公务员期刊网 精选范文 高层建筑抗震设计论文范文

高层建筑抗震设计论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高层建筑抗震设计论文主题范文,仅供参考,欢迎阅读并收藏。

高层建筑抗震设计论文

第1篇:高层建筑抗震设计论文范文

由于地震的不可预知性,高层建筑结构在设计过程中很难准确地预测建筑物所遭遇的地震特性和基本参数,只靠计算很难使高层建筑结构具备良好的抗震性能,这就要求每个结构工程师必须重视建筑结构的抗震概念设计。因此,高层建筑结构在抗震设计中,应注意以下几点:

1)建筑结构的平面布置。建筑结构的平面布置是影响结构抗震的重要因素,合理的建筑平面布置对建筑结构设计是至关重要的。大量地震灾害表明,平面布置简单、对称规则、质量和刚度分布比较均匀并且具有明确传力途径的建筑结构在地震时不容易发生破坏。规则结构能较为准确地预估结构的作用效应和地震时的反应,较容易采取有效的抗震措施及相应的结构措施来加强其抗震性能。相反,平面布置复杂、不对称且不规则的结构,其地震作用效应很难估计的。因此,高层建筑结构中规范规定,宜采用规则结构,不应采用严重不规则的结构。

2)建筑结构的体系选择。高层建筑结构设计中,就优先采用具有多道防线的结构体系。例如:框架—剪力墙结构、剪力墙结构和筒体结构。这三种结构可以作为地震区高层建筑的首选体系。当建筑物高度不高且层数不多时,可采用框架结构。但当建筑物位于地震区,且高度均较高时,应避免采用框架结构、板柱剪力墙结构。因为,地震具有强破性且持续时间很长,往复次数较多,能够对建筑物造成累积破坏。单一的结构体系在遭遇地震时,一旦发生破坏,很容易造成房屋倒塌,危及人们的生命及财产的安全。当结构体系具有多道防线时,当遭遇地震时,第一道防线遭破坏后,后续的防线仍然能抵抗地震的冲击力,可以最低限度的防止建筑物的倒塌,给人们以充分的时间进行逃生,保证人民的生命安全。因此,高层建筑结构抗震设计中的多道防线是进行抗震设计时所必须设置的。

3)结构薄弱层。当建筑结构的侧向刚度分布不均匀、竖向抗侧力构件不连续和楼层承载力突变时,容易产生薄弱层。薄弱层在地震中是最先遭受破坏的部位。因此,对有明显薄弱层的结构,应采用相应的抗震构造措施来提高其抗震能力。结构构件的实际承载能力是判断薄弱层部位的基础,有意识、有目的地控制薄弱层部位,让它有足够的变形能力,而且不使薄弱层发生转移是提高结构抗震性能的重要手段。

2高层建筑抗震设计常见问题

1)高层建筑结构的地基问题。高层建筑结构在设计阶段,应有完善的岩土工程勘察报告,为结构工程提供基本的设计依据。建筑结构场地应选择在有较稳定的基岩、开阔、平坦、土层坚硬或较密实的有利地段,不应建造在容易发生滑坡、地陷、崩塌和泥石流等不利地段及抗震的危险地段,有利地段的建造对建筑物的抗震是十分有利的。有时由于建设单位工期要求,在确定方案后设计人员就直接进入了施工图设计阶段,从而忽略了岩土工程勘察资料和场地的选择,从而给后续工作带来不必要的麻烦。

2)高层建筑结构平面布置问题。高层建筑为了追求外立面效果的美观而设计成平面不规则、不对称且有较大凹进或较大开洞的结构,这种结构对抗震十分不利。因此,在建筑方案正式确定前,结构工程师就应对建筑平面布置、体型方面的内容提出自己的见解,及时和建筑师进行沟通,尽量选用平面、竖向规则对称、质量和刚度、承载力均匀的平面布置,这对抗震十分有利。

3)高层建筑结构的高度问题。如今的高层建筑结构的高度越来越高,甚至出现了很多超高层的高层建筑,这就对结构工程师的专业知识提出了更高的要求。不同的高度对应不同的结构体系,规范上有明确规定。一旦结构超过了规范规定的限制高度,就应通过专门的审查、论证进行更严格的计算分析和研究。

4)高层建筑抗震设防等级的选取问题。抗震等级是结构抗震设计的重要依据,抗震等级选取不当将给建筑物的安全带来许多隐患,对工程造价也会带来不必要的浪费。抗震等级根据房屋的场地类别、抗震设防烈度、建筑高度、结构类型等因素综合评定。每个结构工程师应当熟练掌握结构的抗震概念设计和规范知识,做到该提高的应当提高其抗震等级,该降低则应适当降低。

5)计算软件的合理应用。高层建筑结构抗震设计时,应该应用正规的结构设计软件进行设计,软件中的各个参数指标能够正确反映建筑物的特征。结构工程师能正确分析结构软件所计算的结果,并做出正确的判断。但有时计算机设计会给结构工程师带来一种错觉,有的结构工程师往往过分依赖计算结果,而减少了结构的概念学习。一旦选择了错误的计算参数,就会导致结构设计出现问题,对结构的安全和经济方面造成影响。因此,结构工程师应加强自身的业务学习和抗震概念设计的理解,做到熟练掌握相关的结构概念设计,并且根据自身的专业知识配合计算结果选择最佳的结构设计方案。

3结语

第2篇:高层建筑抗震设计论文范文

论文摘要:本文从抗震的角度探讨建筑的体型,建筑平面布置和竖向布置、规范中设计限值的控制、屋顶建筑等设计问题。

建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑

设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。

一、建筑体型设计问题

建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。

二、建筑平面布置设计问题

建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。

三、建筑竖向布置设计问题

建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。

四、建筑上应满足的设计限值控制问题

根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。

五、屋顶建筑的抗震设计问题

在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。

六、结束语

总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑

抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。

参考文献:

[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。

[2]包世华、方鄂华,《高层建筑结构设计》,清华大学出版社,2003。

第3篇:高层建筑抗震设计论文范文

关键词:高层建筑;混凝土房屋;抗震设计;抗震设防

Abstract: This article researches and analyzes the seismic design of the tall reinforced concrete building, according to the author’s practical experience and summarized relevant materials,.

Key words: high-rise building; concrete building; seismic design; seismic fortification

中图分类号:TU3文献标识码:A 文章编号:2095-2104(2012)

在建筑工程项目建设中,设计阶段是整个工程最为关键的一个环节,在设计中要考虑到多方面的因素。本文结合工作实践对高层建筑结构抗震设计进行理论上的研究,从设计理念、设计原则到设计方法进行了探讨,虽然有些粗浅,希望对同行们有一定的参考作用。

地震是人类在繁衍生息、社会发展过程中遇到的一种可怕的自然灾害。强烈地震常常以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。据统计,历史上各种自然灾害曾毁灭了世界各地 52 个城市,其中因地震而毁灭的城市有 27 个。地震之外的其它各种灾害,如水灾、火灾、火山喷发、风灾、沙灾、旱灾等毁灭的城市为 25 座。因此,地震占灾害总数的 52%。可见地震灾害确系“群害之首”。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占 95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。

1 建筑抗震的理论分析

1.1 建筑结构抗震规范 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2 抗震设计的理论 拟静力理论。拟静力理论是 20 世纪 10~40 年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在加世纪 40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是 20 世纪 70-80 年广为应用的地震动力理论。它的发展除了基于 60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2 高层建筑结构抗震设计

2.1 抗震措施 在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2.2 抗震设计理念 我国 《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此, 要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50 年超越概率 63.2%,重现期 50 年;设防烈度地震(基本地震):50 年超越概率 10%,重现期 475 年;罕遇地震:50 年超越概率 2%-3%,重现期 1641-2475 年,平均约为 2000年。对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合。并引入承载力抗震调整系数。进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.3 抗震设计方法 我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除 1 款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3 结语

要使工程建设真正达到能够减轻以至避免地震灾害,把握好抗震设计关是减轻地震灾害的根本措施。

参考文献:

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

[2]郑文忠,王英.对既有房屋套建增层改造的认识与思考[J].工业建筑,2008.6.

[3]计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文,2008.

第4篇:高层建筑抗震设计论文范文

关键词:地震;概念设计;构造;未成年人保护;楼梯间

Abstract: Based on the seismic damage of reinforced concrete construction and masonry structure under earthquake, based on the concept of design, construction, the protection of minors, staircases and other issues, according to " code for seismic design of buildings " ( 50011-2001 ) ( 2008 Edition), combined with work experience, analyzing the reasons, on the seismic design of buildings.

Keywords: earthquake; conceptual design; structure; protection of minors; staircase

[中图分类号] TU352[文献标识码]A[文章编号]

在历次地震中,“89 规范”之前的建筑物多数遭受严重破坏,直至倒塌;90 年以后建造的建筑大部分做到了“小震不坏,中震可修,大震不倒”的抗震设防目标。在地震区,有的钢筋混凝土建筑倒塌了,可相邻的砌体结构却“裂而不倒”。本文依据《建筑抗震设计规范》,结合工作经验,分析原因,浅谈对建筑抗震设计的几点认识。

1、抗震设计应注重概念设计,采取较强的抗震构造措施

地震力作用计算是依据当地50 年设计基准期内超越概率10%的地震烈度对应地震地面运动加速度的设计取值来计算的,原本就是一种数学上的近似计算,想得到精确的计算结果是非常困难的。概念设计是根据地震灾害和工程经验等所形成的基本设计原则和设计思想进行建筑和结构总体布置并确定细部构造的过程。以达到合理的抗震设计目的。设计时只靠提高地震作用来提高抗震能力,需增加结构造价,不符和我国国情;而提高抗震构造措施,增加结构薄弱部位的抗震能

力,是经济有效的方法。

1.1 合理的结构体系《建筑抗震设计规范》第3.5.2 条3.5.3 条规定,不论是钢筋混凝土结构还是砌体结构,均要求结构体系完整,传力路径明确,但在设计中,为满足建筑师的创新突破,结构设计以抽柱子、开大洞、砌体结构中大量钢筋混凝土构件承重、转角开门窗、楼梯间凹凸于建筑转角等作为代价,结果破坏了结构整体性及传力路径,这些部位在地震中率先破坏导至结构失稳坍塌;钢筋混凝土框架结构中,围护墙和隔墙的不合理布置,使结构形成刚度和承载力突变的薄弱部位而引起倒塌,比如上下楼层的数量相差很大导致上刚下柔,墙不到柱顶,形成短柱剪切破坏等。目前的学校建筑因建筑要求及经济因素等的影响多采用单跨的钢筋混凝土框架结构,在结构抗震计算时,此结构体系对抗震明显不利,高烈度区的横向层间位移难以满足规范要求而倒塌。

1.2 设置多道抗震防线在地震区发现,理论上抗震性能较好的钢筋混凝土结构有倒塌的,而抗震性能相对较差的砌体结构却有裂而不倒的;甚至个别私人建造的砖木结构住宅都完好无损;同一地点,同是砌体教学楼,有的损坏严重,甚至倒塌,有的却表现良好。这就是多道抗震防线起了作用。《建筑抗震设计规范》第3.5.3 条对结构体系提出了多道抗震防线的要求,对于结构在大震作用下抗倒塌具有重要意义。砌体结构的构造柱、圈梁虽然不能提高结构的抗震承载力,但作为砌体的约束构件,可以提高墙体的延性。在大震作用下,作为“第二防线”延长建筑物变形时间,约束紧箍建筑物裂而不倒,保证居住者有足够的逃生时间。框架结构,尤其是大空间结构,需合理设置柱间支撑或柱子翼墙(不影响空间采光和美观),增加结构纵向刚度。剪力墙结构应合理设置连梁,让其作为结构的“第一道防线”在大震来临时,率先破坏,消耗地震能量并改变整体结构的动力特性,降低地震力,来保护主体结构的安全。多层框架设计时可考虑将楼梯间的墙体设置成剪力墙,大跨度的公共建筑在适当位置增设剪力墙,形成抗震的多道防线。

1.3 有意识做到“强柱弱梁”《建筑抗震设计规范》第6.2 条说明钢筋混凝土框架结构的设计计算应遵循“强柱弱梁”的原则。在地震中,应该要求的“梁铰机制”在毁坏的钢筋混凝土框架建筑中没有出现,反而出现了大量的“柱铰”。在实际设计中,考虑到部分楼板作用形成T 形梁,将框架梁的抗弯刚度放大到1.5-2.0 后,梁的实际承载力大于梁端弯矩;一般情况下,框架柱即使增大了柱端弯矩设计值,计算结果只能按构造要求配筋;只有当构件抗震等级为9 度一级时,规范才要求按照梁的实配钢筋反算柱端弯矩。因此对于抗震等级为二、三级的构件,实际的结构设计再精确,形成的还是“强梁弱柱”。因此,设计时要有意识的减小框架梁的断面和配筋,尤其是层数低跨度大的框架结构,有必要加大框架柱的截面和配筋。合理确定梁的放大系数,计算后切记不要人为再放大框架梁的配筋。

2、抗震构造的合理设置是提高抗震能力的有效途径

在历次地震中,有许多建筑因构造的不规范、不合理,甚至是因为构造缺失造成整体的跨塌:预制楼板不拉结,砌体结构不设构造柱、圈梁,地震时墙体外倒而楼板垮塌、楼梯板施工缝留在弯矩最大处;楼梯与主体结构连接薄弱,地震时先于主体破坏,堵塞逃生通道;抗震缝宽度不够,或因施工堵塞,不同结构的相邻建筑物在地震中相互碰撞而破坏;框架结构节点钢筋锚固不足,箍筋不加密或不够长度,造成节点先行破坏;填充墙不到顶形成短柱时没有全高加密,造成柱剪切破坏。

《建筑抗震设计规范》提到的构造都是根据以往的地震灾害和工程经验积累出来的有效且必要措施,提高抗震措施,应着眼于把财力、物力用在增加结构薄弱部位的抗震能力上,这是经济而有效的方法。砌体结构应严格按《建筑抗震设计规范》设构造柱、圈梁。尤其是楼梯、电梯间的四角,楼梯段上下端对应墙体,错层部位、不规则部位纵横墙交接处,较大洞口两侧,较小墙垛处,外墙四角、砌体结构受陧阓43嘷=I力集中部位均应设构造柱;加强混凝土大梁与墙体的连接,7-9 度时不得采用独立砖柱,大跨度梁应采用组合砌体,即在支撑部位仅设置构造柱是不够的,是需要进行沿楼面大梁平面内、平面外的静力和抗震承载力验算。框架结构节点钢筋须满足锚固要求,梁柱箍筋按规范加密,注意箍筋与纵筋的比例;填充墙不到顶形成短柱时,框架柱应全高加密,从构造上保证强剪弱弯、强节点强锚固,保证大震来临时,梁的塑性铰能发挥作用,避免柱及节点破坏形成几何可变体系而倒塌。女儿墙等非结构构件应与结构主体可靠连接,且应具有良好的变形能力,尤其是建筑物出入口上部的挑檐、女儿墙、玻璃幕,吊顶避免地震时脱落伤人;严禁采用无锚固的预制混凝土挑檐。当设计必须采用预制装配式楼板时,则应做好预制板间拉接锚固,设置板边圈梁,板缝现浇配筋带,并设置板端现浇配筋腱鞘,有效提高楼盖的整体性。

3、重视未成年人的保护

根据震害,国家再次加强了对未成年人密集居住建筑的抗震设防标准,规定教育建筑中,幼儿园、小学、中学的教学用房及学生宿舍和食堂,抗震设防类别应不低于重点设防类。与大型体育场管(人口密集)同类设置。转贴于中国论文下载中心

4、生命通道“楼梯间”的安全

由于楼梯段侧向刚度较大、山墙较高、休息平台与楼层存在错层,地震中是最容易破坏的。作为逃生通道,楼梯间的抗震设计应予以充分重视。

4.1 楼梯间的混凝土梯段、梁、板应参与计算,并考虑对楼梯间山墙造成的不利影响。

4.2 在教学楼、医院等人群密集的建筑有必要在室外另设疏散楼梯,以便室内楼梯间破坏时有第二个逃生通道。

4.3 楼梯间构造合理,形成应急疏散的安全岛。严格按规范设置构造柱,拉结钢筋,钢筋混凝土带,可靠连接或锚固。

4.4 不应采用墙中悬挑踏步或踏步竖肋插入墙体的楼梯,不应采用无筋砖砌栏板。

4.5 楼梯间不宜设置在房屋的端部或转角处,更不宜设置突出建筑物的转角圆形楼梯间,这都是宜引起地震时集中变形破坏的地方。

5、结语

历次的地震表明,只要严格按《建筑抗震设计规范》设计和保证施工质量,以及震前经过抗震加固的建筑都能达到“小震不坏,中震可修,大震不倒”的抗震设计要求。

参考文献:

第5篇:高层建筑抗震设计论文范文

关键词:壁式粘弹性阻尼器;基底剪力;抗震构造;加固改造工程;建筑隔墙 文献标识码:A

中图分类号:TU352 文章编号:1009-2374(2017)03-0120-02 DOI:10.13535/ki.11-4406/n.2017.03.053

1 概述

从2009年6月开始,北京市要求各区县、各有关部门认真做好校舍抗震加固改造和综合防灾能力建设工作,全面改善全市中小学校舍安全状况。随着《建筑工程抗震设防分类标准》(GB 50223-2008)、《建筑抗震设计规范》(GB 50011-2010)等新规范的陆续颁布及实施,部分建筑的抗震设防类别已由标准设防类(丙类)提高到重点设防类(乙类),北京市绝大多数幼儿园、小学、中学的教学用房以及学生宿舍和食堂的结构设计已不再满足现行规范的要求。

本文中,需要抗震加固的为北京某中学的教学楼,建筑平面呈L型,建筑面积3853m2,建筑高度15.23m,分为两个结构单体,为地上四层的现浇混凝土框架结构。该楼在1989年时按标准设防类(丙类)进行设计,框架的抗震等级为二级。按现行规范,当抗震设防类别提高为重点设防后,框架抗震等级提高为一级,构件的截面内力设计值相应增大,进一步保证了“强柱弱梁”、“强剪弱弯”的概念设计,主要体现在:(1)框架柱端及底层柱下端的弯矩增大系数由二级的1.5提高为一级的1.7;(2)框架梁端的剪力增大系数由1.2提高为1.3;(3)框架柱的剪力增大系数由1.3提高为1.5等。

同时,框架抗震构造措施要求也相应提高,有些要求甚至是规范中的强制性条文,主要体现在:(1)框架梁端计入受压钢筋的混凝土受压区高度和有效高度之比由不大于0.35降低为0.25;(2)框架梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确定外,由不小于0.3提高为0.5;(3)框架梁、柱的箍筋最小直径由8mm提高为10mm;(4)框架柱的轴压比限制由0.75降为0.65;(5)框架柱截面纵向钢筋的最小配筋率提高了0.2%等。

参考原设计图纸以及工程质量检测鉴定报告,计算发现几乎所有的结构构件都需要抗震加固,集中体现在框架梁、柱的箍筋不满足最小直径要求,部分框架柱轴压比超限以及纵筋配筋率不满足最小配筋率要求。考虑到该中学的教学任务,加固工程只能在暑假期间进行,工期必须保证在两个月以内,本工程综合比较了多种加固方案,决定采用消能减震的方法。

经过对国内国外的效能减震装置市场的考察,本工程选用日本生产的壁式粘弹性阻尼器TRC500T-10(如图1),阻尼器高度为1360mm,宽度为800mm,厚度仅为240mm。粘弹性材料封装在固定于上下楼层梁间的钢板中间,通过利用框架结构的层间变形,粘弹性材料发生剪切变形,将建筑物的振动能量转换成热能,从而减小或抑制结构的振动。实验表明,该阻尼器力学性能的温度依存性和频率依存性较小,在小位移和大位移下都有稳定的耗能能力,有较高的减衰性能。

TRC500T-10型阻尼器的粘弹性材料体厚度为10mm,允许的最大剪切变形为300%,最大设计位移为30mm,最大设计阻尼力为500kN。环境温度20℃,结构基本频率1Hz时,阻尼器基本性能参数如表1。

工程在教学楼各层中布置TRC500T-10型阻尼器,在满足建筑功能、不破坏建筑外立面的前提下,优先布置在结构层间位移较大的位置,同时考虑结构刚度的协调性。通过反复调整阻尼器的布置方式,最终在首层布置5个阻尼器,二层布置4个阻尼器。

2 利用房屋建筑结构分析与设计软件ETABS进行抗震验算

本工程利用美国CSI公司开发研制的房屋建筑结构分析与设计软件ETABS进行抗震验算。结构整体验算时考虑阻尼器在地震作用下的消能减震作用,同时利用软件中的钢筋混凝土框架设计模块,对带有阻尼器的整体结构进行了构件承载力验算,与原设计配筋进行比对。教学楼的结构计算模型如图2、图3所示:

抗震分析计算时,模型依照原设计图纸建立,荷载按照检测鉴定报告施加,粘弹性阻尼器的计算分析模型采用voigt模型,即等效刚度和等效阻尼模型,在上下框架梁之间设置并联的弹簧单元与阻尼单元,并注意阻尼器局部坐标与整体坐标的相互关系。

计算表明,在多遇地震作用下,设置粘弹性阻尼器后的结构周期比、位移比、剪重比、层间位移角等均满足现行规范要求。通过对抗震概念设计的理解以及和该工程外审单位的沟通,认为《建筑抗震设计规范》(GB 50011-2010)12.3.8条及条文说明中提到的地震影响系数可以用结构的基底剪力指标来表示,消能减震后X向与Y向的基底剪力小于非消能减震时的50%,结构抗震性能显著提高。

罕遇地震作用薄弱层的弹塑性变形验算模型假定为:采用刚性楼板假定;所有梁单元具有杆端刚域,其刚域长度统一取为梁柱节点区推进100mm计算;柱单元考虑双向弯曲和轴向伸缩非线性变形;X、Y方向分别采用与设计地震力相似的荷载分布对各楼板施加渐增水平静荷载进行推覆分析,顶部最大水平绝对位移300mm。

X向罕遇地震弹塑性分析中,需求谱和能力谱能相交于设防烈度地震性能控制点,该点所对应的结构顶点位移为69.3mm,此时结构基底剪力约为7024kN,最大层间位移角出现在第1层,为1/162;Y向地震作用下,设防烈度地震性能控制点所对应的结构顶点位移为53.62mm,此时结构基底剪力约为6066kN。结构顶点位移为53.62mm时结构各层最大层间位移角出现在第2层,为1/225,均满足现行规范要求。表明该结构在发生8度罕遇地震时,不会发生结构坍塌破坏。

3 结语

经过结构计算分析与设计以及工程实际的检验,壁式粘弹性阻尼器对框架结构提供的等效阻尼和等效刚度能有效的减小地震作用,提高结构的整体抗震性能,并可适当减小结构的抗震构造措施的要求,有利于减小加固工程量,缩短施工工期,与传统的加固方法相比,也具有较好的经济性。

参考文献

[1] 赵刚,潘鹏,钱稼茹,林劲松.粘弹性阻尼器大变形

性能实验研究[A].第十三届高层建筑抗震技术交流会

论文集[C].2011.

[2] 建筑抗震设计规范(GB 50011-2010)[S].北京:中

第6篇:高层建筑抗震设计论文范文

[论文摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。

我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。

一、高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:

(一)水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

(二)侧移成为控指标

与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。

另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:

1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。

2.使居住人员感到不适或惊慌。

3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。

4.使主体结构构件出现大裂缝,甚至损坏。

(三)抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

(四)减轻高层建筑自重比多层建筑更为重要

高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。

地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

(五)轴向变形不容忽视

采用框架体系和框架——剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。

(六)概念设计与理论计算同样重要

抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。

二、高层建筑的结构体系

(一)高层建筑结构设计原则

1.钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。

2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。

(二)高层建筑结构体系及适用范围

目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。

1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。

框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。

框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。

框架结构的适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。

2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。 转贴于

剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。

剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。

在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,因此,在地震区不允许采用这种框支剪力墙结构。

3.框架—剪力墙结构体系。在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。

4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。通常筒体结构有:

(1)框架—筒体结构。中央布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特点类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。

(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体作用,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。

(3)成束筒结构。在平面内设置多个剪力墙薄壁筒体,每个筒体都比较小,这种结构多用于平面形状复杂的建筑中。

(4)巨型结构体系。巨型结构是由若干个巨柱(通常由电梯井或大面积实体柱组成)以及巨梁(每隔几层或十几个楼层设一道,梁截面一般占一至二层楼高度)组成一级巨型框架,承受主要水平力和竖向荷载,其余的楼面梁、柱组成二级结构,它只是将楼面荷载传递到第一级框架结构上去。这种结构的二级结构梁柱截面较小,使建筑布置有更大的灵活性和平面空间。

除以上介绍的几种结构体系外,还有其他一些结构形式,也可应用,如薄壳、悬索、膜结构、网架等,不过目前应用最广泛的还是框架、剪力墙、框架—剪力墙和筒体等四种结构。

[参考文献]

[1]GB50011-2001建筑抗震设计规范.

[2]GB50010-2002混凝土结构设计规范.

第7篇:高层建筑抗震设计论文范文

关键词: 人字形中心支撑钢框架;Pushover分析;弹塑性时程分析

中图分类号:TU392 文献标志码:A

Research on the elastic-plastic Performance of 12 stories Inverted-V concentrically braced steel frame (CBSF)

Yin Tao,Ma zhengwei

(Department of Civil and Architecture Engineering, Xi'an University of Science and Technology, ,Xi’an 710054, China)

Abstract: Firstly, the paper designs four different kinds of 12 stories inverted-V concentrically braced steel structure. After preliminary design and adjustment, the paper determines the size of structural members. When four different models under pushover analysis and under the lateral loading, the paper uses capacity spectrum method to get load-displacement curves, the plastic hinge generated sequence and the weakest position of the structure. Then the paper summarizes the influence of the pushover curve and the plastic hinge location of the hinge sequence under the lateral load patterns. Considering preventing the rare eight occurred earthquake intensity, obtains performance point of the structure and the top structure’s maximum, displacement and maximum angular displacement between layers on performance points, and evaluates seismic performance under the rare eight occurred earthquake of the structure. Then choose which model is best,which model is most weakness.

Keywords: the inverted-V concentrically braced steel frame; Pushover analysis; Non-linear time-history analysis

1引言

现代高层建筑钢结构是反映一个城市经济繁荣和社会进步的重要标志,它是随着社会的经济、技术进步和人们的生活需要而发展起来的,是商业化、工业化和城市化的结果。计算机模拟技术在建筑领域的广泛应用以及钢结构加工制作技术的进步,为高层建筑钢结构提供了广阔的发展空间。

结构模型的设计概况

本文研究的一组人字形支撑钢框架结构模型如图1所示

图1 一组人字形支撑钢框架结构模型

四个结构跨数取三跨,结构的纵向跨度取10m,层数12层,横向跨度均取为10m,层高为3.6m。楼屋面恒荷载3.5,楼面活荷载2.0,屋面活荷载2.0(上人屋面),基本风压0.3,雪荷载0.4,地面粗糙度C类,抗震设防烈度为8.5度,场地类别为II类,设计地震分组为第二组,采用Q235钢材。不考虑东西向的抗侧力体系,南北向的抗侧力体系为两榀中心支撑钢框架,每榀中心支撑钢框架抵抗整个结构一半的侧力。由于对称性,不考虑结构的平面内扭转。本文采用有限元计算程序Sap2000对模型进行结构设计,四个模型柱材料及尺寸相同,梁柱略有差异,结构的梁柱材料及尺寸见下表1。

表1 模型4的截面尺寸及材料(8度)

表2 模型1的截面尺寸及材料(8度)

表3 模型2的截面尺寸及材料(8度)

表4 模型3的截面尺寸及材料(8度)

表512层人字形钢框架柱截面尺寸及材料(8度)

3 Pushover分析

3.1 四个模型的基底剪力-顶点位移曲线

图4模型1基底剪力-顶点位移曲线图5 模型2基底剪力-顶点位移曲线

图6模型3基底剪力-顶点位移曲线 图7 模型4基底剪力-顶点位移曲线

图8 基底剪力—顶点位移曲线

由图4~7可以看出,在线弹性阶段,曲线斜率最大的是模型2,模型4次之,模型3排在第三位,模型1的斜率最小,而曲线的斜率则反映了整体结构的抗侧刚度,这说明模型1的钢框架结构的刚度相对偏低,变形最大,而模型2的侧向刚度最大,变形最小。随着侧向均布加载的继续增加,结构进入弹塑性阶段后,整体刚度逐渐降低,基底剪力最大的也是模型2,模型4的基底地剪力仅次于模型2,模型1排在第三位,模型3的基地剪力最小。从基底剪力-顶点位移曲线的角度可以的出结论:模型2的结构抗震性能更好,模型1的结构抗震性能最弱。

3.2性能点的比较与分析

四个模型的能力谱-需求谱曲线图见下图8~11。

图8模型1在罕遇地震作用下的 图9 模型2在罕遇地震作用下的

能力谱-需求谱曲线图能力谱-需求谱曲线图

图10 模型3在罕遇地震作用下的 图11 模型4在罕遇地震作用下的

能力谱-需求谱曲线图 能力谱-需求谱曲线图

结构模型在罕遇地震作用下的性能点分析

从各结构模型在罕遇地震作用下性能点的值表明:四个结构模型的能力谱曲线均与需求谱曲线相交,交点是八度设防、Ⅱ类场地类别下结构的性能点,且交点位置均处于能力谱曲线的弹塑性阶段,四个结构的位移反应能力大于结构的位移需求能力,结构的抗震性都能满足八度罕遇地震作用下的弹塑性变形要求。经过四个结构模型性能点的比较可知:模型1达到性能点时的基底剪力最小,顶点位移最大,结构的变形最大,模型2达到性能点时的基底剪力最大,顶点位移最小,结构的变形最小。表明模型2的刚度最大,模型1的延性最好。

3. 3层间位移及层间位移角的分布

(1) 层间位移及层间位移角

图12为模型1,模型2,模型3及模型4在八度抗震设防时,结构达到性能点时的层间位移沿竖向楼层的线分布图。

图128度罕遇地震作用下结构楼层层间位移曲线分布图

在罕遇地震时,模型1、2、3、4的最大层间角位移为1/70.8、1/64、1/76、1/78,均小于《建筑抗震设计规范》[1]GB50011—2010中规定的弹塑性层间位移角的最大值1/50。在罕遇地震作用下,模型1~模型4的最大层间位移角均发生在结构的第三层,表明第三层为结构的薄弱层。

3.4 塑性铰的分布及破坏形式

模型1、模型2、模型3、模型4在罕遇地震作用下结构达到性能时,各个结构的塑性铰均首先出现在一到四层的支撑上,并逐渐向上发展,模型4有八层的支撑出现了塑性铰,模型2也有七层的支撑出现了塑性铰,而其他两个模型的支撑只有五层出现塑性铰,这说明支撑作为防御地震的第一道耗能构件没有在模型1和模型3上较好利用;四个模型在支撑出现塑性铰后,随着荷载的继续增加,梁端相继出现塑性铰,四个模型中梁的塑性铰均出现在一到四层,而模型2的梁端出现塑性铰的数量最多,发展最充分。综合分析,模型2的结构形式最好,模型4次之,模型1最不好。

模型1模型2

模型3 模型4

3.5 总结

综上所述,模型1、模型2、模型3、模型4综合研究得出以下结论:模型2的结构抗震性能略好于模型4,这可以表明模型2的支撑布置形式不逊于我们通常把所有支撑都放在中间跨的结构形式即模型4。模型1的结构抗震性能最弱,应尽量避免此种支撑布置形式。

4结束语

论文先是对四种不同结构形式的12层人字形支撑钢框架结构进行了Pushover静力分析,然后对Pushover分析的结果进行比较研究得出结论,由于Pushover是静力分析,还可以用动力时程分析加以分析,因此可以进一步的研究静力和动力分析后结果的比较。

第8篇:高层建筑抗震设计论文范文

关键词:箱型薄壁开口剪力墙;单跨结构;位移;冗余约束

0 前言

在民用建筑中,单跨结构往往出现在有特定使

用功能的多层平台中,例如两栋建筑物之间的连接平台、观光平台等。而采用纯框架结构体系,对于这种结构简单的建筑无疑是最“直接”的解决方案。单跨框架(单向)是由两根柱及一根梁所组成的结构承重类型,这种结构虽然具有明确的计算简图,传力路径单一,但是整体结构在空间体系中没有任何冗余的约束,因此在考虑抗震设计时,设防单一,一旦有其中一根柱出现破坏,整体结构就容易出现倒塌,与《建筑抗震设计规范》中对结构体系要求宜有多道抗震防线的要求不符。而且,在高层建筑中,单跨框架体系的侧向刚度往往较小,在风荷载及水平地震作用下,位移较难满足规范要求,常采用加大梁、柱截面的方法提高抗侧力构件的刚度,以此满足规范对于位移的要求,但是这样做不但会使平台净空高度由于梁高增加而减小,还使各抗震构件的混凝土用量及用钢量大大增加,经济效益差。

箱型薄壁开口剪力墙体系具有较好的抗侧力刚度及强度,它与结构梁共同工作。在强烈地震作用下能有效地吸收地震能量,是一种较好的抗震结构体系。开口剪力墙平面形状为箱型,剪力墙壁厚根据结构平面复杂程度及高度的不同,一般情况下取值约为200~350之间。单跨结构主要问题是位移的控制,下面,通过算例分析箱型薄壁开口剪力墙体系运用在单跨结构中时,抗震性能是否能满足规范的要求。

1算例

本文以一平面双向单跨结构为例,平面尺寸如图1所示,层高如图2所示。采用箱型薄壁开口剪力墙作为竖向构件,钢筋混凝土梁作为水平构件。梁的截面尺寸如图1所示。箱型薄壁开口剪力墙构件尺寸如图3所示。本算例中实际楼层号与计算楼层号关系为:

实际楼层号(F)- 1 = 计算楼层号

在整体计算结果中楼层号以实际楼层号(F)表示。

本算例采用中国建筑科学研究院编制的PKPM(SATWE)2008版本进行建模分析计算,各项录入信息及参数见表1:

备注:根据建筑使用功能确定荷载取值,本算例结构用于疏散通道或普通观光平台,按常规荷载取值,不作累述。

结构的整体计算结果见下表2:

备注:根据计算结果,各受力构件的计算配筋、挠度、裂缝等均能满足规范及设计要求,本文不另作累述。

2结果分析

根据上述计算结果,结合“高规”规定的要求及结构抗震概念设计理论,可以得出如下分析:

1) 第一扭转周期与第一平动周期之比小于0.9,满足“高规”第4.3.5条要求。有效质量系数大于90%,所取振型数足够。

2) 在风荷载作用下和水平地震作用下,层间位移角均满足“高规”第4.6.3条要求(≤1/1000)。

3) X、Y方向剪重比均满足“抗规”第5.2.5条要求。

4) 在偶然偏心地震作用下,最大扭转位移比小于1.20,属于扭转规则结构,满足“高规”第4.3.5条A级高度建筑的要求。

5) 按“高规”第4.4.2:抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%,满足侧向刚度规则性要求。

6) 楼层层间抗侧力结构的受剪承载力大于其上一层受剪承载力的80%,SATWE判断无薄弱层,满足“抗规”第3.4.3条楼层承载力均匀性要求。

7) 该结构刚重比EJd/GH2大于1.4,能够通过“高规”第5.4.4条的整体稳定验算。

8) 箱型剪力墙平面尺寸较大,X、Y方向均有两侧同向的薄壁剪力墙,主受力梁均与其连结,整体协同工作,主受力梁净跨较纯框架体系有所减小,而且剪力墙提供了较大的侧向刚度,主受力梁的截面得以减小。以算例来看,平面外包尺寸为16米的结构,梁高仅为900mm,保证了建筑对于净空高度的要求。

9) 箱型薄壁开口剪力墙其中一侧剪力墙断开,用连梁拉结,开口一侧可根据需要做成门洞,箱型剪力墙内部空间可利用为小房间,供建筑灵活使用。

10) 剪力墙作为主要的抗侧力构件,在风荷载及水平地震作用下,提供良好的侧向刚度,对位移控制有利。而且,剪力墙由于刚度大,承担了较大一部分的地震作用,在满足位移控制及承受竖向荷载的前提下,主受力梁的截面相对减小,达到“强柱弱梁”的抗震设防水准。

11) 本算例位移比均小于1.2,属于平面扭转规则的结构,可不考虑箱型剪力墙构件自身扭转对于整体结构扭转效应的影响。但是,对于设计中出现扭转不规则的楼层,则需要考虑构件自身的扭转影响[1]。

3 结论

第9篇:高层建筑抗震设计论文范文

关键词:高层建筑,混凝土结构,立法,位移

高层建筑是近代经济发展和科学进步的产物。进入20世纪以来,高层建筑在全球迅猛发展。高层建筑,是指超过一定高度和层数的多层建筑。在美国,24.6m或7层以上视为高层建筑;在日本,31m或8层及以上视为高层建筑;在英国,把等于或大于24.3m得建筑视为高层建筑。中国自2005年起规定超过10层的住宅建筑和超过24米高的其他民用建筑为高层建筑。高层建筑可节约城市用地,缩短公用设施和市政管网的开发周期,从而减少市政投资,加快城市建设。

一、高层建筑的设计要点

当高层建筑的层数和高度增加到一定程度时,它的功能适用性、技术合理性和经济可行性都将发生质的变化。与多层建筑相比,在设计上、技术上都有许多新的问题需要加以考虑和解决。

1.风荷载及水平侧向力

高层建筑结构设计时,应考虑风荷载及水平侧向力的影响,这种因素是影响结构内力、结构变形及建筑物土建造价的主要因素。对于高层建筑而言,主要由抗侧结构体系来抵抗这种外力,抗侧结构体系由楼面主梁和承担楼面重力荷载且与主梁刚性连接的柱组成。此时这些抗弯构件可起到支承楼面荷载和抵抗侧向荷载的双重作用。而柱所承受的是轴力和弯矩的组合作用。框架侧向结构体系亦可由竖向斜支撑或主要起抵抗侧向荷载作用的剪力墙组成。在高层建筑中,支撑系统和刚性钢框架的混合体系是一种常用的抗侧结构体系。

2.强度、刚度、稳定性的影响

高层建筑设计时应严格控制高层建筑体型的高宽比例,以保证其稳定性。并使建筑平面、外观、立面和刚度尽量保持对称和匀称,使高层建筑整体结构不出现易受到外力冲击的薄弱环节。随着建筑高度的增加,设计者在设计高层建筑时,应充分根据建筑自身特点,使高层结构有合理的自振动力特性,并使高层建筑在水平力作用下的层位移控制在一定范围之内。这种自振抵抗作用使结构在进入塑性变形阶段后仍具有较强的变形能力,使整个建筑牢牢的连接在一起,确保高层建筑在受到冲击变形后仍能恢复自身的塑性。

3.细部构造及地质条件的影响

高层建筑在设计时应妥善处理因风力、地震、温度变化和基础沉降带来的变形节点构造。并考虑在重量大、基础深的地质条件下如何保证安全可靠的设计技术和施工条件问题。对于多层建筑而言,设置防震缝是解决体型复杂不规则的建筑结构由于变形复杂而产生建筑物开裂的一种可靠性方法。高层建筑由于体型巨大、高度高等特点一般不设抗震缝,而同时利用有效技术措施和合理科学的计算方法,以消除不设防震缝带来的不利影响。

二、工程实例

1.工程简介

兰花广场兰花商厦位于辽宁省, 总建筑面积6.38万m2,工程由同济大学设计院设计,施工单位为中国二十二冶集团有限公司,地下1层,地上为29层,总建筑高度为102.38米,其中地下一层采用箱形基础,底板厚度800mm,地上29层,钢筋混凝土框架-剪力墙结构, 除地下一层顶板外露部分厚度为 600mm外,其余部分楼板为模壳密肋板结构,厚度为120mm,本高层建筑采用抗震性能好、功能合理的现浇钢骨混凝土框架-剪力墙结构,利用楼、电梯间设置钢筋混凝土剪力墙且连接成筒体作为主要的抗侧力构件。混凝土强度等级为C60,钢筋骨架采用HRB400,框架采用宽扁梁框架以增加楼层净高,宽扁梁截面为800×700,端部加腋为800×650,混凝土强度等级为C40;为抵抗高层建筑的外力影响,在混凝土内筒剪力墙转角处设置十字形钢骨,以改善剪力墙的受力性能、提高剪力墙的延性、减少剪力墙刚度退化,中心筒墙体厚度为600mm,混凝土强度等级为C40。

2.钢筋设计原理

根据《建筑抗震设计规范》第6.1.11条规定,当工程符合规定条件时,宜沿两个主轴方向设置构造基础系梁。基础此时基础系梁截面高度可取柱中心距的1/12~1/15,从工程应用角度来看,HRB400 级钢筋比 HRB235 级钢筋节约了 53.9kg/m3,占 HRB235 级钢筋用量的 33%,经济效益非常可观,因此本工程采用HRB400级钢筋。

2.1计算参数

本工程钢筋混凝土框架-剪力墙结构抗震设防等级为7级,即按照混凝土规范《GB50010-2002》进行设计。本高层建筑为位于辽宁省,经计算得知,东西向风力为63.18KN,南北向风力为193.98KN,因此得知该高层框架梁设计时在荷载效应的标准组合和准永久组合下应分别符合现行设计规范的下列规定:

(1)构件受拉区拉应力:σck-σpc≤ftk;σcq-σpc≤0

(2)梁端受压区高度: x≤0•35h

(3)梁端预应力强度比:fpyAp/(fpyAp+fyAshs/hp)≤0.7

(4)纵向受拉钢筋按非预应力钢筋抗拉强度设计值换算的配筋率不应大于2.5%注:σpc为扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力;Ap为钢绞线截面积;hs,hp分别为纵向受拉非预应力筋、预应力筋合力点至梁截面受压边缘的有效距离。其他各数值见规范。根据计算得知,地上建筑每平方米钢筋含量为85.33kg/m2,地下建筑每平方米钢筋含量为118kg/m2。

2.2超静定结构分析

本工程为框架-剪力墙结构在水平力作用下的内力计算一般分两步进行,首先求出水平力在各榀框架和剪力墙之间的分配,然后再分别计算各榀框架或剪力墙的内力。框架―剪力墙的计算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。本工程采用计算机三维矩阵位移法计算钢筋受力情况,假定楼板在自身平面内为无限刚性,平面外刚度很小,可以忽略不计,如果假定为刚性楼板,设计时应采取必要措施,极大的保证了高层建筑的内部整体性。

3.混凝土结构设计原理

3.1地下人防工程的设计

本工程为高层建筑,地下基础埋深较大,常设地下连梁承底层墙的自重和减小结构层高度。为了简化计算,常在结构计算模型中按多一层框架梁设计,此时较易出现短柱,将采取符合高颈配筋的方法来取消短柱,地下室顶板作为上部结构的嵌固端时,从楼板厚度、砼强度等级、板的配筋率、楼层的侧面刚度等都有具体要求。《建筑地基基础设计规范》第 8.2.6 条规定,本高层建筑将高杯口基础做成高颈现浇基础,高颈至地下连梁顶处,高颈刚度大于柱刚度 4 倍以上(非线刚度)。这意味着对高层建筑来说,地下室层数或总深层不仅由地基基础埋深决定,还必须考虑累积误差等因素的影响。

3.2上部结构的设计

计算柱、墙和基础时,设计忽略了实际活荷载折减系数与程序内定值的不同,并进行人工调整;程序内定的活荷载折减系数为《建筑结构荷载规范》(GB50009―2001)(2006 版)表 4.1.2 数值,按规范第 4.1.2 条,当建筑的使用功能不属于表 4.1.1(1)项时,活荷载折减应符合规范第 4.1.2 条的相应规定;本高层建筑住宅建筑含有 3 层底商用房时,则底商层的活荷载折减系数均应取 0.9 或不折减。地上框架结构长×宽为 159.0m×73.22m,属于典型的超长混凝土结构,对于这类结构,规范认为采用后浇带分段施工,其中,沉降后浇带宽度为 1m,待29层顶板封顶,沉降稳定后浇筑;连续式膨胀加强带宽度 2m,与两侧混凝土同时浇筑。在施工之前,根据工程拟用的原材料,进行了混凝土配合比设计, 原材料情况如下: 渤海PS42.5水泥,沙河营优质河砂,兰花山石子,其中石子粒径为20-40mm,砂子颗粒级配为中粗砂,且两种粗骨料含泥量均不大于1%,粉煤灰采用热电厂生产的国Ⅱ标准的粉煤灰,膨胀剂为北京新寺力公司生产,掺入本产品砼的限制膨胀率为0.02~0.04%,可在砼中建立0.2~0.7Mpa的预应力,抗渗标号可达S30。采用TS-JS(Ⅱ)高保塑型聚羧酸盐高效泵送剂,根据实验结果表明,该混凝土强度等级达到C40以上,可以用于施工。