公务员期刊网 精选范文 神经网络的实现过程范文

神经网络的实现过程精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的神经网络的实现过程主题范文,仅供参考,欢迎阅读并收藏。

神经网络的实现过程

第1篇:神经网络的实现过程范文

关键词:神经网络 化工过程 人工智能

中图分类号:TM835 文献标识码:A 文章编号:1007-9416(2016)12-0024-01

大量的处理单元就如同神经单元一样,经过一系列的排列组合构成了复杂的神经网络系统,广泛应用于复杂信息处理、机器视觉、智能化控制等方面。仿生学的设计和智能化软件的设计,使得神经网络系统具有自动处理数据、自动组织、自动学习,使得化工过程控制具有高精度、高安全系数、智能化的特点。化工生产是一个复杂的生产过程,其中涉及的设备多,涉及的工艺复杂,控制难度高,如何促进化工生产的过程控制,从而实现科学管理、优化生产、提高生产率的目的。设备的多样、工艺的复杂、流程复杂等一系列的因素,使得神元或者是多个单元实现智能化控制,既能收集生产过程产生的数据,而且也能对这些数据进行处理,达到监测生产环境、监控生产过程、实时优化生产的目的。

1 神经网络技术的基本理论和基本结构

神经网络技术的发展是建立在对人脑神经系统的构成和作用机制认识的基础上,神经单元构成了庞大的神经系统,神经单元接受信息并传递信息,神经中枢处理信息并反馈信息。神经网络技术模拟神经系统处理单元类似于神经单元,计算机控制系统相当于神经中枢,分析数据、处理数据、输出结果。计算机技术的发展、传感器的应用,为神经网络的发展提供了基础。神经网络包括一个输入层和输出层,若干的隐含层。输入层的作用是接受外部信息并传递信息;输出层的作用是接受输入层传递的信息,处理信息并反馈信息;隐含层的作用是将输入层的信息进行组合,预处理。信息的接受、传递、处理和反馈一系列的过程使神经网络发挥作用的过程。

由于处理单元的应用,使得神经网络系统是一种自学习、自处理、自组织的智能化系统。神经系统的运行类似于人学习的过程,由简单到复杂,不断的修正节点的连接方式,直到输出满意的结果和符合实际应用。神经网络系统是建立在数学模型的基础上,利用数学建模搭建神经网络节点,建模主要有M-P模型、BP模型、RBF模型等。根据外部参数的不同和应用的目的,采用不同的函数,如可逆函数、线性函数、非线性函数、S函数等等,建立数学模型,输入参数,不断的优化模型,优化的过程使神经网络系统自学的过程。神经网络训练算法与模型的设置有关,如BP模型采取反传处理误差的训练算法,优化算法,达到优化模型的目的,使建立的模型更加符合实际应用情况。

2 神经网络在化工过程控制中的应用

神经网络具有很强的信息处理能力、自学习能力、自组织能力。根据输出的信息,可以建立信息之间的关系和处理多余的信息,简化生产过程中的信息,检测生产环境,监控生产,达到最优化的生产过程。神经网络覆盖生产过程中的所有要考虑的因素,因此神经网络的应用也覆盖化工过程控制的方方面面。

化工生产涉及的环节多种多样,当某一环节发生故障,若处理不及时,将使这一环节瘫痪甚至使整个生产过程瘫痪,造成重大安全事故。高效、实时、预测的检测和诊断故障的系统是化工过程控制中安全、高效生产的保障。美国的科学家首次提出将神经网络技术用于化工过程控制中,用于检测、诊断、预警故障。神经网络系统是一种仿生系统,具有思维、意识和学习能力的动力学系统,能够处理复杂的事物和环境,根据实际生产过程不断校正系统,实时监测参数的变化,对故障进行诊断和报警。目前主流的故障诊断的神经网络系统有:反传动态经网络控制系统、自适应神经网络控制系统和RBF神经网络控制系统。

神经网络技术主要靠传感器接受外部信息,大量传感器的应用,有利于智能化控制生产过程。化工过程的控制主要是对生产过程中的机器控制,生产过程涉及的机器种类繁多,同时维持安全、高效率阶段比较困难。神经网络系统自动控制机器生产,控制生产参数和生产流程,最优化生产过程控制和安全化控制,实时跟踪控制生产。控制主要有两种基本的方法,一种数学建模,将对象的目标信息作为标准,经过不断的训练和反馈,修正误差,化模型,优化控制模式;另外一种是控制器设置,如PID控制器,实现实时控制,不仅对精确知识进行处理,而且对模糊信息也能进行处理。国内外都已经有成熟的化工过程控制中的神经网络系统,如对乙酸乙烯酯聚合成乳液过程的实时控制,氯气生产过程的故障预报神经网络系统。

3 总结

神经网络技术是21世纪最重要的技术之一,化工过程控制是化工生产的安全保障。化工过程控制应用神经网络技术,有利于提高控制的安全系数,提高生产效率,有利于智能化管理,提高管理水平,有利于整个社会生产力水平的提高和社会智能化发展。化工过程控制采取神经网络技术,有利于工业技术的创新和改善工人工作环境,保障工人人身安全。

参考文献

第2篇:神经网络的实现过程范文

随着社会工业化速度的不断加速,能源的竞争愈来愈激烈。生物质能源作为一种可再生的清洁能源被广泛认可,生物气化技术就是利用生物质能的一种有效手段,对经济的发展和环境的保护都起到积极作用。但是,生物气化技术是一种热化学处理技术,其工作过程十分复杂,包含着大量的不确定因素,这就需要运用生物质气化炉的智能控制系统来达到预期的控制效果。新形势下,积极运用模糊神经网络对生物质气化炉进行智能控制,是实现可靠控制效果的重要举措。

【关键词】模糊神经网络 生物质气化炉 智能控制

生物质气化过程是一项复杂化学反应过程,具有非线性、不稳定性、负荷干扰等特性,只有实行智能控制才能受到良好的控制效果。模糊神经网络作为智能研究比较活跃的领域,有效融合了神经网络和模糊理论的优点,能够有效的解决生物质气化过程中的非线性、模糊性等问题,既保证控制的精确度,又能进行快速地升降温。本文通过对模糊神经网络的内涵特征进行全面分析,阐述了基于模糊神经网络的生物质气化炉的智能控制,并通过仿真实验进行反复验证。

1 模糊神经网络的内涵功能

简而言之模糊神经网络就是具有模糊权值和输入信号的神经网络。模糊神经网络是自动化控制领域内一门新兴技术,其本质上是将常规的神经网络输入模糊信号,因而模糊神经网络具备了模糊系统和神经网络的优势,集逻辑推理、语言计算等能力于一身,具有学习、联想、模糊信息处理等功能。模糊神经网络是智能控制和自动化不断发展的产物,在充分利用神经网络的并行处理能力的基础上,大大提高了模糊系统的推理能力。

模糊神经网络是科技发展的产物,有效吸收了神经网络系统和模糊系统的优点,在智能控制和自动化发展等方面有着重要的作用,能够有效地处理非线性、模糊性等诸多问题,在处理智能信息方面能够发挥巨大潜力。模糊神经网络形式多种多样,主要包括逻辑模糊神经网络、算术模糊神经网络、混合模糊神经网络等多种类型,被广泛的运用于模糊回归、模糊控制器、模糊谱系分析、通用逼近器等方面的研究中,随着智能控制和自动化领域的不断发展,模糊神经网络广泛应用于智能控制领域。

2 基于模糊神经网络的生物质气化炉的智能控制系统

2.1 温度智能控制系统

生物质热值、给料理以及一次风量等因素变化能够影响到生物质气化炉的炉温,但是最重要的影响因素是在气化炉工作过程中物料物理和化学反应的放热和吸热。由于生物质气化工作过程中的生物质热值的变化范围较小,在实际运行中很难测量与控制,有时可以忽略不计,同时,该工作过程中存在非线性和大滞后等问题,采用传统的数学模型达不到预期测量效果,因此需要利用模糊神经网络设计气化炉炉温控制系统,不断的提高温度的控制效果。模糊神经网络首先根据当前温度以及设定温度设,主控制器对最优的生物质物料添加量进行预测,然后由副控制根据该添加量,全面跟踪控制送料速度,从而能够进行精确上料和控制炉温。模糊神经网络系统十分庞大复,其中包含了大量错综复杂的神经元,蕴含对非线性的可微分函数训练权值的基本理念。模糊神经网络具有正向传递和反向传播两个不同的功能,在信息的正向传递中,采用逐步运算的方式对输入的数据信息进行处理,信息依次进入输入层、隐含层最终到达输出层。假如在输出层获得的输出信息没达到预期效果时,就会在计算输出层的偏差变化值后通过网络将偏差信号按原路反向传回,与此同时各层神经元的权值也会随之进行改变,直到符合预期的控制效果。

2.2 含氧量智能控制系统

在生物质气化工作过程中,可燃气体的含氧量是衡量其生产质量的重要依据,能够严重影响气化产物的安全使用,因此,通过模糊神经网络实现生物质气化炉含氧量的智能控制十分重要。其含氧量智能控制系统的目的是为了合理控制可燃气体的含氧量,从而稳定气化炉的温度。但是,一次风进风量是影响可燃气体的含氧量的重要因素,所以可以把控制一次风量作为主要调节手段,有效地解决含氧量控制和炉温控制之间的矛盾,在控制炉温的前提条件下,最大程度地降低可燃气体含氧量,进而有效控制气化产物含氧量的。生物质气化炉含氧量的智能控制系统是严格运用模糊神经网络控制原理,主控制器采用温度模糊免疫 PID控制,根据炉内含氧量和温度的偏差进行推算,查找出鼓风机转速的最优状态,副控制则以此为根据,全面跟随与控制鼓风机的速度,确保鼓风机转速。生物质气化炉工作过程中的不同阶段和部件具有不同的控制要求,模糊神经网络就要充分发挥被控对象的优良性能,根据不同的控制要求,合理运用模糊神经网络控制原理对 PID参数模型中的数据信息进行在线修改,从而达到预期的控制效果。

3 基于模糊神经网络的生物质气化炉智能控制系统的仿真实验

为了验证运用模糊神经网络进行生物质气化炉的智能控制的真实效果,对生物质气化炉的温度智能控制系统进行仿真实验,并进行详细地分析。为了保证生物质气化炉能够在条件大体一致的状态下进行运行状况,仿真实验可以采用组合预测算法。首先要到某厂气化炉现场采集2000组干燥层温度数据,并且从中选取连续1500组作为仿真实验样本数据,然后对剩余500组实验样本数据进行研究,通过两组数据的分析建立预测模型。然后采用模糊神经网络对生物质气化炉的温度控制系统进行三次模拟化实验,三种不同情况下的仿真试验结果为:在无外界任何干扰的情况下,模糊神经网络控制无论在超调量还是其他方面,都比单纯的模糊控制效果好;在生物质给料量扰动的情况下,模糊神经网络控制要比单纯的模糊控制所受的影响要小很多;在发生一次风量搅动的情况下,模糊神经网络控制仍受到极小的影响。从三种不同情况下的仿真试验中可以看出基于模糊神经网络的生物质气化炉的炉温智能控制系统效果较好,具有极强的抗干扰性,能够有效地预测气化炉温度实时值,把平均误差控制在很小范围内,并且智能控制系统能实时跟踪实际温度的变化,根据实际温度的变化做出相应的变化,从而能够有效地控制气化炉温度和可燃气体含氧量。

4 结束语

总之,基于模糊神经网络的生物质气化炉的智能控制系统具有较好的控制效果,有效的解决了生物质气化过程中的一系列问题,能够十分精确地控制生物质气化炉的炉温及可燃气体的含氧量,对于保证社会经济的稳定发展以及生态环境的改善发挥了重要作用。

参考文献

[1]王春华.基于模糊神经网络的生物质气化炉的智能控制[J].动力工程,2009(09):828-830.

[2]王中贤.热管生物质气化炉的模拟与试验[J].江苏大学学报:自然科学版,2008,29(6):512-515.

第3篇:神经网络的实现过程范文

关键词:图像复原 BP神经网络 Hopfield神经网络 应用

中图分类号:TP391.41 文献标识码:A 文章编号:1007-9416(2013)11-0040-02

1 引言

图像复原是一项富有现实意义的工作,它涉及到广泛的技术领域,是图像处理领域研究的焦点之一。在得到图像的过程中,由于各种各样的原因,包括与观测对象的相对运动、介质散射、成像系统缺陷和环境噪声等原因,使得最终的图像都会有一定程度的退化。图像复原就是从退化的图像中恢复图像的本来面目。传统的图像复原处理问题的关键在于建立退化模型,估计退化过程中的参数,由此通过相应的逆过程得到原始图像。获得准确的图像退化模型是比较困难的事情。大多数图像复原的实际问题是点扩展函数以及原始图像均未知的盲复原问题,这类问题具有更严重的病态性因而进一步增加了解决的难度。人工神经网络(Artificial Neural Network,ANN)为图像复原问题的解决提供了另外一条路径,这是基于人工神经网络具有的模拟人类神经的非线性、自组织、自学习、自适应特性。一般而言,人工神经网络适合于解决无法或很难精确建立数学模型、不完全清楚内部机理的问题,人工神经网络的很多特性适合解决图像复原问题。近些年来,对人工神经网络应用于图像复原的研究越来越多,形成了很多丰富的神经网络模型和算法。BP(Back Propagation反向传播)和Hopfield(霍普菲尔德)是典型的人工神经网络类型,也是在图像复原领域应用较多的神经网络类型。

2 BP神经网络在图像复原中的应用

2.1 BP神经网络的特性

BP神经网络是上世纪80年代美国加州大学的Rumelhart、McClelland及其团队研究并行分布信息处理时提出的采用反向传播算法的多层前馈网络。BP神经网络具有良好的泛化能力,其隐层的非线性传递函数神经元可以学习输入输出之间的线性或非线性关系。在1989年,RobertHecht-Nielson证明了对于任何一个在闭区间内连续的函数都可以由具有一个隐含层的BP网络来逼近,这样,一个三层(输入层、隐层和输出层)的BP神经网络即能完成对多维度函数的逼近。这些特性,使得选用BP神经网络简单地实现在未知点扩展函数的情况下,拟合原始图像与退化图像之间的关系,从而得到满意的图像复原结果成为可能。

2.2 BP神经网络应用于图像复原

BP神经网络用退化图像与相对应的原始图像进行训练,退化图像为网络的输入,原始图像为网络的输出。训练完成的神经网络会在退化图像与原始图像之间建立非线性的映射关系,使得利用这种非线性关系即可实现在只有退化图像的情况下对齐进行复原。

利用BP神经网络进行图像复原,一般用输入图像的N×N邻域内的N2个像素点对应输出图像的一个像素点。这样的对应方法会使整个运算量增大,但正由于参与运算的像素点增加,使得网络具有更好的泛化和鲁棒能力。由于三层BP神经网络可以任意精度逼近某一多维度函数,因而其应用于图像复原时使用三层网络结构。输入层和输入层节点数分别由输入图像像素数量和输出图像像素数量决定,隐层节点数量和训练方法在很大程度上决定了网络性能。

为了便于网络计算,通过神经网络计算前通常将输入图像进行归一化。以灰度图像为例,将图像数据[0~255]转换到[-1~1]或[0~1]。图像经过神经网络复原后还需进行反归一化转换,将计算得到的数据转换为图像数据,即将[-1~1]或[0~1]转换到[0~255]。

通常,运用BP网络进行图像复原算法流程包括:(1)图像的预处理,得到归一化的便于神经网络计算的数据;(2)使用退化图像与对应的原始图像(训练BP神经网络;(3)将待复原图像输入训练好的BP神经网络进行图像复原;(4)数据的后处理,将网络输出数据进行反归一化,得到复原图像。

3 Hopfield神经网络在图像复原中的应用

3.1 Hopfield神经网络的特性

不同于BP神经网络,Hopfield神经网络是一种单层反馈网络,信号在网络中不仅向前传递,还在神经元之间传递。图1是有三个神经元的Hopfield神经网络结构图。Hopfield神经网络由美国加州理工学院物理学家J·J·Hopfield在上世纪80年代提出,并首次在神经网络研究中引入了计算能量函数的概念,通过研究网络的稳定性与计算能量函数的相关性给出了网络的稳定性判据。J·J·Hopfield运用Hopfield神经网络成功地探讨了旅行商问题(TSP)的求解方法。HNN神经网络采用灌输式学习方式,其网络权值是事先按一定规则计算出来的,确定之后不再改变,各神经元的状态在运行过程中不断更新,网络稳定时各神经元的状态便是问题的解。Hopfield神经网络的这些自身特征使其适于应用于联想记忆和求解最优化问题。

3.2 Hopfield神经网络应用于图像复原

利用神经网络进行图像复原的方法分为两类:一种是用原始图像和模糊图像构成的样本训练神经网络,在训练好的网络中建立起原始图像与模糊图像的非线性映射关系,然后以带复原的模糊图像作为网络的输入,经过网络输出的图像数据就是经过复原的图像,BP神经网络就是运用这种方法进行图像复原的典型神经网络。另一种是经过神经网络反复的数学迭代计算复原,运用Hopfield神经网络进行图像复原属于这类方法。

其中是神经网络的状态向量,为网络的权值矩阵,为由网络中各神经元阈值构成的向量。Hopfield神经网络的运行结果即网络达到稳定状态就是达到最小值时的状态。由式(4)和(5)可以看出图像复原的目标函数与Hopfield神经网络能量函数具有相似的表达形式,因而可以建立两者之间的联系,从而将图像复原问题转变为神经网络的运算问题,这也就是Hopfield神经网络应用于图像复原的基本原理。

运用Hopfield神经网络解决图像复原问题首先要确定网络的权值矩阵。可以按照Hebb学习规则得出[4]。完成网络初始化后,将退化图像输入网络,从网络中选取一个神经元按照Hopfield神经网络的运算规则得出神经元的输出,将所有神经元求出输出后判断该网络是否达到稳定状态,即计算前后的网络能量函数的误差是否小于要求的范围。如果网络不稳定,需要重复迭代计算;网络达到稳定状态时,神经网络的状态向量就是要求的原始图像。经过一定的后处理就能得到具有一定精度的原始图像。

4 结语

人工神经网络在图像复原问题中的应用已经扩展到了很多方面,包括三维显微图像、高能闪光照相等领域[5-6]。神经网络在图像复原中的应用机理也不断得到深入研究。这些得益于神经网络算法不依赖求解问题本身数学模型的特点,以及自身强大的泛化能力。BP和Hopfield神经网络都能成功地运用在图像复原问题中,在选用神经网络进行图像复原研究时要注意到BP神经网络强烈地依赖退化图像与原始图像构成的样本集合对网络进行训练,这就要求得到足够的先验知识或者通过某种算法得到退化图像与原始图像相对应的样本群。Hopfield神经网络不依赖于退化图像与原始图像的先验知识,可以直接针对退化图像进行复原。这就需要根据不同的实际情况选取合适的网络类型来解决问题。

参考文献

[1]尚钢,钟珞,陈立耀.神经网络结构与参数选取[J].武汉工业大学学报,1997,19(2).

[2]王晗.基于Hopfield神经网络的图像恢复[D].武汉:华中科技大学南京理工大学,2006年4月.

[3]席旭刚,罗志增.用Hopfield神经网络实现触觉图像恢复[J].仪器仪表学报,2008,30(10).

[4] Bianchini M,Frasconi P.Learning without local minima in radial basis function networks[J].IEEE Transaction on Neural Networks,1995,6(3):749~756.

第4篇:神经网络的实现过程范文

【关键词】神经网络 手写 识别系统 应用

随着计算机技术的快速发展,其在人们的办公学习和日常生活成了不可替代的工具。键盘已经几乎完全替代了笔在人们生活中的地位,随之而来的后果就是人们越来越少的区书写汉字,导致越来越多的中国人甚至都忘记了汉字该如何书写,这种现象在很多研究和报道中都有体现。计算机和键盘是由西方国家发明的,其符合西方国家的语言习惯,对于中国人来说,用字母、符号去完成方块汉字的输入就需要使用者非常熟悉汉语拼音或者五笔编码,对于文化程度较低的使用者来说,这些都限制着他们使用计算机。鉴于计算机键盘的这些缺陷,联机手写输入法应运而生,这为计算机的输入带来了新的发展机遇和挑战。

1 联机汉字手写识别的意义及难点

联机汉字识别是用书写板代替传统纸张,笔尖通过数字化书写板的轨迹通过采样系统按时间先后发送到计算机中,计算机则自动的完成汉字的识别和显示。

1.1 联机汉字手写识别的意义

联机手写汉字识别的诞生具有非常重要的意义。首先这种输入方法延续了几千年中华文明的写字习惯,实现用户的手写输入,对于长时间不提笔写字的用户来说能够加强其对汉字书写方面的认识,防止“提笔忘字”现象的继续恶化。其次,手写汉字输入不需要学习和记忆计算机的汉字编码规则,其完全符合中国人的写字习惯,使人机之间的交流更人性化,更方便快捷。另外,随着移动智能终端的不断普及,联机汉字手写识别的应用范围将进一步扩大,以适用于不同层次人群对信息输入的需要,具有较大的市场发展前景。

1.2 联机手写汉字识别问题的难点

手写汉字识别是光学字符读出器中最难的部分,也是其最终的目标,手写汉字识别的应用主要依赖于其正确识别率和识别速度[1]。手写汉字识别系统的问题具有其特殊性:

(1)中国汉字量大。我国目前的常用汉字大概在4000个左右,在实际应用中的汉字识别系统应该能够完全识别这些常用的字才能够满足需要,由于超大的汉字量,使得手写识别的正确率和识别速度一直不高。

(2)字体多,结构复杂。汉字的手写字体丰富多彩,且汉字的笔画繁多,以及复杂的结构,再加上汉字中的形近字颇多,这些都为汉字识别系统的发展造成了很大的困难。

(3)书写变化大。不同用户在进行手写输入时其字体的变化是很大的,这种变化因人而异,对汉字识别造成了很大的干扰,增加了汉字匹配的难度。

2 人工神经网络概述

人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型,通常简称为神经网络,是一种仿生物神经的信号处理模型。在二十世纪四十年代初人们开始进行神经网络的研究,经过几十年的发展,神经网络也产生了一系列的突破,目前应用最多的是Hopfield模型和BP算法。

神经网络的一般模型一般包括十个方面:环境、处理单元、传播规则、神经网络的状态、互联模式、稳定状态、操作模式、活跃规则、活化函数和学习算法。其中,神经元、互联模式、学习算法是神经网络模型中的三个关键因素。神经网络的一个重要内容就是学习,其学习方式可以分为监督学习和无监督学习,其学习过程一般遵循Hebb规则,误差修正学习算法以及胜者为王的学习规则,其中Hebb规则是神经网络学习中最基本的规则。

人工神经网络具有独特的优越性。首先其具有主动学习的功能,在汉字识别过程中,先将汉字模板及可能的识别结果输入到神经网络中,神经网络能够通过其自身的学习过程来实现对汉字的识别,自学功能对于神经网络的预测功能具有非常重要的意义。其次,神经网络系统具有联想存储功能,其反馈功能能够实现这种联想。另外,通过计算机的高速运算能力,神经网络具有高速寻找优化解的能力。

3 人工神经网络在联机手写识别系统中的应用

汉字识别属于大类别模式识别,人工神经网络可以通过函数逼近、数据分类、数据聚类三种作用方式以及“联想”的特殊模式对汉字进行识别。Hopfield神经网络作为反馈网络的一种,其自联想记忆网络可以使系统不需要通过大量的训练即可对汉字进行识别,因此Hopfield神经网络对于汉字识别来说具有独特的优势。其中的离散型Hopfield神经网络能够通过串行异步和并行同步的工作方式,使其反馈过程具有非常好的稳定性,而网络只有通过不断的演变稳定在某一吸引子状态时,才能够实现正确的联想。

联机手写识别可以分为训练阶段和识别阶段。训练阶段流程依次为:标准书写字符图像预处理,提取特征并建立特征库,建立Hopfield网络模型,训练网络,保存权值。识别阶段的流程为:坐标序列转化为bmp图像,预处理测试样本,提取特征,送入网络运行,运行网络到平衡状态,分析结果值。根据联机手写识别的工作流程以及Hopfield网络模型的理论,基于Hopfield神经网络的联机手写识别系统在Matlab环境下得到了仿真模拟,效果非常理想。

4 总结

手写识别系统能够弥补普通键盘的不足,在提高汉字书写频率的同时,能够满足不同层次人群对计算机应用的技术需要。基于Hopfield神经网络的联机手写识别系统一起自身独特的性能,不仅能够满足手写汉字识别的正确率,而且其识别过程速度非常快。因此它对于实现联机手写识别以及图像识别具有非常重要的意义。

参考文献

[1]俞庆英.联机手写汉字识别系统的研究与实现[D].安徽大学,2005(5).

[2]郭力宾.交叉点的神经网络识别及联机手写字符的概率神经网络识别初探[D].大连理工大学,2003(03).

[3]赵蓉.基于神经网络的联机手写识别系统研究与实现[D].西安电子科技大学,2011(01).

第5篇:神经网络的实现过程范文

关键词:神经网络;BP算法;PID控制;Matlab仿真

中图分类号:TP274文献标识码:A

文章编号:1004-373X(2009)10-143-03

PID Control and Simulation Based on BP Neural Network

WU Wei,YAN Mengyun,WEI Hangxin

(School of Mechanical Engineering,Xi′an Shiyou University,Xi′an,710065,China)

Abstract:The neural network PID control method is introduced,which the parameters of PID controller is adjusted by use of the self-study ability.So the PID controller has the capability of self-adaptation.The dynamic BP algorithms of three-layer networks realize the online real-time control,which displays the robustness of the PID control,and the capability of BP neural networks to deal with nonlinear and uncertain system.A simulation example is made by using of this method.The result of simulation shows that the neural network PID controller is better than the conventional PID controller,and has higher accuracy and stronger adaptability,it can get the satisfied control result.

Keywords:neural network;BP algorithm;PID control;Matlab simulation

0 引 言

在工业控制中,PID控制是最常用的方法。因为PID控制器结构简单,实现容易,控制效果良好[1]。随着工业的发展,对象的复杂程度不断加深,尤其对于大滞后、时变的、非线性的复杂系统,常规PID控制显得无能为力。因此常规PID控制的应用受到很大的限制和挑战。为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法[2]。

利用神经网络所具有的非线性映射能力、自学习能力、概括推广能力,结合常规PID控制理论,通过吸收两者的优势,使系统具有自适应性,可自动调节控制参数,适应被控过程的变化,提高控制性能和可靠性[3]。

1 神经网络PID控制

神经网络PID控制是神经网络应用于PID控制并与传统PID控制相结合而产生的一种新型控制方法,是对传统的PID控制的一种改进和优化[4]。

1.1 常规的PID控制器

传统的PID控制器算式如下:

u(t)=KP[e(t)+(1/T1)∫t0e(t)dt+TDde(t)/dt](1)

相应的离散算式为:

u(k)=KPe(k)+KI∑kj=0e(j)+KD[e(k)-e(k-1)](2)

式中: KP,KI,KD分别为比例、积分、微分系数;e(k)为第k次采样的输入偏差值;u(k)为第k次采样时刻的输出值。

PID控制器由比例(P)、积分(I)、微分(D)三个部分组成,直接对被控对象进行闭环控制,并且三个参数KP,KI,KD为在线调整方式。

1.2 神经网络

BP神经网络的结构如图1所示。

BP神经网络通常采用基于BP神经元的多层前向神经网络的结构形式。典型的BP神经网络是3层网络,包括输入层、隐层和输出层,各层之间实行全连接。输入层节点只是传递输入信号到隐含层;隐含层神经元(即BP节点)的传递函数f常取可微的单调递增函数,输出层神经元的特性决定了整个网络的输出特性。当最后一层神经元采用Sigmoid函数时,整个网络的输出被限制在一个较小的范围内;如果最后一层神经元采用Purelin型函数,则整个网络的输出可以取任意值。

图1 三层BP网络结构图

设,x1,x2,…,xn为BP网络的输入;y1,y2,…,yn为BP网络的输出;w1ji为输入层到隐含层的连接权值;w2ij为隐含层到输出层的连接权值。

图1中各参数之间的关系为:

输入层: xi=xi0

隐含层:

θ1j=∑ni=0w1jixi, x1j=f(θ1j)(3)

输出层:

θ2i=∑ni=0w2ijxj, x2i=g(θ2i)(4)

BP神经网络采用误差的反向传播来修正权值,使性能指标E(k)=(1/2)\2最小。按照梯度下降法修正网络的权值:

输出层:

δ2=e(k)g′\;

w2ij(k+1)=w2ij(k)+ηδ2x1j(k)(5)

隐含层:

δ1=δ2w2ijf′\;

w1ji(k+1)=w1ji(k)+ηδ1x0i(k)(6)

1.3 神经网络PID控制器结构

基于BP神经网络的PID控制系统结构如图2所示。控制器由常规的PID控制器和神经网络两部分组成。PID控制要取得较好的控制效果,必须通过调整好比例、积分和微分三种控制作用,形成控制量中相互配合又相互制约的关系。

常规的PID控制器直接对被控对象进行闭环控制,并且其控制参数为KP,KI,KD在线调整方式。神经网络根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化,使输出层神经元的输出对应于PID控制器的三个可调参数KP,KI,KD。神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现具有最佳组合的PID控制。

图2 基于BP神经网络的PID控制器结构

1.4 神经网络PID控制器的控制算法

(1) 确定神经网络的结构,即确定输人节点数和隐含层节点数,并给出各层加权系数的初值w(1)ij(0)和w(2)ji(0),并选定学习速率η和惯性系数α,令k=1;

(2) 采样得到r(k)和y(k),计算当前时刻的误差e(k)=r(k)-y(k);

(3) 计算各神经网络的输入/输出,其输出层的输出即为PID控制器的三个控制参数KP,KI,KD;

(4) 计算PID控制器的输出;

(5) 进行神经网络学习,在线调整加权系数,实现PID控制参数的自适应调整;

(6) 令k=k+1,返回(1)。

2 神经网络的Matlab仿真

为了检验神经网络PID控制系统的能力,在此进行大量的仿真实验。下面以一阶时滞系统作为被控对象,进行仿真实验。

设被控对象为:

G(s)=160s+1e-0.5s

相应的控制系统的阶跃响应曲线如图3、图4所示。

图3 普通PID控制阶跃响应

可以看出,采用传统的PID控制,其调节时间ts=120 s,超调量达到65%;采用神经网络PID控制,系统调节时间ts=120,超调量只有20%。由此说明,后者响应的快速性和平稳性都比前者要好,也说明了这种方法的有效性。

图4 神经网络PID控制阶跃响应

3 结 语

神经网络PID控制方法简单,借助神经网络的自学习、自组织能力,可实现PID参数的在线自整定和优化,避免了人工整定PID参数的繁琐工作。从文中可以得出,神经网络PID控制有如下的优点:

(1) 无需建立被控系统的数学模型;

(2) 控制器的参数整定方便;

(3)对于大滞后、时变的、非线性的复杂系统有很好的动静态特性。实现有效控制和PID控制参数的在线自整定。

参考文献

[1]刘金琨.先进PID控制及Matlab仿真[M].北京:电子工业出版社,2003.

[2]韩豫萍,孙涛,盛新.基于BP神经网络的PID控制及仿真[J].可编程控制器与工厂自动化,2007(12):91-93.

[3]黄金燕,葛化敏,唐明军.基于BP神经网络的PID控制方法的研究[J].微计算机信息,2006(26):278-280.

[4]曾军,方厚辉.神经网络PID控制及其Matlab仿真[J].现代电子技术,2004,27(2):51-52.

[5]赵娟平.神经网络PID控制策略及其Matlab仿真研究[J].微计算机信息,2007(7):59-60.

[6]Zhang Mingguang,Qiang Minghui.Study of PID Neural Network Control for Nonlinear System[J].Institute of Electrical and Electronics Engineers Inc,2007.

[7]孙洁.神经网络PID算法在流量控制中的应用与仿真研究[D].合肥:合肥工业大学,2007.

[8]王亚斌.基于BP神经网络PID控制及其仿真[J].江苏冶金,2008(2):33-35.

[9]廖方方,肖建.基于BP神经网络PID参数自整定的研究\.系统仿真学报,2005(7):1 711-1 713.

第6篇:神经网络的实现过程范文

关键词:发电燃料;供应预测;BP神经网络;预测方法

中图分类号:TM 762 文献标示码:A

0 引言

发电燃料的供应受到能源政策、供需形势、资源分布、供应价格、交通运输、市场博弈等多种复杂因素的影响,长期以来缺乏合理有效的供应预测方法和技术手段,尤其是厂网分离后鲜见相关的研究工作。

文献1《辽宁火电厂燃料管理信息系统的开发与研制》开发和研制了覆盖辽宁全体直属电厂燃料公司并同东电局进行广域网数据交换,同时能进行审核管理和业务信息方便传输的燃料综合管理信息系统。

文献2《电力系统燃料MIS系统开发研究》探讨了燃料管理信息系统的组成、功能、结构及开发应用,为综述性理论研究。

以上文献均未对发电燃料供应提供较有效的预测方法。本文提出一种基于BP神经网络的发电燃料供应量预测方法,利用神经网络原理,通过数据收集、数据修正和神经网络结构选择建立起基于BP神经网络的发电燃料供应预测模型。通过MATLAB实际仿真,证明该预测方法预测较准确,并具有灵活的适应性。

基金项目:中国南方电网有限责任公司科技项目(K-ZD2013-005)

1 预测方法

按预测方法的性质不同,预测可分为定性预测和定量预测。常用的定性预测方法有主观概率法、调查预测法、德尔菲法、类比法、相关因素分析法等。定量方法又可以分为因果分析法和时间序列分析法等,因果分析法也叫结构关系分析法。它是通过分析变化的原因,找出原因与结果之间的联系方式,建立预测模型,并据此预测未来的发展变化趋势及可能水平。时间序列分析法也叫历史延伸法。它是以历史的时间序列数据为基础,运用一定的数学方法寻找数据变动规律向外延伸,预测未来的发展变化趋势。由于时间序列模型无法引入对负荷影响的其它变量,所以,单纯应用时间序列模型进行供应预测精度难以提高。

运用人工神经网络技术进行预测,其优点是可以模仿人脑的智能化处理过程,对大量非结构性、非精确性规律具有自适应功能,具有信息记忆、自主学习、知识推理和优化计算的特点,特别是其自学习和自适应功能是常规算法和专家系统所不具备的,因此,预测是人工神经网络的最有潜力的应用领域之一,有非常广泛的前途。

2 BP神经网络模型

2.1 人工神经网络概述

人工神经网络是由神经元以一定的拓扑结构和连接关系组成的信息表现、储存和变换系统,是模仿人脑结构的一种信息系统,可较好地模拟人的形象思维能力。它是对自然界中生物体神经系统进行抽象和改造,并模拟生物体神经系统功能的产物。神经网络的重要特点是具有记忆和学习能力,经过一定训练之后,能够对给定的输入做出相应处理。

人工神经网络适用于处理实际中不确定性、精确性不高等引起的系统难以控制的问题,映射输入输出关系。人工神经网络优于传统方法在于:

1)实现了非线性关系的隐式表达,不需要建立复杂系统的显示关系式;

2)容错性强,可以处理信息不完全的预测问题,而信息不完全的情况在实际中经常遇到;

3)由于神经网络具有一致逼进效果,训练后的神经网络在样本上输出期望值,在非样本点上表现出网络的联想记忆功能;

4)由于大规模并行机制,故预测速度快;

5)动态自适应能力强,可适应外界新的学习样木,使网络知识不断更新。

图1是一个人工神经元的典型结构图。

图1 神经元典型结构图

它相当于一个多输入单输出的非线性阈值器件。,表示该神经元的输入向量;为权值向量;θ为神经元的阈值,如果神经元输入向量加权和大于0,则神经元被激活;f表示神经元的输入输出关系函数,即传输函数。因此,神经元的输出可以表示为:

其中传输函数是神经元以及网络的核心。网络解决问题的能力与功效除了与网络结构有关,在很大程度上取决于网络所采用的传输函数。

几种常见的传输函数如图2所示:

(1)为阈值型,将任意输入转化为0或1输出,其输入/输出关系为:

(2)为线性型,其输入/输出关系为:

(3)、(4)为S型,它将任意输入值压缩到(0,1)的范围内,此类传递函数常用对数(logsig)或双曲正切(tansig)等一类S形状的曲线来表示,如对数S型传递函数的关系为:

而双曲正切S型曲线的输入/输出函数关系是:

(1) (2)

(3) (4)

图2 常见的传递函数图形

2.2 BP神经网络概述

神经网络的魅力在于它超强的映射能力,单层感知器可实现性分类,多层前向网络则可以逼近任何非线性函数。可以将BP网络视为从输入到输出的高度非线性映射,而有关定理证明BP神经网络通过对简单的非线性函数进行数次复合,可以近似任何复杂的函数。

在人工神经网络的实际应用中,80%-90%的人工神经网络模型是采用BP网络和它的变化形式,它也是前向网络的核心,体现了人工神经网络最精华的部分。在人们掌握反向传播网络的设计之前,感知器和自适应线性元件都只能适用于对单层网络模型的训练,只是后来才得到进一步拓展。

BP神经网络主要应用有:

(1)函数逼近:用输入矢量和相应的输出矢量训练一个网络逼近一个函数。

(2)模式识别:用一个特定的输出矢量将它与输入矢量联系起来。

(3)分类:把输入矢量以所定义的合适方式进行分类。

(4)数据压缩:减少输出矢量维数以便于传输或存储。

2.3 误差反向传播算法原理

BP神经网络是一种多层前馈神经网络,名字源于网络权值的调整规则,采用的是误差反向传播算法(Error Back-Propagation Training Algorithm)即BP算法。BP神经网络是单向传播的多层前向神经网络。除输入输出节点之外,有一层或多层的隐藏节点,同层节点之间无任何连接。典型的BP网络是三层前馈阶层网络,即:输入层、隐含层(中间层)和输出层,各层之间实行全连接。BP神经网络结构如图3所示:

图3 BP神经网络结构示意图

BP网络学习过程包括误差正向传播和反向传播两个过程。在正向传播过程中,输入样本从输入层传入,经各隐含逐层处理后,传向输出层,每一层神经元的状态只影响下一层神经元的状态。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差的某种形式通过隐含层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各神经元之间权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络学习训练的过程。此过程一直进行到网络输出的误差减小到可接受的程度,或进行到预先设定的学习次数为止。

BP神经元与其他神经元类似,不同的是,由于BP神经元的传递函数必须是处处可微的,它不能采用二值型{0,1}或符号函数{-1,1},所以其传递函数为非线性函数,最常用的函数S型函数,有时也采用线性函数。本文采用S型(Sigmoid)函数作为激发函数:

式中,为网络单元的状态:

则单元输出为:

其中,为单元的阀值。在这种激发函数下,有:

故对输出层单元:

对隐层单元:

权值调节为:

在实际学习过程中,学习速率对学习过程的影响很大。是按梯度搜索的步长。越大,权值的变化越剧烈。实际应用中,通常是以不导致振荡的前提下取尽量大的值。为了使学习速度足够快而不易产生振荡,往往在规则中再加一个“势态项”,即:

式中,是一个常数,它决定过去权重的变化对目前权值变化的影响程度。

图4为BP算法流程图。

图4 BP算法流程图

3 发电燃料供应预测BP神经网络模型建立

3.1 数据的收集与整理

发电燃料供应是一个庞大的系统,其中的数据资料纷繁复杂。在进行模型的搭建之前,需要进行历史资料的整理,提取出所需的数据。本模型中,选取与燃料供应有关的数据作为影响因素,如电厂发电量、能源政策、能源供需形势、交通运输状况、燃料价格和机组能耗等。

3.2 数据的修正

如果在数据采集与传输时受到一定干扰,就会出现资料出错或数据丢失的情况,此时都会产生影响预测效果的坏数据,这些坏数据将会掩盖实际模型的规律,直接影响模型的效果与精度。据此,需对样本数据进行预处理,以确保在建模和预测过程中所运用的历史数据具有真实性、正确性和同规律性。一般样本数据预处理方法主要有经验修正法、曲线置换法、插值法、20%修正法、数据横向纵向对比法、小波分析去噪法等。对于简单问题,采用数据的横向纵向对比即可实现坏数据的剔除。

3.3 BP神经网络的结构选择

理论证明,3层前向式神经网络能够以任意精度实现任意函数,所以,本模型中采用3层前向网络。同时,当有N个影响时, 3层BP神经网络的输入层节点数为N个,隐含层节点数一般为2N ~ 4N,最佳取值可根据实际问题试凑得,输出层为1个节点, 因此可以取其平均结构为N - 3N - 1型, 输入层激发函数为线性函数, 中间层和输出层的激发函数为S型函数。

3.4 BP神经网络模型建立

对于实际的燃料供应模型,数据的选择要有针对性,结构要合适,这在预测过程中是重中之重。为便于模型选择、结果对比,可同时采用几种不同的数学模型进行预测。在完成对恰当的预测模型的选择后,利用提取自历史资料的训练数据对建立好的预测数学模型进行参数训练。当模型的参数训练好以后,即可利用此模型进行预测。

具体操作步骤如下:

(1)对训练样本与预测样本进行归一化预处理,公式表示如式(1)。

(1)

其中表示经过归一化后的值,表示实际值,,分别是训练集中数据的最大值和最小值,k表示输入向量的维数,i表示有作用因素的个数。

(2)对预测的数据样本进行提取,并分别列出训练与测试的样本集合。

(3)对BP神经网络的输入层、隐含层、输出层的节点进行定义,对网络的权重、阈值进行初始赋值。

(4)利用训练样本对BP神经网络进行训练,建立符合实际问题的模型。

(5)利用事先预备的测试样本对训练好的网络进行测试,若效果不佳,则重新训练,若效果好则继续下一步。

(6)利用预测样本及训练好的模型进行预测。

具体流程图如图5所示:

图5 模型建立流程图

4 基于BP神经网络模型的发电燃料供应预测

(1)样本数据的选择

以各类影响耗煤的因素作为输入 。

(2)进行归一化处理

避免量纲对模型的影响。同时,降低数据的数量级,可以提高BP网络的训练的速度,避免饱和。

(3)确定BP神经网络的结构

3层BP神经网络的输入层节点为1个(可根据实际情况调整),对应于输入样本,隐含层节点为15,输出层节点为1,对应于输出样本。网络初始连接权及神经元初始阈值采用随机赋值方式。神经元的激发函数为S函数,最大迭代次数为400,学习步长为0.001,学习误差为0.00001。

(4)利用训练样本进行网络的训练

(5)利用测试样本进行模型的测试

人为选定5%相对误差为模型训练好坏的判别标准。若测试样本的测试结果的相对误差在5%以内,则进行下一步,否则重新训练。

(6)利用预测样本和已训练好的模型进行预测

南方电网全网发电燃料供应量预测结果值与实际值的对比如图6所示:

图6 南网全网发电燃料供应预测值与实际值对比图

5 结论

随着厂网分离的实施,电网公司和电力调度机构对发电燃料供应的掌握严重不足,已经不能满足电力供应工作的要求,尤其是在来水偏枯、电力供应紧张的时期,发电燃料供应的预测对缓解电力供需矛盾、有序做好发用电管理起着举足轻重的作用,因此,迫切需要开展发电燃料供应影响因素及预测方法的研究工作。

本文在收集、掌握发电燃料供应来源、价格、运输等情况的基础上,基于BP神经网络研究建立发电燃料供应量的预测模型和预测方法。通过MATLAB仿真预测,对预测结果值和实际值进行了对标分析,证明该预测方法预测较准确,并具有灵活的适应性。本文的研究有利于提升发电燃料的管理水平和掌控力度,为合理有序做好电力供应工作提供有力支持。

参考文献:

[1]孙长青.基于OSGI的发电集团燃料管控系统设计与实现[D].导师:陈有青.中山大学,2011.

[2]史新梅,裴珍.辽宁火电厂燃料管理信息系统的开发与研制[J].安徽工业大学学报,2001,(04):359-362+366.

[3]付民庆.基于J2EE架构燃料管理信息系统的研究与实现[D].导师:申晓留.华北电力大学(北京),2008.

[4]魏学军.DF电厂燃料管理信息系统的研究与应用[D].导师:胡立德;戴鹤.重庆大学,2008.

[5]孙文君.发电企业燃料自动监管系统设计及应用[D].导师:张庆超;关万祥.天津大学,2010.

第7篇:神经网络的实现过程范文

[摘要]该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。

[关键词]遗传算法灰色系统专家系统模糊控制小波分析

一、前言

神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个。神经网络具有以下优点:

(1)具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。

(2)并行处理方法,使得计算快速。

(3)自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。

(4)可以充分逼近任意复杂的非线性关系。

(5)具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。

二、神经网络应用现状

神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下:

(1)图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

(2)信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。

(3)模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别等。

(4)机器人控制。对机器人眼手系统位置进行协调控制,用于机械手的故障诊断及排除、智能自适应移动机器人的导航。

(5)卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。

(6)焊接领域。国内外在参数选择、质量检验、质量预测和实时控制方面都有研究,部分成果已得到应用。

(7)经济。能对商品价格、股票价格和企业的可信度等进行短期预测。

(8)另外,在数据挖掘、电力系统、交通、军事、矿业、农业和气象等方面亦有应用。

三、神经网络发展趋势及研究热点

1.神经网络研究动向

神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。

(1)神经计算的基础理论框架以及生理层面的研究仍需深入。这方面的工作虽然很困难,但为了神经计算的进一步发展却是非做不可的。

(2)除了传统的多层感知机、径向基函数网络、自组织特征映射网络、自适应谐振理论网络、模糊神经网络、循环神经网络之外,一些新的模型和结构很值得关注,例如最近兴起的脉冲神经网络(spikingneuralnetwork)和支持向量机(supportvectormachine)。

(3)神经计算技术与其他技术尤其是进化计算技术的结合以及由此而来的混合方法和混合系统,正成为一大研究热点。

(4)增强神经网络的可理解性是神经网络界需要解决的一个重要问题。这方面的工作在今后若干年中仍然会是神经计算和机器学习界的一个研究热点。

(5)神经网络的应用领域将不断扩大,在未来的几年中有望在一些领域取得更大的成功,特别是多媒体技术、医疗、金融、电力系统等领域。

2.研究热点

(1)神经网络与遗传算法的结合。遗传算法与神经网络的结合主要体现在以下几个方面:网络连接权重的进化训练;网络结构的进化计算;网络结构和连接权重的同时进化;训练算法的进化设计。基于进化计算的神经网络设计和实现已在众多领域得到应用,如模式识别、机器人控制、财政等,并取得了较传统神经网络更好的性能和结果。但从总体上看,这方面研究还处于初期阶段,理论方法有待于完善规范,应用研究有待于加强提高。神经网络与进化算法相结合的其他方式也有待于进一步研究和挖掘。

(2)神经网络与灰色系统的结合。灰色系统理论是一门极有生命力的系统科学理论,自1982年华中理工大学的邓聚龙教授提出灰色系统后迅速发展,以初步形成以灰色关联空间为基础的分析体系,以灰色模型为主体的模型体系,以灰色过程及其生存空间为基础与内的方法体系,以系统分析、建模、预测、决策、控制、评估为纲的技术体系。目前,国内外对灰色系统的理论和应用研究已经广泛开展,受到学者的普遍关注。灰色系统理论在在处理不确定性问题上有其独到之处,并能以系统的离散时序建立连续的时间模型,适合于解决无法用传统数字精确描述的复杂系统问题。

神经网络与灰色系统的结合方式有:(1)神经网络与灰色系统简单结合;(2)串联型结合;(3)用神经网络增强灰色系统;(4)用灰色网络辅助构造神经网络;(5)神经网络与灰色系统的完全融合。

(3)神经网络与专家系统的结合。基于神经网络与专家系统的混合系统的基本出发点立足于将复杂系统分解成各种功能子系统模块,各功能子系统模块分别由神经网络或专家系统实现。其研究的主要问题包括:混合专家系统的结构框架和选择实现功能子系统方式的准则两方面。由于该混合系统从根本上抛开了神经网络和专家系统的技术限制,是当前研究的热点。把粗集神经网络专家系统用于医学诊断,表明其相对于传统方法的优越性。

(4)神经网络与模糊逻辑的结合

模糊逻辑是一种处理不确定性、非线性问题的有力工具。它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。但它缺乏有效的自学习和自适应能力。

而将模糊逻辑与神经网络结合,则网络中的各个结点及所有参数均有明显的物理意义,因此这些参数的初值可以根据系统的模糊或定性的知识来加以确定,然后利用学习算法可以很快收敛到要求的输入输出关系,这是模糊神经网络比单纯的神经网络的优点所在。同时,由于它具有神经网络的结构,因而参数的学习和调整比较容易,这是它比单纯的模糊逻辑系统的优点所在。模糊神经网络控制已成为一种趋势,它能够提供更加有效的智能行为、学习能力、自适应特点、并行机制和高度灵活性,使其能够更成功地处理各种不确定的、复杂的、不精确的和近似的控制问题。

模糊神经控制的未来研究应集中于以下几个方面:

(1)研究模糊逻辑与神经网络的对应关系,将对模糊

控制器的调整转化为等价的神经网络的学习过程,用等价的模糊逻辑来初始化神经网络;

(2)完善模糊神经控制的学习算法,以提高控制算法的速度与性能,可引入遗传算法、BC算法中的模拟退火算法等,以提高控制性能;

(3)模糊控制规则的在线优化,可提高控制器的实时性与动态性能;(4)需深入研究系统的稳定性、能控性、能观性以及平衡吸引子、混沌现象等非线性动力学特性。

关于神经网络与模糊逻辑相结合的研究已有很多,比如,用于氩弧焊、机器人控制等。

(5)神经网络与小波分析的结合

小波变换是对Fourier分析方法的突破。它不但在时域和频域同时具有良好的局部化性质,而且对低频信号在频域和对高频信号在时域里都有很好的分辨率,从而可以聚集到对象的任意细节。

利用小波变换的思想初始化小波网络,并对学习参数加以有效约束,采用通常的随机梯度法分别对一维分段函数、二维分段函数和实际系统中汽轮机压缩机的数据做了仿真试验,并与神经网络、小波分解的建模做了比较,说明了小波网络在非线性系统黑箱建模中的优越性。小波神经网络用于机器人的控制,表明其具有更快的收敛速度和更好的非线性逼近能力。

四、结论

经过半个多世纪的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功,但其理论分析方法和设计方法还有待于进一步发展。相信随着神经网络的进一步发展,其将在工程应用中发挥越来越大的作用。

参考文献:

[1]张曾科.模糊数学在自动化技术中的应用[M].清华大学出版社,1997.

[2]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨工业大学出版,1996.250-387.

[3]谢联峻.模糊控制在列车自动驾驶中的应用[J].自动化与仪器仪表,1999,(4).

[4]CollierWC,Weiland,RJSmartCarts,SmartHighways[J].IEEESpec-trum,1994,31(4):27-33.

[5]HatwalH,MikulcikEC.someInverseSolutionstoanAutomobilePathTrackingProblemwithInputControlofSteeringandBreaks,Ve-hiclesystemDynamics,1986,(15):61-71.

[6]KosugeK,FukudaT,AsadaH.AcquisitionifHumanSkillsforRoboticSystem[C].In:ProcIEEEIntSympOnIntelligenControl,1991.469-489.

[7]王小平,曹立明.遗传算法—理论、应用与软件实现.西安交通大学出版社,2002.

[8]ManiezzoV.Geneticevolutionofthetopologhandweightdistribution

ofneuralnetwork[J].IEEETransonNeuralNetwork,1994,5(1)35-67.

[9]HarraldPG,KamstraM.Evolvingartificialneuralnetworkstocombinefinancialforecase[J].IEEETransonEvolComputer,1997,1(1):39-54.

[10]邓聚龙.灰色系统理论教程.华中理工大学出版社,1990.

[11]吕宏辉,钟珞,夏红霞.灰色系统与神经网络融合技术探索.微机发展,2000,23(4):67-109.

第8篇:神经网络的实现过程范文

关键词:小波;神经网络;网络流量;预测

Abstract: predict the network traffic while there are many ways, but the use of wavelet neural network to predict accuracy is the highest, this kind of method integration of the wavelet transform and neural network advantages. This paper mainly to the wavelet neural network and the network traffic prediction are analyzed, and the further proof that the wavelet neural network advantages and feasibility.

Keywords: small wave. Neural network; Network flow; forecast

中图分类号:F272.1文献标识码:A 文章编号:

随着网络的迅猛发展,网络拥塞的现象越来越严重,此时预测网络流量显得如此重要。网络流量是一个复杂的系统工程,其具有很多特性,如突发性、长相关等。预测网络流量方法很多,如用小波变换、用神经网络等,这些方法虽然都能够实现预测网络流量,但是由于这些方法的局限性,预测结果的准确率有所不同。因此,找出一个准确率高的方法进行网络流量预测是非常关键的。

1.小波神经网络

1.1小波神经网络的结构形式

小波神经网络其实就是小波分析理论与神经网络理论相结合的一种产物。这两种理论相结合可以分为两类:(1)“松散型”结合。这种类型的结合就是指小波分析作为神经网络的前置处理手段,主要提供输入特征向量,为神经网络做准备。经小波变换后,再向常规神经网络输入,进而使分类、函数逼近等功能实现。(2)“紧致型”结合。这种类型的结合就是小波分析和神经网络直接融合,采用小波函数来将常规单隐层前馈神经网络的隐节点激活,由小波函数的伸缩与平移参数来分别代替相应的输入层到隐层的权值及隐层阈值。

1.2多分辨小波神经网络模型的网络结构

从理论上讲,小波理论对时间序列进行分解预测是可行的。已经有研究表明,小波变换可以解决一切能够用傅立叶变换解决的问题,小波变换在解决这些问题时不会损失任何东西,只是将我们通常观察问题的视角改变了。如果把流量曲线看作不同的信号分量叠加,分别预测各个分量,最后重新叠加各个分量预测结果,最后就能够将预测结果得到。其实利用小波方法就是这个过程来完成预测的。以下只对“松散型”小波神经网络进行分析:

先对t时刻的原始序列f(t)进行小波分解,分解尺度为n,an(t)为t时刻第n层低频系数序列,dn(t)为t时刻第n层高频系数序列,an(t)、d1(t)、d2(t)…dn(t)作为神经网络的输入,再分别对每一层小波系数用神经网络模型进行预测,得到an(t+T)、d1(t+T)、d2(t+T)…dn(t+T)共n+l个预测值,最后将这些预测值合成就得到f(t+T),即t+T时刻的预测值。根据以上假设,使用小波分析的变换对数据进行多分辨分解,即利用小波分解的特点,根据变化的频度将序列中变化频率不同的成分分解出来。由于小波分解可以使影响流量值大小的因素相对集中起来,因此分解后的小波分量具有明显的规律性,这就使得我们便于针对不同的规律采用不同的预测技术,从而可以达到提高预测精度的同时缩短预测时间的目的,提高整个模型的效率。

2.神经网络预测

本实验选取了360个样本数据,将其生成小波分解所需的信号文件,如图1所示。

图1 历史数据

对流量序列作多分辨分析。经过5层分解后的各层信号波形如图2所示。

图2 小波分解结果

将上述小波分解的各分量,经预处理成为样本向量后输入BP神经网络预测模型,得出各分量的预测值如图3所示。

图3各分量预测结果

3.实验结果对比

将各分量分别预测出后,重构各分量的预测结果,得到最终的流量预测结果。将BP神经网络模型与小波神经网络模型进行对比,在网络中采集了360组数据,对数据进行一定的操作后,分别测试两种网络,实验结果如图4所示。

图4

将实验结果进行对比,对其测试主要采用小波神经网络来进行,这样对网络流量预测的准确率会更准确。因此,构建小波神经网络进行预测,识别准确率达到90%以上,弥补了BP神经网络预测精准度不高的缺陷。

4.结语

近年来,网络流量预测成为研究热点。本文主要讲BP神经网络和小波变换进行对比,将这两者的优点结合起来用于预测网络流量,在很大程度上提高了预测的精准度。

参考文献:

[1]胡俊,胡玉清,肖中卿.基于小波变换的网络流量预测模型[J]. 计算机工程. 2008(19).

第9篇:神经网络的实现过程范文

Abstract: According to ANN theory and method, a BP neural network model for tourism security early warning was built. The result shows that the application of BP neural network in tourism security early warning is feasible. This model possesses strong functions of study, association and fault tolerance, moreover, both its analysis results and process approach the metal process and analysis method of human brain, which greatly improves the accuracy for tourism security early warning.

关键词:人工神经网络;旅游安全;预警系统

Key words: artificial neural network;tourism security;early warning system

中图分类号:TP31 文献标识码:A文章编号:1006-4311(2011)18-0158-01

0引言

旅游业在世界范围内已成为最重要的产业之一,占全球GDP 份额已超过10%,随着人们生活水平的提高和旅游资源的开发利用,旅游业正逐渐成为我国一些地区的“支柱产业”和“新的经济增长点”,但是旅游者在旅游过程中遭遇到各种灾害性事故的频率也有较大幅度的提高,因此旅游安全预警势在必行。人工神经网络方法比传统线性方法具有以下突出的优越性:所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性;神经网络具有高度的并行结构和并行实现能力,具有高速寻找优化解的能力,能够发挥计算机的高速运算能力,可能很快找到优化解;神经网络模拟人的思维是非线性的,这一特性有助于处理非线性问题;通过对过去的历史数据的学习,训练出一个具有归纳全部数据的特定的神经网络,自学习功能对于预测有特别重要的意义。在神经网络模型中,BP人工神经网络是当前最具代表性和应用最为广泛的一种神经网络,其结构简单,工作状态稳定,易于实现,是通用性和适应性较强的网络,已在多个领域中得到初步的应用[1-2]。因此应用BP神经网络对旅游安全预警系统进行了研究。

1旅游安全预警的神经网络模型

BP网络算法即逆向传播学习算法(back propagation learning algorithm)由输入层、输出层和若干隐层组成。当信号输入时,先传到隐层神经元,经神经元作用函数转换后,再把信号传播到输出神经元,经过处理后输出结果。BP人工神经元网络通过对许多简单神经元作用函数的复合来逼近输入、输出之间的映射,它是一种快速下降的迭代方法,目的是使实际输出和预期样本输出之间的均方差最小化。影响旅游安全预警的主要因素可归纳为旅游地灾害频度、出游设施安全度和旅游地区域安全度3大类。具体分为以下3类10个子因素,包括主客文化冲突潜在指数、居民消费价格指数上涨率、暴发瘟疫性疾病的频率、交通路况安全度、社会治安稳定度、社会实际失业率、地震地质灾害发生频率、水文气象灾害发生频率、旅游设施使用饱和度、政治稳定度。

研究中,将10个子因素作为输入向量,数据来源于文献[2],一般来说三层神经网络可以逼近任何函数关系,因此本文采用三层网络,在训练前馈网络之前,权重和偏置必须被初始化,初始化权重和偏置的工作用命令init来实现,这个函数接收网络对象并初始化权重和偏置后返回网络对象。隐含层神经元的确定没有统一的方法,这里采用试错法,经过反复训练确定隐含层为7个神经元,输出向量为1个神经元,期望值1、2、3、4分别代表旅游安全的4种状况:优秀、良好、合格和恶劣。目前传统神经网络面临的难题是学习时间较长,特别是大规模神经网络学习时间太长,令人难以忍受;很容易陷入局部极小值,常常收敛于局部最优解。因此采用改进BP算法的神经网络,RPROP是权重和阈值更新值的直接修改,它和以学习速率为基础的算法相反,RPROP引入Resilient(有弹性的)更新值的概念直接修改权步的大小,和最初的反传算法比较,在计算上仅有少量的耗费。

2结果

现有样本数目共40个,利用它们训练神经网络,为了验证模型的有效性,精度检验时每次抽取39个样本,用剩下的1个进行检验,得到该模型的使用精度93.2%;结果说明该模型预测精度较高,可以较好地满足旅游安全预警系统的需要。

3结论

为了满足我国旅游业未来发展的需要,在处理应急旅游安全突发性事件时,需要必要的事前预警和相关的知识储备,运用修正的BP网络建立旅游安全的预警系统,提高了网络的收敛速度和学习训练的效率,一定程度上克服了一般方法的主观性,通过合理地期望输出的选取并以此来划分等级,能够客观地反映旅游安全的真实情况,保证了结果的客观性。综上所述,BP网络用于旅游安全的预警系统构建有很大的优越性,值得进一步探索。

参考文献:

相关热门标签