公务员期刊网 精选范文 混凝土结构设计论文范文

混凝土结构设计论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的混凝土结构设计论文主题范文,仅供参考,欢迎阅读并收藏。

混凝土结构设计论文

第1篇:混凝土结构设计论文范文

根据建筑物投入使用中的需求进行设计,这种理念称为概念设计。先对场地进行考察,得出一个宏观的设计方案,再将方案中的各结构进行探讨,得出优化方案,这种设计方法具有科学合理、节省时间的优点,在现代建筑中得到了广泛使用。高层建筑结构特殊,对抗震性能的要求高于其他建筑,概念设计通过对设计结构中的承载力进行分析计算,对不符合规范的主要承重部位进行加固。混凝土结构在高强度的压力作用下很容易出现裂缝,内部钢筋材料也会出现弯曲情况,促成这种质量问题的因素一方面是材料选取不合理,更重要的是设计方案不够科学,高层结构概念设计中容易出现的问题主要分为以下几方面:

1.1结构不合理、性能缺少验证。在高层建筑设计中同时要考虑多种因素,保证结构承载力的前提下尽量减少造价成本,需要将建筑结构从总体至细节进行优化。优化工作多数是将设计图纸中的一些参数进行计算分析,适当的加固墙体厚度,常出现缺少对地基承载力的实际考察情况。高层建筑的抗震能力规定在中等强度地震时建筑物不会产生高危裂缝,并可通过修补达到预期效果,在发生高强度的地震时建筑物保证结构不出现坍塌。地震发生的几率很小,一旦发生具有极大的毁灭性,高层建筑抗震性能只停留在设计层面,从数据上分析已经达到了国家要求,但各施工地点基层土壤矿物质组成存在差异,松软程度也就不同,缺少验证,真正发生危险时其稳定性很难保证。

1.2结构设计缺少创新。高层建筑结构复杂,设计过程中受多种因素限制,为同时满足多种需求,工程设计师都施行保守方案,缺少创新精神。钢筋混凝土材质的墙体承载能力与结构有很大联系,在剪力墙设计方案中,应充分借鉴国外先进技术,基于传统结构进行创新,解决承载力不足的问题,同时使高层建筑整体结构更符合大众审美,减少造价支出。概念设计在结构优化上的运用还受很多施工技术以及设备使用方面的限制,阻碍建筑工程行业进步。

1.3受力分布不均匀。高层建筑上下层的结构是不同的,为保证自身重力不会对建筑物造成破坏,基层修筑中会应用到大量的钢筋混凝土材料,加固底层的同时削弱上层,可减轻对地基的压力,同时建筑物承受风力和地震破坏的能力更强。进行概念设计过程中,没有充分考虑转换层占据的空间和对受力平衡的影响,承重柱满足了承载上层压力的要求,但墙体产生的剪力不能与内部的应力平衡,作用在水平方向时形成了破坏力。概念设计中缺少优化环节导致这一现象的产生,很难保障整体结构的稳定性。

1.4概念设计中常见问题的解决方案。设计过程中不可脱离实际情况,在前期准备工作中对建筑场地进行详细的测量,将地区可能出现的自然灾害进行模拟实验,根据测试结果对设计结构进行优化。充分考虑建筑物的自重,满足对抗震性能的要求,同时在结构上进行改进,应用力学知识,节省建筑过程中的原材料使用。合理修筑剪力墙,结构在成体建筑中起到承重作用,但不能破坏空间整体性,注重格局的设计,将各单元的楼梯间进行分别设计,根据不同区域的需求,可将方案进行更改,保证整体结构统一又各有特点。在楼体外观的设计中加入符合当地人文特色的元素,使建筑物更具有中国特色。应用概念设计法时加强后期的优化工作,注重从宏观到细致的过渡,设计方案要具有灵动性,应对施工进展过程中的突况工程师要及时进行探讨,对原有结构做出更改,保障施工连续进展。设计测量工作中会涉及到很多变量,对这些数据进行反复测量,确定合理的浮动范围,作为施工开展的有力依据。

2结构选型的问题

2.1结构的超高。在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑。因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚至超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

2.2控制柱的轴压比与短柱问题。在钢筋混凝土高层建筑结构中,往往为了控制柱轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。即使采用高强混凝土,柱断面尺寸也不能明显减小。限制柱的轴压比是为了使柱子处于大偏压状态,防止受拉钢筋未达屈服而混凝土被压碎。柱的塑性变形能力小,则结构延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。但是在结构中若能保证强柱弱梁设计,且梁具有良好延性,则柱子进入屈服的可能性就大大减少,此时可放松轴压比限值。

3结构计算与分析

3.1计算模型的选取。对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。在使用中可根据工程经验和工程实际情况灵活应用,以最少的计算工作量达到预期的分析精度要求,既不能不分情况一概采用刚性楼板模型,造成小墙肢计算值偏小,不安全;也没必要都采用弹性楼板模型,无谓地增大计算工作量。

3.2抗震等级的确定。对常规高层建筑,可按《高层建筑混凝土结构技术规程》(JGJ3-2002,J186-2002)第4.8节规定确定抗震等级,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于复杂高层建筑还应符合第10章的规定;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。

3.3非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑地震作用和风荷载较大,必须严格按照新规范中增加的非结构构件的处理措施进行设计。

4结论

第2篇:混凝土结构设计论文范文

关键词:混凝土;框架;结构设计;问题

Abstract: With economic development and the development of the real estate market, the domestic design market increasingly active around the number of design companies have continued to increase, design quality is also poor missing. This paper introduced in the structural design engineering is often the majority of designers ignores some of the problems and put forward their own opinions, for reference.Key words: concrete; framework; structural design; problem

中图分类号:TU375 文献标识码:A文章编号:

前 言

框架结构是指由梁和柱连接构成承重体系的结构,即由梁和柱组成框架共同抵水平荷载和竖向荷载。墙体仅起到围护和分隔作用,一般用轻质板材等材料砌筑。混凝土框架结构广泛用于住宅、学校、办公楼,有时为了争取较大的跨度,对混凝土梁或板施加预应力,以达到使用要求。比如由于缺乏规范依据及相应的设计规定,加之对结构体系概念设计缺乏了解,有些设计人员往往对结构设计把握不够,在实际工程中出现了不少规则性很差、对结构抗震十分不利的结构。

1、电算参数及结果分析

随着我国计算机技术的飞速发展,我国的设计软件也日趋完善。目前,国内在结构设计中,工程中应用较多的结构分析软件主要有两类: 一类是利用薄壁杆件理论的三维杆系结构有限元分析软件,目前工程中常用的TAT、TBSA属于这一类。第二类是利用壳元理论的三维组合结构有限分析软件,SATWE软件属于这类软件。不同的软件有其不同的控制参数,作为设计人员,应理解规范的前提下合理的选择相应的设计参数。以PKPM为例,其结构控制参数就有几十个,比如在SATWE参数地震信息中有:结构平面规则性判断(见《抗规》表3.4.2-1、《高规》4.3节)、结构竖向规则性判断(见《抗规》表3.4.2-2、《高规》4.4节)、框架抗震等级(见《抗规》表6.1.2)、活载质量折减系数(见《抗规》表5.1.3)等。每个参数对应了规范的不同条款,设计时应认真对照规范,合理选择,在此前提下再对结果认真分析,做到经济、安全。轴压比不满足要求,结构的延性要求无法保证,应增大该墙、柱截面或提高该楼层墙、柱混凝土强度;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。

2、框架短柱

短柱效应则是在设计时易被忽视的一个问题。短柱由于其刚度大,吸收地震作用使其时容易受剪,当混凝土抗剪强度不足时,则产生交叉裂缝及脆性破坏,从而引起建筑物或构筑物的破坏甚至倒塌。

其破坏形态多为剪切破坏,无明显征兆,一般而言以多层建筑中设置构造柱的楼梯间、宽度较大的窗台等部位最为典型。如同鞭梢效应一样,这也是一种与地震效应密切相关的效应。

规范规定,房屋建筑中的短柱一般是指柱净高H与截面高度h之比H/h≤4为短柱,工程界许多工程技术人员也都据此来判定短柱,这是一个值得注意的问题。因为确定是不是短柱的参数是柱的剪跨比λ,只有剪跨比λ=M/Vh≤2的柱才是短柱,而柱净高与截面高度之比H/h≤4的柱其剪跨比λ不一定小于2,亦即不一定是短柱。按H/h≤4来判定的主要依据是:①λ=M/Vh≤2;②考虑到框架柱反弯点大都靠近柱中点,取M=0.5VH,则λ=M/Vh=0.5VH/Vh=0.5H/h≤2,由此即得H/h≤4。但是,对于高层建筑,梁、柱线刚度比较小,特别是底部几层,由于受柱底嵌固的影响且梁对柱的约束弯矩较小,反弯点的高度会比柱高的一半高得多,甚至不出现反弯点,此时不宜按H/h≤4来判定短柱,而应按短柱的力学定义λ=M/Vh≤2来判定才是正确的。目前,在工业与民用建筑的框架、框剪设计中,普遍采用PKPM等设计软件进行设计,但目前的软件设计还不完善,在进行电算时,对短柱不能进行自动判别,因此短柱需要设计人员利用电算结果另行设计。

其实,短柱出现时,可以通过多种方法来提高短柱的承载力或变形能力,使短柱的抗震性能获得提高,从而避免发生脆性破坏,保证结构安全。比如可以加强短柱的构造措施:① 尽量减弱短柱的楼层约束,如降低梁的高度、梁与柱采用铰接等;③合理采用箍筋类型,如螺旋箍筋、复合螺旋箍筋、双螺旋箍筋等②增加箍筋的配置,在短柱范围内箍筋的间距不应大于100 mm,柱的纵向钢筋间距≤150 mm;

3、强柱弱梁

目前一些设计人员却并不重视规范这个概念的精神。多次的地震震害表明:混凝土结构,尤其是框架结构的“强柱弱梁”概念在工程实际中较难实现。其原因主要有:结构计算。现行的一些结构计算软件中,在结构内力分析时考虑了楼板对梁的刚度贡献,然而却在梁的承载力配筋中未考虑,造成梁配筋偏大; 计算梁端截面配筋时,由于考虑了梁的裂缝,由此而控制梁端截面的配筋;梁端配筋采用柱中线处内力,实际上柱中线截面弯矩比柱边截面的弯矩要大些,目前在PKPM中的梁柱结点是否形成刚域对此有控制开关,可供设计人员控制;钢筋归并及人为放大梁支座配筋及跨中配筋。

我们知道框架结构是超静定结构,如在柱上出现塑性铰,结构就有可能成为机构,整个结构就会失稳倒塌,但是如果在梁上出现塑性铰后结构仍为超静定结构,对整个结构的影响较少,也不至于结构整体的失稳;为了使框架结构在地震作用下塑性铰首先在梁中出现,这就必须做到在同一节点柱的抗弯能力大于梁的抗弯能力,即满足“强柱弱梁” 的要求。因此规范提出“强柱弱梁”这一概念设计是十分的重要的,规范中的梁端负弯矩调幅及抗震设计时的柱端弯矩放大系数都体现了“强柱弱梁”这种抗震理念。强柱弱梁只是一种抗震概念,没有人为了体现强柱弱梁这个概念故意把柱截面做大,层高做小来增加其线刚度,也不是说梁的线刚度比柱的线刚度大就没有体现强柱弱梁这个概念,要体现“强柱弱梁”是多方面的原因,除了刚度比之外,配筋及一些构造措施也不能忽视。

规范保证“强柱弱梁”的措施是对柱端弯矩乘以放大系数,强柱弱梁就是要保证在梁上先出现塑性铰而不是在柱子上先出现,因此,要柱子的承载力要大于梁的承载力,规范里就是根据各种抗震等级规定了各种各样的柱端弯矩放大系数来实现它的,与梁柱线刚度比并无直接的关系,我们可以通过加强柱的配筋来做到强柱弱梁的要求,但要适当控制其可能对柱端内力调整造成的影响。

4、关于板面设置温度应力筋

《混凝土结构设计规范》( G B50010-2002)第10.1.9条规定在温度收缩应力较大的现浇板区域内, 钢筋间距宜取为150~200mm,并应在板的未配筋表面布置温度收缩钢筋,板的上下表面沿纵横两个方向的配筋率均不宜小于0.1% ,河北省地方技术措施中也有对于屋面板板面负筋宜通长布置的说法。对于规范中所提“温度收缩应力较大区域”这一条设计人员的理解又会产生出入。工程中什么区域属于温度收缩应力较大的区域,仅是板跨较大还是屋面板等这些外露构件为温度收缩应力较大的区域,这其实是一个难题。不过,根据工程经验来说,一般认为对于一般结构形式规则且较短的建筑,我们可以在各楼面边跨及屋面层设置相应的温度应力钢筋,而对于超长结构,则建议在超长结构的长向均应设置双层钢筋或设后浇带来处理。其余部位则可因人而异但不必过于强调。

5、结束语

对于结构设计人员来说,先应对其设计计算的软件功能有确切的了解,再选取切合实际情况参数和符合现行规范要求的计算方法,通过合理控制各项指标,认真仔细比对结构方案和分析相应计算结果进行正确的判别。

参考文献

[1] 中国建筑科学研究院PKPM CAD工程部《PKPM用户手册及技术条件》及《SATWEE用户手册及技术条件》[CP].

第3篇:混凝土结构设计论文范文

【关键词】钢筋混凝土;地下室;结构设计;问题及对策

前 言

近年来,随着现代化城市建设进程的不断推进,城市中的钢筋混凝土物数量越来越多,其建筑高度也越来越高,钢筋混凝土中所对应的地下室及地下车库也随之增加,其对地下空间的使用需求也有所提高。对此,需要对钢筋混凝土地下室的结构进行合理的设计,只有这样才能将地下空间的作用充分发挥出来。

1 钢筋混凝土地下室结构设计中存在的问题

钢筋混凝土地下室结构工程广泛的涉及到各个专业,专业知识结构也相对比较复杂。在地下室结构设计中,不仅要考虑人防的需要、防火功能、使用功能,也要考虑采光、通风、摊水以及管道等其他专业之间的彼此配合联系。但是从最近的大部分钢筋混凝土地下室结构设计来看,还存在许多不合理的地方,这对地下空间作用的充分发挥产生了一定的制约。在当前的钢筋混凝土地下室结构设计中存在的问题主要表现在:

(1)外墙的结构设计。

(2)钢筋混凝土地下室结构的荷载设计。

(3)底板设计。

(4)地下室抗渗、抗浮设计。

(5)保护层及垫层厚度设计。

2 钢筋混凝土地下室结构设计中存在的问题分析及对策

2.1 外墙在钢筋混凝土地下室结构设计的过程中,如果要计算外墙结构,首先需要对弯矩幅度进行调整并以钢筋混凝土地下室底部结构作为外墙的嵌固端,同时还要考虑外墙的荷载分项系数。如果地下高度较大,需要进行多层建设时,还应按照多跨连续计算,保证地下室外墙底部的弯矩与其相邻底板的弯矩值相同。另外,当以底板作为外墙嵌固端时,对底板的抗弯能力要求较高,且需要大于外墙的抗弯能力。在地面结构物楼板支撑的部位,如楼梯口等位置,需要根据实际需要计算结构模型以及实际配筋量,保证地面结构的稳定性。如果地下室有与外墙相邻的车道并且车道底板处于外墙中部时,需要考虑车道底板集中应力对外墙结构稳定性的影响并采取相应的措施来进行处理。上述情况中,由于外墙的支撑条件不同,因此,需要结合实际计算和设计外墙的结构及相关参数。另外,当各部位顶板的标高处于不同水平时,还应该采取措施对外墙上方支座水平方向应力的传递进行处理,以保证外墙顶部各个部位的受力均衡。在计算地下室外墙结构的配筋量时,除垂直于外墙方向且以钢筋混凝土内隔墙进行连接的外墙板块以及扶壁柱截面面积较大的外墙板块外,之间的外墙板块的配筋量需要以双向板配筋量的计算标准进行计算,其余的外墙结构配筋量均按照竖向单向板配筋量计算标准进行计算。当外墙扶壁柱的竖向荷载比较小时,需要适当的加强其内外侧主筋,并且水平筋的调整需要以外墙扶壁柱的截面面积作为依据。另外,外墙水平筋必须满足最小配筋率要求,以保证特殊情况下外墙结构的稳定性。

2.2 荷载计算钢筋混凝土地下室结构的荷载压力较大,在进行其荷载需求设计时,需要从人防工程、建筑自重、土体压力及水体压力等多方面综合考虑地下室荷载总量及分布情况。地下室设计相关规范中对地下室各个部位的荷载值给出了具体要求,在进行地下室结构设计的过程中,可以结合建筑的实际使用需要对地下室的荷载能力进行设计。

(1)地下室顶板能达到承受核爆动荷载标准值的要求;

(2)在地下室外墙的荷载设计时,顶板向下传递荷载的标准值以及建筑物和外墙各自的自重标准值的组合情况是必须要考虑的;

(3)在地下室的内承重墙设计时,应该考虑顶板向下内承重墙自重标准值、建筑物自重标准值及传递的荷载的组合情况,在选择顶板传递荷载时,要将核爆动荷载标准值与正常活动荷载标准值进行对比,选择较大的荷载值;

(4)地下室的底板需要考虑到建筑物地上空间及地下空间的整体荷载。在进行地下室荷载组合设计的过程中,难点在于计算地下室在承受核爆动荷载的情况下需要承受的静荷载标准值。

2.3 底 板底板的设计除了需要考虑荷载问题外,还要考虑抗渗、防水方面的要求。这也对地下室底板的厚度及配筋量提出了一定的要求,其厚度应在 50cm 左右,配筋率保持在 0.25%左右。除此之外,梁的设置应该以地下室底板的实际标高变化情况为依据,底板厚度应该小于梁的宽度,并且还应该考虑底板支座弯矩传递,同时将适量的抗扭钢筋加入到梁中。如果地下室底板为桩箱、桩筏基础,则还应该考虑冲切、剪切、弯拉等方面的应力。

2.4 抗浮、抗渗及控制措施一般情况下,如果施工地区的地下水位比较高,在设计地下室结构的过程中,应该认真计算地下室以及地面楼层层数比较少时的抗浮能力。当基础是桩基础时,还需要仔细计算桩的抗拔能力。按照钢筋混凝土地下室结构设计的相关规范,在进行地下室结构抗浮能力的计算时,其荷载分项系数的取值应为0.9。在进行强度计算时,其荷载分项系数的取值应为 1.0,并以地下水位的高度及变化的频率和幅度为基础进行计算,在实际工程计算中应该以计算结果的极限值进行取值。另外,如果对施工过程及洪水期不够重视,就有可能会因为地下室结构的抗浮能力达不到要求而受到破坏。在实际工程中,一些较大的地下室上方可能会同时存在多栋独立的建筑,这时,就有部分区域上方属于空旷,在这种情况下,地下室顶板各部位受到的荷载差异较大,其抗浮能力也会产生较大差异,因此,需要对各部位的荷载情况及抗浮能力进行单独计算。在地下室结构设计的过程中,抗渗能力的计算也是十分重要的。目前的地下室结构基本上属于钢筋混凝土结构,而由于钢筋混凝土本身的特性,其结构中往往会存在较多的孔隙和裂缝,其自身的抗渗能力较差,因此,为了达到设计中的抗渗要求,通常可以采取以下措施对钢筋混凝土结构进行处理:

(1)补偿收缩混凝土。在混凝土的配置过程中,通过加入各种膨胀剂,能够使混凝土硬化过程中的收缩比例降低,降低混凝土收缩裂缝产生的几率。

(2)膨胀带。膨胀剂对混凝土体积的变化影响较小,因此,在很多情况下难以满足混凝土体积膨胀要求,这时可以通过增加膨胀带的方式实现混凝土无缝施工。

(3)后浇带。后浇带的设置能够使混凝土早期短时间释放约束力,相对于混凝土的自然收缩能够有效降低混凝土的收缩裂缝发生几率。

(4)提高混凝土的抗拉能力。在设计混凝土结构的过程中,应该添加一定量的高强度钢筋,从而提高混凝土结构使用中的抗变形能力。

(5)除了上述措施外,在混凝土结构施工后期阶段及投入使用后还应加强对混凝土的养护工作。

2.5 保护层和垫层厚度根据《地下工程防水技术规范》中的相关要求,在进行地下工程施工的过程中,其底板垫层结构的混凝土强度应在 C15 以上,厚度在 100mm以上,如果施工区域土体为软弱土层,应适量增加底板垫层厚度,最低应保持在150mm 以上。如果需要满足防水要求,其厚度应在 250mm 以上,以此满足底板的基本防水要求,这样才能达到最基本的防水要求。

第4篇:混凝土结构设计论文范文

【关键词】框架桥,弯矩,剪力,变形

1.工程概况。此工程位于烟台市某地,根据市交通局规划和城市人行地道的交通流量,本设计采用单孔5m框架桥结构。施工时采用暗挖施工主通道,出入口和主通道净空2700mm另加装修层50mm,底板厚度为500mm,顶板厚度500mm,侧墙厚度500mm,出入口底板厚30cm。箱涵主体结构和洞门混凝土强度等级为C35,基础垫层混凝土强度等级为C15,支护结构锚喷混凝土为C20,防水保护层混凝土为C30,主要受力钢筋为HRB335.地基为粘土。主通道荷载等级为城-B级,出入口设计荷载3.5kN/m2.

2.恒载计算

2.1材料特性。根据《城市人行天桥和人行地道技术规范》本地道桥框架结构采用C35混凝土,材料特性依据《混凝土结构设计规范》(GB 50010--2002):

2.2 桥跨自重。计算尺寸: 计算宽度 L=5.0m+0.50m=5.5m,计算高度 H=2.7m+0.05m+0.50m=3.25m

2.3 结构荷载

2.3.1板顶均布恒载

2.3.3混凝土收缩影响

根据《城市人行天桥和人行地道技术规范》规定,对于刚架结构,混凝土收缩的影响系假定用降低温度的方法来计算。对于整体灌注的钢筋混凝土结构,相当于降低温度15?莓,线膨胀系数?琢=0.00001,顶板收缩t′=(?琢·l·t)

\3.活载计算3.1汽车活载标准值

3.2人群荷载标准值

4.截面弯矩检算

根据《混凝土结构设计规范》(GB 50010-2002)规定,按照极限状态法进行框架结构截面检算,取框架单位宽度1m作为计算单元。分别取跨中,钢筋弯起点和端部进行计算。

计算参数:

式中:M --弯矩设计值;?琢1 --系数取1;fc --混凝土轴心抗压强度设计值; A?琢、AS′--受拉区、受压区纵向钢筋的截面积; b--矩形截面的宽度;h0 --截面有效高度; ?孜b--界限相对受压区高度; ?琢′--受压区钢筋合力点至截面受压边缘的距离。

对于边墙的截面计算,由于受力钢筋截面没有变化,所以取弯矩绝对值最大的截面进行计算,采用了与底板和顶板相同的计算原理,其中上侧钢筋指相对于左侧,下侧钢筋相对于右侧。经计算各截面均符合要求。

5.截面剪力检算

根据《混凝土结构设计规范》(GB 50010-2002)规定,矩形截面受弯构件,其受剪截面满足条件。

参考文献:

[1]杨工勤,地道桥的设计与施工,[硕士学位论文]四川:西南交通大学2002

第5篇:混凝土结构设计论文范文

关键词∶设计内力变化,施工内力变化

中图分类号:S611文献标识码: A

前言:

因为钢筋混凝土材料适用于很广泛,并价格较低,所以它在建筑类是一种非常有用的材料。然而,传统的建筑结构设计和钢筋混凝土材料的研究很少注意到钢筋混凝土强度和时间的关系,尤其是作用在材料上的不同影响作用几乎是不予研究的。直到近几年来,在建筑施工中人们才逐步研究这个问题—关于钢筋混凝强度和时间内力相关性的研究。一般而言,依赖不同因素的钢筋混凝土内力不同。研究随时间而变的钢筋混凝土结构的内力是必要的。

钢筋混凝土内力

混凝土结构是具有很明显弹塑性性质的结构,及时在较低的应力情况下也有明显的弹塑性性质。在弹塑性里混凝土内力发生变化,在发生变化时要控制:荷载,截面等。在荷载增大,构件出现裂缝或者钢筋屈服,塑性性质更为明显。在目前,国内设计规范乃沿用按弹性方法计算结构内力,按弹塑性极限状态进行截面设计。

1、在设计方面内力变化如下:

设:两跨每跨6000mm,每跨个位:300x600,均布恒载:2.50kN/m,均布活载:2.50 kN/m2,梁容重:25.00kN/m,计算时考虑梁自重:考虑,恒载分项系数:1.20,活载分项系数:1.40 ,活载调整系数:1.00

移动荷载:移动荷载数目:1,机械1-集中力F(kN):100 100,机械1-间距(m):5机械荷载分项系数:1.000,参考《建筑结构荷载规范》(GB50009-2012)不考虑左右移动。

如图1-1:

内力图1-2

在上图可以分析得知,在集中荷载水平位移的变化,但是在变化条件下要满足《高层建筑混凝土结构技术规程》(JGJ 3-2010)的要求,这是合理设计的必要条件之一,但是,不是充分条件。在一个还要考虑周期,地震力大小等等综合条件。在抗震设计时候,地震力的大小与刚度直接相关的,当地震力小时候,结构并不合理,因为刚度小,此时并不能认定结构合理,因为它的周期长、地震力小、并不安全,所以不满足。在此期间,内力影响很多结构的变化,所以结构设计也是很关键的,如若结构设计不是很完美的话,就会很重大的问题。

2,在施工方面内力变化

在能够降低钢筋混凝土的内力的变化有钢筋的几何尺寸,周边环境情况以及随时间而变的内力等。显而易见,钢筋混凝土内力的变化是的一个随机函数过程或者说是一系列材料和结构变量的相互作用。钢筋混凝土在空气中的碳化又被称之为中和反应。它是合成物与在空中的CO2等其他物质,钢筋混凝土中的碱性材料缓慢中和的过程。在空气中完全地碳化密实混凝土中的钢筋保护层需要花费几十年的时间,但是碳化非密实混凝土的只要几年。如果稀薄的碳化材料的含量比较高,则钢筋混凝土强度就会下降并且在碳化过程中结构的横截面也会加快缩小。碳化作用会造成碱度的降下和钢筋的腐蚀。钢筋腐蚀是钢筋表面中的铁不断地失去电子然后在溶于水,再在有氧的条件下与水发生反应。所以,消耗几倍时间大量的浸蚀材料。这样可以使产生钢筋混凝土保护层裂缝,并且沿着钢筋方向降低钢筋与混凝土之间的粘结力,从而造成钢筋混凝土结构承载能力的损失。这样会是腐蚀的时间可能会提前,并且腐蚀速度也可能大大地提高。当钢筋应力小于其屈服点时,其破坏速度是固定的。但是当钢筋应力超过屈服点时,破坏速度将提高几倍。所以在施工中要特别注意钢筋、保护层、小缝隙等。都会和空气中的氧等其他物质相结合,造成钢筋混凝土提前腐蚀,在腐蚀过程中就会产生钢筋混凝土内力变化。

3、 结论

对于混凝土内力变化的研究,内力与设计、施工等有关。在材料钢筋混凝土结构的特征,是非常重要的。因为结构材料可靠性的设计,是保障内力不发生很大的变化,但是随时间变化,实际内力也在变化这是应该被确定。 论文里针对,设计钢筋混凝土内力进行研究,对混凝土产生影响的因素有混凝土碳化,钢筋腐蚀进行研究。

参考文献:建筑结构荷载规范GB 50009-2012

高层建筑混凝土结构技术规程 JGJ 3-2010

混凝土结构设计规范 GB50010-2010

第6篇:混凝土结构设计论文范文

【关键词】 钢筋砼结构;最小配筋率;受弯构件;带肋钢筋

现行的国家规范“砼结构设计规范”(GB50010-2002) 中把HRB400钢筋确定为钢筋砼结构的主导用筋。其后冶金企业研制开发的符合国情标准“钢筋砼用热轧带肋钢筋”(GB1499-1998) 的新型号筋。HRB500钢筋具有强度高、延性好、耐高低温、耐疲劳和可加工性能好的优点,符合砼结构对建筑用筋性能指标的主要内容要求。HRB500钢筋在建筑行业中己得到广泛使用,会促进其它相关建筑材料的发展提高,因此而带来可观的社会及经济效益,促进建筑业健康有序的发展具有重要意义。

钢筋砼梁的主筋纵向筋配筋率是保证安全使用影响承载力的主要因素,配筋率的变化不仅使梁的受弯承载力产生变化,而且会使梁的受力性能和破坏特征发生质的变化。当纵向主筋配筋率少到一定值后,梁的受力性能会产生大的变化,同无筋素砼梁没有什么差别。当这种梁一旦在受拉区的砼出现开裂,裂缝截面的拉力会很快超过屈服强度而进入强化阶段,造成整根梁发生撕裂,甚至使整个钢筋被拉断,这种破坏现象没有明显的预兆,属于脆性破坏。为了防止这种脆断的产生,钢筋砼结构设计规范明确规定:钢筋砼受弯构件的纵向受力主筋的配筋率不能低于某一限定值,该值即为受控钢筋的最小配筋率。HRB500钢筋作为一种新型的高强钢筋,已经在工程实践应用范围较广,必须合理确定其作为受拉钢筋的最小配筋率。在实践应用中探讨对HRB500钢筋作为受弯构件纵向主受拉的最小配筋率作浅要分析。

1最小配筋率确定的一般原则

钢筋砼受弯构件的最小配筋率是一个比较复杂的技术问题。试验和理论分析均表明,构件的最小配筋不仅与受力形态、表面尺寸及形式、材料强度有关,而且与受荷时间的长短、温度变化的大小、收缩及徐变的程度有关。目前世界一些国家对钢筋砼受弯构件的受拉钢筋最小配筋率的取值方法基本上有两种:即模型法和经验法。模型法是以截面受拉区砼开裂后,受拉钢筋由于配置过少而立即屈服进入强化阶段,此时的受拉钢筋配筋的最小配筋率。经验法是指直接给出最小配筋率的的取值,而没有受完整的受力模型作为取值准则,但其中也从不同角度考虑了一些因素对最小钢筋率取值的影响,所考虑的这些因素的影响规律与模型方案的趋势有一定的近似性。

而国内现行的《混凝土结构设计规范》对钢筋砼受弯构件的最小配筋率的确定原则是:截面开裂后,构件不会立即失效(裂而不断),即在最小配筋率的条件下,构件的抗弯承载力不低于同截面素混凝土构件的开裂弯矩,即:

MEY≤Mu ①

现以单筋矩形截面承受纯弯矩作用为例探讨钢筋砼受弯构件的纵向主受拉钢筋的最小配筋率问题。首先要计算钢筋砼梁的开裂弯矩。由于钢筋砼梁开裂时,钢筋的应力很低,因此计算钢筋砼梁开裂弯矩时,可以忽略钢筋的作用,即钢筋砼梁的开裂弯矩等于素砼的开裂弯矩。根据文献对素砼梁的开裂弯矩的推导计算,无筋素砼梁的开裂弯矩为:

MEY =0.256Fftbh2 ②

试中: ft-为混凝土轴心抗拉强度设计值。

根据钢筋砼梁的受力进行过程, 按照现行砼设计规范关于正截面承载力计算的基本假定“不考虑砼的抗拉强度”,假定钢筋砼梁达到极限承载力状态时的截面力臂为yho,其中y为内力臂长度系数,则钢筋砼梁的极限弯矩为:

MU = yhoòyAS

此时òy= fyAS =pmin bho Y=1

MU = ho fypmin bho③

将式②、式③ 带入式① 以后,求出:

pmin=0.256ft / fy[h/ho]2 ④

2国内不同时期砼结构设计规范对最小配筋率的规定

根据介绍对世界各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率进行了简单比较,见表1。为转化为国内材料强度后各有关国家砼结构设计规范,对钢筋砼受弯构件规定的最小配筋率表达式。 转贴于

表1不同国家对钢筋砼构件最小配筋率计算要求

我国的设计规范对于钢筋砼受弯构件,确定的最小配筋率的规定基本上是沿用前苏联20世纪五、六十年代的规定,数值明显偏低。随着我国国力的增强,结构设计的安全度增大以及结构耐久性设计概念的应用,钢材供应状况及水平的偏高,每次规范修订均适当提高了受力钢筋的最小配筋率,而且使其更为合理。a.在原《钢筋混凝土结构设计规范》TJ10-74中规定受弯构件最小配筋百分率:当砼强度标号为200号及以下时为0.1;当砼强度标号为250-400号时为0.15。b.在进行了修改后的《混凝土结构设计规范》GBJ10-1989中规定受弯构件最小配筋百分率:当砼强度等级为C35时为0.15;当砼强度等级为C40-C60时为0.2。c.在现行的《混凝土结构设计规范》GB50010-2002中规定受弯构件最小配筋百分率为0.2和45 ft / fy中的较大值。

从国各内各个阶段设计规范对最小配筋率规定的变化可以看出:随着我国改革开放的进一步推进,国民经济收入稳步的提高,对结构安全度的要求逐渐提高,综合考虑各种因素,构件的最小配筋率均有提高,而且考虑了材料强度的影响,有利于促进高强材料在工程中的大量应用。

3HRB500钢筋砼受弯构件的最小配筋率的应用

根据我国现行的《钢筋砼用热扎带肋钢筋》GB1499-1998中规定:HRB 335的屈服强度为335 MPa,HRB 400的屈服强度为400 MPa,HRB 500的屈服强度为500 MPa。我国现行的《混凝土结构设计规范》规定:HRB 335的屈服强度设计值为300 MPa,HRB 400的屈服强度设计值为360 MPa,不同种类钢筋材料分项系数ys均为1.10,因此HRB500钢筋的屈服强度设计值应取为450MPa。根据资料介绍的试验结果并考虑到裂缝宽度的影响,对HRB500钢筋的屈服强度设计值建议为420MPa,材料分项系数ys为1.19。根据我国现行的《混凝土结构设计规范》GB50010-2002中规定受弯构件最小配筋率百分率公式45 ft / fy,分别计算出各种钢筋的最小配筋率。详见表2。

表2钢筋混凝土受弯构件配筋率要求

根据表2可以看出,钢筋砼构件的最小配筋率的确定,不完全是技术问题,还反映了某一地区当时的经济建设发展水平,具有一定的社会性和政策性。因此,考虑将HRB 500钢筋砼受弯构件的最小配筋率百分率(%)为:当混凝土强度等级不大于C30时为0.15,当砼强度等级为C30以上时为0.2和45ft / fy 中的较大值为宜。根据上述浅要分析,国家推广应用HRB500钢筋不仅可以满足建筑行业科技飞速发展的需用,还具有明显的经济效益和社会效益。为了在工程实践中大力推广HRB500钢筋,考虑到我国实际国情,要采用HRB 500钢筋砼受弯构件的最小百分率(%)为:当砼强度等级不大于C30时为0.15,当砼强度等级为C30以上时为0.2和45ft / fy,中的较大值安全。

参考文献

1徐有邻等.混凝土结构设计规范理解与应用.中国建筑工业出版社, 2002

第7篇:混凝土结构设计论文范文

关键词:钢筋混凝土结构;楼盖;课程设计;教学研究

中图分类号:G642.0;TU375-4 文献标志码:A 文章编号:1005-2909(2016)05-0141-04

实践环节是培养学生创造性思维和实际工作能力的重要教学手段。课程设计是土木工程专业实践性教学环节的重要组成部分。混凝土结构设计作为土木工程专业第一门直接面向工程技术应用的课程,是建立学生工程性思维和传授工程科学方法的重要课程。该课程的实践环节设置有“钢筋混凝土楼盖课程设计”和“单层工业厂房结构课程设计” 。钢筋混凝土楼盖课程设计是学生遇到的第一个专业课程的实践性教学环节,是学生首次进行较为全面的房屋结构设计训练。学生毕业后进入设计院工作,首先面对的工作常常是各种类型的板设计和楼梯的设计,因此,楼盖课程设计是学生职业生涯的第一课。如何搞好楼盖课程设计教学,如何通过该课程设计夯实学生所学的专业知识,培养学生独立完成设计的能力,提高学生理论联系实际和综合分析问题、解决问题的能力,使课程设计真正成为毕业设计的预演,为学生今后走上工作岗位打下坚实的基础,是值得讨论和研究的重要问题。

一、钢筋混凝土结构楼盖课程设计存在的主要问题

从20世纪70年代后期到现在,尽管我国混凝土结构设计规范历经74版规范、89版规范、2002版规范,以及目前现行的2010版规范,但混凝土结构课程设计的内容变化并不大。各高校钢筋混凝土肋梁楼盖课程设计任务,普遍是设计一个多层工业厂房楼盖或民用建筑楼盖(如车间仓库、商场、图书馆书库等) ,多采用四周为砖墙的内框架结构形式[1-3]。目前,钢筋混凝土楼盖课程设计往往通过调整柱网平面尺寸和荷载取值等方式形式上做到了每生一题,但设计过程过于格式化,即学生只要按照教材“照葫芦画瓢”,单纯机械式模仿,就能完成相应的结构计算和设计。从教学效果看,这样的设计过程无法让学生真正掌握结构设计方法,也很难激发学生学习的主动性和积极性。

二、楼盖课程设计教学改革与实践

钢筋混凝土楼盖课程设计作为土木工程专业一门重要的实践环节,教学中必须确立学生在设计中的主体地位,发挥教师的主导作用,与国家现行规范紧密联系,以便于学生更好地理解所学内容和理论联系实际,培养他们独立分析、解决问题的能力,最大限度地激发学生主动学习的意识。

(一)课程设计任务书要具有真实性, 以任务驱动引领教学,按行动导向实施教学

课程设计任务书中以具体的工作任务驱动引领教学,按照“教、学、做”一体化模式组织教学,强调“为了项目工作而学习”和“通过项目工作来学习”,使工作过程与学习过程相统一,培养学生的工程意识,加强责任心和工作规范的教育。

课程设计任务书要引导学生用全局、专业的眼光去分析问题,不急于作具体构件的设计。课程设计任务书要求明确以下内容:

(1)明确所设计结构的安全等级和设计使用年限。混凝土结构的安全等级,与结构重要性系数有关。

《混凝土结构设计规范》(GB50010-2010)[4]第3.4.2条和第3.4.3条中对应的“使用年限”对混凝土强度等级的最小水泥用量、最大氯离子含量、最大碱含量等均作了严格的要求。

《建筑结构荷载规范》(GB50009-2012)[5](以下简称《荷载规范》)增加可变荷载设计使用年限调整系数γ:L,调整和完善可变荷载,适当提高安全度。由《荷载规范》第3.2.5-1条,设计使用年限为5年、50年和100年,γ:L分别为0.9、1.0和1.1。

(2)明确所设计结构属工业建筑或民用建筑,并明确所设计建筑结构的功能。民用建筑和工业建筑楼面均布活荷载分别见《荷载规范》5.1和5.2,其标准值、组合值系数和准永久值系数的取值是设计的重要依据。《荷载规范》3.2.4-2条明确“对标准值大于4 kN/m2的工业房屋楼面结构的活荷载, 可变荷载的分项系数应取1.3;其它情况应取1.4”。

在布置任务时,通过改变楼盖建筑功能,要求每个学生根据下达的建筑结构的功能,自己动手从荷载规范中查得相应荷载楼面均布活荷载值。

(3)明确所设计结构的环境类别。《混凝土结构设计规范》(GB50010-2010)表8.2.1对混凝土保护层厚度给出了严格的限制,如当构件所处二类a环境类别时,混凝土强度等级C25~C45,板混凝土保护层的最小厚度为20 mm,梁、柱混凝土保护层的最小厚度为25 mm;当构件所处一类环境类别时,相应减小5 mm。当混凝土强度等级为C20、C25时,板、梁、柱混凝土保护层的最小厚度相应增加5 mm。

在布置任务时,要求每个学生根据下达的建筑结构环境类别,自己动手从混凝土规范中查得保护层厚度。

(4)明确建筑平、剖面尺寸、建筑标高和建筑面积。

尽管学生学过房屋建筑学课程,但大多数学生作楼盖课程设计时,基本上没有建筑标高与结构标高的概念。任务书中应不仅要求绘制结构平面布置图,还需根据工程实际,提供相应建筑标高。让学生明白,给出的建筑标高是指建筑物装饰装修层完成后的标高,而用于结构计算和结构平面布置图中标注的标高应是结构标高,即装饰装修层完成前的标高。培养学生结构图应标注结构标高,而非建筑标高的工程意识。

每个学生应根据任务下达的建筑平面柱网尺寸及层高,自己确定结构方案,即学生自己布置梁、板、柱,确定楼(屋)面面层的建筑做法,即楼(屋)面保温材料、找坡层、防水材料等,并自己选定梁板所采用的混凝土、钢筋强度等级等。

(二)结构方案采用框架结构体系

楼盖课程设计采用内框架结构与现行规范和建筑业的发展趋势明显不符。《建筑结构抗震规范》(GBJ11-1989)删去了“底部内框架砖房”的结构形式。《建筑结构抗震规范》(GB50011-2001)将“内框架砖房”的结构形式限制于多排柱内框架。考虑到“内框架砖房”已很少使用且抗震性能较低,《建筑结构抗震规范》(GB50011-2010)[6]取消了“内框架砖房”的相关内容,标志着“内框架砖房”结构形式已不复存在。因此,必须对钢筋混凝土肋梁楼盖课程设计内容进行调整,选择更符合目前规范和工程实际的框架结构形式。

(三)楼盖结构布置的问题

在设计初期,由于学生无设计经验,对结构整体力学性能概念不甚清晰,较难作出合理的结构布置。其突出的问题主要表现在如下几个方面:

学生在结构布置时,一般都是一个方向布置主梁,另外一个方向布置次梁(包括与柱相连的梁)。通常房屋横向刚度比纵向刚度弱,采用横向承重框架可以改善横向与纵向刚度相差较大的缺点,为了提高建筑物的侧向刚度,主梁宜沿建筑物的横向布置。这种结构布置形成楼盖两个方向的刚度差别较大,结构整体性差,不利于学生建立整体的结构概念,并形成结构设计只要注意一个方向的错误观点。《建筑抗震设计规范》(GB50011-2010)5.1.1条规定:一般情况下,应至少在建筑结构的两个主轴方向分别计算水平地震作用,各方向的水平地震作用应由该方向抗侧力构件承担[3]。因此,对于要求计算抗震的结构而言也宜设计成双向承重框架。

(四)单向板、双向板划分的问题

单向板(即梁式板):弹性理论, l:2/l:1(长边与短边长度之比)≥2;塑性理论,l:2/l:1≥3。《混凝土结构设计规范》(GB50010-2010)第9.1.1条规定:“当长边与短边长度之比大于2.0,但小于3.0时,宜按双向板计算;当按沿短边方向受力的单向板计算时,应沿长边方向布置构造钢筋。”这样,如果不能很好地学习理解规范,很可能在板的长边与短边之比大于2又小于3时,按单向板计算,其含钢量达不到新规范的要求。

(五) 肋梁楼盖梁柱体系中连续梁模型和框架模型适用范围的辨析

确定框架梁、柱截面尺寸时,要考虑梁、柱线刚度比的限值,因此必须让学生明白教材中主梁计算简图采用多跨连续梁,是有局限性的;工程设计实际情况是,为满足“强柱弱梁”的抗震设计原则,在大多数情况下,主梁计算简图实为框架结构。当计算简图为框架结构时,主梁的内力计算方法与多跨连续梁就有了本质的不同。通常当梁、柱的线刚度比大于 3~5时,由于柱对梁的约束作用较小,而将柱作为梁的不动铰支座,梁按铰支于钢筋混凝土柱上的连续梁模型计算。 当梁、柱的线刚度比小于 3~5 时,必须考虑柱对梁的约束作用,此时梁柱节点为刚性结点,梁与柱共同形成框架,简化为框架模型计算,按框架进行结构分析[1]。值得注意的是,一般多层房屋中梁柱为刚接的框架结构,各层柱的计算长度l:0按《混凝土结构设计规范》(GB50010-2010)表6.2.20-2取用,现浇楼盖,底层柱1.0H;其余各层柱,1.25H。

(六)基本组合的荷载分项系数问题

通常参考教材中仅考虑“1.2×永久荷载标准值+1.4×可变荷载标准值”作为楼板荷载组合设计值,因此必须让学生明白基本组合的荷载分项系数问题,引导学生研读规范条文。

《荷载规范》3.2.3条:荷载基本组合的效应设计值应从可变荷载控制的效应设计值与永久荷载控制的效应设计值中,取用最不利的效应设计值。

《荷载规范》3.2.4-1条:当永久荷载效应对结构不利时,对由可变荷载效应控制的组合,永久荷载的分项系数应取1.2,对由永久荷载效应控制的组合,永久荷载的分项系数应取1.35;当永久荷载效应对结构有利时,永久荷载的分项系数不应大于1.0。

《荷载规范》3.2.4-2条:对标准值大于4kN/m2时的工业房屋楼面结构的活荷载,荷载分项系数应取1.3。

(七)改进楼盖配筋方式

目前教材、参考书中,为了节省钢筋,楼盖配筋方式仍多采用以前倡导的弯起式。《混凝土结构设计规范》(GB50010-2010)第9.1.4条规定:“采用分离式配筋的多跨板,板底钢筋宜全部伸入支座;支座负弯矩钢筋向跨内延伸的长度应根据负弯矩图确定,并满足钢筋锚固的要求。”分离式配筋施工方便,已成为工程中钢筋混凝土板的主要配筋方式。在主梁配筋计算时,建议不要考虑主梁上、下部钢筋的联系,不使用弯起钢筋,主梁斜截面抗剪由箍筋承担。

(八)应进行结构构件裂缝宽度验算

目前教材、参考书中,楼盖课程设计示例一般未进行裂缝宽度和挠度验算。若板的跨厚比钢筋混凝土单向板不大于30,双向板不大于40;次梁、主梁截面尺寸满足高跨比要求,挠度验算可忽略;但对板、梁必须进行裂缝宽度验算,是不应忽略的,否则不能保证结构构件正常使用极限状态要求。

(九)应重视构造钢筋

构造问题是结构和构件承载受力的基本条件。若不能满足,则结构分析和截面设计中的基本假定和计算简图就根本不能成立,设计出来的结构安全度就会大有问题。譬如,当按简支边或非受力边设计的现浇混凝土板,当与混凝土梁整体浇筑时,板面构造钢筋从混凝土梁边、柱边伸入板内的长度不宜小于l:0/4;当整体浇筑嵌固在砌体墙内时,钢筋伸入板内的长度不宜小于l:0/7。若是框架结构,板面构造钢筋从混凝土梁边、柱边伸入板内的长度不宜小于l:0/4,不是教材中的l:0/7[7]。

(十)积极推进手算、电算的结合

课程设计教学内容若仍采用手算体系的教学框架,将明显与当今信息化社会脱节[8]。引入PKPM系列软件中PMCAD的教学内容,对结构布置和结构计算部分,采用“先手算、后电算”,对结构施工图的绘制采用PMCAD与AUTOCAD相结合,加强电算与手算相结合,以及结构构造措施环节的建设,培养学生手算、电算和概念分析等能力,激发学生自主学习的兴趣。

三、 结语

针对钢筋混凝土楼盖课程设计中存在的突出问题,围绕提高教学质量,培养学生工程实践能力的主线,充分发挥教师的主导作用,确立学生的主体地位,使学生通过课程设计对建筑结构设计有较全面的理解和认识,逐步建立工程思维方式,提高学生发现问题、分析问题和解决工程实际问题的技能,为毕业设计和今后从事结构设计工作奠定坚实的基础。

参考文献:

[1]白国良. 混凝土结构设计[M].新一版.武汉:武汉理工大学出版社,2011.

[2]侯治国. 混凝土结构[M].第4版・修订版.武汉:武汉理工大学出版社,2011.

[3]沈蒲生.混凝土结构设计[M].北京:高等教育出版社,2010.

[4]东南大学,同济大学,天津大学.混凝土结构(中册)[M].北京:中国建筑工业出版社,2010.

[5]中华人民共和国住建部.建筑结构荷载规范GB50009 - 2012[S].北京:中国建筑工业出版社,2012.

[6]中华人民共和国住建部.建筑抗震设计规范GB50011 - 2010[S].北京:中国建筑工业出版社,2010.

第8篇:混凝土结构设计论文范文

论文摘要:《混凝土异型柱技术规程}(JGJ149—2006)的颁布为我国的结构设计人员提供了一本可以参照的国家标准,同时为广大结构设计人员指明了异型柱结构与普通混凝土结构的区别,现将其与《建筑抗震设计规范》(GB500l1-2001)的区别与广大设计人员共同探讨。

引言

新的《混凝土异型柱技术规程》(JGJl49—2006)(简称异型柱规程)于2006年8月颁布,改变了异型柱设计只有地方性规定而没有国标的历。随之而来就是我们对规范的理解可能没有比较深入的研究,另外《异型柱规程》有些规定比《建筑抗震设计规范》(GB50011-2~1)(简称抗震规范)严格。现就规范的几点规定,谈谈个人的一点看法:

(1)异型柱结构最大适应高度

由于异型柱是一种新型的结构形式,只经过十余年的实践。综合考虑现有的理论研究、实验研究成果及设计施工经验,其房屋适用的最大高度较一般的钢筋混凝土结构有所降低。现就《异型柱规程》与《抗震规范》对比见下表:

沈阳市抗震设防烈度为7度,设计基本加速度值为0.10g,超过40米的结构,建议采用短肢剪力墙结构。

(2)异型柱的抗震等级

由于异型柱结构的抗震性能相对于普通混凝土房屋较弱,异型柱结构的抗震等级相对于普通混凝土房屋也应较严格。由于异型柱结构的适用范围较普通混凝土结构小,相应《异型柱规程》的抗震等级分类较《抗震规范》详细。对于丙类建筑抗震设计的房屋,《异型柱规程》给出了抗震等级的确定方法,现就《异型柱规程》与《抗震规范》的异《抗震规范》现浇钢筋混凝土房屋的抗震等级《异型柱规程》中表3.3—1注3,当为7度(0.15g)时,建于Ⅲ、Ⅳ类声地的异形柱框架结构和框架一剪力墙结构情形时,也按8度(O.20g)采取抗震构造措施,但于括号内所示的抗震等级形式来具体表达,需注意的是《异型柱规程》采取了“应”按表中括号所示的抗震等级采取抗震构造措施,比《抗震规范》的上述对应部分规定(“宜”按……)有所加严

(3)不规则异型柱结构的抗震设计应符合下列要求

1.当异型柱结构楼层竖向构件的最大水

平位移(或层间位移)与该楼层层两端弹性水平位移(或层间位移)平均值之比大于1.20时,根据《抗震规范》有关规性,可界定为平面不规则的“扭转不规则类型”,但《异型柱规程》规性此时控制该比值不应大于1.45(第3.2.5条第1款),较《抗震规范》相应规定“不大于1.5”有所加严,目的是为了为严格控制异型柱结构平面的不规则性,避免过大的扭转效应而导致严重的震害。

2.当异型柱结构的层间受剪承载力小于上一楼层的80%时,根据《抗震规范》有关规性,可界定为竖向不规则中的“楼层承载力突变类型”,并规定其薄弱层的受剪承载力不应小于上一层的65%,但《异型柱规程》规性此时乘以1.20的增大系数(第3.2.5条第2款),较《抗震规范》相应规定乘以增大系数1.15有所加严

(4)异型柱的抗震作用计算规则

1.《抗震规范》第3.1.4条规定:“抗震设防为6度时,除本规范规定外,对乙、丙、丁类建筑可不进行地震作用计算”及第5.1.6条规定:“6度时的建筑(建造于Ⅳ类场地上较高的高层建筑除外),以及生土房屋及木结构房屋,应允许不进行截面抗震验算。”但《异型柱规程》第4.2.3条则以强制性条文方式规定:“抗震设防为6度、7度(0.1Og、0.15g)及8度(0.20g)的异型柱结构应进行地震作用计算及结构抗震验算。”本条是基于异型柱结构的抗震性能特点而制定的,6度设防时设计者应注意此条。

2.异型柱的双向偏压正截面承载力随荷载(作用)方向不同而有较大的差异,在L形、T形和十字形三种异型柱中,以L形柱的差异最为显著(设计者应着重加强L形柱的构造)。如根据《抗震规范》5.1.1条第一款(一般情况下(所有烈度),应允许在建筑结构的两个主轴方向分别计算地震作用并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担),则可能在某些情况下造成结构的不安全性,所以《异型柱规程》4.2.4条第一款规定,7度(0.15g)及8度(0.20g)时尚应对与主轴成45°方向进行补充计算。

(5)异型柱的抗震变形验算

由于异型柱结构的特殊性,《异型柱规程》对异型柱结构的弹性层间位移角限值也较《抗震规范》严格,现比较如下:

考虑到异型柱结构的特殊性,本人建议进行异型柱设计时弹性层间位移角应从严控制:框架结构【】应小于l,800,框架一剪力墙结构【]应小于1/I100。

(6)异型柱框架梁柱节点核心区受剪承载力验算。

《抗震规范》附录D规定:

一、二级框架节点核心区应进行抗震验算;一般

第9篇:混凝土结构设计论文范文

关键词:框架结构,钢筋安装,结构构造,规范,平法

 

钢筋工程是房屋建筑工程中一个非常重要的分项工程,其施工的正确性和质量好坏直接影响到建筑物的整体结构承载力和安全性。所以,钢筋在下料加工和安装过程中要严格遵循《混凝土结构施工图平面整体表示方法制图规则和构造详图》(03G101-1,下简称《平法》)和《混凝土结构工程施工质量验收规范》(GB50204-2002)的有关规定 ,并要以结构设计文件和以往钢筋工程的下料加工、安装施工经验,编制切实可行的钢筋工程施工方案和技术交底。如果在框架结构工程中验收规范、施工图集以及设计规范不熟悉,结构设计总说明不够明确;设计人员没有针对工程的具体特点进行技术交底;钢筋安装就会出现一些偏差。论文参考网。下面结合本人在工程实践中发现的比较突出、容易忽视的几个问题来加以分析。

1 、钢筋连接接头

框架梁、柱纵筋连接方法在《高层建筑混凝土结构技术规程》(JGJ3-2002)6.5.3条第四、五、六款均有规定,其连接质量控制在《混凝土结构工程施工质量验收规范》(GB50204-2002)中5.4条也有具体要求,目前,梁、柱主筋采用绑扎搭接方法已很少,焊接连接、机械连接用得最多,隐蔽验收时发现的主要问题有:

1.1、接头位置不对。接头位置要设在受力较小处。

1.1.1、施工人员应掌握一定的力学知识,应当知道梁跨中正弯矩较大,支座附近负弯矩、剪力较大,柱端在水平力作用下弯矩较大,接头应尽量避开这些位置。

1.1.2、事先要算好钢筋下料长度,梁上部纵筋接头尽量靠近跨中,下部纵筋(若要焊接)尽量远离跨中(建议设在梁箍筋加密区外且离支座Ln/3的范围内)。柱筋接头尽量远离柱端,所有焊接接头均应避开梁、柱箍筋加密区,确实无法避开时,宜采用机械连接。

1.2、接头位置留得合适,但钢筋在下料时还要做到节约钢筋为目的。例如计算框架柱的基础插筋的下料长度可以根据《平法》第36页中机械连接构造要求进行下料,接头应在≥Hn/3和Hn/3+35d(非连接区)的位置,根据以往的经验和现场钢筋的长度(定尺9000mm),尽可能在满足接头位置范围内把钢筋的下料长度按1500mm、3000mm、4500mm进行加工;这样就不会在钢筋加工时产生一些钢筋废料,造成钢筋浪费。

2、框架梁柱的纵筋

《平法》中对框架梁、框架柱、框支梁均有详细的配筋构造详图,可参照选用,这里须注意以下几个方面:

2.1、顶层端节点处是较容易出现问题的部位,应正确选择连接的构造详图,一种是柱纵筋伸入梁内(详见《平法》37页A~C构造图),另一种是梁纵筋伸入柱内(详见《平法》37页D、E构造图),前一种方式柱纵筋伸入梁内与梁上部纵筋搭接长度≥1.5LaE,且至少要保证有65%As1(As1—柱外侧纵筋总面积)的柱纵筋伸入梁内,梁宽范围以外的柱纵筋可以伸入现浇板内。论文参考网。当柱外侧纵筋配筋率>1.2%时,还应分两次截断,两个断点相距20d,当采用后一种方式时,梁纵筋伸入柱内竖直段长度≥1.7LaE,当梁上部纵筋配筋率>1.2%时,也应分两次截断,断点相距20d,究竟采用哪一种方式,视柱施工缝留设位置而定,通常柱施工缝留在梁底或梁底下100mm,多采用第一种方式,当采用第二种方式时,必须把柱的施工缝留在1.7LaE或1.7LaE +20d以下。

2.2、抗震屋面框架梁还应该注意当柱纵筋直径≥25时,在柱宽范围的柱箍筋内侧设置间距>150,但不少于3Φ10的角部附加筋。

2.3、框支梁进行钢筋安装(详见《平法》67页),而不能按一般框架梁来处理。《建筑抗震设计规范》(GB50011-2001)(下简称《抗规》)7.5.4条第4款规定:“……支座上部的纵向钢筋在柱内的锚固长度应符合钢筋混凝土框支梁的有关要求”。论文参考网。这一条是强制性条文,必须严格执行。这种情况下,柱施工缝必须留在外排纵筋的 LaE以下。

3、箍筋加密区

框架梁、框支梁箍筋加密范围可依据《平法》构造详图按不同抗震等级选用,一般无多大问题,但框架柱箍筋加密范围常存在较大问题,须注意以下几个方面:

3.1、底层柱, 《抗规》新增一条:底层柱根加密区≥Hn/3,Hn为柱净高,柱根是指地下室顶面,无地下室时,应为基础顶面(柱基基顶)起算,实际施工时柱根加密区常没达到这一要求。《平法》第40页对上述要求有详图描述。

3.2、框支柱、角柱,框支剪力墙结构中所有柱子箍筋都应沿全高加密,但是并非对所有角柱都要沿全高加密箍筋,只有抗震等级为一、二级时才需加密,结构设计总说明中往往只说明结构抗震等级,施工人员一般并不了解设计规范有相应要求。

3.3、特殊部位的柱,一般发生在楼梯间位置和填充墙部位,由于楼梯平台梁支承在框架柱上,往往使相邻两框架柱变为短柱(Hn/h<4),填充墙设置也会使相邻柱形成短柱,这些部位的柱应沿全高加密箍筋。

4、梁侧面纵向构造筋或抗扭纵筋

梁侧向构造纵筋、抗扭纵筋在《平法》表示的施工图中,侧向构造纵筋符号是G,抗扭纵筋符号是N,两者作用不完全相同,构造措施不一样,须引起注意。

4.1、侧向构造纵筋主要是为防止梁侧面产生收缩裂缝而构造设置。《混凝土结构设计规范》(下简称《混规》)(GB50010-2002)第10.2.16条的规定,钢筋用量增加较多,但须注意只有当hw≥450mm 时,才需设置,每侧钢筋面积≥0.1%bhw。其间距≤200mm,hw强调的是梁腹板高度,并非梁截面高度h,严格来讲,《平法》中hw的标注仅是一种近似处理,与规范规定并不相符,《混规》中,对矩形截面hw=ho(ho为有效高度), 对T形截面 hw=ho-t (t为翼缘厚) 。另外,侧向构造纵筋伸入支座的锚固长度均≥15d。

4.2、抗扭纵筋是由抗扭计算确定的,目的是抵抗扭矩产生的斜裂缝,这种钢筋伸入支座的锚固长度均≥LaE(La)。

5、悬臂梁纵筋

施工中发现的问题有:梁上部第一排纵筋切断和纵筋在端部弯下条件的判断有误,过去设计悬臂梁时,只要满足抵抗负弯矩的要求,除两根角筋通长布置外,悬臂梁施工图中一般将其余第一排纵筋在0.75L处截断。由于施工人员已习惯过去的做法,当梁上部只有一排纵筋时,仍将第一排中间纵筋在0.75L处截断,今后必须改正这一做法。不应截断的纵筋是否需在端部弯下,视L与hb的关系而定,若L>4hb,则在端部弯下,若L<4hb,不必弯下,但此时必须通长设置,如梁上部纵筋有二排时,第二排纵筋可以在0.75L处截断 (参见《平法》66页详图)。

6、结束语

通过以上几个问题的分析,说明框架结构钢筋安装必须要满足现行规范和标准图集的各项技术标准要求,并按照建筑工程设计文件及钢筋工程施工方案和技术交底要求施工,注重质量,增强施工人员的质量意识,加强施工人员技能技巧培训教育。只有这样,保证钢筋安装的正确性和提高安装的质量。

相关热门标签