公务员期刊网 精选范文 欧姆定律之间的关系范文

欧姆定律之间的关系精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的欧姆定律之间的关系主题范文,仅供参考,欢迎阅读并收藏。

欧姆定律之间的关系

第1篇:欧姆定律之间的关系范文

欧姆定律有效性反思电路设计滑动变阻器教材安排是通过实验探究来研究电流与电压电阻关系,从而得出欧姆定律。这样安排比较好,但实际学生动手参与率不高,学生的科学探究有效性不高,有点照本宣科,对欧姆定律不能真正实现探究的思想,如何改变你?

欧姆定律(初中学习的是部分电路欧姆定律)作为一个重要的物理规律,反映了电流、电压、电阻这三个重要的电学量之间的关系,是电学中最基本的定律,是分析解决电路问题的金钥匙。

欧姆定律这节课的特点是,十分重视科学方法教育,重视科学研究的过程。让学生在认知过程中体验方法、学习方法,了解得出欧姆定律的过程。了解运用“控制变量法”研究多个变量关系的实验方法,同时也为进一步学习电学知识打下了基础。

教材安排是通过实验探究来研究电流与电压电阻关系,从而得出欧姆定律。这样安排比较好,但实际学生动手参与率不高,学生的科学探究有效性不高,有点照本宣科,对欧姆定律不能真正实现探究的思想。究其原因有三点:

1.本实验是用欧姆定律来研究欧姆定律由于学生还没学习欧姆定律很难理解为什么调节滑片的位置就能改变或保持这段电路两端的电压。

2.学生很难正确区分一段电路和整个电路两个概念及它们之间的关系,在本实验中研究AB这段电路中的电流与电压和电阻的关系时不容易将这段从整个电路中分离出来,更不会分析探究它们之间的关系。

3.在一个电路图中却要分次研究两个实验规律先研究电流与电压的关系,后又更换电阻,研究电流与电阻的关系,学生很难理解,更别说自己设计这个电路来探究其中规律了。

以上是学生探究实验和分析实验电路的障碍,如何来解决呢?

在教学中笔者对实验教学做了适当的改变。让学生自己分两步实验来设计电路探究规律:先激疑,后激智,引出正确的电路设计,再完成正确的实验操作。

第一步,研究电流与电压的关系,他们的设计是:保持电阻不变,用改变电池节数来改变电池两端的电压。(因为学生很容易想到串联电池越多电压越大),于是我说,那你们就按你们的思路去探究,结果是能得出:电阻一定时,电压越大,电流越大,却得不出:电阻一定时,电流与电压成正比的关系。此时,他们反问:问题出在哪呢?我接着反问:你们怎么知道定值电阻两端的电压是在成倍数的变化呢?学生马上回答,因为电池是成倍的增加啊,我说,那你们用电压表测测看,一测发现电压并没随电池节数的成倍增加而成倍增大,学生反问:那怎么办?有学生很快想到上节课学到滑动变阻器可以调节电压,立即就串联了滑动变阻器上去,结果,水到渠成,完成了该实验,而且不用改变电池节数。现在再反问学生这两种电路设计的区别在哪,问题在哪,优势在哪,这时老师点拨一下:因为导线也有电阻,学生就会豁然开朗,会心一笑,经过一次挫折他们重新设计出探究电流与电压关系的电路,同时也自行将这段电路从整个电路中分离出来,研究出这段电路中电流与电压的关系:电阻一定时,电流与电压成正比的关系。

第二步,研究电流与电阻的关系,起初他们的设计是:保持电池节数不变,再改变电阻。(因为学生很容易想到串联电池节数不变,电压也不变),很快,有些学生就想到在第一步中出现的问题,于是想到可以用滑动变阻器控制电压不变,只要在原来的电路图上改变电阻就行了,并想到如用电阻箱来改变就更好了,因为不仅改变方便,能多次成倍数改变电阻,并且能知道电阻的值,这样也更方便找到电流与电阻的更具体的关系。

这样分两个实验电路图分别设计,分别实验,避免了照搬照抄,死记硬背的教学模式,实验从开始设计到实验障碍,再到改进实验,总结规律,都是学生亲身实践,学生真正理解了:

1.两步实验中为何要用滑动变阻器,如何用滑动变阻器?

在研究电流与电压的关系时,如果不用滑动变阻器,虽然能够测量出R两端的电压和其中的电流,但该电路只能测量出一组电压和电流的值,而从一组电流和电压的数据是无法找出二者之间的关系的,应该再测几组电压和电流,因此就需要改变R两端的电压,用滑动变阻器可以成倍地改变R两端的电压,简单方便,当然也可以采用改变电池节数的方法,但因为导线有电阻,很难成倍地改变R两端的电压,比较下来,当然是用滑动变阻器更方便快捷。同时,滑动变阻器还可以起到保护电路的作用。

2.用控制变量法探究电流I与电阻R之间的关系实验中,应该如何操作?探究电流I与电压U之间关系时,应该如何操作?

探究电流I与电阻R之间的关系时,如何保持电压U不变?即改变定值电阻的阻值的同时,该电阻两端的电压就发生了变化,因此,要及时调节滑动变阻器以保持电压不变,观察并记录电流表的示数随电阻的变化关系。

探究电流I与电压U之间关系时,要不断的改变电压,即保持定值电阻的阻值不变的同时,要改变电阻两端的电压,因此,要及时调节滑动变阻器使电压成倍地变化,观察并记录电流表的示数随电压的变化关系。

总之,这样改进充分发挥了实验的作用,降低了教学环节中学生遇到问题的难度,调动了学生的学习兴趣和积极性,更深入地理解和掌握了知识。既培养了思维能力,又培养了实验能力,进一步实现了以教师为主导、学生为主体、思维为核心、能力为目标的教学理念,开阔了学生思路,有效地提高物理教学质量。

参考文献:

[1]教育部.初中物理新课程标准(实验稿).

第2篇:欧姆定律之间的关系范文

关键词: 新课标 《欧姆定律》 探究性实验教学

《初中物理新课程标准》将科学探究纳入了物理教学的内容,旨在将学生学习的重心从过去的过于强调知识的传承和积累向知识的探究过程转化。

所谓“实验探究教学模式”,是指学生在教师的引导下,运用已有的知识和技能,充当新知识的探索者和发现者的角色的学习模式。

笔者多年从事初三物理教学,结合新课改要求,在《欧姆定律》探究教学中进行了尝试,现谈谈自己的实践和体会。

一、在探究过程中,着重应用控制变量法

控制变量法是指决定某一物理量的因素有很多。为了弄清这个量与这些因素之间的关系,往往先控制住其他几个因素不变,集中研究其中一个因素变化所产生的影响,然后通过比较归纳出与这些量之间的关系。

欧姆定律揭示了电流、电压、电阻三个物理量之间的关系,由于电流大小与电压、电阻都有关系,因此探究步骤中的设计实验应尽量引导学生分为两步设计。

1.保持电阻不变,研究电流跟电压的关系。

要让学生明确“研究电流跟电压的关系时,应保持电阻不变”,设计实验电路时应考虑:①怎样测量定值电阻两端的电压U和定值电阻中的电流I呢?②怎样保持导体的电阻R不变呢?③通过什么方法改变定值电阻两端的电压U呢?

设计并连接电路利用滑动变阻器改变定值电阻两端的电压,使它成整数倍地增加,并记录所对应的电流值,

2.保持电压不变,研究电流跟电阻的关系。

要让学生明确“研究电流跟电阻的关系时,应保持电压不变”,实验探究时应考虑:①怎样改变导体电阻R的大小?②怎样保持导体两端的电压U不变呢?让学生讨论交流,使学生认识到:当定值电阻的大小发生变化时,可通过滑动变阻器控制其两端的电压U保持不变。

更换定值电阻,利用滑动变阻器保持定值电阻两端的电压不变,记录对应的电流值,在具体的探究教学中可能会遇到这样的问题:在电阻R阻值改变时,电阻R两端的电压也发生变化,如何移动滑动变阻器的滑片,使电阻R两端的电压恢复到原来的电压值。这也是把控制变量法从理论升华到实际的一个方面。

二、在探究过程中,让学生亲身体验,增强课堂教学效果

学生是教学活动的主体,教师对思维活动过程的展开,不能代替学生自己的思维活动。因此,在设计本节探究活动时笔者以学生为中心,进行分组实验。激发学生的求知欲和参与意识,使不同层次学生的认知结构、个性品质在参与中都得到发展。设计学生活动程序如下:

(1)提出问题:电流与电压,电流与电阻的关系?

(2)作出假设:①不成比例。②成正比。③成反比。

(3)设计并进行实验:①设计电路图。②设计步骤。③进行实验。

(4)分析数据得出结论。

这样做有以下好处:第一,可以充分调动学生的积极性。对于初中学生来说,他们已不再局限于看老师演示实验,都喜欢自己动手操作,通过自己的实践解决问题。第二,可以清楚地发现并指出学生的操作中的错误,物理实验中一些仪器的使用,要求学生掌握,培养学生正确而良好的操作技能。但是,在实践过程中,笔者认为学生的练习机会实在太少,有些仪器的使用方法尽管学生课上听懂了,但真正操作起来并不如想象的那样简单顺手。就像本节中的电流表、电压表的使用,学生往往会把电表的串并连搞错,把正负接线柱接错等,滑动变阻器的使用也不够到位。第三,可以巩固学生对相应知识的掌握情况。对于人的记忆方式来说,自己动手操作过的情景记忆起来要比单纯的聆听接受记忆要牢固得多。

三、在探究过程中,引导学生反思应用迁移

这一方法要求把已知迁移到未知、把此一类知识迁移到另一类知识中,使学生受到相互渗透、影响和转化的观点的教育。例如,启发学生把已有的知识迁移到欧姆定律的探究中,把欧姆定律的知识迁移到其他知识的学习中。这样就使学生不仅提高了知识学习的效率,而且逐渐树立普遍联系、转化的观点。

例如:在总结欧姆定律的公式(I=U/R)时,可以压强的公式为母本,压强的公式是P=F/S,它的理解可以是:当受力面积一定时,压强与压力成正比;当压力一定时,压强与受力面积成反比。而欧姆定律是:通过导体的电流,与导体两端的电压成正比,与导体的电阻成反比。两者是可以相互迁移的,所以很顺利地得出欧姆定律的公式I=U/R。这对于知识和思维不是很完善的初中学生来说,可以很容易地掌握知识,得出结论。

当然在欧姆定律的探究教学中还有很多地方可以运用知识迁移,例如:在运用探究的基本过程解决电流、电压、电阻三者关系时,可以反思以往用探究的方法解决过的问题,如液体压强、深度、液体密度三者的关系,用以往的经验为本次探究的顺利完成做铺垫。

四、在探究过程中,利用教材对学生进行德育教育

德育是五育之首,新课程标准关注人的发展,把德育放在十分重要的地位。作为基础学科的物理理所当然承担着重要的德育任务。

在《欧姆定律》探究教学中,笔者首先做了大量的准备工作,这样学生不仅学得很愉快,而且在心里会产生一种对教师的敬佩之情,并从老师身上体会到一种责任感,这对以后的学习工作都有巨大的帮助作用。其次,在教学过程中,利用分组实验的合作性学习潜移默化地对学生进行德育教育,培养他们团结协作的精神。最后,利用欧姆的事迹和成果激发学生的学习热情,树立崇高理想,榜样的力量是无穷的,它对学生具有强大的感染力和说服力。

教育部颁布的《物理课程标准》首先提出科学探究,其次才是科学内容,它把科学探究作为很重要很有价值的学习方法和教学方法提出来,说明越来越多的教育者注意到探究教学在教改中的重要地位。《欧姆定律》一课的探究教学不仅要求教师有较高自身的修养素质,还要做好在探究教学中与学生一起双向地、互动地建构学科知识、促进能力发展。因此,在初中物理新课标下如何更好地开展探究教学,值得我们探讨。

参考文献:

第3篇:欧姆定律之间的关系范文

【关键词】物理;欧姆定律;问题;解题思路

欧姆定律是高中物理电学部分的核心内容,也是高考的重难点内容,同时欧姆定律掌握的好坏会直接影响我们的考试成绩,因此要多用时间将这块知识进行巩固,以取得更高的分数。

1在欧姆定律的学习中常遇到的问题

1.1欧姆定律的使用范围问题

在电路的实验过程中,我会出现忽略导线,电子元件与电源自身的电阻,将整个电路视为纯电阻电路的问题。而欧姆定律通常只适用于导电金属和导电液体,对于气体、半导体、超导体等特殊电路元器件不适用,但我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,本人为了弄清这里的问题,向老师进行了请教并查阅了相关资料,许多资料上说欧姆定律的应用有“同时性”与“欧姆定律不适用于非线性元件,但对于各状态下是适合的”。但我自身总觉得这样的解释难以接受,有牵强之意,即个人理解为既然各个状态下都是适合的,那就是适合整个过程。

1.2线性元件的存在问题

通过物理学习我们会发现材料的电阻率ρ会随其它因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。而在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

1.3电流,电压与电阻使用的问题

电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念,也是我最容易混淆的内容。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,而电流、电压、电阻的概念是基本的电学测量仪器,另外,欧姆定律只是用来研究电路内部系统,不包括电源内部的电阻、电流等,在学习欧姆定律的过程中,电流表、电压表、导线等电子元器件的影响常常是不考虑在内的,而对于欧姆定律的公式I=UR,I、U、R这三个物理量,则要求必须是在同一电路系统中,且是同一时刻的数值。

2欧姆定律学习中需要掌握的内容

本人在基于电学的基础之上,通过对欧姆定律的解题方式进行分析,个人认为我们需掌握以下内容:了解产生电流的条件;理解电流的概念和定义式I=q/t,并能进行相关的计算;熟练掌握欧姆定律的表达式I=U/R,明确欧姆定律的适用条件范围,并能用欧姆定律解决相关的电路问题;知道什么是导体的伏安特性,什么是线性元件与非线性元件;知道电阻的定义和定义式R=U/I;能综合运用欧姆定律分析、计算实际问题;需要进行实验、设计实验,能根据实验分析、计算、统计物理规律,并能运用公式法和图像法相结合的方法解决问题。

3欧姆定律的解题思路及技巧

3.1加深对欧姆定律内容的理解

在欧姆定律例题分析中,我们比较常见的问题是多个变量的问题,以我自身为例,由于物理理解水平有限,且电压、电流、电阻的概念比较抽象,所以学习难度较大,但我通过相关教学短片的学习,将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”的方式,明白了电阻是导体自身的特有属性,其大小是受温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,并且明白了电阻不会随着电流或者电压的大小改变而改变。同时我们每一个人都知道对于不同的习题,解决步骤都是不相同的,虽同一问题会有不同的解题方法,但总是离不开欧姆定律这个框架。因此对于一些与电学有关的知识,我一般会利用欧姆定律解决电生磁现象与电功率计算问题。例如:某人做验时把两盏电灯串联起来,灯丝电阻分别为R1=30Ω,R2=24Ω,电流表的读数为0.2A,那么加在R1和R2两端的电压各是多少?我可以根据两灯串联这一关建条件,与U=IR得出:U1=IR1=0.2A×30Ω=6V,U2=IR2=0.2A×24Ω=4.8V,故R1和R2两端电压分别为6V、4.8V的结论。

3.2利用电路图进行进行计算

在解有关欧姆定律的题时,以前直接把不同导体上的电流、电压和电阻代入表达式I=U/R及导出式U=IR和R=U/I进行计算,并把同一导体不同时刻、不同情况下的电流、电压和电阻都代入欧姆定律的表达式及导出式进行计算,因此经常混淆,不便于分析问题。通过后期老师给予我的建议,在解题前我都会先根据题意画出电路图,并在图上标明已知量、数值和未知量的符号,明确需分析的是哪一部分电路,这部分电路的连接方式是串联还是并联,以抓住电流、电压、电阻在串联、并联电路中的特征进行解题。同时,我还会注意开关通断引起电路结构的变化情况,并且回给“同一段电路”同一时刻的I、U、R加上同一种脚标,其中需注意单位的统一与电流表、电压表在电路中的连接情况,以及滑动变阻器滑片移动时电流、电压、电阻的变化情况。

3.3利用电阻进行知识拓展

本着从易到难的原则,我们可从一个电阻的问题进行计算,再扩展到两个电阻、三个电阻,逐渐拓宽我们的思路,让自己找到学习的目标以及方法。比如遇到当定值电阻接在电源两端后电压由U1变为U2,电路中的电流由I1增大到I2,这个定值电阻是多少的问题时,我们可利用欧姆定律的概念ΔU=ΔI・R得到电阻的值,而当难度增加由一个电阻变为两个电阻时,定值电阻与滑动变阻器串联在电压恒定的电源两端,电压表V1的变化量为ΔU1,电压表V2的变化量为ΔU2,电流表的示数为ΔI,在这样的问题上可将变化的问题转化为固定的关系之间的数值,就可简化许多变量问题的计算。当变量变为三个电阻时难度会进一步的增大,我起初认为这是一项不可能完成的任务,所以放弃了这类题,而在经过询问成绩优秀的同学时,才知道可将三个电阻尽量化为两个电阻,通过电压表与电流表的位置将电阻进行合并,以此简化题目。

4总结

简言之,欧姆定律是物理教材中最为重要的电学定律之一,是电学内容的重要知识,也是我们学习电磁学最基础的知识。当然,对于欧姆定律的学习与解题方法,自然不止以上所述方法,因而在具体的学习中,我们要立足于自身实际学习情况来进行方法的选取,突破重难点知识,以找到更好的解题思路。

参考文献:

[1]高飞.欧姆定律在串并联电路中的应用技巧[J].才智,2009(27)

第4篇:欧姆定律之间的关系范文

【教材分析】

欧姆定律是电学中的基本定律,是进一步学习电学知识和分析电路的基础,是本章的重点。学生要通过自己的实验得出欧姆定律,最关键的是两个方面:一个是实验方法,另一个就是欧姆定律。学生对实验方法的掌握既是重点也是难点,这个实验难度比较大,主要在实验的设计、数据的记录以及数据的分析方面。由于实验的难度比较大,学生出现错误的可能性也比较大,所以实验的评估和交流也比较重要。这些方面都需要教师的引导和协助,所以这次节课采用启发式综合教学法。引导科学探究, 创设民主课堂。

【教学片段】

探究通过导体的电流与电压、电阻的关系

师:猜一猜导体的电流与导体的电压有什么关系呢?说出你的理由。

生1:电压越大,电流越大

生2:导体的电流与导体两端的电压可能成正比

生:……

师:猜一猜导体的电流与导体的电阻有什么关系呢?说出你的理由。

生1:电阻越大,电流越小

生2:导体的电流与导体的电阻可能成反比

生:……

师:对于物理问题,不能仅靠猜想,还要进行实验研究,通过实验来检验猜想是否正确。为了验证同学们的猜想,怎样设计实验呢?对于电流、电压、电阻三个物理量的关系如何进行研究呢?

生:采用控制变量法

师:如何进行控制变量呢?

生1:保持电阻不变,研究电流与电压的关系

生2:保持电压不变,研究电流与电阻的关系

师:下面就利用这一方法,先研究电阻一定时,电流与电压的关系。请同学们想想需要哪些实验器材?如何设计电路图?

生1:电路图如甲示

生2:电路图如乙示

图甲图乙

师:甲图与乙图哪个更好?并说明理由。

生:乙图更好。因为不要多次连接电路,就可方便地改变电阻两端的电压。

师:同学们,我们为了更好地完成实验,可先来回答下列问题。

① 连接电路时,开关应处于 状态;

② 滑动变阻器的滑片应处于阻值位置;

③ 注意认清电压表和电流表的 接线柱;

④ 电压表的量程选 V,电流表的量程选 A;

⑤ 闭合开关前应 电路,确认无误后可进行实验。

【教学反思】

探究电流与电压、电阻之间的关系的实验是欧姆定律一节的重点也是难点。实验中应注意以下问题:

1. 用控制变量法研究I、U、R三者之间的关系时,为什么只探究电流I与电压U之间关系以及电流I与电阻R之间的关系?而不研究保持电流I不变,探究电压U与电阻R之间的关系?

这个问题学生感到困惑不解。其实,电阻是导体的本身性质,它并不随着电压、电流的变化而变化,当电压变了,电阻不改变,只能电流变化了,保持电流变化不可能。

2. 实验中为何要用滑动变阻器?

如果不用滑动变阻器,虽然能够测量出R两端的电压和其中的电流,但该电路只能测量出一组电压和电流的值,而从一组电流和电压的数据是无法找出二者之间的关系的,应该再测几组电压和电流,因此就需要改变R两端的电压,可以不断改变电阻,也可以采用改变电池节数的方法,还可以用滑动变阻器,比较下来,当然是用滑动变阻器更方便快捷。同时,滑动变阻器还可以起到保护电路的作用。

3. 在探究电流I与电阻R之间的关系实验中,应该如何操作?

如何保持电压U不变?即改变定值电阻的阻值的同时,该电阻两端的电压就发生了变化,因此,要及时调节滑动变阻器以保持电压不变,观察并记录电流表的示数随电阻的变化关系。

4. 在本实验之前要注意哪些问题?

学生实验之前,不仅要按照正确的操作规程办事,还要有检查电路的良好习惯,而学生往往急于动手实验,忽视实验规则。本实验中,实验之前,开关断开,滑动变阻器的滑片要放在电阻最大位置。其次,为测量误差减少,要选择适当的电表量程。

5. 要认识到学生的解题能力和动手实践能力之间可能存在较大差距

第5篇:欧姆定律之间的关系范文

此类题目的特点往往是:题目给出电路图,电路中一般含有一个或两个电阻(或灯泡),滑动变阻器一个,电压表、电流表若干。当滑动变阻器滑片移动时,让学生去判断电流表、电压表的示数如何改变。

根据电路元器件连接方式,把此类问题归为简单电路和复合电路两类进行分析。

一、简单电路(用电器与滑动变阻器纯串联或纯并联)

1.纯串联

如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?

[分析]:在此题中,电阻、滑动变阻器三者串联,I=I1=I2,R=R1+R2。。当滑片向左移动时,R2变大,R1不变,R变大,根据欧姆定律I=■,电源电压U不变,I应减小,I1、I2均减小,再根据欧姆定律U1=I1R1可知U1减小,最后根据U=U1+U2知道U2增大。

[结果]:安培表示数减小,伏特表1示数减小,伏特表2示数增大。

2.纯并联

如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?

[分析]:由于电阻和滑动变阻器并联,故U=U1=U2,伏特表示数为电源电压保持不变,当滑片向左移动时,R2变大,R1不变,根据■=■+■,则R变大,根据欧姆定律I=■知I应减小。而R1电阻、电压均不变,故I1不变。再根据I=I1+I2知I2应减小。

[结果]:安培表示数减小,伏特表示数不变,安培表1示数不变,安培表2示数减小。

二、复合电路(滑动变阻器与用电器串并联混联)

1.滑动变阻器在干路中,两电阻并联

如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?

[分析]:此种情况由于R1、R2电阻都不变,可将两电阻并视为一个电阻,它们两端的电压相同,故它们电流变化方向是相同的。这样此题思路就同纯串联电路一样。

[结果]:安培表示数减小,伏特表1示数减小,伏特表2示数增大,安培表1示数减小,安培表2示数减小。

2.滑动变阻器在支路中

如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?

[分析]:此种情况较为复杂。由于R1、R2并联,所以它们两端电压相等为U1,且U=U1+U3,I=I1+I2。当滑片向左移动时,R2变大,导致电路总电阻R增大,根据欧姆定律I=■,电源电压U不变,I应减小,对于R3,再根据欧姆定律U3=IR3可知U3减小,再根据U=U1+U3知道U1增大,从而得到I1增大,最后根据I=I1+I2知道I2减小。

[结果]:安培表示数减小,伏特表1示数增大,伏特表3示数减小,安培表1示数增大,安培表2示数减小。

第6篇:欧姆定律之间的关系范文

1.知识目标。

(l)掌握闭合电路的欧姆定律;

(2)理解端压跟外电路的电阻的关系,理解断路和短路时的端压和电流;

(3)理解端压发生变化的根本原因。

2.能力和方法目标

(l)培养学生“发现问题,提出假设,实验研究,得出结论”的探究物理规律的科学思路和方法;

(2)通过学习,使学生会用闭合电路欧姆定律解决一些简单的实际问题。

【教学方法】

在教师指导下,师生共同探讨的启发式教学。

【教学器材】

电压表、电阻箱、电键、电池组、J1203型蓄电池、导线等各24组。新电池两节,内阻较大的电池一组(电动势为9V以上),灯泡若干,演示用电压表,保险丝,导线若干,单刀双掷开关,投影仪等。

【教学过程】

1.引入新课

师:如图1电路,将电压表接在电源两端,从电压表上读出的是什么?

生:电源电动势。

演示实验:测电源电动势并观察灯泡亮度。

师:出示图1装置示教板,简介实验装置,分别开关打向1和2,让学生通过电压表的实物投影读电源和的电动势。

生:,。

师:(将电压表换接成小灯泡,开关接1时。小灯泡很亮,几乎发白光)问:开关接2时,会发生什么情况?

生:(猜测):①烧毁,②更亮。

师:(开关接通2,小灯泡还不如接1时亮。)

生:(哗然,形成强烈反差)

师:学习了闭合电路欧姆定律后,我们就能解释这一实验现象了。

2.新课教学

2.l闭合电路欧姆定律的数学表达式(在教师的启发下,引导学生完成)

师:什么样的电路叫闭合电路呢?

生:由电源和用电器组成的完整电路。

师:电源有哪些重要的参量?

生:电源电动势和内阻。

师:(出示图2的动画电路)闭合电路中,流过内电路和外电路的电流有什么关系?

生:相等。

师:电源的电动势与端压(外电压)、内电压之间的关系是怎样的?

生:E=U=U′。

师:现设通过电路的电流强度为I,外电路的电阻为R电源电阻为r,根据欧姆定律,可以把上式进一步写成怎样的形式?

生:根据欧姆定律,外电压U′=IR,内电压U′=Ir,代入E=U+U′,可以得出:E=IR+Ir。。

师:如果我们要探讨电路里的电流强度I跟哪些因素有关,有什么关系,还需要把公式改变成怎样的形式?

生:可以改写成:。

师:好,这就是闭合电路欧姆定律的数学表达式。它表示:闭合电路中的电流,跟电源的电动势成正比,跟整个电路的电阻成反比。在公式中,R的含义是什么?

生:外电路的总电阻。

师:对给定的电源,E、r均为定值,外电阻变化时,会引起电路电流的变化,I随R会发生怎样的变化?

生:由公式知,R变大则I减少,R变小则I增大。

师:根据U=IR,R变大时端压(外电压)会随之发生怎样的变化呢?

生:(猜测。有人说变大,有人说变小)

师:请两个学生介绍判断的过程和依据。(暂时不做评价,由“实践是检验真理的标准”过渡到学生实验上来。)

2.2探讨U随R变化的规律

学生实验:探讨U随R变化的规律

师:如果给你一个电源,一个电键,一个电压表,一个电阻箱,让你来探讨外电压U随外电阻R变化的规律,你该怎样设计电路?请画出电路图。

生:(画电路图)

师:(讲评学生所画电路,指导学生进行实验)

生:(出示实验数据记录,得出结论)端压随外电阻的增大而增大,随外电阻的减少而减少。二者变化的趋势相同。

师:能否根据闭合电路欧姆定律从理论上分析为什么会发生这样的变化?

生:(讨论,在教师诱导下得出)

师:刚才我们通过实验和理论探讨了端压随外电阻变化的规律,得出了上述结论。请大家再思考,当外电阻很小时,会发生什么情况呢?

生:外电阻减少到零时,会发生短路现象。

师:短路时的电流有多大呢?

生:(可能会说无穷大教师从电路电阻出发引导,使学生得出)短路时:R=0,I=E/r,U′=E,U=0。

师:短路时的电流取决于E,r。一般情况下,电源内阻很小,像蓄电池的内阻只有0.005Ω-0.1Ω,所以短路时电流会很大,很大的电流会造成什么后果呢?

演示实验:保险丝熔断现象。

师:(出示示教板,简单向学生介绍电路的元件,先让电灯开始正常工作)大家说说,怎样的外电路才算短路呢?

生:将电键合上,使外电路的电阻R=0。

师:(演示:合上电键,保险丝烧断起烟,小灯泡熄灭)保险丝烧断,说明短路时的电流的确很大。如果没有保险丝,短路时很大的电流长时间通过电路,就可能损坏电源,甚至酿成火灾。所以在实验操作中和日常生活、生产中要注意避免短路,也不能图方便用铜丝替代保险丝。那么,怎样使电路恢复正常呢?

生:(教师引导)先排除故障,再换保险丝。

师:当外电阻很大时,又会发生什么现象呢?

生:(引导学生类比得出)断路。

断路时:R∞,I=0,U′=0,U=E。

师:电压表测电动势就是利用了这一道理.通过前面的讨论,我们对U随R变化的规律有了了解,但在讨论中都是以电源的E、r不变作为前提的。如果有两个电源,它们的内阻不同,端电压随外电阻的变化有什么区别呢?

2.3U随R变化的根本原因

学生实验:探究内阻不同时U随R变化的特点(电路如图3)。

师:现有四节干电池组,电动势约6V,内阻阻值大约在0.5Ω-2Ω之间;有一个蓄电池组,电动势约6V,内阻大约在0.005Ω-0.1Ω之间。请大家再做实验,比较这两个电源U随R变化的特点。

生:(实验操作,教师巡回指导)

实验结论:内电阻很小的电源,端电压随外电阻的变化不明显。

师:大家推测一下,当电源内电阻为零时,外电压还随外电阻的变化而变化吗?

生:不随。

师:能否理论推导一下?

生:r=0,无论I如何变化,U′=Ir=0,故U=E-U′=E不变。

师:内电阻等于零的电源叫理想电源,它的端压是不定值,不随外电阻的变化而变化,初中讨论的都是这样的电源。可是,实际的电源都有内阻。正是由于r≠0,才导致U随R的变化。可见,U随R变化的根本原因是……

生:r≠0。

3.规律应用演示实验:(装置见图5)

师:(简单介绍实验装置,电源为6V干电池组)逐个合上电键,灯泡的亮度会不会发生变化?

生:(讨论,看法不一)

师:(实验。结果发现接入电路中的小灯泡亮度逐渐变暗。)怎样解释看到的现象?

生:随着灯泡逐渐接入,外电路的总电阻逐渐减小,外电路的端压逐渐减小,由知,灯泡消耗的实际功率逐渐变小,灯泡亮度变暗。

师:(改用蓄电池作电源,再做上述实验,结果发现灯泡亮度几乎不变)

生:蓄电池内阻很小,外电路电阻变化时,端压变化非常小,灯泡消耗的实际功率变化很小,因而亮度几乎不变。

师:这一现象再次说明了……

生:内电阻不为零是端压变化的根本原因。

师:请大家思考,开始上课时做的演示实验为什么会出现那样一个结果?

生:(讨论后得出)电源的内阻很大,比灯泡的电阻还要大,因此内阻分压也大,第二次加在灯泡两端的外电压没有第一次的大。

师:你们的推理是否正确,实际测量一下就知道了。

演示实验:

师:(测图1灯泡两端在电键按1和2两种情况下的端压。结果表明,第二次的端压小于第一次)

生:(露出满意的笑容)

师:通过这节课的学习,我们解决了上一节课学习电动势时产生的“端压为什么会随外电阻的变化而变”的疑问,得到了闭合电路的欧姆定律,搞清了端压变化的根本原因。在本节课的学习中,有没有新的问题?

生:实验测量中发现,随着外电阻的增大,端压并不是一直增大的,这是为什么?

师:(表扬提问题的学生,引导大家讨论,然后解释)当外电阻大到一定程度时,由闭合电路欧姆定律知,总电流极小,内电阻止的分压趋近于零,端压趋近于电源的电动势,接近于发生了断路现象。

生:老师,你是怎样知道干电池和蓄电池的内阻的?

师:这个问题提的好。我们是在干电池组内阻大于蓄电池组内阻的前提下得出端压变化的根本原因的,如果事实不是这样,则结论也就不成立了,这个问题留做课后思考,下节课我们将通过实验来测定电源的电动势和内阻。实际上今天的课已经告诉了你一种测量方法了……大家还有问题吗?

生:……

4.小结

4.l闭合电路欧姆定律是高中电学中的重要规律之一,要掌握其内容并会运用它分析电流强度、端压随外电阻的变化规律。以及端压跟电流强度的关系。根据I=E′(R+r)、U′=Ir、U=E-Ir可知:

RIU′U

R=0,I=E/r,U′=E,U=0(短路)

RIU′U

R∞,I=0,U′=0,U=E(断路)

4.2在初中讨论电路问题时,不考虑电源内阻。到了高中,有些问题常要考虑电源内阻。路端电压随外电阻变化而变化,其根本原因是因为电源有内阻。我们关心路端电压的变化情况,是关系到用电器能否正常工作的问题,这在实际应用中有现实意义。

5.布置作业(略)。

【教学设计说明】

1.闭合电路的欧姆定律在高中“恒定电流”一章中占有重要地位,这是一节承上启下的课。在设计本节课时,我十分注意对学生科学素质的培养。在教学中实施素质教育的核心是培养学生的创新精神和实践能力。对于中学生来说,创新精神主要体现在学生应具有创新的意识,其直接的表现就是善于发现问题,善于提出问题。因此在课堂上应把主要精力放在引导学生发现问题并寻找解决问题的途径上。根据上一节课中学生对端压会发生变化所产生的疑问,我设计了本节课的教学流程,旨在通过学生的亲身实践,得到掌握知识、培养能力、形成习惯的最终目的。在这节课的最后,还留给学生一段时间,让他们自己来提问题,并讨论、解答,这也是出于培养创新意识的需要。

2.利用实验发现规律,利用实验验证结论是贯穿整个课堂教学的一条主旋律。本节课一开始,就利用学生的日常生活经验与演示实验的矛盾巧设“悬念”,使他们的心理经历了一次前科学意识与物理规律的强烈碰撞,求知欲望之火被迅速点燃,从而兴致勃勃地进入了主动学习的“角色”。在教学活动中,一个个演示、学生实验不断地开后学生思维的“阀门”,他们时而全神贯注,时而心领神会,在一系列“发现问题,提出假设,实验研究,得出结论”的过程中,错误的前概念逐步被纠正,科学的物理规律在脑海里扎下了很。物理教学活动的科学性和艺术性得到了有机的统一,科学美的教育也渗透在其中了。

第7篇:欧姆定律之间的关系范文

关键词:技校《电工基础》课 教学改革

在技校,《电工基础》课是电工专业学生的一门专业基础课,这门课程的理论性很强,而且相对来说有些抽象,对于刚刚接触电工理论的中技学生而言(而且,众所周知,中技来的学生有相当一部分的同学在初中学习就是不太好,或根本就对学习没有兴趣),如何将难懂的看不见摸不着的电的知识讲得通俗易懂,激发学生的兴趣,一直是使教师大伤脑筋的问题。

总的看,现在的《电工基础》课程有些概念还是过于抽象,学生不容易理解。本来这门课程就不好学,万事开头难,只有头开好了,学生觉得好学,好玩,才会慢慢喜欢这门课程,故书本上的有些概念没必要说得那么专业。毕竟,中技学生主要还是以实习为主不是搞研究的,对于理论课的内容,只要按照自己的思维方式把它消化吸收掉,并且和实际的应用不发生冲突就可以了。这里以第一章《电路的基本知识和基本定律》来谈谈改革问题。

其一§1-2电流

所谓电流这个概念,课本上是这样说的,“电荷的定向流动称为电流”,书上的定义当然毫无问题。但是,别忘了,电荷是微观的东西,说一根导线通电有电荷定向流动形成电流,但是肉眼看不见,如何使抽象的电荷形象化,加深学生对电流的概念的理解呢?我通过实际电工教学摸索,认为这一章中的多数概念用水来做比喻很恰当,能让学生比较容易的接受电流概念。当然,虽然以水为例讲解电的概念,在道理上有些相通的地方,但本质不同,这一点还应该向学生说明。我教师可以对学生解释说:水流的形成是水(分子)的定向流动,同理,电流的形成是电荷的定向流动,这样,用水做对比,学生一下就明白了。之后,趁热打铁,再用水流方向来对电流方向进行类推,也就不难了。再有,电流大小,书上是这样定义的“一定时间内通过导体横截面的电荷量的多少”。对于“一定时间”和“导体横截面”学生都能理解,因为不抽象,但对于“电荷量”即电量的理解,有点费劲。是的,电量,顾名思义,电荷的数量,但是,它看不见,1库仑电量怎样理解呢?若以水流大小为例,单位时间内通过水管横截面的水量叫水流大小或水流强度。这里,水管比喻为导体,水量比喻为电量,则这样之后,也能加深对电流大小的理解。

其二§1-3电压与电位

所谓“电压”的概念,书上是这样说的,“电场力把单位正电荷从电场中的a点移动到b点所做的功称为两点间的电压”。我觉得,还是上面那句话,对于中技学生而言,他们是技术工人,是干实际活的,不是搞理论研究的,没必要这么去和学生讲,只需这样去说,水压是对水(分子)的压力,而电压是对电荷的压力就可以了。

对于“电位”概念的理解,课本是这样说的“如果在电路中任选一点为参考点,那么电路中某点的电位就是该点到参考点之间的电压”。电位这个概念比电压更难理解。

可仍然以水位为例,通过对水位参考点的不同,则某点水位高度值也发生变化来让学生理解电位的概念。比如,若以地面为参考点,a点水位为5米,b点水位为2米;若以地面以上5米为参考点,则a点水位为0米,b点水位为一3米,若以地面以下5米为参考点,则a点水位为10米,b点水位为7米。在这里,由于水位参考点选取的不同,各点水位值也发生了变化,并且有正水位、零水位、负水位。然后向学生说明,电位的概念和水位有相似之处,在电路中,由于参考点选取的不同,各点电位值也发生变化,并且有正电位、零电位、负电,位,这样一对比,使学生形象的明白了电位的概念。继续趁热打铁,不管水位的参考点如何变化,任意两点比如ab之间的水位的压力差值是不变的,总是3米,因为参考点是人为选定的,显然参考点不能影响水位的压力差值,进而也形象的说明了电压与电位差的关系即任意两点电(水)压等于两点之间的电(水)位差,其三 §1-4电动势

所谓“电动势”,课本上是这样说的,“在电源内部,电源力将单位正电荷从电源负极移动到正极所做的功叫做电源的电动势”。我是这样给学生解释的,水在自然压力即重力下,由高水位处流向低水位,若想由低水位处流向高水位,必须借助于外力;同理,正电荷在电压的作用下,由高电位流向低电位,若想由低电位流向高电位,必须借助于外力即电源力才能实现,即“电荷”在电源力作用下有从高电

位运“动“到低电位的趋”势“简称电动势。这样,学生也好理解一些。 其四 §1-6欧姆定律

部分欧姆定律内容如下:对于不含电源电路,当在电阻两端加上电压时,电阻中就有电流流过,流过电阻的电流与电阻两端的电压成正比,与电阻成反比。对于该定律,可采用的启发式和对比式教学教学。水流是由于水(分子)的定向流动,那么,为什么水要定向流动,因为受到了压力才定向流动;那么,为什么必须施加压力才能让水定向流动呢,因为水受到了阻力;最后总结,显然水流大小与水压成正比,而与水受到的阻力成反比。对比,则电流是由于电荷的定向流动,那么,为什么电荷要定向流动,因为受到了压力即电压才定向流动;那么,为什么必须施加电压才能让电荷定向流动呢,因为电荷受到了阻力即电阻;最后总结,显然电流大小与电压成正比,而与电荷受到的阻力即电阻成反比,这就是欧姆定律。这样,一步一步的把欧姆定律明白的讲了出来,学生也很容易接受,之后,再理论联系实际,马上再通过一个实验来验证欧姆定律,最终是使学生深入的理解了这个重要定律。

其五§1-8电功与电功率

第8篇:欧姆定律之间的关系范文

一、部分电路知识是基础

1.电流:自由电荷的定向移动形成电流。I也流是标量,但有方向,我们规定正电荷的定向移动方向是电流的方向。电流的定义式为单位为A。

2.电压:当在导体两端加上一定电压后,在导体中将产生一定的电场,自由电荷在静电力的作用下做定向移动,形成电流。

3.电阻:电流通过导体时受到导体的阻碍作用。电阻的定义式为R,决定式,单位为Ω

4.部分电路欧姆定律:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。其表达式为I=,适用范围有金属导电和电解液导电(对气体不适用)和纯电阻电路。

5.电路:在串联电路中有,并联电路中有

例1 根据经典理论,金属导体中电流的微观表达式为I=nvSe,其中n为金属导体中单位体积内的自由电子数,v为导体中自由电子沿导体定向移动的速率,S为导体的横截面积,e为自由电子的电荷量。如图1所示,两段长度和材料完全相同、各自粗细均匀的金属导线ab、bc,圆形横截面的半径之比为rab:rbc=l:4,串联后加上电压,则()。

A.两导体内的自由电子定向移动的速率之比为vab:vbc=l:4

B.两导体内的自由电子定向移动的速率之比为vab:vbc=4:1

C.两导体上的电压之比为Uab:Ubc=4:1

D.两导体上的电压之比为Uab:Ubc=16:1

解析:两段导体串联,根据串联电路的特点可知,电流处处相等,即Iab=Ibc再由金属导体中电流的微观表达式I=nvSe,得,选项A、B错误。根据欧姆定律,得U=IR,所以。又有,得,选项c错误,D正确。答案为D。

点评:导体两端加电压后,在导体中会形成电场,自由电荷在静电力作用下做定向移动而形成电流,金属导体中电流的微观表达式I=nvSe就是由导体中电流推导而出的。串联在电路中的每段导体分得的电压跟电阻成正比。

例2 对于电阻的概念和电阻定律,下列说法正确的是()。

A.由可知,导体的电阻与导体两端的电压成正比,与流过导体的电流成反比

B.由可知,导体的电阻与导体的长度成正比,与导体的横截面积成反比

c.由可知,导体的电阻率与导体的横截面积成正比,与导体的长度成反比

D.导体的电阻率只由材料的种类决定,与温度无关

解析:电阻是由导体本身决定的,跟电流、电压无关,所以选项A错误,B正确。电阻率主要决定于导体的材料,还跟温度有关,所以选项C、D错误。答案为B。

点评:电阻是用比值法定义的,即电阻等于电压与电流的比值。而电阻的大小是由决定的,其中p为电阻率,主要决定于导体的材料,还与温度有关。

二、闭合电路分析是综合

1.电源:电源是通过非静电力做功把其他形式的能转化为电能的装置。(l)电动势是非静电力搬运电荷所做的功与搬运的电荷量的比值,即,单位为V1(2)电源内部也是由导体组成的,也有电阻,叫做内电阻,是反应电源性能的一个重要参数。

2.闭合电路:(1)闭合电路欧姆定律是指闭合电路中的电流与电源的电动势成正比,与内、外电阻之和成反比,其表达式为,只适用于纯电阻电路;(2)路端电压与电流的关系为U=E-Ir,此式适用于一切电路;(3)路端电压与外电阻的关系为U=,此式只适用于纯电阻电路。当外电路断开时,有1=0,U=E;当外电路短路时,有。

例3 一节干电池的电动势为1.5V,一节铅蓄电池的电动势为2V。所以()。

A.干电池在1s内将1.5J的化学能转变为电能

B.蓄电池将化学能转变为电能的本领比干电池的要大

C.无论接不接人外电路,一节干电池两极间的电压都为2V

D. g节蓄电池每通过IC电荷量,电源把2J的化学能转变为电能

解析:电动势的物理含义是电源搬运IC的电荷量做功(把其他形式的能转化为电能)的大小,显然,选项A错误,B、D正确。当电源接人外电路时,两端电压随外电阻的变化而变化,选项C错误。答案为BD。

点评:电动势是比较难理解的物理量,它是非静电力做功与电荷量的比值,而不是非静电力做功与时间的比值。当外电路接通时,随外电路电阻的变化,电流、路端电压也随之改变。

例4 如图2所示,在A、B两点间接有电动势E=4V,内电阻r=lΩ的直流电源,电阻R1、R2、R3的阻值均为4Ω,电容器的电容C=30μF,电流表的内阻不计,求:

(l)电流表的读数;

(2)电容器所带的电荷量;

(3)断开电源后.通过电阻R2的电荷量。

解析:当开关S闭合后,因为电容器的电阻无穷大,可以以去掉,而电阻R1、R2被电流表短路,所以外电路可以简化为电流表和电阻R3串联。

(1)根据欧姆定律可得,电流表的读数I=

(2)电容器接在电源两端,其电压为路端电压,即U=IR3=3.2V,因此电容器带电荷量Q=UC=

(3)断开开关S后,电容器相当于电源,因为电流表内阻不计,外电路是电阻R1、R2并联后与R3巾联,所以通过电阻R1和R2的电荷量之比为又有,解得

点评:电容器中间有电介质,电流不能通过其中,在电路中表现为断路,而理想电流表的内阻为零,在电路中表现为短路,在电路分析时要充分利用这些特点。

三、动态电路分析是热点

1.基本规律:(l)当外电路中任何一个电阻增大(或减小)而其他电阻不变时,电路的总电阻一定增大(或减小);(2)若开关的通、断使串联的用电器增多时,电路中的总电阻增大,若开关的通、断使并联的支路增多时,电路的总电阻减小;(3)在如图3所示的分压电路中,滑动变阻器可视为由两段电阻构成,其中一段R并与用电器并联,另一段R串与并联部分串联,A、B两端的总电阻与R串的变化趋势一致。

2.分析思路:

例5 在如图4所示的电路中,Rc为定值电阻,闭合开关S。当滑动变阻器R的滑片P向右移动时,下列判断正确的是()。

A.电压表V1、电流表A的读数都增大

B.电压表V1与电流表A读数的比值保持不变

C.电压表V2与电流表A读数的比值保持不变

D.电压表V2、电流表A读数变化量的比值保持不变

解析:当滑动变阻器R的滑片P向右移动时,接人电路的阻值变大,总电阻变大,回路中的总电流减小,电流表A的读数减小,选项A错误。巾欧姆定律得。显然,选项B错误,c正确。而选项D正确。答案为CD。

点评:根据动态电路分析的一般思路,灵活运用部分电路欧姆定律和全电路欧姆定律即可顺利求解本题。

例6 在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图5所示。M是贴在针口处的传感器,接触到药液时其电阻Rm发生变化,导致S两端电压U增大,装置发出警报,此时()。

A.Rm变太,且R越大,U增大越明显

B.RM变大,且R越小,U增大越明显

C.RM变小,且R越大,U增大越明显

D.Rm变小,且R越小,U增大越明湿

解析:根据题述可知,传感器接触到药液时其电阻Rm发生变化,导致S两端电压U增大,因此Rm变小。又因为R与Rm并联,所以R越大,U增大越明显。答案为C。

点评:通常情况下对动态电路进行分析是通过电阻的变化确定电压的变化,而该题是利用电压的变化来确定电阻的变化。

四、功和功率的计算是难点

1.纯电阻电路的电功和电热:电流通过纯电阻电路时,它所消耗的电能全部转化为内能,电功等于电热,电功率等于热功率。数学表达式为w=Q=Pt

2.非纯电阻电路的电功和电热:当电路中含有电动机、电解槽等时,该电路为非纯电阻电路。在非纯电阻电路中,消耗的电能除转化成内能外,还转化成机械能、化学能等。在非纯电阻电路中,电功大于电热,即;电功率大于热功率,即在计算电功和电功率时只能用定义式W=UIt和P=UI,在计算电热和热功率时只能用定义式Q=

3.电路中的功率与效率:电源的总功率P=EI,电源的输出功率P=UI,电源的内耗功率电源的效率

4.电源的最大输出功率:对于纯电阻电路有P=,当外电路电阻等于内电路电阻(R=r)时,电源的输出功率最大,且,此时电源的效率η=50%。

例7 如图6所示,电源电动势E=6V,内阻r=2Ω,定值电阻R1=R2=12Ω,电动机M的内阻R3=2Ω。当开关S闭合电动机转动稳定后,电压表的读数U1=4V。若电动机除内阻外其他损耗不计,求:

(1)电路的路端电压U2;

(2)电动机输出的机械功率P;

(3)电源的效率η。

解析:(1)设干路电流为I,对全电路,有E=成立。设通过R1和电动机的电流为I1,通过R2的电流为I2,对R3、R2,欧姆定律适用,有I1=。由并联电路的特点得即,解得

(2)电动机的输入功率,转化为机械功率P和通过其内阻生热的功率。根据能量守恒定律得。代人数据得

(3)电源的效率83.3%。

点评:对于含有电动机、电解槽等非纯电阻的电路,在分析和讨论时务必注意欧姆定律是不适用的。

五、图像问题讨论是提升

1.在恒定电流问题中,为了更加直观地反映某元件的电压和电流的关系,我们常常选用伏安(U-I)特性曲线来描绘。它们主要有两种:一是电阻元件对应的伏安特性曲线,简称“电阻线”,如图7甲所示,其对应的电阻R的大小等于tanα;另一种是电源元件对应的伏安特性曲线,简称“电源线”,如图7乙所示,其对应的电源内阻r的大小等于tanα,电动势E为直线在U轴上的截距。

2.在纯电阻电路中,我们常用功率与外电阻的图像来反映它们之间的变化规律,如图8所示,电源的总功率,电源的输出功率,电源的内耗功率

例8 某种材料的导体的U-I图像如图9所示,图像上A点和坐标原点连线与横轴成a角,A点的切线与横轴成β角。关于导体的下列说法中正确的是()。

A.在A点,导体的电阻大小等于tanα

B.在A点,导体的电阻大小等于tanβ

C.导体的电阻随电压U的增大而增大

D.导体的电功率随电压U的增大而增大

解析:由欧姆定律得,由图得在A点有,故导体的电阻随电压U的增大而增大,在A点,导体电阻的大小等于tana,选项A、C正确,B错误。由图可知随着电压的增大,电流也增大,所以导体的电功率增大,选项D正确。答案为ACD。

点评:根据部分电路欧姆定律可以确定U-I图像的几何意义。在解决恒定电流的某些问题时,巧妙地应用电阻线、电源线进行分析,不仅可以避免运用数学知识列式进行复杂的运算,而且可以获得直观形象、一目了然的效果。

侧9 电池甲和乙的电动势分别为E1和E2,内阻分别为r1和r2。若用甲、乙两电池分别向某个电阻R供电,则在这个电阻上所消耗的电功率相同。若用甲、乙两电池分别向某个电阻R'供电,则在R'上消耗的电功率分别为P1和P2。已知E>E2,R'>R,则()。

解析:依题意作出电池甲和乙(E1>E2)及电阻R的伏安特性曲线。因为两电池分别接R时,R消耗的电功率相等,所以这三条线必相交于一点,如图l0所示。由图可知a1>a2,所以,r1>r2。作R'的伏安特性曲线,因为R'>R,所以R'的伏安特性曲线应在R的上方。由图可知,当甲电池接R'时,;当乙电池接R'时。因为,所以。答案为AC。

点评:在U-I直角坐标系中作出电源的伏安特性曲线,再在此坐标系中作出电阻R的伏安特性曲线,则两条线的交点就表示了该闭合电路所工作的状态。此交点的纵、横坐标的比值表示外电阻R1纵、横坐标的乘积即为外电阻所消耗的功率。

跟踪训练

l.一个T形电路如图11所示,其中电阻。另有一测试电源,电压为lOOV,则()。

A.当c、d端短路时,a、b之间的等效电阻是40Ω

B.当a、b端短路时,c、d之间的等效电阻是40Ω

C,当a、b两端接通测试电源时,c、d两端的电压为80V

D.当c、d两端接通测试电源时,a、b两端的电压为80V

2.将一电动势为E、内阻为r的电池与外电路连接,构成一个闭合电路。用R表示外电路的电阻,I表示电路中的电流,U表示路端电压,则下列说法正确的是()。

A.由U=IR可知,外电压随I的增大而增大

B.由U=Ir可知,路端电压随I的增大而增大

C.由U=E-Ir可知,电源的输出电压随电流I的增大而减小

D.由可知,回路中电流随外电阻R的增大而减小

3.在如图12所示的闪光灯电路中,电源的电动势为E,电容器的电容为C。当闪光灯两端电压达到击穿电压U时,闪光灯中才有电流通过并发光,当闪光灯正常工作时,会周期性短暂闪光,则可以判定()。

A.电源的电动势E一定小于击穿电压U

B.电容器所带的最大电荷量一定为CF

C.闪光灯闪光时,电容器所带的电荷量一定增大

D.在一个闪光周期内,通过电阻R的电荷量与通过闪光灯的电荷量一定相等

4.如图13所示,电源的电动势E=12V,内阻r=3Ω,Ro=1Ω,直流电动机的内阻Ro'=1Ω。当调节滑动变阻器R1时可使甲电路的输出功率最大,当调节滑动变阻器R2时可使乙电路的输出功率与甲电路相同也最大,且此时电动机刚好正常工作(额定输出功率Po=2W),则使电路输出功率最大的R1和R2的值分别为()。

A.2Ω,2Ω

B.2Ω,1.5Ω

C.1.5Ω,1.5Ω

D.1.5Ω,2Ω

5.如图14所示,直线①表示某电源的路端电压与电流的关系图像,曲线②表示该电源的输出功率与电流的关系图像,则下列说法中正确的是()。

A.电源的电动势为50V

B.电源的内阻为

C.电流为2.5A时,外电路的电阻为15Ω

第9篇:欧姆定律之间的关系范文

如何激发学生的学习兴趣培养学生的角色意识?笔者主要从电工电子教学实践中常用的教学方法:启发讨论法、理论实际互换法来阐述如何激发学生学习兴趣,聚焦课堂教学。

一、展现个性教学,激发学生兴趣

引言是引起学生注意、激发学习兴趣、形成学习动机、明确学习目标和建立知识间联系的教学活动方式。引言运用得恰当是上好一堂课的重要因素之一。

(一)提问——复习法

《电工基础》是一门理论性强、抽象、不易被学生接受的课程。恰当提问,通过复习的方式便可达到“温故而知新”的目的,逐步启发学生,顺其自然地引入新课。笔者讲授“谐振电路”一课时,有针对性地提出如下一系列问题:RLC串联电路的电流及电流与电压之间的相位差的计算方法;电感性负载与电容并联的电路的总电流及总电流与电压之间的相位差的计算方法;这两个电路中的电抗值的变化对电路计算的影响。这样既复习了已学知识,又为新课打下坚实的基础。

(二)演示——议论法

职高学生学习能力差、基础薄弱、形象思维强、抽象思维弱,他们对生动、形象、具体的事物易记住。一边进行演示实验,一边发问,师生通过观察现象、相互议论引入新课题。这样可以直观地激发学生思维,使其得到初步的感性认识。再通过教师讲解,能使学生的感性认识和理性认识融为一体。笔者讲授《电子技术基础》的“PN结的单向导电性”、“晶闸管的可控单向导电性”等课时笔者均采用此法。

(三)习题——延伸法

先通过对已掌握的知识点习题的练习,再将知识延伸,把新课的习题布置给学生作为悬念。这样可将学生的思维引导到新课上来,自然会集中他们的注意力,使得新课的教学很好的开展。笔者在讲授《电子技术基础》课程的“加法、减法运算电路”一节课时,先让学生们计算“反相、同相比例运算电路”的习题,再通过电路变换要求学生们给出结果,这显然无法回答。但是对教师提出的问题却产生了很大的兴趣,对新课内容产生了极强的求知欲。

二、运用启发讨论 激活学生思维

“启发讨论法”不同于传统的“讲述法”。它的基本做法是围绕教材的中心要求,设计一系列互相联系而又不断深化的问题,激活学生的思维,组织学生进行分析和讨论,引导他们得出正确的结论。并在此基础上进一步组织学生继续探讨,不断巩固和扩大学生的认识,把整个教学过程变成培养他们的分析问题和处理问题的能力的过程。

笔者在讲授《电工基础》课程的“闭合电路的欧姆定律”一节课时,提出“为什么在实际电路中测得的电源电压值略小于它的电动势?”一石激起千层浪,激发了学生的兴趣和调动他们的积极性。接着抓住要害,深入讨论。提出“什么是全电路?”“电荷为什么会沿着回路循环流动?”“在闭合电路中电源内部和外部发生了哪些化学的和物理的过程?”等等一系列的问题,为论证闭合电路的欧姆定律创造条件。最后画龙点睛,引出结论。可喜的在提出“从能量守恒的角度看,非静电力做功所形成的E和电场力所形成的电势降落U之间,应该有什么样的关系”学生即可答出:E=U外部 +U内部,再考虑部分电路的欧姆定律,得到E=IR+Ir。接着继续深入,提高认识。提出“比较部分电路的欧姆定律和全电路欧姆定律的区别和联系?”等等,使定律运用到实际生活的问题上来。最后似尽非尽,留有余味。提出“什么是损耗功率?什么是消耗功率?”等等问题,把学生引向另一个新的天地,为新的学习埋下伏笔。

通过运用“启发讨论式”教学方法,有利于学生思维能力的锻炼和培养,有利于学生牢固的掌握基础知识,以提高课堂教学的效率。

采用此法教学时要注意几个问题:①注意对个别学生的辅导;②留出足够的时间给学生自己归纳小结;③教师要对本课的内容做出适当的总结。

三、互换理论实际 锻炼学生能力

(一)理论到实际

电子电工专业学科中的许多教学内容是我们日常生活中经常遇到的,只不过学生们没有正确运用电子电工基础知识去理解它。因此,在讲这些内容时,尽可能与实际生活中的实例联系起来,让学生易于理解,学得轻松。在《电工基础》中讲授“电源的端电压与负载电阻之间的关系”一课时,笔者就结合家中的电灯有时在白天和晚上不一样亮这一生活实例告诉同学们,负载使用越多,总电流就越大,内阻上消耗的内压降也会增大。所以,电源的端电压就会减小,电灯也就会变暗。从而,学生们就能很好地理解电源端电压与负载之间的关系了。

(二)实际到理论

对日常生活中已经存在的产品进行理论研究,从而可达到既了解社会相关行业的动态又能使自己的理论知识更加巩固与灵活运用。当然这需要学生要有一定的理论基础,同时对产品的科技含量要有一个先低后高、对产品的组成要有先简后繁认识的过程。比如:拿“音乐彩灯控制器”为例,通过演示操作、观察现象、电路分析等过程,既可把《电子技术基础》课程已学的“可控硅”章节做一全面的知识总结和渗透,又加深学生的创造欲望,使学生的创造能力得到培养。