前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的欧姆定律问题主题范文,仅供参考,欢迎阅读并收藏。
欧姆定律是初中物理教材中一条很重要的电学定律,是电学内容的重要知识,也是学生今后学习电磁学最基础的知识。欧姆定律无论在理论上还是在实际生活中运用都非常广泛,可是对于初中生来说,学习起来有很大的难度,因此,作为一名物理教师,有责任教会学生怎样学好欧姆定律。下面是我在教学实践中的几点尝试,仅供大家参考:
一、引导学生理解概念内涵
学习欧姆定律的关键是从理解概念入手,因为多年的教学经验告诉我:很多学生能够准确地背诵欧姆定律公式,但不会对公式进行巧妙的运用,更说不上对公式进行深入理解了。这种现象往往导致学生在考试时经常出错,纵观我们的中考试题,很多题目涉及概念题,所以说理解概念是非常重要的。因此,在学习欧姆定律时,我这样引导学生理解欧姆定律:1.导体中的电流与导体两端电压是成正比的,与导体电阻是成反比的。2.在实际的电路中有几个导体,即使是同一个导体,在不同的时刻I、U、R值也是不同的,因此在运用欧姆定律时应看清是不是同一导体、同一时刻的I、U、R值。3.要明白是电阻大小的一个计算公式,不是决定式,如果某段导体两端的电压变化几倍,它的电流也随之变化几倍,因此,比值R是一个定值。
二、引导学生解决实际问题
在物理教学中,教师不只是让学生掌握教材知识,更重要的是引导他们运用物理知识来解决生活问题,学生只有把书本中的知识运用到生活当中,才能适应社会发展的需要。例如在学习欧姆定律时,我给同学们出示了这样一个问题:在开汽车时,听听音乐可以减轻司机驾车疲劳,使乘车人身心愉快,某汽车上的收音机基本结构如图所示,
初中物理中的欧姆定律对学生来说是一个难点,教师只有运用恰当的教学方法,学生才能有所收获。在今后的教学中,我将继续研究新颖的教学方法,进一步提高物理课堂教学效率。
参考文献:
[1]蒋国成.中考对欧姆定律的考查分析与复习指要[J].中学教学参考,2009(23).
本节内容前承电路、电压、电阻及电流表、电压表的使用,是前面电学知识的聚焦;后启电功、电功率,并为高中阶段学习闭合电路的欧姆定律、电磁感应定律、交流电等内容做了铺垫。甚至于对学生将来参加生产劳动也有指导作用,即使在电工技术电子专业等学习中,欧姆定律同样是必不可少的基础知识,其研究方法──控制变量法是学习关于电阻大小影响因素的研究方法的延续,是物理问题研究思想的再次体现。
二、学习任务分析
本节重点是欧姆定律的内容和公式。通过实验探究,归纳总结出欧姆定律,让学生领悟科学探究的方法,体验科学探究的乐趣,形成尊重事实、探究真理的科学态度,培养学生分析解决问题的能力;理解欧姆定律中电流I、电压U、电阻R的同一性是本节难点,在探究过程中通过适时引导、恰当点拨,利用实物电路使学生达到理解欧姆定律的目的。
三、学习者分析
学习了电路基础知识,学生产生了浓厚的兴趣,多数学生能正确连接电路元件,正确使用电流表、电压表和滑动变阻器,对于控制变量的研究方法也有所了解。学生有较强的好奇心和求知欲,他们渴望自己动手进行科学探究,体验成功的乐趣,但对于U、I、R三者关系知之甚少,规律性知识的概括往往以偏概全。他们的思维方式逐步由形象思维向抽象思维过渡,教学中让学生自主设计研究问题的方案,是发展学生思维的有效途径。
四、教学目标
⑴知识与技能
会用实验的方法探究电流与电压、电阻的关系;
理解欧姆定律的内容、公式;
培养学生的观察、实验能力和分析概括能力。
⑵过程与方法
通过实验探究学习研究物理问题常用的方法──控制变量法。
⑶情感、态度与价值观
通过探究过程,激发学生的学习兴趣。培养学生实事求是的科学态度;认真谨慎的学习习惯。
重点:欧姆定律的内容和公式;
通过实验使学生知道导体中电流与电压、电阻的关系。
难点:理解欧姆定律的内容;
弄清变形公式的含义。
五、教法设计
依据本节课的知识特点、教学目标和学生实际,确定本节主要采用实验探究法。把学生视为学习的主人,教师当好学习的组织者和引导者。探究式学习可以激活学生已有的知识,在探究新问题时使知识活化、重组,形成知识结构并向能力转化;让学生体会科学发现的全过程,从中感悟科学思想和科学方法。
六、教学准备
关键词:物理定律;教学方法;多种多样
关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。
(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。
(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。
(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。
(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。
(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。
关键词:欧姆定律;学习能力;培养
中图分类号:G633.7 文献标识码:A 文章编号:1992-7711(2016)12-0057
《欧姆定律》作为重要的物理规律,不仅是电流、电阻、电压等电学知识的延伸,还揭示了电流、电压、电阻这三个重要的电学量之间的必然联系,是电学中最基本的物理规律,是分析解决电路问题的金钥匙。在利用欧姆定律进行计算时,强调电流、电压、电阻这三个物理量的同时性和同一性;加强学生对于这些问题的理解,对于后续课程测量电阻、电功、电功率的学习,起到良好的促进作用。因此,对于电学中的第一个规律的学习,教师应该注重学生学习能力的培养。
一、在教学中发现学生容易存在的问题分析
1. 进行电学实验探究时,往往要求学生设计电路图,很多学生在设计时不能一次将电路图设计完整。
2. 从学生做题情况来看,学生不容易弄清楚控制变量法的作用。在历年中考题中,常有这样的题目:在探究电流与电阻的关系时,如将电路中的定值电阻从5欧姆换成10欧姆,将怎样保证电压不变?如何移动滑动变阻器?此类题目的得分率不高。
3. 在运用欧姆定律进行计算时,对于复杂一点的电路,如电路中的用电器不止一个时,学生往往容易将公式写出,数据生搬硬套,乱算一通。这样的习惯对于后续课程――电功、电功率的计算也产生了不良的影响。
针对学生的以上问题,笔者认为原因主要出在以下几个地方:(1)对问题的分析缺乏全面的考虑。(2)对于控制变量法的应用不够熟练,但电路分析有待加强。(3)对于各个物理量之间的因果关系没有弄清楚。没有理解到电阻或电压的变化引起了电流的变化。(4)没有理解欧姆定律的同时性和同一性。
二、结合教科版教材,如何在教学中培养学生的学习能力
笔者认为,结合教材情况以及学生的学习情况,我们可以在以下几个地方做好细节处理,让学生养成良好的学习习惯,培养学生学习能力的目的。
1. 实验设计:分步探究,尝试错误,完善设计,培养学生养成缜密的思维能力
在第一课时的教学中,教学重点在于如何通过实验探究得出电流与电压、电阻之间的关系。教师在提出电流大小与什么因素有关的问题时,学生根据以往的学习经验,猜想出电压、电阻会影响电流的大小。教师应引导学生用控制变量法探究它们之间具体有什么关系。从而将所探究的问题分为两个小课题来进行,即电流与电压的关系和电流与电阻的关系。在进行第一个小课题:探究电流与电压的关系时,学生在设计电路图的时候,容易根据自己的经验将电流表、电压表接入电路,而没有接入滑动变阻器。
教师不必及时指出不足,可以进行展示以后,再提问怎样改变电路中定值电阻两端的电压?这时学生可能会想到要用改变电源电压的方法,但是这样做不够方便。如果用滑动变阻器来调节是最方便的。这时才设计出准确的电路图。学生根据之前所学的串联分压的知识,很容易理解当滑动变阻器的阻值发生变化的时候,电路中定值电阻两端的电压会发生变化,而电流也会随之发生改变。同样,设计好的电路图也可以用于第二个课题的探究。这种不断地让学生对问题作出反应,不断调整自己的设计方案,最后走向完善,这样做符合学生的认知规律。
2. 重视实验探究的过程,培养学生的动手能力以及发现问题后寻找解决方法的能力
对于两个课题的实验,必须由学生自己在教师的引导下完成。绝不能因为赶教学进度而由教师代劳,让学生只是简单记下数据,分析数据得出规律。学生只有在实验过程中才会发现问题。如课题二:在电压不变时,探究电流与电阻的关系中,学生就会发现没有移动滑动变阻器,而将定值电阻改变时,电压表的示数也会随之发生改变。那如何保证电压表的示数不变呢?学生才会自己去想办法通过移动滑动变阻器来完成。那滑动变阻器的移动是否有规律可循?学生通过自己的实验,才会发现其中的规律。有了这样的经验以后,进行理论分析问题也就变得容易了。而具备了动手能力及解决问题的能力后,在后续课程测电阻、测电功率的学习中,也就较为轻松了。
3. 对于实验结论的得出,要把握其中的因果关系,培养了学生的逻辑思维能力
虽然在之前的学习中,学生已经认识到了电压是形成电流的原因。同时也认识到了导体对电流有阻碍作用,也即是导体存在电阻这样的观念。但是放到欧姆定律的学习中,尤其是对公式R=U/I的理解上,学生容易认为电阻与电压成正比,电阻与电流成反比,也就是认为电压和电流的大小会改变电阻的大小。学生会单纯从数学的角度来理解物理公式,而不能把握三者之间的因果关系。也就是电流变化引起了电阻变化还是电阻变化引起了电流变化?这也是我们之前做实验的过程中,让学生分析的根本目的。教师应该要进行提问,由学生来思考变形公式的意义,可以培养学生的逻辑思维能力。对于物理规律的理解,要引导学生理解规律所反映的逻辑关系。
4. 对于欧姆定律内容的学习要注意抓住关键字词,培养学生阅读能力
笔者认为,对于欧姆定律的内涵的讲解,教材上介B是不够的,还需要做补充。我们可以教会学生,从规律或者基础概念中抓住关键字词进行分析。从而到得欧姆定律的适用范围以及应用条件的同时性和同一性原则。
关键词: 新课标 《欧姆定律》 探究性实验教学
《初中物理新课程标准》将科学探究纳入了物理教学的内容,旨在将学生学习的重心从过去的过于强调知识的传承和积累向知识的探究过程转化。
所谓“实验探究教学模式”,是指学生在教师的引导下,运用已有的知识和技能,充当新知识的探索者和发现者的角色的学习模式。
笔者多年从事初三物理教学,结合新课改要求,在《欧姆定律》探究教学中进行了尝试,现谈谈自己的实践和体会。
一、在探究过程中,着重应用控制变量法
控制变量法是指决定某一物理量的因素有很多。为了弄清这个量与这些因素之间的关系,往往先控制住其他几个因素不变,集中研究其中一个因素变化所产生的影响,然后通过比较归纳出与这些量之间的关系。
欧姆定律揭示了电流、电压、电阻三个物理量之间的关系,由于电流大小与电压、电阻都有关系,因此探究步骤中的设计实验应尽量引导学生分为两步设计。
1.保持电阻不变,研究电流跟电压的关系。
要让学生明确“研究电流跟电压的关系时,应保持电阻不变”,设计实验电路时应考虑:①怎样测量定值电阻两端的电压U和定值电阻中的电流I呢?②怎样保持导体的电阻R不变呢?③通过什么方法改变定值电阻两端的电压U呢?
设计并连接电路利用滑动变阻器改变定值电阻两端的电压,使它成整数倍地增加,并记录所对应的电流值,
2.保持电压不变,研究电流跟电阻的关系。
要让学生明确“研究电流跟电阻的关系时,应保持电压不变”,实验探究时应考虑:①怎样改变导体电阻R的大小?②怎样保持导体两端的电压U不变呢?让学生讨论交流,使学生认识到:当定值电阻的大小发生变化时,可通过滑动变阻器控制其两端的电压U保持不变。
更换定值电阻,利用滑动变阻器保持定值电阻两端的电压不变,记录对应的电流值,在具体的探究教学中可能会遇到这样的问题:在电阻R阻值改变时,电阻R两端的电压也发生变化,如何移动滑动变阻器的滑片,使电阻R两端的电压恢复到原来的电压值。这也是把控制变量法从理论升华到实际的一个方面。
二、在探究过程中,让学生亲身体验,增强课堂教学效果
学生是教学活动的主体,教师对思维活动过程的展开,不能代替学生自己的思维活动。因此,在设计本节探究活动时笔者以学生为中心,进行分组实验。激发学生的求知欲和参与意识,使不同层次学生的认知结构、个性品质在参与中都得到发展。设计学生活动程序如下:
(1)提出问题:电流与电压,电流与电阻的关系?
(2)作出假设:①不成比例。②成正比。③成反比。
(3)设计并进行实验:①设计电路图。②设计步骤。③进行实验。
(4)分析数据得出结论。
这样做有以下好处:第一,可以充分调动学生的积极性。对于初中学生来说,他们已不再局限于看老师演示实验,都喜欢自己动手操作,通过自己的实践解决问题。第二,可以清楚地发现并指出学生的操作中的错误,物理实验中一些仪器的使用,要求学生掌握,培养学生正确而良好的操作技能。但是,在实践过程中,笔者认为学生的练习机会实在太少,有些仪器的使用方法尽管学生课上听懂了,但真正操作起来并不如想象的那样简单顺手。就像本节中的电流表、电压表的使用,学生往往会把电表的串并连搞错,把正负接线柱接错等,滑动变阻器的使用也不够到位。第三,可以巩固学生对相应知识的掌握情况。对于人的记忆方式来说,自己动手操作过的情景记忆起来要比单纯的聆听接受记忆要牢固得多。
三、在探究过程中,引导学生反思应用迁移
这一方法要求把已知迁移到未知、把此一类知识迁移到另一类知识中,使学生受到相互渗透、影响和转化的观点的教育。例如,启发学生把已有的知识迁移到欧姆定律的探究中,把欧姆定律的知识迁移到其他知识的学习中。这样就使学生不仅提高了知识学习的效率,而且逐渐树立普遍联系、转化的观点。
例如:在总结欧姆定律的公式(I=U/R)时,可以压强的公式为母本,压强的公式是P=F/S,它的理解可以是:当受力面积一定时,压强与压力成正比;当压力一定时,压强与受力面积成反比。而欧姆定律是:通过导体的电流,与导体两端的电压成正比,与导体的电阻成反比。两者是可以相互迁移的,所以很顺利地得出欧姆定律的公式I=U/R。这对于知识和思维不是很完善的初中学生来说,可以很容易地掌握知识,得出结论。
当然在欧姆定律的探究教学中还有很多地方可以运用知识迁移,例如:在运用探究的基本过程解决电流、电压、电阻三者关系时,可以反思以往用探究的方法解决过的问题,如液体压强、深度、液体密度三者的关系,用以往的经验为本次探究的顺利完成做铺垫。
四、在探究过程中,利用教材对学生进行德育教育
德育是五育之首,新课程标准关注人的发展,把德育放在十分重要的地位。作为基础学科的物理理所当然承担着重要的德育任务。
在《欧姆定律》探究教学中,笔者首先做了大量的准备工作,这样学生不仅学得很愉快,而且在心里会产生一种对教师的敬佩之情,并从老师身上体会到一种责任感,这对以后的学习工作都有巨大的帮助作用。其次,在教学过程中,利用分组实验的合作性学习潜移默化地对学生进行德育教育,培养他们团结协作的精神。最后,利用欧姆的事迹和成果激发学生的学习热情,树立崇高理想,榜样的力量是无穷的,它对学生具有强大的感染力和说服力。
教育部颁布的《物理课程标准》首先提出科学探究,其次才是科学内容,它把科学探究作为很重要很有价值的学习方法和教学方法提出来,说明越来越多的教育者注意到探究教学在教改中的重要地位。《欧姆定律》一课的探究教学不仅要求教师有较高自身的修养素质,还要做好在探究教学中与学生一起双向地、互动地建构学科知识、促进能力发展。因此,在初中物理新课标下如何更好地开展探究教学,值得我们探讨。
参考文献:
/
关键词:欧姆定律;教学设计;传感器;DIS 线性元件;非线性元件;伏安特性;屏幕广播
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2015)6-0073-6
1 教学内容分析
(1)教材分析:“人教版”高中物理(选修3-1)第二章《恒定电流》中的第3节《欧姆定律》,教材首先回顾了初中学过的电阻的定义式及欧姆定律,然后重点阐述了导体的伏安特性,并分别描绘了小灯泡、半导体二极管的伏安特性曲线,对比了它们的导电性能。
(2)《课程标准》要求:①观察并尝试识别常见的电路元器件,初步了解它们在电路中的作用;②分别描绘电炉丝、小灯泡、半导体二极管的I-U特性曲线,对比它们导电性能的特点。
2 教学对象分析
(1)学生在初中已经学习过的电阻的测量、电压的调节等电路的相关基础知识,为本节实验方案设计打下了基础;
(2)初中已经学习过的欧姆定律基础知识,为欧姆定律的深化理解起了铺垫作用;
(3)学生具备了一定的探究能力、逻辑思维能力和归纳演绎能力。
3 教学目标
3.1 知识与技能
(1)了解线性元件及其特点;
(2)理解欧姆定律及其适用条件;
(3)了解非线性元件及其特点。
3.2 过程与方法
(1)通过亲历“导体伏安特性曲线”描绘的全过程,进一步熟知科学探究的各环节;
(2)通过描绘导体伏安特性曲线,体会图线法在物理学中的作用;
(3)初步掌握传感器、DIS(数字化信息系统)的操作和使用方法。
3.3 情感态度与价值观
(1)通过使用传感器和DIS(数字化信息系统),增强数字化、信息化科学意识;
(2)通过与同学的讨论、交流、合作,提高学生主动与他人合作的意识;
(3)通过多媒体教学网络广播系统共享实验结果,享受分享和成功带来的喜悦、提高学生合作共享意识。
4 教学重点
(1)线性元件与欧姆定律
(2)线性伏安特性曲线的理解与应用
5 教学难点
(1)实验方案的设计与电路连接、DIS(数字化信息系统)的使用;
(2)非线性伏安特性曲线的理解与应用。
6 教学策略设计
6.1 《课程标准》要求
(1)观察并尝试识别常见的电路元器件,初步了解它们在电路中的作用;
(2)分别描绘电炉丝、小灯泡、半导体二极管的I-U特性曲线,对比它们导电性能的特点。
这是采用传统的教学手段一课时不可能实现的教学目标!而采用传感器和DIS(数字化信息系统)获取导体的伏安特性曲线,利用现代化信息技术,不仅大大提高了课堂教学效率,而且增强了学生数字化、信息化科学意识。
6.2 本节课设计了四个探究环节
(1)探究环节一:描绘金属导体(合金丝绕成的5 Ω、10 Ω电阻)伏安特性曲线
该环节包括实验设计、电路连接、数据收集、数据的图线法处理,得出金属导体的伏安特性曲线是“过原点的直线”的实验结论。其中,包含了科学探究的“提出问题、设计实验、数据收集、分析论证、结论评估”诸多环节,使学生进一步熟知科学探究的各环节。
(2)探究环节二:线性元件与欧姆定律
(3)探究环节三:描绘小灯泡(二极管)的伏安特性曲线
(4)探究环节四:非线性元件与非线性伏安特性曲线的理解与应用
其中,环节一、三均采用两组差异化的实验器材――合金丝绕成的5 Ω与10 Ω电阻,小灯泡与二极管。这样设计,既提高了实验效率,又使实验具有了普遍性。而通过寻找两组不同曲线的异同,又能自然总结出线性元件、非线性元件的概念和特点。
6.3 本节课采用小组合作形式
使学生通过与同学的讨论、交流、合作,提高学生主动与他人合作的意识;通过多媒体教学网络广播系统共享实验结果,享受分享和成功带来的喜悦,提高学生合作共享意识。
7 教学设备
25组描绘导体伏安特性曲线器材、“友高”数字化实验系统、多媒体教学网络广播系统、多媒体课件展示、实物投影仪、半波全波整流、滤波线路板。
8 教学过程
引入新课
【教师】
实物投影:整流、滤波线路板,介绍元件、功能。
引入课题:该线路板为何能实现如此神奇的功能呢?那就要求设计者对各元件的性能非常了解,而导体的伏安特性就是其中一项重要的性能。
【学生】
观察、思索、好奇、兴奋。
【设计说明】
激发学生研究导体伏安特性的兴趣。
新课教学
探究环节一:描绘金属导体伏安特性曲线
(一)提出问题
【教师】
(1)今天我们就首先探究金属导体(合金丝绕成的5 Ω、10 Ω电阻)的伏安特性。
(2)划分四个研究小组,每组六台电脑。
【学生】
熟悉小组成员,选出小组长。
【设计说明】
小组合作。
(二)设计实验
(1)方案设计
【教师】
导体的伏安特性曲线――用横轴表示电压U,纵轴表示电流I,画出的I-U图线叫做导体的伏安特性曲线。
注意解决三个问题:
①如何测量导体的电流、电压?
②如何改变导体的电流、电压?
③怎样描绘导体的伏安特性曲线?
【学生】
分组讨论:
①达到实验目的所需的实验器材;
②画出实验电路图、概述实验方案。
【设计说明】
①提高学生的实验设计能力;
②利用学生在初中已经学习过的电阻的测量、电压的调节等电路的相关基础知识。
(2)方案论证
【学生】
小组长说明实验器材。
【教师】
展示实验器材实物图(图1)。
【学生】
小组长投影实验电路、简述实验方案。
【教师】
展示实验电路(图2)。
(3)方案改进
【教师】
在数字化时代,我们利用电压传感器、电流传感器替代电压表、电流表,利用“友高”数字化实验系统替代手工记录和坐标纸来完成此实验探究(图3)。
【学生】
阅读《描绘导体伏安特性曲线》操作指南。
【设计说明】
采用传感器和DIS,提高效率,完成传统实验器材不可能完成的任务。
(三)数据收集
(1)分组实验
【学生】
分组实验:1、2组10 Ω电阻;3、4组5 Ω电阻,同组成员相互协作。
【教师】
①指导学生打开软件、实验模板、传感器调零,按操作指南要求收集数据、保存实验,暂不关闭等待分享实验数据(图4)。
②巡回指导。
④利用多媒体网络广播系统了解各组实验进度情况。
(2)成果分享
【教师】
通过广播系统向全体同学展示4个小组的实验结果。
【学生】
观察、对比。
【设计说明】
采用两组差异化的实验器材,既提高了实验效率,又使实验具有了普遍性。而通过寻找两组不同图线的异同,又能自然总结出线性元件的概念。
(四)结论评估
【教师】
请分析两图线的异同。
【学生】
(1)两图线均为过原点的直线――线性元件。
(2)两图线的斜率不同――电阻值不相等。
探究环节二:线性元件与欧姆定律
(一)线性元件
【教师】
(1)金属导体的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的元件称为线性元件。
那么,线性元件有什么特点呢?
【学生】
观察、思考后回答。
(2)通过同一线性元件的电流强度与加在导体两端的电压成正比。
【教师】
展示两个电阻的伏安特性曲线(图5)。
【学生】
观察、思考后回答。
(3)电压一定时,通过导体的电流强度与导体本身的电阻成反比。
【教师】
线性元件这两大特点你联想到哪条规律?
【学生】
齐答:欧姆定律。
【设计说明】
线性元件与欧姆定律两知识点自然衔接。
(二)欧姆定律
【教师】
内容:通过导体的电流强度跟加在导体两端的电压成正比,跟导体本身的电阻成反比。
适用范围线性元件金属导体电解液纯电阻电路
【学生】
回顾、归纳。
【教师】
情感教育:介绍欧姆及其实验装置(图6),阐述原创性实验的开拓性及对科学发展的重大影响!
【学生】
好奇、兴奋。
探究环节三:描绘二极管小灯泡伏安特性曲线
(一)提出问题
【教师】
下面我们分四小组、两大组分别描绘二极管和小灯泡的伏安特性曲线。
【学生】
更换器材、连接电路(图7)。
(二)数据收集
(1)分组实验
【学生】
分组实验:1、2组二极管;3、4组小灯泡,同组成员相互协作。
【教师】
①指导学生打开软件、实验模板、传感器调零,按操作指南要求收集数据、保存实验,暂不关闭等待分享实验数据。
②巡回指导。
③利用多媒体网络广播系统了解各组实验进度情况。
(2)成果分享
【教师】
通过广播系统向全体同学展示4个小组实验结果。
【学生】
观察、对比。
【设计说明】
采用两组差异化的实验器材,提高了实验效率,而通过寻找两组不同图线的异同,又能自然总结出非线性元件的概念。
(三)结论评估
【教师】
请分析两图线的异同(图8)。
【学生】
(1)两图线均为曲线――二极管为非线性元件。
(2)两图线的弯曲方向不同――二极管的电阻随电压升高而减小;钨丝的电阻随电压升高而增大。
(四)知识点辨析
【教师】
钨丝(小灯泡灯丝)属于金属导体,但其伏安特性曲线为何呈现曲线?(图9)
【学生】
因为灯丝温度变化范围过大。
【教师】
动画:手工绘制钨丝伏安特性曲线。
可以看出:曲线起始端温度变化很小,呈现线性。
探究环节四:非线性元件
(一)非线性元件的概念
【教师】
(1)气态导体和二极管的伏安特性曲线不是直线,这种元件称为非线性元件。
(2)对非线性元件,欧姆定律不适用。
(3)非线性元件的电阻除了由材料本身决定外,还与加在其两端的电压有关。
【学生】
观察、思考。
【设计说明】
实验与知识点自然衔接。
(二)非线性伏安曲线的理解与应用
(1)跟踪练习――非线性伏安曲线的理解
【教师】
①小灯泡通电后其电流I随所加电压U变化的图线如图10所示,P为图线上一点,PN为图线在P点的切线,PQ为U轴的垂线,PM为I轴的垂线,则下列说法中正确的是( )
(2)拓展练习――非线性伏安曲线的应用
【教师】
②一小灯泡的伏安特性曲线如图11所示,将该灯泡与一个R=6 Ω的定值电阻串联,接入输出电压U=3 V的恒压电源,如图12所示,试求通过小灯泡的电流强度。
【学生】
解析:在小灯泡的伏安特性曲线中做出U=3-6I 的图线(图13)。
从两图线的交点求出通过小灯泡的电流强度为I = 0.22 A。
【设计说明】
拓展学生解题思路,增强学生图线法解决问题的意识!
课堂小结
【教师】
引导学生回顾、归纳总结。
知识小结:线性元件、欧姆定律、非线性元件。
方法小结:实验探究、图线法、数字化。
【设计说明】
比知识更重要的是方法!
作业布置
【教师】
(1)课本P48页2、3、4题。
(2)请你设计一套描绘二极管完整伏安特性曲线(含正、反向电压)的方案。
(3)网上查阅欧姆定律的发现历程。
【设计说明】
三道作业分别对应“知识与技能、过程与方法、情感态度与价值观”三维目标。
参考文献:
[1]张金权.DIS数字实验系统与物理探究教学整合的策略[J].物理教学探讨,2013,(11):56.
一、初中物理电路计算题的类型分析
在初中物理的教学内容当中,我们可以看出初中物理电学在整体物理内容中所占比重极大,这也导致了其计算种类和题型的复杂多变。而且再加上学生第一次接触物理电学,令学生很难对其特点完全了解,从而导致学生在解题时无法做到活学活用。而且在解题中,由于学生对欧姆定律的了解不透彻,常常忽略其重要的“同一性”和“同时性”,最终导致解题失败。
因此针对这一情况,我们可以对复杂的电学问题根据其电路特点进行分类,从而对其进行有针对性的解答。由于每个电路的特点不同,我们可以根据其串联或并联的特性,将其分为“最简单的只有一个用电器的电路”、“由两个用电器串联得到的串联电路”、“由两个用电器并联得到的并联电路”、“由滑动变阻器组成的可变电路”、“由开关来进行电路变化控制的电路”这五种类型的电路计算问题。
二、初中物理电路计算题例题解析
(一)两个用电器的串联电路计算解析
例:将一直电阻R1与R2串联在电压U=12V的电源上,R1=20Ω,R2=40Ω。求:①电路总电阻R总;②电路电流I;③R1两端的电压;④R2的电功率。
解析:先根据已知条件求出电路总电阻,再利用总电阻和总电压,根据欧姆定律 求出电路电流I,再然后通过欧姆定律和串联电阻“分压不分流”的定律,求出R1两端电压,最后根据电功率公式P=I2R,求出电功率。
针对这类问题,首先我们要进行细致的审题,通过题目的第一句话,我们可以根据电阻串联的信息想到“串联电路分压不分流”这一定律,从而列出“I总=I1=I2”、“R总=R1+R2”的相关电路信息。然后针对第一个问题,直接将R1、R2的数值带入公式求出R总,即:R总=R1+R2=20Ω+40Ω=60Ω。
然后针对第二个问题,我们可以根据欧姆定律“I=U/R”带入数值,求出电路的总电流I总,即:I=U/R总=12V/60Ω=0.2A。
而根据审题时对已知串联电路的特点分析,我们知道“I总=I1=I2”,所以我们可以得出I1=0.2A,然后我们再根据欧姆定律“U=IR”求出R1两端的电压,即U1=I1*R1=0.2A*20Ω=4V。
最后进行第四个问题的解答,我们首先需要列出电功率的计算公式“P=I2R”,根据串联电路的特点“I总=I1=I2”,我们可以得到I2=0.2A,而R2已知,带入数值便可以求出R2的电功率,即P2=I2R2=0.22A*40Ω=1.6W。
(二)两个用电器的并联电路计算解析
例:如图所示,将R1、R2并联在电路中,R1=10Ω,R2=20Ω,闭合开关后,电流表显示I1=2.4A,求电路的总电流。
解析:想要解决此题,必须利用“并联电路分流不分压”的特点,先求出R1两端的电压,然后再根绝U1=U2求出R2的电流,从而求出此电路的总电流。
针对本体进行审题,首先从第一句话中,我们可以根据并联电路的关系“并联电路分流不分压”得出电路电压关系“U总=U1=U2”以及电流关系“I总=I1+I2”。然后再对问题进行分析,发现我们所要求的最终答案为I总。
而想要求出I总,我们就必须求出I2。根据欧姆定律“I=U/R”,我们可以发现R2的电压U2仍然是未知条件。然后我们对电压进行分析,可以从已知的条件中,发现R1与I1是已知的,这样我们就能得出U1。这时,我们审题时分析的电压关系“U总=U1=U2”就起到了关键的作用。
答:U2=U1=I1*R1=2.4A*10Ω=24V,I2=U2/R2=24V/20Ω=1.2A,I总=I1+I2=2.4A+1.2A=3.6A。
(三)滑动变阻器的可变电路计算解析
例:如图所示,电源电压恒定不变,R1为定值电阻,阻值为10Ω,R2为滑动变阻器。闭合开关后,将P移动至b点时,电流表显示为1A,当P移动至中点时,电流表显示为1.5A。求:①电源电压;②R2的最大阻值。
解析:根据已知的两次电流表显示数值,以及定值电阻和滑动变阻器当时相对应的阻值,可以确定求出电源的总电压15V,然后根据电源的总电压及电路总电流,求出最后的滑动变阻器最大阻值为20Ω。
(四)由开关控制的可变电路计算解析
在初中物理的电学习题中,还会经常遇到这样一类问题:某个开关闭合或断开引起阻值变化,然后判断电路的电流、各电阻两端的电压以及电功率发生变化。例如:当开关S由闭合到断开时,电流表示数有什么变化?电压表示数有什么变化?电压表和电流表的示数的比值有什么变化?
解决方法:首先弄清电路的串并联关系,然后根据电压、电阻、电流间的变化关系,在寻找变量的同时,要注意哪些是不变的物理量,便可以顺利解决问题。局部电阻的变化整个电路的电阻的变化总电流的变化其他量的变化。当把开关S闭合时,灯泡L被短路,只有R工作,电压表测量电阻两端的电压,电流表测量电路中的电流;开关断开时,灯泡L与电阻R串联,电压表测量电阻R两端的电压,电流表测量电路中的电流;根据串联电路的电阻特点可知开关S由闭合到断开时电路总电阻的变化,根据欧姆定律可知电路中电流的变化,再根据欧姆定律判断电压表与电流表示数比值的变化.
每年的中考物理试题中,有关欧姆定律和焦耳定律这两个知识点的题目都占有较大的比重,而且近两年的中考物理试题在这两个知识点上的难度有增加的趋势,欧姆定律反映了导体中电流、电压和电阻之间的关系,焦耳定律则说明了电流流过导体所产生的效果。
新课程下的中考的另一个特点,就是重视对实验探究能力的考查,促使同学们用新视角重新思考实验的过程,得到新的发现或收获,设计有关“过程与方法”的试题,考查同学们提出问题、做出猜想和假设、设计研究计划、分析处理数据、得出结论、学会评价的能力。
二、试题讲析
例1 如图l所示,电阻R1为12Ω,将它与R2串联后接到8V的电源上,已知R2两端的电压是2V,请求出电路的总电阻。
讲析 这是一道应用欧姆定律的基础题,解题的方法有两种:一种是从欧姆定律出发的分析法;一种是从电路的基本性质出发的综合法。即:求总电阻可以将R2的值求出来再求R1和R2的和;也可以用总电压除以总电流得总电阻;或根据电路的性质建立相应的关系式求解。
解法一:因为R1、R2串联,U1=U-U2=8V-2V=6V,I1=U1/R1=6V/12Ω=0.5A,I2=I1=0.5A,R2=U2/I2=2V/0.5A=4Ω,R总=R1+R2=12Ω+4Ω=16Ω.
解法二:因为R1、R2串联,I=I1=I2,则U/R1+R2=U-U2/R1,8V/R=8V-2V/12Ω,R总=16Ω.
解法三:因为R1、R2串联I1=I2,则U1/R1=U2/R2变形得R1/R2=U1/U2,R/R1+R2=U-U2/U1+U2,U/R1+R2=U-U2/R1,R总=16Ω.
例2 如图2所示,电源电压不变,当开关S闭合时,电表示数的变化情况是( ).
A.电流表、电压表示数均变大
B.电流表、电压表示数均变小
C.电压表示数变大,电流表示数变小
D.电压表示数变小,电流表示数变大
讲析 这是一道欧姆定律应用题,要判断电表的示数如何变化,关键是要知道电路中的电表示数变化的实质,当开关s闭合后,电路的状态由两个电阻的串联变为只有一个电阻R2的电路;原来电流表测的是R1和R2串联时的电流,现在R1和电流表被短路,电流表的示数为0,示数变小;电压表原来测的是R2上的电压,它是电源的一部分电压,而现在的电路中只有R2,则U2=U源,示数变大,本题选C.
本题的问题是有些同学看不懂电路状态变化的实质,死抠欧姆定律,电流或电压的变化是与电路的变化有关,但知道了现在的电路的变化特征就简单多了,识别电路是我们解电学题的前提,如果电路的状态不清,则应用的电路性质也就会出错,这种能力要加强。
例3 在如图3所示的电路中,电源电压U=4.5V,且保持不变,电阻R1=4Ω,变阻器R2的最大阻值为15Ω,电流袁的量程为0~0.6A,电压表的量程为0~3V,为了保护电表,变阻器接入电路的阻值范围不能超出( ).
A.3.5Ω~8Ω
B.2Ω~3.5Ω
C.0~8Ω D.0~3.5Ω
讲析 本题是欧姆定律的又一种应用形式,是状态电路中的变阻器的取值范围问题,解这类题目的关键是从电路的状态出发,找出符合电路要求的电学关系式,题目中的两个电表同时要满足不超过量程的要求,即:串联电路中的电流不大于0.6A,电阻R2两端的电压不少于3V,所以我们可以用欧姆定律,写出符合电路要求的数学不等式组然后求解。
依题意,由欧姆定律可得
由①②两式解得3.5Ω≤R2≤8Ω,所以应选A.
本题与物理上其他题目一样,关键是理清电路的特征,能写出符合电路特点和要求的数学关系式,然后通过数学的手段解出结果,所以仅有基本知识是不够的,更要练就解相关问题的技能。
例4 小明利用如图4所示的装置探究电流产生的热量与哪些因素有关?在两个相同的烧瓶中装满煤油,瓶中各放置一根电阻丝,且R甲大于R乙,通电一段时间后,甲瓶玻璃管中的煤油上升得比乙高,该现象能够说明电流产生的热量与下列哪个因素有关( )。
A.电荷量 B.电流 C.电阻 D.通电时间
讲析 题目的表象是:甲瓶玻璃管中的煤油上升得比乙高,这与哪些因素有关?煤油是因为受热膨胀,液面上升的;相同条件下,甲中的液面升得高,说明甲瓶中的电阻产生的热量多R甲和R乙是串联在电路中的,则电流、通电时间以及电荷量(电流和通电时间的乘积)相等,A、B、D选项都不是影响因素;根据焦耳定律甲的电阻大,甲放出的热量多,则电流产生的热量与电阻的大小有关,应选C.
本题实际上探究的是焦耳定律的影响因素,使同学们能进一步了解其内容、理解它的应用同时本题中也渗透了“控制变量法”的探究思想。
例5 一个电热水壶,铭牌部分参数如下:额定电压220V,额定功率模糊不清,热效率为90%,正常工作情况下烧开满壶水需要5min,水吸收的热量为118800J,此时热水壶消耗的电能为_______J,其额定功率为_______W,电阻是_________Ω.若实际电压为198V,通过电热水壶的电流是_________A,1min内
电热水壶产生的热量是________J.(假设电阻不随温度改变)
讲析水所吸收的热量已知,电热的利用率知道,则消耗电能可以由热量的利用率求出;用电时间已知,消耗的电能已求,则由电功率的定义求电功率,电水壶的电阻由R2=U2额/P额求出,在实际电压下的电流I=U/R,实际电压下的电热水壶所产生的热量Q=IRt.
答案:132000 440 110 1.8 21384
本题是欧姆定律和焦耳定律应用的基础题,也是通过练习使同学们掌握基本知识的重要途径,简单的是这样的填空题,复杂的可以演变成综合应用题;这些题目也是中考中同学们易失分的地方。
例6 CFXB型“220V 1100W”电饭煲的原理图如图5所示,它有高温烧煮和焖饭、保温两挡,通过单刀双掷开关S进行调节,R0为电热丝,当开关S接高温烧煮挡时,电路的功率为1100W,当开关S接焖饭、保温挡时,电路的总功率为22W。
(1)电饭煲在高温烧煮档时,开关S应与哪个触点连接?
(2)电热丝R0的阻值多大?
(3)当电饭煲在正常焖饭、保温时电路中的电流多大?焖饭、保温10rain,电热丝R0产生的热量为多少?
讲析 电饭煲在高温烧煮挡时,电路中的功率是最大,在电压一定时,要得到最大功率电路中的电阻应最小,由图5可知,当R被短路时,电路中的电阻最小,电路中只有R0工作,则S应合到2位置,高温挡时的功率已知,电压为额定电压,R0由R=U2/P等求得,当电饭煲在正常焖饭、保温时,电饭煲的热功率最小,电路中的电阻最大,则R0和R串联,可求出此时的电流,再由Q=I2Rt求出R0产生的热量,
答:(1)与触点2连接。
(2)P=U2/R0,R0=U2/P=(220V)2/1100W=44Ω.
(3)P=IU,I=P/U=22W/22V=O.1A,Q0=I2R0t=(0.1A)2×44Ω×600s=264J.
本题是欧姆定律和焦耳定律应用的综合题,同学们要能综合考虑影响电路发热的因素,也就是理解焦耳定律定义公式(Q=I2Rt)和各种变形公式(Q=U2/R(t)、Q=UIt)的应用,其中也涉及到欧姆定律的灵活应用。
三、巩固练习
1.如图6所示电路中,R1=10Ω.当开关S闭合时,电流表示数为0.2A,电压表示数为4V.求:(1)电源电压;(2)R2的阻值。
2.如图7所示电路中,电源电压恒定,R1为定值电阻,R2为滑动变阻器,闭合开关S后,滑动变阻器滑片P自b向a移动的过程中(
)。
A.电流表A的示数变大,电压表V2的示数与电流表A的示数之比变小
B.电流表A的示数变大,电压表V2的示数与电流表A的示数之比变大
c.电压表V1的示数不变,电路消耗的总功率变大
D.电压表V2的示数变小,电路消耗的总功率变小
3.一只电炉的电阻为48.4Ω,接在电压为220V的电路中工作,它的功率是w,电炉丝工作时热得发红,而连接电炉丝的导线却不怎么发热,其原因是
4.在一次科技小组的活动中,同学们按照如图8所示的电路在AB之间接入一根细铜丝,闭合开关S后,调节滑动变阻器,使电流表的读数保持3A不变,过了一会儿,细铜丝熔断,在AB之间换接一根同长度的较粗的铜丝,再调节滑动变阻器到某一固定值,经较长时间粗铜丝没有熔断,在此过程中,电流表的读数保持3A不变小明同学针对所观察到的现象提出了一个问题:造成细铜丝熔断而粗铜丝没有熔断的原因是什么?(设电源电压保持不变)
(1)你认为造成细铜丝熔断而粗铜丝没有熔断的原因是什么?(请简述理由)
(2)若粗铜丝电阻为0.01Ω,求:在5s内粗铜丝共产生的热量。
(3)如果你家准备安装一台“220V 1500W”的电热水器,你应用选用(较粗/较细)的铜导线用作连接线比较安全。
5.如图9所示电路,电源两端电压保持不变,当开关S1闭合、S2断开,滑动变阻器的滑片P移到B端时,灯L的电功率为PL,电流表的示数为I1;当开关S1断开、S2闭合时,灯L的电功率为R1',电流表的示数为,I2,已知PL:P'L=9:25.
(1)求电流表的示数I1与I2的比值;
(2)当开关S1、S2又都断开,滑动变阻器的滑片P在c点时,变阻器接入电路的电阻为Rc电压表V1的示数为u1,电压表V2的示数为U2,已知U1:U2=3:2,Rc的电功率为10W,这时灯L正常发光,通过闭合或断开开关及移动滑动变阻器的滑片P,会形成不同的电路,在这些不同的电路中,电路消耗的最大功率与电路消耗的最小功率之比为3:1.求灯L的额定功率。
6.小明在研究性学习活动中,查阅到一种热敏电阻的阻值随温度变化的规律如下表,并将该型号的热敏电阻应用于如图10所示由“控制电路”和“工作电路”组成的恒温箱电路中。
“控制电路”由热敏电阻R1、电磁铁(线圈阻值R0=50Ω)、电源U1、开关等组成,当线圈中的电流大于或等于20mA时,继电器的衔铁被吸合,右边工作电路则断开;
“工作电路”由工作电源U2(U2=10V)、发热电阻R2(R2=50Ω)、导线等组成,问:
(1)工作电路工作时的电流为多大?电阻R2的发热功率为多大?
(2)若发热电阻R2需提供1.2×104J的热量,则工作电路要工作多长时间(不计热量的损失)?
(3)若恒温箱的温度最高不得超过50℃,则控制电路的电源电压U1最小值为多大?
关键词:欧姆定律;减轻负担;提高兴趣
G633.7
一、引言:
在本学期,有兄弟学校老师来我校教研交流,针对《串、并联电路电阻的特点》这一知识到底应不应该补充的问题再次进行了激烈的讨论,把这个问题再次推上了风口浪尖,用课改教材教学已经过去几个年头了,时至今日,还有学校教师对这个问题存在如此大的疑惑,让我不得不想在此说明一下了!
二、教材删除掉的内容
由教育部审定,人民教育出版社出版的义务教育教科书,九年级《义务教育物理课程》课本中,删除了《串联和并联电路中电阻的特点》的内容,即在串联电路中,总电阻等于各分电阻之和,公式R=R1+R2+R3+....Rn 。在并联电路中总电阻的倒数等于各并联电阻倒数之和,公式1/R=(1/R1)+(1/R2)+…+(1/Rn)。
三、教师的质疑
这部分内容的取消无疑是对几十年来用欧姆定律解题习惯的一种背叛,一开始就给我们提出了一串串大大的问号,没有了电阻公式,我们是不是应该重新好好思考如何引导学生应用欧姆定律的公式呢?对于串并联电路电阻的特点我们应不应该再补充给学生呢?如果没有补充,考试中出现,甚至中考中出现,学生应该如何应对呢?教育专家对教材内容做这样的改革到底意在何处?想达到怎样的教育目的?
四、分析课改的教材,寻找课改的依据
1.分析课改教材
案例分析一:
新教材人教版九年级物理第十七章第四节,《欧姆定律在串、并联电路中的应用》中的例题1,如图1所示,电阻R1为10Ω,电源两端电压为6V。开关S闭合后,求:(1)滑动变阻器R2接入的电路的电阻为50Ω时,通过电阻R1的电流为I (2)当滑动变阻器接入电路的电阻R3为20Ω时,通过电阻R1的电流为I′。
从以上两道例题可看出,并没有利用串并联电路的特点来解题,而是充分利用了串并联电路电流、电压的特点以及欧姆定律来解题
2.寻找课改的依据
在讲《欧姆定律在串、并联电路中的应用》前,我对教材大纲进行了仔细的研究分析,并再次认真阅读了义务教育物理课程标准修订组核心成员廖伯琴、陈峰、黄恕伯等教育专家所编写的有关《义务教育物理课程标准修订依据、原则、与实施建议》、《新修订义务教育物理课程标准的变化与贯彻与落实》、《义务教育物理物理课程标准的修订解决了哪些教学实践中的问题》等文章,其中由江西省南昌市三级教师黄恕伯编写的《义务教育物理物理课程标准的修订解决了哪些教学实践中的问题》一文中,有这样一段话:“修订后的《标准》要求‘了解串、并联电路电流和电压的特点’这一知识。而教学实践中可能不少老师会凭着自己的经验把这一要求延伸到‘电阻’,‘评价建议’特别指出,该条目没有对串、并联电路的电阻关系提出明确要求,因此,在考试评价中,不应该把串、并联电路的电阻规律作为统一的教学要求让学生掌握。疏导老师在教学实践中深入研读课程标准的具体要求,克服评价目标的随意性”。而由福建师范大学硕士生导师陈峰老师编写的《新修订义务教育物理课程标准的变化与贯彻与落实》一文中,也有这样的表述:“在实施过程中,老师应认真学习、对比新旧课程标准的变化,准确把握教学内容要求,控制好教学的容量和难度,防止随意拔高教学要求,加重学生的课业负担”。
五、结论
通过以上例题分析以及专家说明足以告诉大家,在这节内容的教学中不应盲目去补充大纲删除掉的内容,而应该仔细研读大纲要领,多了解新课标改革方案与要求,仔细拿捏教材内容,对教学内容能够把握到恰到好处,才能更好的贯彻落实新课改的要求,达到较好的教学效果
参考文献