发展替代能源。
一、相似概念,举例辨析
描述生物群体的概念有“种群”、“群落”、“生态系统”、“生物圈”,如何有效区分不混淆?我们可以尝试以下步骤,首先将这些概念按照描述对象从小到大的顺序排列出来:种群―群落―生态系统―生物圈,然后引导学生举例进行辨析,如一个池塘里所有的鲤鱼属于一个种群,池塘里所有的生物属于群落,一个池塘就是一个生态系统,而全球所有的生态系统就构成生物圈.通过举例辨析,学生能了解生态系统就是由生物群落和无机环境共同组成的一个系统,这只是一个表观认识,我们还需要在此基础上进一步深入.
二、构建概念模型,逐步深入
生态系统的类型有草原生态系统、森林生态系统、湿地生态系统、海洋生态系统、农田生态系统等等,这些生态系统里的生物和环境、生物和生物之间并不是互不影响的,它们之间相互作用,相互影响,构成了一个统一的整体.我们可将学生尝试分成多组,让每组以不同的生态系统为例,以概念图模型的方式画出生物之间及生物与环境之间的关系.为防止学生画图时不能确定方向,教师应提出以下要求:①因各生态系统里的生物种类众多,只要写出各种类型的代表生物即可;②物质和能量是生命活动存在的最基本条件,要求画出每种生物的物质和能量来源;③生物和其生存的环境是不可分割的统一整体,要求图中体现出生物与环境中的关系.
对于各小组完成的概念图模型,可通过设计问题组来进行概念的深入,第一组:①生态系统包括哪些成分?②生态系统中哪些成分是必不可少的?③捕食链包含生态系统中的哪些成分?通过第一组的问题学生会了解生态系统包含非生物的物质和能量、生产者、消费者、分解者四大成分,其中生产者能把无机物合成有机物,为其他生物提供了物质和能量,分解者能把有机物分解成无机物,可见,如果没有生产者和分解者,生态系统的物质循环功能将停止,生态系统就会崩溃.捕食链是食物链的常见类型,由生产者和消费者组成.食物链和食物网是生态系统的营养结构,是生态系统物质循环和能量流动的渠道.第二组问题串:①生产者所需要的物质和能量来自哪里?②流经生态系统的总能量是什么?③能量在生物之间传递的形式是什么?传递效率是100%吗?④生态系统的物质循环具有什么特点?⑤生态系统的物质循环和能量流动可单独进行吗?⑥生态系统中存在信息传递吗?通过此组问题,主要是让学生掌握生态系统的物质循环和能量流动是同时进行、不可分割的,能量主要通过生产者的光合作用输入群落,并以化学能的形成随有机物在营养级之间传递,但每种生物都会通过呼吸作用散失部分能量,这样能量流动具有单向传递、逐级递减的特点;物质循环中的物质是指组成生物体的各种化学元素,可通过碳循环的例子简要说明物质循环具有循环利用、全球性的特点.另外,生态系统中的信息传递可发生在生物与环境之间、生物与生物之间,它能决定能量流动和物质循环的方向和状态.第三组问题串:①生态系统是一个静止的封闭系统吗?②不同的生态系统的稳定性相同吗?与什么有关?③尝试构建生态系统概念的通用模型.第三组问题旨在让学生了解生态系统是一个开放的保持动态平衡的系统,生态系统的开放性决定了系统的动态和变化,开放给生态系统提供了可持续发展的可能性.最后将各组绘制的模型整合成生态系统概念的通用模型,在通用模型里包含了生态系统的四大成分,展示了生态系统是生物群落与环境之间通过物质循环、能量流动、信息传递所形成的统一的整体.
论文关键词 循环经济 法制建设 经济增长模式
循环经济是符合可持续发展理念的一种经济增长的模式。循环经济发展法制建设,是我国经济发展的必要保障。如果说国家在发展循环经济的过程中,没有相关的法律法规予以规范和制约,那么循环经济的发展就犹如水中月、镜中花。强化循环经济法制建设,涉及每一个公民的衣食住行,是转变经济发展方式,调整产业结构的必要途径,关系到我国社会主义现代化建设进程,是实现中华民族伟大复兴的必然选择。随着经济发展,我国建设法治国家的步伐加快,依法治国理念日益深入人心,经济发展与环境保护、追求当前利益与长远利益的矛盾日益突出,这给我国环境保护方面的法制建设提出了新的要求。本文拟从我国循环经济发展法制建设的现状入手,分析原因,并提出相关对策。
一、循环经济的涵义
1970年,A.克尼斯等人基于生态系统的危机,即物质代谢结构的崩溃而撰文提出了“物质循环分析论”,认为人类的经济活动应当包括资源、能源的投入生产加工分配流通最终消费排放废弃物的全过程,这是首次在经济学理论中提出经济循环与物质循环相适应的思想。
以物质循环分析论为基础,物质循环全过程管理理念逐渐形成,即对物质从生产直至废弃各个阶段实施全过程管理的过程,除了回收、再生循环和再商品化外,还必须促进和管理全社会的物质循环,体现了循环经济的内涵和外延。
二、我国循环经济法制建设现状及问题
在改革开放初期,我国开始建设中国特色的环境保护法律体系。到目前为止,我国已出台十余部环境保护法律,包括《环境保护法》、《矿产资源法》、《节约资源法》、《水法》、《清洁生产促进法》、《水土保持法》等。在《清洁生产促进法》中首次提到“循环经济”,这在我国循环经济发展历程中是一次尝试。《固体废物污染环境防治法》中规定了国家对固体废弃物污染的防治的内容,该法中的这项规定充分体现了实施减量化的基本理念,为固体废物的处理提出了法律依据。而《循环经济促进法》为循环经济发展创造了基本的法律构架,但是我国并没有相关的行政法规对循环经济做出规定,只以有《报废汽车回收管理办法》、《水污染防治法实施细则》、《退耕还林》细则中有所规定。
下面从我国法律体系方面具体分析存在的问题:
第一,我国法律规定不够完善,有许多领域法律没有涉及,而在一些领域又存在规定上的重叠,给执法者带来许多麻烦,同时也不利于普及法律知识,例如我国环境保护法并没有对循环经济做出明确的规定,一些污染物存在跨行业的特性,对于这些特殊的物质,没有法律明确规定。
第二,立法过度集中在工业领域而忽视农业方面的立法,第三产业更是少之又少,同时工业立法因缺少相应配套措施也变得举步维艰,可反映出在产业结构的调整并没有在立法上给一、三产业相应的重视。
第三,环境立法存在的效力较低的固有问题,常常流于表面形式,没有相应的配套措施,提倡和口号比较多,没有规定权利和义务,因此在现实生活中实现的可能性较小。
第四,建设主体规定的并不明确,法律只规定政府部门的公开信息义务,对于企业及其他主体没有明确规定,造成具体执行不畅。
第五,对生产责任延伸方面没有相关的监管保障,在发展循环经济的下,建立的生产者责任延伸制度,在责任主体上规定了生产者不仅对本企业的产品负责,企业有对产品进行回收和清除的责任,看似完备的制度设计其实缺乏相关法律责任的规定和政府的执行监督文件。
三、我国循环经济法的基本原则和对策
(一)循环经济法的基本原则
确立循环经济法律原则,在促进经济发展的过程中,使国家、企业时刻保持正确的方向,明确保护环境的义务和责任,更加注重发挥政策的引导作用,同时强调清洁生产和提高资源利用率和废物合理排放的重要性。
1.预防原则
预防原则,是针对粗放型经济发展模式造成环境破坏提出的,环境污染、生态破坏、资源短缺已成为我国乃至世界各国面临的突出环境问题,亟待寻求合适途径解决。环境污染包括水污染、大气污染、土壤污染等,严重威胁人类生命健康及各种生物的生存环境的安全,不利于实现人类及经济社会的可持续发展。
从源头上分析、解决环境问题产生的原因,是落实预防原则的根本,特别要注意减少二氧化碳的排放,针对汽车尾气和燃放烟花爆竹、工业生产排放的废气也要格外关注,通过制定限制排放量等具体的措施,运用相关的奖惩机制,鼓励公民和企业为保护环境做出一份贡献,同时更是造福人类和实现人类永续发展的必然选择。
2.公众参与原则
公众参与原则,是实现政府管理与公众参与相结合,充分发挥群众的力量,广泛凝聚群众智慧,实现经济社会可持续发展的必然要求。在低碳循环经济领域只依靠政府力量力量是单薄的,效果是不显著的,通过政府制定政策办法指示,并在企业许可、监督管理等方面发挥引导作用,提高公民对参与低碳循环经济的积极性,往往能起到事半功倍的效果。欧洲国家经历了第一次和第二次工业革命,工业生产的滞后性,使欧洲各国在上世界中期都不同程度地出现了环境问题。欧盟各国在经济政治地理文化等方面存在各种相似,在解决环境问题的过程中,各国协同合作,特别注意发挥群众的积极性,要提高群众的环保意识,通过公益广告、志愿者讲解等宣传模式形成良好的氛围。
3.“3R”原则
3R原则即再利用、再循环、减量化的简称,是面对我国正处在经济高速发展,资源总量急剧减少,人口增长与资源消耗矛盾突出的现状应坚决贯彻的原则。我国人均资源严重不足,同时资源的利用率相对低下,能耗太高,污染物排放量超过环境的承载能力,由此产生的环境与资源问题成为循环经济发展的瓶颈。再利用即面对资源利用率低、资源浪费、为解决资源短缺与资源不能满足人类经济发展和人类生存的问题而提出的。要实现再利用,首先要政府加大科技投入,研发开采资源和利用资源的先进设备,同时要求不断提高各类社会主体节约资源的意识,坚持走绿色低碳循环的发展道路。再循环,是与资源的再利用一脉相承的原则,通过对剩余资源和废物的再利用延长产业链,提高资源的利用率,既能克服废物排放的难题,又可以增加经济总量,是一种一举两得的措施。减量化,是指通过减少排放实现环境可持续发展的措施,通过企业清洁生产,特别注意生产流程的低碳化和无污染,减少废气废水废物的排放。
4.分担责任原则
循环经济责任原则是指作为社会主体的国家、企事业单位、社会团体和公民对环境应尽的义务以及破坏环境承担的社会责任。严格区分不同主体的责任,使环境保护落到实处,如政府主要发挥引导和监督作用;企业要更加注重清洁生产和减少排放;公民培养从小处着手,从点滴做起的意识,要按照有关规定对生活垃圾进行排放,坚持绿色消费和低碳生活模式。通过各方努力,使环境保护保护有章可循,有法可依,有条不紊地推进。循环经济责任原则就是更加明确了各个主体在环境资源的开发利用保护改善以及管理过程中的责任,使国家、政府、企业和公民共同配合,形成密切联系的整体。通过确立政府、企业和公民在资源综合利用、废料回收再利用、清洁生产、生态保护、绿色消费等方面的权利、义务,最大限度地实现环境资源分配方面的公平与正义,实现经济社会的永续发展。
(二)循环经济法的基本对策
我国循环经济起步较晚,发展比较缓慢,本身缺乏经验可循,并且面临技术、人员、管理、资金等诸多难题。因此,在法律法规和制度方面有较大空间可待提高。
首先,要进一步完善法律法规。随着经济发展,法律往往显示出其滞后性和保守性,必须通过建立完善的法律体系和政策,将保护环境的各项要求落实到实处,使百姓和社会享受到循环经济的好处,比如在修订的《反不正当竞争法》加入保护环境的具体规定,作为约束竞争主体的一项准则,同时,其它法律中也要更加明确主体的权利和义务,特别是关于垃圾处理和废物利用等具体环节缺乏具体规定,在执行过程中难免存在各种问题,因此要从法律的角度给予充分的重视。
目前常用的稳定碳同位素测定方法有:质谱法、核磁共振法和光谱法,其中质谱法是稳定同位素分析中最通用、最精确的方法。稳定同位素质谱分析法是先使样品中的分子或原子电离,形成各同位素的相似离子,然后在电场、磁场的作用下,使不同质量与电荷之比的离子流分开进行检测。稳定同位素质谱仪不仅能用于气体,也可用于固体的研究,能用于几乎所有元素的稳定同位素分析。近年来,随着生物地球化学元素循环研究的发展,借助同位素质谱(EA-IRMS),多用途气体制备及导入装置-同位素质谱(GasBenchII-IRMS)及痕量气体预浓缩装置-同位素质谱(PreCon-IRMS)联用技术的兴起,碳稳定同位素的研究有了更快的发展。稳定同位素质谱仪测定同位素比率大致分3个步骤(见图2):(1)样品的收集、制备和前处理;(2)将材料转化成具有所测元素的纯气体,(3)进入质谱仪检测。
一般样品通过前处理后,同位素质谱联用装置可以完成后续的气体转化和测定。通常,稳定同位素质谱仪在计算机辅助下直接给出同位素比值,更先进的仪器已可以进行自动化分析,如美国热电公司的Thermosci-entificMAT253,德国元素公司的Isoprime100稳定同位素质谱仪等。植物和土壤等固体样品,在进行同位素质谱分析之前必须进行干燥、粉碎、称量等处理。如果采集的土壤样品中含有无机碳,在干燥前应该进行酸处理。制备好的样品称量后通过固体自动进样器送入到元素分析仪-同位素质谱(EA-IRMS)进行碳氮同位素测定。测定土壤样品中碳酸盐δ13C的样品称量后放入样品管,置于GasBenchII仪的恒温样品盘中通过酸泵滴加100%磷酸,生成的CO2气体通过气体自动进样器送到同位素质谱进行碳同位素测定。
液体样品包括土壤DOC和微生物生物量碳(MBC)等浸提液在进行同位素质谱分析之前要进行分离转化、冷冻干燥等前处理。其中土壤DOC和微生物MBC按照参考文献方法用0.05mol/LK2SO4溶液提取,浸提液经冷冻离心浓缩或者冻干机干燥获得的粉末称量后通过固体自动进样器送入到元素分析仪-同位素质谱(EA-IRMS)进行碳氮同位素测定。气体样品包括空气和培养富集气体,用已抽真空的顶空样品瓶采集,其中CO2气样需采集20~30mL,样品中的碳同位素比值可直接通过多用途气体制备及导入装置-同位素质谱联用仪(GasbenchII-MS)测定。对于空气中的CH4需采集100~150mL,样品中的C同位素比值可通过带有全自动气体预浓缩装置-同位素质谱联用仪(如,美国热电公司的PreCon-IRMS)测定。
二、稳定同位素技术应用
土壤是地球表层最为重要的碳库也是温室气体的源或汇,但对关键过程及其源或汇的研究却十分有限。随着全球变化趋势的日趋明显,农田生态系统在碳素的吸收、转移、贮存和释放过程中所起的作用越来越受到人们的关注。农田土壤碳的动态变化和循环特征及其微生物驱动机理研究,成为当今生态学、生物地球化学和环境科学研究的共同热点。
1.稳定同位素技术与Keeling曲线法
土壤呼吸是农田土壤碳循环的重要组成部分,也是其排放CO2到大气中的主要途径。土壤呼吸以根系呼吸和土壤微生物呼吸为主。利用微气象法能够测定生态系统CO2通量,但是不能精确量化和区分根系呼吸和土壤微生物呼吸作用。应用稳定碳同位素技术,通过脉冲标记法(13C-CO2标记示踪)和持续标记法(自然丰度或FACE),造成根呼吸和土壤微生物呼吸CO2碳同位素组成的差异,然后分别测定土壤总呼吸、土壤微生物呼吸和根呼吸的δ13C值,追踪土壤呼吸的来源,并根据碳同位素质量守恒原理即可区分根系呼吸和土壤微生物呼吸,定量土壤呼吸中根系呼吸和土壤微生物呼吸的比例。目前用于测定土壤呼吸CO2碳同位素组成的取样方法包括静态箱(KeelingPlot)法、静态箱平衡状态法和动态箱连接红外分析仪法等,其中静态箱法相对比较成熟,而且成本低廉。Buchmann和Ehleringer采用静态箱研究了冠层尺度C3(紫花苜蓿)和C4(玉米)作物光合作用和土壤呼吸通量及其δ13C同位素组成变化规律,通过土壤有机碳及土壤呼吸的δ13C同位素组成差异,区分了轮作系统土壤呼吸及作物光合作用对净通量的贡献。随着静态箱方法经过不断的修改和完善,通过Keeling曲线法测得的农田生态系统呼吸释放CO2的碳同位素组成(δ13C)能够反映作物土壤根系和微生物呼吸释放CO2的δ13C同位素组成,以较好地理解生态系统的同位素鉴别。
2.土壤有机碳来源及其周转规律研究
2.1C3/C4植物变迁自然丰度法
碳、氮、氧、氢这些轻元素在自然环境中的循环和周转过程中,其同位素比值间的差异较大,同位素分馏效应比较明显,利用13C/12C、15N/14N、18O/16O和D/H同位素丰度比的变异携带有环境因素的信息,具有原位标记特性。通过测定土壤或者植物中δ13C,可以研究植物-土壤生态系统碳来源及其周转规律。稳定碳同位素比值(δ13C)分析方法在土壤有机质分解程度评估、土壤有机质来源探讨、C3/C4植被变化历史研究等领域中得到日益广泛的应用。由于不同植物类型具有不同的δ13C值,C3植物δ13C的变化范围为-9‰~-17‰。;C4植物δ13C的变化范围为-10‰~-22‰,当C3植物被C4植物所取代时就会导致土壤有机质δ13C值的改变。因此,可以通过土壤有机碳δ13C值相对于参考土壤(未改变种植作物的土壤)的变化来探讨土壤有机碳的周转速度,及不同C3和C4植物来源碳占土壤碳库各组分及气体CO2中的比例。Balesdent和Mariotti最早通过C3和C4植物类型的变迁来研究土壤碳库各组分的稳定性及周转规律,研究发现,长期耕种小麦(C3作物)的农田土壤在连续13年种植玉米(C4作物)后,22%的土壤有机碳获得了更新,而且不同粒径土壤有机碳的周转速率不同,其中>50μm和<2μm团聚体中含有更多的新碳,而粘粒中土壤有机碳的更新速度最慢。
Dignac等通过C3和C4植物类型变迁长期定位试验,采用铜氧化法结合稳定同位素质谱分析技术进一步研究了植物根系残留物(木质素)的稳定性及其对土壤有机碳库的贡献,结果发现,连续9年种植玉米(C4作物)对土壤有机碳含量、木质素及其生物降解程度(分解和周转)虽未产生显著影响,但其碳同位素组成发生了显著变化,其中有机碳中9%而木质素有47%来源于玉米(C4作物),木质素大分子的周转速率较土壤有机碳库更快。作为土壤碳库中的活性组分,MBC的稳定性和周转速率也可以通过土壤碳自然丰度δ13C值的变化进行研究。Blagodatskaya等通过54d室内培养实验研究了C3和C4植物类型的变迁后各碳组分的周转速率、新老碳对土壤有机碳(SOC)、微生物碳(MBC)和CO2气体的贡献以及微生物在碳分馏过程中的作用。研究结果发现,土壤SOC及MBC的周转时间分别为16.8年和29~30d,而且随着种植年限的增加,周转时间将会延长。新老碳库对SOC、MBC和CO2气体的贡献不同,其中MBC中20%碳来源于老碳(C3),CO2气体中60%来源于老碳(C3),由于微生物对土壤老碳的偏好利用,土壤中SOC中新碳贡献将逐年增加。13C自然丰度法灵敏度和分辨率较低,而且C3/C4植物更替,限制了应用。
2.2稳定碳同位素示踪法
碳的稳定同位素(13C)示踪技术能有效地阐明地下碳动态变化和土壤碳储量的微小迁移与转换,以及定量化评价新老土壤有机碳对碳储量的相对贡献。利用13C标记秸秆研究作物秸秆、残茬或作物根系在土壤中的分解动态或对土壤有机质的贡献,可为阐明土壤碳转化过程及土壤肥力演变过程提供新的技术支撑。以植物残体形式输入的作物光合碳对土壤有机碳库的贡献及转化规律已有大量的研究。窦森等在室内培养条件下,研究了添加13C玉米秸秆后,土壤有机碳库中胡敏酸和富里酸含量随时间的动态变化,发现在培养期间内,原有土壤有机碳较新形成的有机质的分解速度慢;同时也证明该方法用于研究短期培养条件下新加入有机质在土壤中的分解动力学是可行的。
随着同位素技术的发展和应用,研究者开始了对生育期内植物—土壤体系中碳分配的量化研究,定量化评价根际沉积对土壤碳储量的相对贡献。比如,Li-ang等通过13C稳定同位素培养试验研究了玉米根际沉积碳在土壤碳库中的分配,认为水溶性有机碳(DOC)和MBC是“新碳”的主要去向。而Yevdokimov等的研究表明燕麦根际沉积碳的主要去向为MBC、呼吸碳和SOC,而土壤DOC并不主要来源于“新碳”。何敏毅等应用13C示踪技术研究表明,玉米在其生育期内输入到地下的总碳量为4.6t•hm-2,其中42%存在于根系中,7%转化为土壤有机碳,剩下的41%通过根际呼吸进入大气。不同研究结果的差异可能由于不同学者采用的研究方法、作物及土壤类型不同造成。
3.稳定同位素探针技术(SIP)
农田系统是半开放的人工系统,进入土壤的新鲜有机物质包括自然归还的植物残体和根系分泌物、人为归还的有机肥等,而系统碳输入是影响土壤有机碳动态的最主要因素之一。土壤微生物是土壤有机质、土壤养分转化和循环的动力,是土壤有机质转化的执行者。外源有机质(“新碳”)进入矿质土壤基质后,发生由微生物介导的物理–化学–微生物的转化过程。“新碳”输入土壤,经土壤微生物作用转化为有机质,影响土壤有机碳含量及其组分的变化,或转化为CO2和CH4等气体返回大气。应用同位素示踪技术结合微生物分子生物学技术(PLFA/DNA/RNA-SIP)能够定量化“新碳”在土壤碳库中的转化动态及其对土壤碳储量的相对贡献,阐明微生物种群结构与“新碳”转化及稳定性之间的关系。Lu等用13CO2对水稻进行脉冲标记,通过13C-PLFA图谱分析发现,不同根际微生物对植物光合作用产物有不同的吸收特征,证明了水稻根际微生物种群与植物光合作用密切相关。进一步对土壤13C-DNA进行分析,发现水稻ClusterIArchaea类群的核糖体RNA中含有13C,表明此类细菌可能在由植物碳源产生甲烷的过程中起重要作用,对全球气候变化具有重要影响。
Bastian等定量研究了土壤外源添加小麦秸秆后,参与秸秆分解过程的(共168d,8个时间点)微生物种群结构动态变化,结果发现在秸秆降解的前期(14~28d)和后期(28~168d)细菌和真菌群落结构差异明显,这主要是秸秆降解过程中养分由丰富向贫瘠转化诱导的微生物r选择和k选择的结果。另外,农田土壤除作物光合碳根际输入外,还存在大量的光合自养微生物,通过卡尔文循环固定大气CO2合成有机物,并转化为土壤有机碳,对农田土壤有机碳累积的贡献不可忽视。而农田土壤中参与了“新碳”的输入、分配与转化的主要微生物种群,及其与“新碳”转化的相互关系如何,有待进一步研究。SIP能够将功能和种群分类联系起来,在微生物生态学研究中有着巨大的应用潜力,随着可用底物种类的增加(N、H),SIP技术将有可能鉴定出更多在碳、氮及其他元素循环中发挥重要作用的微生物。
三、展望
稳定碳同位素技术已在土壤有机质的转化、土壤中碳素的来源及其影响因素等方面得到了较广泛的应用。然而,我国农田土壤碳同位素研究大多集中于对C3和C4植物碳同位素、土壤CO2和土壤有机碳的同位素组成的测定与分析,对于农田土壤管理方式以及土壤质地、温度等环境条件对土壤碳周转过程的影响机理研究还很少。另外,土壤微生物是土壤有机质和土壤养分转化和循环的动力,是土壤有机质转化的执行者,但有关微生物种群结构和数量与农田土壤碳转化及稳定性之间的关系尚知之甚少。因此,有以下几方面的问题有待进一步的研究:
(1)利用13C自然丰度法和示踪技术相结合,定量土壤有机碳的周转速度,确定土壤有机碳的来源,深入研究不同农田管理方式对农田土壤碳素累积和转化的影响;
(2)分析土壤13C有机碳富集的基本机制、阐明土壤13C丰度与植被类型、土壤温度、质地之间的关系,进一步评价不同农田生态系统碳贮存潜力;
内蒙古大兴安岭林区拥有强大的碳汇优势,森林与湿地固碳能力强。全林区森林覆盖率76.55%,森林面积0.08亿hm2、森林活立木蓄积8.87亿m3,全林区湿地面积120多万hm2,因此,固碳能力巨大;并且由于天然林保护工程的有效实施,森林面积和蓄积持续增长,使得林区固碳能力在不断地提高;加之我国陆续推出了《中国绿色碳基金碳汇项目管理暂行办法》、《中国绿色碳基金碳汇项目造林技术暂行规定》等政策措施,为林区建立碳汇交易市场提供了必备的政策与技术条件。目前,碳排放交易在全国已经起步,为此,应加强林区森林生态系统碳循环的研究,获取相关的权威机构认可并且可核证的森林与湿地生态系统的碳汇数据,尽早摸清家底,同时,利用国家出台的政策,制定增加碳汇的具体办法,成立专门机构研究此项工作,包括基础研究和政策研究,逐步建立碳汇基金,碳汇评估机构和交易平台,制定一套与国际接轨、切实可行的交易规则,建立林区碳汇产业并且引导其健康发展,以此,使林区获取新的经济增长点和发展空间。
2开发好林区水资源优势
林区有着丰富的淡水资源,据有关资料记载每年约161121m3的淡水流向大海,合理开发利用淡水资源将给林区带来就业机会和经济效益。一是围坝建库进行淡水养殖和发电;二是充分利用林区天然纯净水、矿泉水资源,建立规模化加工生产基地,不断加大宣传力度和竞争力,将林区生产的天然饮用水推向国内外市场。
3搞好林区矿产资源开发
聘请国内知名专家,进一步探明林区矿产储备。积极招商引资,规模建矿开采,利用林区巨大的森林碳汇优势,让外方出钱买排放,林区提供“可核证的排放减量”,在不破坏生态环境的前提下有序地开发林区矿产资源。
4科学合理开采、利用野生经济植物资源
林区野生经济植物资源丰富,种类繁多,分布集中,资源蕴藏量巨大。目前,以个人零散形式进行野果、山野菜、中草药采集,近乎掠夺性采摘,资源浪费严重。应出台相应政策,加强管理,建立入山采摘许可制度,有组织开采。建立主要林下资源精深加工综合生产基地,统一收购等,形成采集、收购、储运、生产及销售规模化、产业化。加工、生产出特色系列产品,开拓销售渠道,强化宣传,为林区人民提供更多的就业机会,推动林区经济快速发展。一是分析市场,针对林区可采野生经济植物资源现状,确立林区深加工产业的开发目标,集中建立有长期发展潜力的深加工产业。以现代企业管理模式来提升野生经济植物资源的利用价值。二是林区野生经济植物资源丰富,合理开发野生植物资源,具有重要社会、经济意义。林区今后要在野生经济植物资源开发利用上加大力度。在保护“生态平衡”的基础上,建立以野果资源加工为主的综合加工厂。加大林下资源的有效管理,要有专业技术人员指导,遵循“适时采摘、合理开发”原则,建立入山采摘许可制度。保障产品产量及质量。利用林区丰富的林副产品和野生植物资源优势,发展食用,药用等高价值产品,形成林区规模化经济。
5发展森林生态旅游,着力打造林区旅游业品牌
关键词:高考复习;生物课教学;方法策略
中图分类号:G630 文献标识码:A 文章编号:1003-2851(2012)-10-0180-01
一、复习计划与方法策略制定的依据
根据对近年来《教学大纲》和理科综合《考试说明》的学习与分析,以及对各省市生物学高考试题的研讨,把握生物学高考命题思路——“遵纲不循本”,即知识点的考查遵循“双纲”的规定和不超出课本知识的范围,而能力水平的考查可以超出课本知识具体体现的层次水平。由此可知,《教学大纲》和理科综合《考试说明》生物部分是高中生物高考复习计划与方法策略制定最主要的依据。认真分析近年的生物学高考试卷既有助于把握复习备考的方向,又有利于收集高考训练的基本素材,揭示生物学高考命题的新走势,有助于我们发现教学和复习过程存在的薄弱环节,及时地调整复习计划和方法策略。
二、复习计划安排
第一轮:以教材为主,强化基础知识。按照考纲知识框架安排顺序,以基础知识、基本方法的复习为主线,以夯实基础为目的,主要是解决知识点问题。复习时应该和老师的步伐保持一致,进行逐章逐节地细致复习。
第二轮:专题复习阶段的时间安排在2月到3月初,该阶段的复习任务是加强学科内综合,使知识系统化和形成命题网络(即知识块)。这个阶段的复习实际上是在分章复习和夯实基础的前提下引导学生从新的维度对知识进行归类和重新组合,从而达到熟练掌握知识的程度。为确保任务按时完成,我们可以确定一般每周一个专题的复习进度,大一点的专题可在两周左右完成,对于一轮中遗留的问题,在哪一个专题中,要对这块知识进行突击强化,彻底完善知识网络体系,不留漏洞。另外,3月份新考纲已出台,要进行一些适当的调整,同时对照考纲,将复习重点向重点章节、缺陷章节倾斜。
第三轮:加强高考的实战训练,同时要注意回归课本,查漏补缺,既要注重高考的重点难点,也不能忽视高考的冷点;研究和领会各地名校模拟试题的新思路与新趋向,在模拟考试中提升应试的经验,增强应试的信心。由于进入高三后往往还要有很多考试安排,时间耽搁。因此可适当对复习时间进行调整。
三、复习学习方法
1.分类整理法。复习过程中,要学会概括知识要点,弄清各知识要点的来龙去脉。建立良好的知识结构,是提高学习能力的根本。结构化、网络化,才能在解决问题时迅速地、有效地提取知识,当一条路走不通的情况下,能根据网络结构找到其他的途径,尤其对高考试题覆盖面较广的主干知识如新陈代谢、遗传变异、生物与环境几章应重点复习。形成知识网络,有利于知识的存贮记忆,提取信息时便于搜索,应用时便于产生联系,对全面回答问题有重要帮助。构建知识系统,是按知识属性、知识间的有机联系,对原有知识进行重组,形成个性化的知识体系,实现对知识的再认识。
2.典例分析法。对典例的剖析,不能流于形式,更不能等同于一般习题,要从多角度、多层次进行深入剖析,体现出典例的价值所在。如从题干信息给予方式、命题视角、命题与生物学理论的切入、潜在的演变方式、应用价值等角度进行分析,并对解题思路进行剖析和拓展。研究近十年全国各地高考试卷,吃透高考经典题,对高考经典题要做到“慢学制胜”,舍得花时间和精力,务求“吃透”,使同类问题规律化,零散知识网络化,解题思路清晰化。对高考答案和评分标准更要细心加以揣摩、分析,一定要寻找出自己的答案与它的差距。这样做有助于知识间的迁移与灵活运用,有助于能力的全面提升,特别是表达能力的提高。
3.比较复习法。在复习中,运用比较法进行知识的横向和纵向比较。如病毒与原核细胞的比较,原核细胞和真核细胞的比较,高等植物细胞和动物细胞亚显微结构的比较;三大营养物质的来源和去路的比较,三大营养物质均可来自食物,除蛋白质外,均可贮存,均可由其他物质部分转化;碳循环、氮循环、硫循环的比较,比较它们进入生态系统的途径、形式及回到无机自然界的途径、形式;还有光合作用和呼吸作用的比较,三大遗传规律的比较,各种育种方法的比较等等。
4.关注热点。生物课程是基础课程,有很强的实践性,与我们的生活实际、生产实际和现代科学技术的发展都密切相关。注重考查知识的实用性,在很大程度上代表了今后高考试题的命题趋势。复习中适当关注国内外发生的重大事件,关注身边的事物,运用所学知识原理以及正确的思维方法,通过比较分析,评价各种现象,解决各种各样的实际问题。此外总结归纳老师讲课时处理这类问题的基本方法和思路,在平常的训练中积累解决这类问题的经验,是提高解决实际问题的有效途径。
四、调整心态,培养素质
1.1绿色建筑的环境效益分析
目前,对绿色建筑环境效益相关的研究并不是很多,主要近几年才开始发展。李静和田哲[6]通过构建绿色建筑全生命周期增量成本与效益模型,对绿色建筑节地、节能、节水、节材、室内、运营6个方面的增量成本与增量效益进行了研究;吴俊杰、马秀琴等[7]通过计算住宅楼全年负荷和CO2减排量及协同效应,计算了天津中新生态城的经济效益;刘秀杰[3]基于全寿命周期理论、结合外部理论对绿色建筑进行了全面的环境影响评价;杨婉等[8]结合工程实例,分析了节能改造技术的经济和环境效益;曹申和董聪[9]分析了绿色建筑全生命周期各项成本和效益的内容和特点,定量计算了环境效益和社会效益。《绿色建筑评价标准》GB50378-2006[10]为在建筑的全寿命周期内,最大限度地节约资源(节能、节地、节水、节材)、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共生的建筑。根据定义,绿色建筑的环境效益可以分为节能环境效益、节水环境效益、节地环境效益、节材环境效益和环境质量改善效益。根据绿色建筑效益形式的不同,环境效益又可分为CO2减排效益、健康效益、建材寿命延长效益。随着我国经济的快速发展,CO2的排放量必然还将增长[11]。联合国环境规划署调查报告显示,如果不是实现CO2减排,每十年全球的气温平均将升高0.3℃,人类的生存和发展将受到严重的威胁。绿色建筑以“四节一环保”为目标,结合当今世界的主要环境问题,节能是重中之重,因此本文主要研究绿色建筑的节能环境效益。
1.2绿色建筑的节能环境效益分析
为应对全球气候变化、资源能源短缺、生态环境恶化的挑战,人类正在遵循碳循环的概念,以低碳为导向,发展循环经济、建设低碳生态城市、推广普及低碳绿色建筑。绿色建筑通过充分利用太阳能,采用节能的建筑围护结构以及采暖和空调,减少采暖和空调的使用等措施来达到节能目的。绿色建筑的主要节能手段[12]如下:(1)护结构节能护结构是建筑节能设计最主要的内容,护结构节能措施是指从屋面、外墙、门窗等方面采取保温隔热有效措施。比如通过增大门窗面积来增加采光和通风面积,改善材料自身的保温性和隔热性以及提高门窗密闭性最终达到节能的效果。(2)智能化技术节能智能化技术节能是对空调机组、新风机组、冷冻机组以及照明设施等实行最优化的控制,以最大化地减少建筑的电能消耗。建筑能耗中,照明耗能所占比例较大,室内外照明系统应综合考虑节能光源、灯具和附件,为了节省电能消耗,绿色建筑通常采用高效的新型节能灯具,公共区域的照明采用高效光源、高效灯具和延时或声控开关,同时注意自然采光部位的节能措施。除节能灯具外,节能措施还包括设置节能电梯、暖通空调、室温调节器、能量回收系统等高效节能设备和系统,也需要增量成本投资。暖通空调系统应控制设备的能效化比、管网系统的输送效率。设置集中采暖或空调系统的建筑可以安装新风系统对能量加以回收利用,能够取得相对客观的经济效益和环境效益。(3)可再生能源节能可再生能源是指能够重复产生的自然能源,包括太阳能、风能、水能、地热能、海洋能、潮汐能、生物质能等,是一种符合可持续发展战略的新型非燃料型能源系统。绿色建筑利用的可再生能源通常是太阳能和地热能,是最易获取的再生能源。
2苏州市节能环境效益分析
2.1主要研究方法:市场价值法
市场价值法是按市场现行价格作为价格标准,据以确定自然资源价格的一种资源评估方法。它是比照与被评估对象相同或相似的资源市场价格来确定被评估资源价值的一种方法。本文主要通过比较绿色建筑和基准建筑的能耗,计算得到截至2012年底苏州市绿色建筑节约的能耗量;然后将能耗转换标准煤以及CO2排放当量;根据CO2市场价格来计算获得的效益。通过这种方法既可以直观看到绿色建筑节能导致的CO2减少量,这将减少温室效应的程度;同时还能得到绿色建筑节能带来的经济效益。
2.2CO2交易价格
清洁发展机制(CDM)是京东议定书规定的3种灵活履约机制之一,发达国家与发展中国家实施的一种碳交易机制,也是目前中国唯一的碳交易机制,因此参考目前“清洁发展机制”CDM项目可用于交易的“核证的减排量”(CERs)参考合同价格[13-14]。由于本文研究的是2012年之前的环境效益,所以参考2012年刘秀杰[5]的论文,当年CO2的减排价值约为160元/t。
2.3基准建筑
《公共建筑节能设计标准》GB50189-2005[1]中将20世纪80年代改革开放初期建造的公共建筑作为比较能耗的基础,称为“基准建筑”。
2.4数据处理
本文直接获取的有用数据包括绿色建筑的申报建筑面积、建筑总能耗、节能率。申报建筑面积有85个有用数据,建筑总能耗有50个数据,节能率有56个数据(由于文章篇幅有限,在此不一一列出)。截止2012年底苏州市85项绿色建筑总面积为285.075万m2,具体如表2所示。数据整理后,总共有36组有用数据。经计算,绿色建筑单位面积能耗范围为13.14kWh/m2a~154kWh/m2a,相应的基准建筑单位面积能耗范围为37.38kWh/m2a~346.03kWh/m2a。它们在每段范围的分布如图5和图6。其中单位面积能耗和基准建筑总能耗的数据可以通过公式(1)、(2)计算:单位面积能耗=建筑总能耗/申报建筑面积从图中可以看到,不论是绿色建筑还是基准建筑,单位面积的建筑能耗分布不均匀,因此在本文中采取加权平均的方法获得绿色建筑和基准建筑的平均单位面积能耗,具体的比例以及能耗见表3。根据表3,则绿色建筑和基准建筑的平均单位能耗分别为:绿色建筑平均单位面积能耗=ΣX·E=48.49kWh/m2a基准建筑平均单位面积能耗=ΣX·E=131.78kWh/m2a则苏州市2012年底之前绿色建筑比基准建筑节约的总能耗为:(131.78-48.49)×285.075=2.37×108kWh/a相当于减少使用标煤2.9×104t,减少排放CO27.54×104t。根据2012年CO2的减排价值知道截止2012年底,苏州市绿色建筑的环境效益为1.21亿元。
3结论