公务员期刊网 精选范文 新型电力系统概念范文

新型电力系统概念精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的新型电力系统概念主题范文,仅供参考,欢迎阅读并收藏。

新型电力系统概念

第1篇:新型电力系统概念范文

关键词:新形势;电力系统自动化;研究方向

中图分类号:TM76 文献标识码:A

文章编号:1009-0118(2012)07-0215-02

电力系统自动化是我们电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展)、电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统),实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。

一、电力系统自动化的概念

电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压)、系统运行的安全可靠,提高经济效益和管理效能。

二、具有变革性重要影响的三项新技术

(一)电力系统的智能控制

电力系统的控制研究与应用在过去的40多年中大体上可分为3个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。智能控制是当今控制理论发展的新阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题。特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。

智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用于快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。

(二)FACTS和DFACTS

1、FACTS概念的提出

电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性,一种改变传统输电能力的新技术——柔流输电系统(FACTS)技术悄然兴起。

所谓“柔流输电系统技术”又称“灵活交流输电系统技术”,简称FACTS,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。

2、FACTS的核心装置ASVC的研究现状

ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。与旋转同步调相机相比,ASVC的调节范围大,反应速度快,不会响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声。并且因为ASVC是一种固态装置,所以能响应网络中的暂态,也能响应稳态变化,因此其控制能力大大优于同步调相机。

3、DFACTS的研究态势

DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。

三、基于GPS统一时钟的新一代EMS和动态安全监控系统

(一)基于GPS统一时钟的新一代EMS

目前应用的电力系统监测手段,主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确地共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。

(二)基于GPS的新一代动态安全监控系统

基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。采用GPS实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。GPS技术与相量测量技术结合的产物——PMU(相量测量单元)设备,正逐步取代RTU设备实现电压、电流相量测量(相角和幅值)。

四、电力系统自动化的研究方向

(一)智能保护与变电站综合自动化

对电力系统电保护的新原理进行了研究,将国内外最新的人工智能、模糊理论、综合自动控制理论、自适应理论、网络通信、微机新技术等应用于新型继电保护装置中,使得新型继电保护装置具有智能控制的特点,大大提高电力系统的安全水平。对变电站自动化系统进行了多年研究,研制的分层分布式变电站综合自动化装置能够适用于35-500kV各种电压等级变电站。微机保护领域的研究处于国际领先水平,变电站综合自动化领域的研究已达到国际先进水平。

(二)电力市场理论与技术

基于我国目前的经济发展状况、电力市场发展的需要和电力工业技术经济的具体情况,认真研究了电力市场的运营模式,深入探讨并明确了运营流程中各步骤的具体规则;提出了适合我国现阶段电力市场运营模式的期货交易(年、月、日发电计划)、转运服务等模块的具体数学模型和算法,紧紧围绕当前我国模拟电力市场运营中亟待解决的理论问题。

(三)电力系统实时仿真系统

对电力负荷动态特性监测、电力系统实时仿真建模等方面进行了研究,引进了加拿大Teqsim公司生产的电力系统数字模拟实时仿真系统,建成了全国高校第一家具备混合实时仿真环境的实验室。该仿真系统不仅可进行多种电力系统的稳态及暂态实验,提供大量实验数据,并可与多种控制装置构成闭环系统,协助科研人员进行新装置的测试,从而为研究智能保护及灵活输电系统的控制策略提供了一流的实验条件。

五、电力系统运行人员培训仿真系统

电力系统运行人员培训仿真系统是针对我国电力企业职工岗位培训的迫切要求,将计算机、网络和多媒体技术的最新成果和传统的电力系统分析理论相结合,利用专家系统、智能cai(计算机辅助教学)理论,是进行电力系统知识教学、培训的一种强有力手段。本系统设计新颖,并合理配置软件资源分布,教、学员台在软件系统结构上耦合性很少,且系统硬件扩充简单方便,因此学员台理论可无限扩充。

六、配电网自动化

在中低压网络数字电子载波ndlc、配网的模型及高级应用软件pas、地理信息与配网scada一体化方面取得了重大技术突破。其中,ndlc采用了dsp数字信号处理技术,提高了载波接收灵敏度,解决了载波正在配电网上应用的衰耗、干扰、路由等技术难题;高级应用软件pas将输电网ems的理论算法与配网实际结合起来,采用了最新国际标准IEC61850、IEC61970CIM公共信息模型;采用配网递归虚拟流算法进行潮流计算;应用人工智能灰色神经元算法进行负荷预测。

七、电力系统分析与控制

对在线测量技术、实时相角测量、电力系统稳定控制理论与技术、小电流接地选线方法、电力系统振荡机理及抑制方法、发电机跟踪同期技术、非线性励磁和调速控制、潮流计算的收敛性、电网调度自动化仿真、电力负荷预测方法、基于柔性数据收集与监控的电网故障诊断和恢复控制策略、电网故障诊断理论与技术等方面进行了研究。在非线性理论、软计算理论和小波理论在电力系统应用方面,以及在电力市场条件下电力系统分析与控制的新理论、新模型、新算法和新的实现手段进行了研究。

八、人工智能在电力系统中的应用

结合电力工业发展的需要,开展了将专家系统、人工神经网络、模糊逻辑以及进化理论应用到电力系统及其元件的运行分析、警报处理、故障诊断、规划设计等方面的实用研究。在上述实用软件研究的基础上开展了电力系统智能控制理论与应用的研究,以提高电力系统运行与控制的智能化水平。

九、现代电力电子技术在电力系统中的应用

开展了电力电子装置控制理论和控制算法、各种电力电子装置在电力系统中的行为和作用、灵活交流输电系统、直流输电的微机控制技术、动态无功补偿技术、有源电力滤波技术、大容量交流电机变频调速技术和新型储能技术等方面的研究。

第2篇:新型电力系统概念范文

关键词:智能电网;智能调度系统;电力电网

中图分类号:TM73 文献标识码:A

电力电网调度系统对电力系统而言是至关重要的,在电力系统初具雏形时,由于科技落后,电力电网调度系统不是智能的,是由工作人员通过打电话的方法了解各个电力站的运行状况,如果发现电力站的运行发生异常状况,就会凭借工作人员的经验,对发生的异常状况进行处理。现如今,科技水平不断发展,自动化技术也不断地更新,电力电网的智能调度系统在电力系统中也得到了应用,并取得了一定的成效。与传统电网系统相比,电力电网的智能调度系统不是孤立存在的,它是一个实时动态的系统,可以有效地进行分析和调控电力系统,当电力站发生故障时,电力电网的智能调度系统可以更加精准和及时地对故障分析和处理,更加快捷方便,可以更全面地了解电力电网的运行状况。

一、电力电网智能调度系统概述

(一)电网调度系统自动化的现状和前景

在科学技术不断发展的今天,电网调度系统已由最初单纯获取电力系统的数据转换为全面了解电力电网的运行状况,成为了能量管理系统。虽然我国科学技术水平在不断的发展,但是技术理论仍然不是很先进,导致电网调度系统的自动化和智能化程度仍然不是很高。因此,如何更好地运用现代科学技术,完善电力电网的智能调度系统,使电力电网的智能调度系统更加高效便捷,实现真正的智能,这将是电力系统的未来趋势。

(二)电力电网系统智能调度的概念

电力电网系统智能调度就是指调度系统可以对电力系统的电网的每个状态进行自动获取,综合了解其中的变化,协助电力调度员的管理,使电力调度员操作更加便捷精准,便于获取最好的方案,从而保证电网的安全运作。电力电网系统智能调度系统的功能不单单是基础的电力系统的稳态分析,在电力系统发生突如其来的故障时还应该具有一定的分析功能,可以及时帮助电力调度员解决故障,并且还应该可以兼容日益发展的运行系统。新型的电力电网系统智能系统比如今使用于电力系统中的调度系统更加复杂,更加庞大。新型的电力电网系统智能系统不单单需要电力系统中各个系统相互独立,却有相互统一,各个系统间可以互相帮助,除此之外,还要求新型的电力电网系统智能系统有兼容第三方软件的能力,该系统的最终构架应该是一种开放式的软件体系。

二、 人工智能在电网调度系统中的应用

(一)人工智能的概念

人工智能又名机器智能,融合了计算机科学、数理逻辑、控制论、信息论、神经生物学以及语言学等多门学科的知识理论,最终发展而成的一门综合性学科。人工智能的主要目标就是运用人类的智慧,使计算机系统日益的先进,逐渐使计算机系统表现出人类的一些基本智能行为。科学家进行了大量的科研实验,实验结果表明,人工智能技术发展的速度也越来越快,已经广泛地应用与各行各业,并发挥了显著的效果。不可否认,人工智能必将是未来的发展趋势。

(二)人工智能系统方法分类

二十世纪八十年代初,人工智能技术刚刚崛起,不断地应用于电力系统以及电力系统的相关行业中,主要原因如下:

1电力系统在当时那个年代就已经拥有了很大的规模,数据处理十分的繁琐,并且系统要求动态实时性,凭借当时的计算机水平根本没有办法快速获取计算结果,严重拖累了电力系统的工作效率。

2电力系统的非线性根本没有办法凭借当时的计算机水平建立出精确的线性数学模型。

3由于当时科学技术水平不是很发达,大多数人对电力系统不是十分了解最终导致电力系统行业中存在很多模棱两可的问题。

4由于当时科学技术水平不是很发达,很多电力系统的专家只能根据自己的经验对电力系统进行分析,根本无法运用精确的数学进行描述。与传统的计算不同,人工智能算法是以解决知识中所存在的问题的方法为基础,解决了传统计算方法的缺点。因此,人工智能应用于实际的电力系统中是十分必要的。

(三)人工智能在电网调度系统中的应用以及方法:

1 专家系统

在二十世纪六十年代,专家系统作为人工智能在电网调度系统中的应用的重要分支开始兴起,专家系统顾名思义,这个系统拥有极其接近人类思维模式的智能系统,可以很好地进行分析和推理,就犹如一些拥有丰富经验和渊博知识的专家,在特定的区域里凭借区域内固有的数据库对问题进行合理的分析,最终提出适当的问题解决方案。在专家系统应用于电力电网调度系统中,应该包括电网的管理、对电力系统进行综合的监测作用、对故障进行分析并及时提供解决意见等。

2 人工神经网络

人工神经网络顾名思义,就是一种类似于人类大脑的神经网络,人工神经网络可以对给与的信息进行适当合理的分析,并且处理,最终演变成数学模型,人工神经网络的本身就是对自然界某种算法或者函数的逼近,也可能是一种逻辑表达方式。人工智能神经网络与人类的大脑十分相似,具有一定的自学和联想能力,可以快速地根据特定的规律推算出大致的结果。人工神经网络已经广泛应用于人工电力电网系统的动态控制与诊断、状态数据估计等很多的相关领域,并取得了一定的成效,而其中的人工神经网络的预测估计分析技术已经十分的完善。

3 遗传算法

遗传算法就是根据达尔文生物种族进化论中遗传机制和自然选择学机理的生物进化过程进行模拟最终获取相应的计算模型,遗传算法可以通过模拟自然进化过程分析获取最好的解决方案。具体方法如下:

(1)选取一定数量的候选集。

(2)根据一定的条件,计算出这些候选集的应用范围。

(3)根据计算所得的应用范围适来确定符合应用范围的候选集。

(4)加工处理符合应用范围的候选集,最终形成新的候选集。

在整个遗传学算法中,达尔文自然选择学机理中的“适者生存”一直贯穿始终,遗传算法凭借自身十分优异的计算和处理功能,已经广泛地应用于电力电网系统中。

4 Agent技术

Agent技术是一种智能计算实体,在分布式系统中拥有灵活性、主动性、反应性、交互性和自主性。Agent体系结构是一种自主行为实体,单纯凭借现今的计算机水平,很难准确对Agent体系结构进行描述,其大略可分为三种类型,是混合式体系结构、反应式体系结构和审慎式体系结构。如今,反应式体系结构是其中主要的研究对象,事件处理系统、方法集合和内部状态集组成了反应式体系结构。具备良好适应性和开放性的Agent技术作为在新一代调度自动化系统,发展前景不可小视。

对于同类发电机组而言,综合考量其安全性能、经济效益和环保指标等要素,可以分别表示出机组的可靠性能R、经济效益标准E、环境标准D,以及热电比例H,依次用a表示其权值。那么可以得出:I=a*(R+E+D+H),其中每个权值的和为1。

设定机组工作的经济程度与出力之间的关系为函数E(P),那么用来指代系统经济性能的公式可以表示成:E=E(P max)/ P max。

系统的环保性指标可以用单位排放的污染气体总量来表示;系统的热电比是将单位出力表示为热量数值,设定热电之间转化的关系函数H(P),那么可以得出:H=H(P max)/ P max。

(四)Agent技术的发展前景

分布式的Agent技术就是将能量管理系统模块封装成Agent,使智能电网调度拥有更强的自治性和可移植性,从而在一定程度上解决了智能电网调度的一些问题。现如今,学者对人工智能技术不断深入地研究,从而使其更加广泛地应用于电力系统中,并取得了一定的效果。在科学技术不断发展的背景下,Agent技术一定会拥有更广阔的前景。

三、 国内外电力电网智能调度系统的研究现状

在二十世纪九十年代,Dy-Liacco作为“现代能量控制中心”概念的创始人,十分全面地论述建立了电力电网智能调度系统的文献,在文中提到想要解决电力系统中存在的一些问题,应该用智能机器调度员替代人工调度员,除此之外,文中还提到要综合仿真培训和自动学习等功能,从而使电力电网自动运行。在我国,卢强院士最先提出了“数字电力系统”的概念,主要讲诉的是正常情况下电力电网智能调度系统对电力系统的监管的分析的功能等;华北电力大学的杨以涵教授则带领自己的科研组进行电力系统的研究,基于“数字电力系统”的概念,分析电力系统中电网会出现的故障,以及安全方面等进行了探讨,最终形成了建立以分析和解决电网故障的“调度机器人”的思维模式。

结语

综上所述,电力电网调度系统对电力系统而言是至关重要的,电力电网的智能调度系统是一个实时动态的系统,可以有效地进行分析和调控电力系统,当电力站发生故障时,电力电网的智能调度系统可以更加精准和及时地对故障分析和处理,更加快捷方便,可以更全面地了解电力电网的运行状况。本文对电力电网智能调度系统做了简单的介绍,对电力电网智能调度系统的具体应用进行了探讨,希望本文可以给相关电力电网工作者甚至是研究者带来一定的参考作用,使电力电网的智能调度系统更加完善,可以更好地应用于电力系统中。

参考文献

[1]狄以伟.面向未来智能电网的智能调度研究[D].济南:山东大学,2010.

第3篇:新型电力系统概念范文

关键词:电力自动化系统;应用现状;发展趋势

Abstract: With the information age arriving, the development of the electric power dispatch automation system is paid more and more attention. We need keep up with the pace of the times to clearly understand the situation, grasp the development trend of the electric power dispatching automation system, use the power dispatching automation system functions and advantages, and actively explore a better electric power dispatching automation system that adapts to the power grid.

Key words: power automation system; application status; development trend

中图分类号: TM247文献标识码:A文章编号:2095-2104(2012)

电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。按照电能的生产和分配过程,电力系统自动化包括电网调度自动化、火力发电厂自动化、水力发电站综合自动化、电力系统信息自动传输系统、电力系统反事故自动装置、供电系统自动化、电力工业管理系统的自动化等7个方面,并形成一个分层分级的自动化系统。

1、电力系统自动化的应用现状分析

电力系统自动化是指对电力系统进行控制、监测、保护等行为的自动化建设,既包括硬件也包括软件。电力系统中的各种自动化,充分显示了电力系统的信息技术特点。从我国来看的话,电力调度自动化系统主要有CC-2000,SD-6000,OPEN-2000。它们的基本功能都能达到国内外的同系统的水平。

1.1 CC-2000系统。在不同的应用环境中,CC-2000系统提供两个种类的数据采集子系统,即为基于VME总线的工控机系统和基于终端服务器的系统。它们主要遵循两种不同的体系结构与技术思想,表现为系统的可靠性、适用性、实时性和灵活性等方面各有所侧重,而且在三十多个实际工程中有了应用,很好地适应了各类应用系统的需求。其主要运用开放式的系统结构设计,技术为面向对象,引用软件运用事件驱动和封装的思想为其提供透明的接口。由于应用面向对象技术,一个新的大对象的概念在自动化系统中得到了引用,与此同时,通用性和专有性的结合,使得支撑系统同时满足了电力系统一方的需求与其他行业的实际需求。

1.2 SD-6000系统。SD-6000系统是电力自动化研究院为满足广东电网发展的需要而开发的一套新型能量管理系统,是我国电力部门的重点项目,主要集合了超大规模的调度投影屏、调度电话自动拨号、气象卫星云图等新型技术,开放式和分布式的支撑系统平台是其特点,具有较高稳定性和可靠性的电网元件模型,场站单线图等技术为关键技术。

1.3 OPEN-2000系统。PEN-2000系统在新型的能量管理系统中被运用,由于自身性能的完善、适用面广泛、可靠性高、成熟性好、等优势使其快速的在国内外发展,同时其双网机制的采用使它的流量和可靠性都得到了很大的提升。

2、电力系统自动化系统的新技术应用

当今电力系统的自动控制技术正在向以下几个方面发展:在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展;在设计分析上日益要求面对多机系统模型来处理问题;在理论工具上越来越多地借助于现代控制理论;在控制手段上日益增多了微机、电力电子器件和远程通信的应用;在研究人员的构成上日益需要多“兵种”的联合作战。

2.1 电力系统的智能控制。电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段、线性最优控制、非线性控制及多机系统协调控制阶段、智能控制阶段。智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。

2.2 FACTS和DFACTS。FACTS(柔流输电系统),就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。FACTS的核心装置是ASVC,基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。ASVC是包含了FACTS装置的各种核心技术且结构比较简单的一种新型静止无功发生器。ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。DFACTS是指应用于配电系统中的灵活交流技术,它是1988年针对配电网中供电质量提出的新概念,其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。

2.3 基于GPS统一时钟的新一代EMS和动态安全监控系统。基于GPS统一时钟的新一代EMS目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。基于GPS的新一代动态安全监控系统基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。采用GPS实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。GPS技术与相量测量技术结合的产物――PMU(相量测量单元)设备,正逐步取代RTU设备实现电压、电流相量测量(相角和幅值)。

3、电力系统自动化系统的发展分析

整个电力系统自动化趋向于多方面的发展,由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展;由单个元件向部分区域及全系统发展;由单一功能向多功能、一体化发展;装置性能向数字化、快速化、灵活化发展;追求的目标向最优化、协调化、智能化发展。

3.1 市场化。在将来的电力调度自动化系统中,电力企业不断地适应市场的发展,而这种改革既是机遇也是挑战。电力企业为适应市场的改革为用户提供了多种选择,同时使用户自动作负荷管理,高峰负荷减少,装机容量减少,电力容量利用率和效益提高,更容易得到经济目标以促进系统的合理规划发展和电力工业的经营管理和持续良性发展,创造最大的社会效益。

3.2 数字化。随着数字化时代的到来,人们越来越意识到信息技术的重要性,数字化电网和数字化变电站的开发得到人们的普遍关注。电力调度自动化系统的数字化发展趋势主要指电网信息源的数字化发展,通过系统数字化使电网中的运行数据对电网的调度系统中的综合信息和通信进行分层分类和分区的采集和处理得到了实现。统一和规范了电网的整个监控过程,电力自身信息化、智能化和可视化的调度得到了促进,系统运行更加稳定、安全、经济。

3.3 智能化。智能调度是电网未来发展的必然趋势,智能调度技术采用先进的调度数据集成技术,进一步综合的利用电力系统的稳态、动态和暂态的运行信息进行有效整合,对电力系统的运行进行监测和优化,实施必要的预警和动态预防控制,增加系统的事故辨识、故障处理和系统恢复,从而更加协调与优化电厂质量、职场运营还有电网的调整。与此同时,在紧急的情况下,系统还能够进行协调控制,以达到调度、运行和管理。此外,电网调度的应用功能具有可视化等。

4、小结

随着计算机技术,控制技术及信息技术的发展,电力系统自动化面临着空前的变革。多媒体技术、智能控制将迅速进入电力系统自动化领域,而信息技术的发展,不仅会推动电力系统监测的发展,也会推动电力系统控制向更高水平发展。

参考文献:

[1]张锋.浅谈电力系统调度自动化及其发展方向[J].广东科技,2008(11).

[2]张扬.电力系统技术发展的新趋势[J].浙江电力,2011(3).

第4篇:新型电力系统概念范文

(1)整个电力系统自动化的发展则趋向于:一是由开环监测向闭环控制发展,如从系统功率总加到AGC(自动发电控制)。二是由高电压等级向低电压扩展,如从EMS(能量管理系统)到DMS(配电管理系统)。三是由单个元件向部分区域及全系统发展,如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。四是由单一功能向多功能、一体化发展,如变电站综合自动化的发展。五是装置性能向数字化、快速化、灵活化发展,如继电保护技术的演变。六是追求的目标向最优化、协调化、智能化发展,如励磁控制、潮流控制。七是以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,如MIS(管理信息系统)在电力系统中的应用。(2)当今电力系统的自动控制技术正趋向于:一是在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。二是在设计分析上日益要求面对多机系统模型来处理问题。三是在理论工具上越来越多地借助于现代控制理论。四是在控制手段上日益增多了微机、电力电子器件和远程通信的应用。五是在研究人员的构成上益需要多“兵种”的联合作战。

二、具有历史性重要影响的三项新技术

1.电力系统的智能控制。电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:(1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。(2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。(3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。智能控制是当今控制理论发展的新阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。

第5篇:新型电力系统概念范文

关键词:智能电网;分布式发电;电网规划

1 前言

现代社会对电力系统提出了新的任务:要求电网更高效、更洁净、零排量。智能电网能够满足这样的要求,它能满足用户对电力的需求,能优化资源配置,更好提高电力系统的可靠性和经济性,同时能满足保证电能质量和环保约束,适应新形式下电力市场化发展等任务。智能电网日益成为现代电力系统规划的主流。

2 智能电网的概念

智能电网在我国又称“坚强-智慧电网”。它是以包括各种发电设备、输配电网络、用电设备和储能设备的物理电网为基础,将现代先进的传感测量技术、网络技术、通讯技术、计算技术、自动化与智能控制技术等与物理电网高度集成而形成的新型电网,它能够实现可观测(能够监测电网所有设备的状态)、可控制(能够控制电网所有设备的状态)、完全自动化(可自适应并实现自愈)和系统综合优化平衡(发电、输配电和用电之间的优化平衡),从而使电力系统更加清洁、高效、安全、可靠。

3 智能电网的关键技术

3.1 发电、输入配电与储能技术

在电能生产、输配、使用等这几个重要过程中,电能生产环节是整个电力系统中减少污染排量最主要的一步,智能电网更多地采用无污染可再生的风电、水电等多种新能源进行分布式发电。分布式发电技术生物质能发电技术、有风力发电技术和地热发电技术等。输配电技术发展流方向是特高压输电技术和高温超导输电技术,特高压输电技术可以实现大功率、长距离输送电能,极大地提高了电网输电能力,同时可实现远距离各大电网互相联接。

高温超导输电技术主要包括高温超导电缆的结构与输电方式和超导电气设备等,是智能电网的输配电发展方向,随着高温超导体材料技术的进步,这种新的输电技术比传统输电技术有环境污染少、电能损耗小等优点。

分布式储能装置有飞轮储能、电池储能、压缩气体储能、抽水蓄能等,超导储能等。智能电网更多使用新能源、洁净能源和可再生资源,能极大地改善环境,特别是减轻温室效应有积极作用,同时缓解了我国传统能源分布不平衡问题,所以该技术被广泛应用。

3.2 电网通信技术

智能电网的多种数据传递、保护和控制信号都需要大量信息流量,需要创建高速、双向、集成、实时的通信系统,是实现智能电网的基础。通信网络和电网一同分布到每家每户,这样就形成了两个紧密联系的网络-电力网络和通信网络,只有这样才能实现高速、双向、集成、实时的通信网络使智能电网成为一个动态的、实时信息和电力信息交换互动的大型公共基础设施。当这样的通信网络建成后,它可以提高电网的供电可靠性和资产利用率,繁荣电力市场,抵御电网受到的各种攻击,从而提高电网稳定性。这样的通信系统是迈向智能电网的关键之一。

3.3 固态表针量测技术

智能电网不再使用现有电网中的读取系统及其电磁表计,取代它们的是可以使用户与电力生产单位之间进行双向通信的智能固态表计系统。基于微处理器的智能表计系统有更丰富的功能,如可以计量每天不同时段电能的使用量和电费,还可储存电力部门下达的高峰电力价格信息及电费费率,并通知用户实施何种费率政策。更先进的功能有用户根据费率政策,编制优质的用电计划,自动控制用户内部电力使用的策略。

电力参数量测技术是智能电网中最基础的组成部件,高级的电力参数量测技术获得数据并将其转换成数据信息流,以供智能电网的各个系统调用。根据各种数据信息评估电网设备的健康状况和电网的发展趋势,进行智能固态表计系统的读取、防止窃电、缓减电网阻塞以及与用户及时沟通。

4 智能电网在电力系统规划中的发展前景

4.1 当前电网规划存在的问题

我国存在着电源与电网发展不协调、不平衡的问题。我国各大电网互联输电能力不完善,电网之间的互济与跨电网补偿能力还有待优化改进。由于各种因素,目前我国要实现大容量、远距离输送电能还较难满足需求。所以国内电力系统的电网规划很重要。

4.2 智能电网在电力系统规划中的优势

智能电网的显著优点是能够利用洁净的、新型的、可再生的资源进行间歇性发电,实现保护环境、减少资源损耗,对于当今时代所提倡的发展低碳经济,建设美丽中国有积极作用,符合可持续发展。智能电网实现智能化、优化调度,进行有效管理,用最低的成本提供符合期望的功能。在未来电网的发展中,有望实现智能电网与电信网络、电视网络的深度融合,具有美好的发展前景。

智能电网对国内电力系统的规划提供了新的思路,电网规划需要更加注重电网的动态运行特点,电网规划需要注重用户侧的特性,电网规划需要更加注重资源战略计划的发展。

4.3 我国智能电网规划应用

驱动我国发展智能电网的主要因素是国民经济的持续快速发展,而我国能源分布不平衡,火电、水电、风能等能源基地与负荷中心相距甚远,这就使得我国以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网建设成为发展智能电网的物质基础。智能电网规划在输电领域多项研究应用已达到国际先进水平,在配用电领域,智能化应用研究也正在积极探索。明确提出:以特高压电网为骨干网架、各级电网协调发展的坚强电网为基础,利用先进的通信、信息和控制技术,构建以信息化、自动化、数字化、互动化为特征的国际领先、自主创新、中国特色的坚强智能电网;通过电力流、信息流、业务流的高度一体化融合,实现多元化电源和不同特征电力用户的灵活接入和方便使用,极大提高电网的资源优化配置能力,大幅提升电网的服务能力,带动电力行业及其他产业的技术升级,满足我国经济社会全面、协调、可持续发展要求。

5 结束语

智能电网是电网规划发展中一种新前景,建设中国特色的坚强-智慧电网,规划中国新型的智能电网发展战略,是我国当前电网规划的奋斗目标,也是发展前景。

参考文献

[1]蔡丹君,胡婧.智能电网的三个关键词[J].国家电网,2009,(9):42-43.

[2]赵志芳.现阶段我国输配电价总水平管制模式探究[J].华东电力,2011年05期.

第6篇:新型电力系统概念范文

关键词 智能电网;电力技术;应用

中图分类号:TM73 文献标识码:A 文章编号:1671-7597(2013)13-0110-01

随着经济的发展和社会的进步,能源的消耗不断增加,人类正面临着能源枯竭的威胁。在能源匮乏的时代,提高能源利用效率就显得尤为重要。智能电网技术在节约能源、提高能源利用率等方面具有划时代的意义,一方面,它决定着电力事业在未来的运营和发展的方向,另一方面又在一定程度上影响着电力工作的管理手段和方式。利用智能电网技术,我们可以在短时间内找到电力故障处理的方法,节省人力财力;利用智能电网技术,我们还可以提升电网规划系统的工作效率,优化配置煤矿等生产资源。

1 智能电网的概念

所谓的智能电网主要以两种技术为载体,具体来讲就是测量技术和传感技术,当然仅仅具备这两种技术还是远远不够的,它还需要以高速双向通信网络为基础,与此同时,配置先进、专业的软硬件设施,积极培养高素质的专业人才,熟练掌握所涉及的所有技术,以此做出科学正确的决策,支持系统进行控制的电网应用。,使电网智能化。智能电网提高了电网的高效性、可靠性和安全性,提高了资源的经济效益。智能电网的优点包括:能够自愈、激励和自动抵御攻击;兼容不同发电形式的接入;最大限度的满足客户的用电要求和需要,不断优化电力市场等,只要这样才能确保其长期出去高速、稳定、可持续的运转状态。

2 智能电网的特征

智能电网的特征包括自愈、坚强、集成和优化四个方面的内容。下面对这些特征进行一一的论述。

2.1 自愈

电力供给是一个非常复杂的系统,在现实中,众所周知,电力供给本身具有复杂性的特点,这种特质直接导致了电力技术和电网经常会出现一些问题。但是智能电网所具备的“自愈性”特征会使其在出现问题,及在相关工作人员的干预下,自动将问题原件筛选和隔离出来,并加以修复,最终使得电网系统恢复正常运营状态,智能电网的优势还不仅仅体现在这一方面,它在自愈的过程中,还不会出现供电服务中断的情况。所以从根本上说,智能电网的自愈能力为电网的正常运行提供了可靠的免疫力,它是智能电网中最重要的特点。智能电网拥有强大的故障预警系统,在故障发生后,能够自动的进行故障分析、系统修复以及故障隔离。

2.2 坚强

在现实中,电网经常会受到外界因素的干扰和攻击,比如来自大自然的攻击或者是人为的物力影响和攻击等,这些都会致使电网陷入瘫痪状态。有了智能电网,这种危害会得到缓解。在面对干扰时,智能电网能够保持对用户的供电能力,避免出现大规模的停电事故;智能电网还可以有效防御计算机病毒的攻击,保障电力信息安全;不仅如此,智能电网在具有自愈功能的基础之上,还能够对攻击者发起反攻。智能电网能够在电力技术以及电力系统规划中得到广泛的应用,正是因为它的抗攻击和反击的能力。

2.3 集成

电力系统贯穿所有电力等级,是发电、变电、配电、输电及其用电等各个环节的集成,有效实现了“业务流”、“信息流”和“电力流”的高度一体化。智能电网为电力使用提供了统一的平台。保证了电网精细管理的规范化和标准化,实现电网信息的共享和集成。

2.4 优化

智能电网在电力系统规划中优化调整电网资产管理与运行,保证用最低的投资成本达到最优的目标和效果,符合经济效益。职能电网可以充分的发挥动态评估技术的功效,保证资产的使用能力,使资产在更大的负荷中稳定运行。

3 智能电网在电力技术及电力系统规划中的应用

3.1 建立智能电网信息模型

对智能电网系统进行管理,不仅包括对电力系统固有的生产属性进行信息化的管理,而且要理清数据之间的层次分布关系。因此,智能电网信息模型既包含了空间图形信息,又包含了生产属性信息。空间图形信息可以准确的描述各个电力空间的位置,它在GIS技术中通过坐标(X,Y)可以得到很好的表示;电力的生产属性信息采集了大量的物理特征和各种各样的电力设备,所以数据量非常庞大,不仅可以全面的监控电力系统中的固定设施,还能对生产设备实施信息化操作,并且把这个过程反映在几何数据模型当中。它们都是点、线、面对象的集合,并且通过这些地物可以组成电力系统环境下所有的地物,并分别体现出各自的几何特征和属性特征。在电力网络的处理中,电力技术的生产过程和过程数据是分不开的,所以对于过程数据模型,我们也可以通过位置来建模,它主要表现:用托肯的建模方式对过程实力进行建模。要使得智能信息工作网的完整性得到保证,必须遵循模型演进规则。

3.2 电力系统的智能化管理

智能电网最大的优点是能够利用洁净的、新型的和可持续的资源进行发电,从而减少了资源的损耗和生态环境的保护,非常符合现代社会提倡的“低碳生活和低碳经济”的可持续发展模式。智能电网对电力系统的管理控制主要通过以下几个步骤来完成,即自动检查、自动寻找、自动求解和自动执行。

3.3 数据库的连续自动化更新

在当代计算机信息技术的不断发展的环境下,电网数据库的所有信息都应该实行统一的模式管理。首先,通过电网特殊元件自动采集本地数据库的实时记录并不断进行自我更新;其次,及时在服务器端建立缓冲区,大力存储常用数据,提高服务器的操作效率提升工作流网络的性能。

4 结束语

通过以上的总结分析,我们不难看出,将智能电网的相关技术运用到电力系统中来,有利于很好的控制电力技术成本,求得电力规划管理的最优化解,也有利于降低电力企业管理难度。因此,我们要做到事前规划、预先处理、提前排除、未雨绸缪、防患于未然,不断探索新型电网技术在电力系统中的应用策略,全面加强电力系统规划与煤电技术的应用,确保电力系统规划零故障目标的实现,促进电力系统规划作业更加安全稳定的进行,推动我国电力事业的不断发展,更好地为社会主义现代化建设服务。

第7篇:新型电力系统概念范文

关键词:电力系统 非线性控制 反馈线性化方法

电力系统是一个复杂的非线性动态大系统,随着大机组、超高压电网的迅速发展,改善电力系统运行的安全稳定成为日趋重要和紧迫的研究课题。随着微型计算机和现代控制理论的不断进展,各种先进的控制方法在电力系统控制方面得到了广泛的应用,它们在提高电力系统性能的同时,也为解决电力系统安全、稳定和经济运行问题提供了各种各样的途径。

一、基于电力系统非线性模型的设计

通常对非线性系统进行控制主要有两大类处理方法:①先将非线性系统在某一邻域内进行反馈线性化,然后运用现代控制理论的思想进行控制的设计,如基于微分几何理论的反馈线性化法、直接反馈线性化方法等。②直接应用非线性控制理论的结果,如变结构方法、鲁棒控制和智能控制等。

1.1 基于微分几何理论的反馈线性化法

基于微分几何理论的反馈线性化法通过微分同胚映射实现坐标变换,根据变换后的系统设计非线性反馈,实现非线性系统的精确线性化。微分几何方法适合仿射非线性系统。这种方法具有坚实的理论基础,但其控制律的推导对于数学基础要求较高,同时非线性反馈的引入令控制器结构复杂,限制了它在工程中的运用。

1.2 直接反馈线性化方法(DFL)

DFL方法不需要进行复杂的坐标变换和大量数学推导,具有计算简单、物理概念清晰的优点,便于工程应用。运用DFL方法设计了新型变结构励磁和综合控制器,仿真表明该控制器提高了系统的暂态稳定性和故障后的电压调节性能。

1.3 Lyapunov直接法

Lyapunov 直接法由于直接考虑了系统的非线性特性,且物理概念清晰,在电力系统暂态稳定的分析及控制器的设计中得到了广泛的应用。基于Lyapunov直接法研究了非线性励磁控制,数字仿真和基于微机实现的控制装置验证了所提出的控制规律的有效性。

1.4 无源系统理论

无源系统是一类考虑系统与外界有能量交换的动态系统,系统无源可以保持系统的内部稳定。从无源系统的角度看,Lyapunov 函数的构造过程正是使系统无源化的过程,此时的Lyapunov 函数正是保证系统无源性的存储函数。Lyapunov 意义下的稳定是指无外部激励条件下系统广义能量的衰减特性,而无源性是指系统有外界输入时的能量衰减特性。

对于存在干扰的系统来说,为了使得系统内部稳定,可依靠无源理论来构造反馈控制器,使得相应的闭环系统无源而保持内部稳定。一般来说,无源性、稳定性与最优性密切相关,但是Lyapunov 函数的构造还没有规律可循,需要经一步研究。

1.5 自适应控制

自适应控制的研究对象是具有一定程度不确定性的系统。自适应控制器能够修正自己的特性以适应对象和扰动的动态变化。采用自适应控制技术能够有效地解决模型不精确和模型变化所带来的鲁棒性问题,但是由于它需要复杂的在线计算和递推估计,只是适合于一些渐变和实时性不高的过程。

1.6 智能控制

基于人工神经网络(ANN)、模糊控制(FC)和专家系统(ES )的智能控制由于具有处理各种非线性的能力、并行计算的能力、自适应、自学习和自组织的能力以及容许模型不精确甚至不确定等多方面优点,使之可以综合解决多机电力系统控制所面临的诸多问题。应用ANN 实现了励磁、快关汽门和电阻掣动三种不同控制器的最优综合控制。用模糊控制与线性最优控制结合实现了非线性自适应变增益励磁控制,弥补了固定增益的线性最优励磁控制对大、小干扰或不同目标采用折中设计和无法考虑强非线性约束的不足。

二、结束语

非线性控制理论在电力系统中成功的应用明显地提高了电力系统暂态稳定性,对增强电压稳定性也有显著的作用。不过,由于非线性系统控制问题的复杂性,不能找到一种万能的非线性控制方法。每一种方法只适合解决一些特殊的非线性系统控制问题。另外,具体的电力系统控制问题有其自身的复杂性,如要同时满足互相矛盾的几个控制目标等,目前控制器大多基于单机无穷大系统模型设计,而在实际多机电力系统中,如何得到分散解耦控制并加以妥善协调,进而提高整个系统的稳定性是值得研究的问题。

参考文献:

[1]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.

[2]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2002.

第8篇:新型电力系统概念范文

风机水泵变频调速,实现节能高压和低压变频器的应用,对发电厂的节能有重要作用。发电厂里风机水泵的运行效率其实是很低的,但是耗电量占比却相当高,使电量存在不必要的损失。值得一提的是,高压变频器相对于低压变频器还需要多加研发和使用,是我们目前应该学习提高的技术。

2两种电力电子技术的介绍以及技术发展的历史

2.1直流输电技术

直流输电技术的核心技术就是晶闸管触发技术,此技术的应用为直流输电技术带来了可以操作实现的基础。因为采用的是触发晶闸管,所以在进行光电转换时,省略掉了触发电路板,但是由于晶闸管的性能不够稳定,在实际应用中要加强对晶闸管的保护,这样子就造成了保护电路跟应用电路都集成到晶闸管上,这对加工工艺的要求就比较高了。我们常见的直流输电系统,整体性能较好,稳定性较高,输送电量较大,控制方便,适用于远距离供电,因为直流不产生磁场,所以能够防止频率的干扰,直流输电技术也被应用于海底电缆输电以及频率不同的网络联网。直流输电技术之外还有一种ABB公司研发的新轻型的输电技术,这种技术因为重量较轻,比较好控制,而且运用灵活,完全可以供给小型发电的需要,已经应用于很多小型发电输电电力系统。轻直流输电的工作原理是通过各个输导线路将许多个的终换流站连接到输电终端。轻型直流输电技术除了上面的有点之外,因为整体框架较小,还具备经济的特点,市场上应用较为广泛。

2.2柔流输电技术

此概念是由美国电力学家于八九十年代提出的,当时被称为电力技术的一项重大革命,此技术的提出和应用,能够帮助除了直流之外的所有电力应用技术水平的提高。它是在电力电子技术的基础上,结合现代工业控制技术,对输电系统各个电力值进行灵活调节,实现电力功率的合理分配,降低不必要的损耗,减少发电成本,提高整个电力系统的稳定水平以及可靠性。柔流输电技术能够实现大范围的控制电流,保证输电线的电容量处于一个稳定值,在一定的时间内,传输更多的功率,防止因为交流磁场造成的阻尼作用。

3电力配电对电力电子技术的应用

电能的质量好坏取决于对电压电频等的要求控制,还有对干扰和瞬间性波动的控制能力。在配电过程中,我们要保证终端用户用电的稳定以及电能的质量,所谓电能的质量就是指电流电压稳定。电力系统中应用新型控制技术可以保障用户用电的情况下,维持整个系统的安全性能。这类新型控制技术就是DFACTS技术,又称用户电力技术,它的设备和FACTS设备基本一样,只是比后者设备体积要小。

4电子电力技术在电力节能方面的应用

4.1对变负荷电动机的应用

电动机耗电量大是有目共睹的。电力系统中,最关键的部位无疑是电动机本身,但是即使在优秀的电动机都需要消耗电能,为了节约整体电路系统运行中消耗的能量,我们必须用电子电力技术加以辅助。变负荷电动机调速有交流调速和变频调速。交流调速控制对风力大小和水流的流量进行调速,保证其产生的功率稳定,很多一部分应用于风车等和泵类机器。但是从成本上来说,交流调速比变频调速的成本要低,而且变频调速虽然精度高还可以连续调速但是运作所产生的电波对电网有不好的影响。

4.2提升电气设备效率,及时无功补偿

电气设备中的无功电源并不是可有可无的。电力系统要想保证电能质量必须兼顾有功电源和无功电源。有些感性负载的机器的运行同时需要这两种功率。所以这两种功率在电力系统中的存在应该是均衡的。必要时使用无功补偿设备,保障功率。在无功功率没办法供给的情况下,就导致整个系统的功率降低,有时还会因为功率过低出现系统崩溃,发生停电事故,影响终端用户的用电。

5总结

第9篇:新型电力系统概念范文

P键词:电力系统;基建项目;工程质量管理;电力能源;基础设施 文献标识码:A

中图分类号:TM73 文章编号:1009-2374(2017)02-0174-02 DOI:10.13535/ki.11-4406/n.2017.02.084

电力能源是一种清洁能源,在行业发展中得到广泛的应用,因此对我国电力系统建设提出更高的要求。必须加大加快电力系统的发展,注重相关的研究,为促进电力系统基建项目的发展提供更有力的依据。电力系统基建工程在电力系统发展中发挥着重要的作用,不仅是电力系统发展的基础所在,而且是重要的保障,因此要实现电力系统能够在生产中稳定持续运行,则必须拥有先进的电力系统基础设施。目前对于供电企业而言,寻找有效的方式对电力系统基建工程进行管理,以提高电力系统运行的能力,保持稳定持续运行,该主题已经成为其任务的重点之一。必须寻找目前电力系统基建工程所存在的问题,并且提出相应的解决措施。本文主要对电力系统基建项目工程的质量管理问题和方法进行探讨。

1 电力系统基建项目工程质量管理的基本概念

1.1 电力系统基建工程基本概念

电力系统基建项目工程是电力系统的基础所在,为电力系统的运行和发展提供有力的硬件。要保证电力系统能够维持正常的功能和运作能力,必须确保其设备齐全、功能完善且稳定运行。与此同时,电力系统基建工程还属于一项系统性工程设备,集合了资源管理、图纸设计、档案管理等环节,能够以相关的规章制度作为基础开展工作,能够充分利用冗杂的信息资源,有效地调动人力资源,确保各个部门和单位之间能够默契合作,在整个电力系统基建项目工程的管理中占据核心的位置。

1.2 质量管理基本概念

质量管理是工程项目管理和实施的重要控制手段。为了保证电力系统基建工程的质量,不仅要求电力系统基建工程的质量管理目标涉及到管理各个环节,包括协调工程质量的要求、制定计划对质量进行监察、对施工质量予以监管等。电力系统基建工程的管理内容包括两方面:其一,项目建设效率的质量管理;其二,项目竣工后的质量检测。高质量的电力系统基建项目不仅要求管理部门能够高效运用专业知识解决管理的实际问题,而且还要求质量管理的方法具有独特的见解,要求在有限的资源、时间、成本条件下,达到理想的建设指标和质量要求。

2 电力系统基建工程质量管理现存问题

2.1 客观环境因素

电力系统基建工程质量管理的客观环境指的是电力系统基建项目所在的环境,包括管理制度和社会风土人情,其中管理制度的架构明确,具有较强的可控性,但是社会风土人情则难以控制,具有不可控的特点,包括两方面的内容:一方面为自然环境;另一方面为政策因素。近年来,行业的高速发展对电力系统提出更高的要求,并且需求量也明显增大,供电设备的市场价格明显上涨,许多设备供应商对设备材料的质量控制缺乏有效的控制,导致设备材料质量下降、良莠不齐,难以为电网建设提供可靠的材料保障,加上气候的变化、自然灾害等不可控的因素影响,对施工进程造成严重的阻碍,难以在施工期内完成施工任务,不仅浪费时间和金钱,加大成本,而且还对电力系统基建工程的建设质量造成负面的影响。

2.2 主观因素

电力系统基建工程的主观因素是指在工程建设中所有参与人员所致的工程质量问题,在所有影响因素中占据关键的位置。电力系统基建工程的工作人员身体素质、思想、文化、技术水平,均会对电力系统基建工程施工的进度和质量造成影响,尤其是制度的设计,人在整个项目施工中发挥着决定性的作用。制度设计的主要内容包括组织架构、技能培训、资格认定和业绩考核等,其中组织架构最为重要,是电力基建工程中的重点之一。良好的组织架构保证了每一个工作人员的工作主动积极程度,为电力系统基建工程的质量提供有力的保障。所以当参与者缺乏专业的技术素质和综合素质,会对电力系统基建工程的施工技术和流程要求执行造成不同程度的影响,影响工程完成的效果。

2.3 物资设备因素

电力系统基建工程的物资设备因素指的是电力系统基建工程所需的物资资源和设备资源,其中物资资源包括基础资源和设备,例如混凝土、线缆、工具、电气设备等。高质量物资和设备为电力系统基建工程的质量打下坚实的基础,质量低下的资源和设备甚至会对电力系统基建工程造成不可估计、不可挽回的损失。目前,监管不力导致市场的物资设备质量存在较大的问题,许多质量不合格的资源和设备滥竽充数,一旦这些质量差的物资和设备流入电力系统基建工程,则会导致豆腐渣工程的出现,给电力系统基建工程带来严重的后果。由此可见,必须重视物资设备的质量检查,对质量进行严格的把关。与此同时,有的企业为了降低施工成本,继续运用老旧的物资和设备,不愿意采购先进的设备和学习新的工艺,对项目工程的进度和质量控制也造成较大的威胁。必须对物资材料和施工设备进行严格的质量控制和质量把关,方可确保电力系统基建工程的质量和进度。

2.4 管理制度因素

每一种制度的建立和完善都需要经过较长的时间,在这个过程中,不断改革,不断尝试,不断总结。由于改革受到各个因素的影响,因此缺乏力度,难以大胆创新或者缺乏总结过去的经验,导致制度缺乏成效,所以必须对管理制度进行完善,这是优化电力系统工程质量管理的难点所在。

3 如何优化电力系统基建工程的管理

3.1 优化电力系统基建工程的外部管理环境

客观环境因素是难以控制的,具有不可抗力的特点,所以要有效地降低客观因素所带来的负面影响,必须消除客观因素对工程质量所带来的不良影响,主要方式在于对工程项目的环境进行优化,创造良好的外部管理环境。其一,应当督促供电企业加强自身对中标企业的履约考核以及违约责任的追究,保证物资供应商能够如期履约,严格依照合同要求为施工方提供物资和设备;其二,供电企业应当重视项目的立项和审批准备,尽快安排和部署相关项目的年度停电工作,促使电力系统基建项目工程能够尽快得到落实和实施,使供电企业能够有效监管控制以及保障工程质量。

3.2 优化电力系统基建工程的人力调整配置计划

随着供电企业的电力基建项目工程的增加,转变观念,注重工程管理,具有重要的意义。在人员配置方面,应当聘用具有一定经验的人才,解Q人员老化的问题,增加人才。同时可以借用专业人才对新员工进行培训,有利于提高新员工的专业水平和素质。从事电力系统基建质量管理的工作人员必须具备良好的管理资质,具有实干精神和负责的态度,能很好地将实践与理论相结合,避免只说不做等不良现象的出现,在选定和任命相关管理人员后应当对其进行定期抽查。对于各种不良作风和现象,应当严格惩罚,减少不良事件的发生,对工作作风有问题的人员进行严格的处罚,对工作积极认真的工作人员进行奖励。妥善处理上下级合理需求和工作积极性,加强思想政治教育,强调廉洁理念、法制观念,根除不良风气。

3.3 优化电力系统基建工程的物资设备条件

对于物资设备的管理方案而言,新型高效的运行模式发挥着核心的作用,能够促使各个参与方有效地协调,加大技术培训,促使工作人员能够最快进入工作状态。同时需要建立严格的赏罚分明制度,对各个级别工作人员进行赏罚分明,建立投诉机制和渠道,安排专业人员及时沟通和处理,保障工程所需物资和设备的质量,从而提高项目工程的质量水平。

3.4 优化电力系统基建工程的管理制度

对电力系统基建工程管理制度进行优化,在加强基建工程管理中发挥着重要的作用。完善的管理体系是高质量管理的前提,要求所有参与者必须尽心尽责。其一,必须设立一个专门的主管职位,要求应聘者必须具备丰富的管理经验和较高的专业素质,其内容在于传达公司对电力系统基建工程施工的要求,并且监督落实,以协调公司各个部门对该项目工作的配合度;其二,设立项目经理职位,工作内容在于企业法人与各个有关部门进行沟通工作,并且对整个电力系统基建项目工程负全责。设立技术组、质量检测小组,对技术工作和物资设备的质量监测工作进行严格的拔管。完善的质量管理体制主要包括两点:其一,应当总结以往经验,对已有的管理体制不足之处进行总结,并制定出具体对策进行改进;其二,应当大胆改革创新,积极引进,借鉴国内外优秀管理体制,结合自身实际情况,制定出最适合企业本身的管理体制。

4 结语

综上所述,电力系统基建项目的质量管理具有重要的意义,必须重视采取积极有效的措施对电力系统基建工程的质量加强管理,为电力系统基建工程管理的优化提供帮助,促进管理规范化的实现,对电力系统基建工程体系进行完善和强化,促进我国国民经济的高速、稳定、健康发展。

参考文献

[1] 夏良.电力系统基建项目工程质量管理探究[J].工程经济,2014,(12).

[2] 梁焕成.电力系统基建项目工程质量管理探究[J].建筑工程技术与设计,2016,(23).

[3] 吴佩莉.浅谈如何优化电力系统配电网基建项目质量管理[J].科技与企业,2013,(24).

[4] 孙羽.电力系统配电网基建项目质量管理优化研究

[J].科技与企业,2015,(7).

[5] 黄沛茜.论电力系统配电网基建项目质量管理[J].建材与装饰,2015,(41).

[6] 孙雁翔.关于基建项目计划管理优化的研究与实践

[J].商情,2013,(21).

[7] 陈保帆.电网基建项目储备库管理系统设计与实现

[D].电子科技大学,2014.