前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的欧姆定律及其应用主题范文,仅供参考,欢迎阅读并收藏。
关键词:欧姆定律;教学思考;教学研究
一、在欧姆定律教学过程当中,学生经常会遇到的问题
物理学科作为一门科学类学科,其教学内容通常比较枯燥,部分学生表示学习比较费劲,如何能让学生彻底明白和消化欧姆定律,是教师需要考虑的问题。教师可制订相关学习计划,针对不同层次的学生制订适合的学习计划。教学中的重点:电流、电压、电阻等相关知识点,一定要重点讲解以便学生掌握,将理论知识与动手实践结合起来,让学生在实践中加强对实验中的仪器和知识点的把握。
二、让学生明白欧姆定律的主要内容即电流、电压、电阻三者之间的关系
欧姆定律作为初中物理电学的基础,在初中教学之中只涉及部分电路,只有充分掌握了欧姆定律才能进一步学习电学部分的相关理论分析和计算。欧姆定律即阐述电流、电压、电阻三者之间相互关联的关系,教师在实验当中引导学生自己推算出电压、电阻、电流三者之间的关系,从而引出欧姆定律,让学生的记忆更加清楚。演示实验完成后要让学生自己动手,加深理解。
掌握基础定律知识后,教师则应当引导学生分析三者之间变化的问题,即电流是随着电阻与电压的变化而改变。在欧姆定律例题分析中比较常见的问题是多个变量的问题分析,教师要引导学生分析,运用一不变二变的方法来进行问题分析。由于初中学生的理解水平有限,且电压、电流、电阻的概念比较抽象,教师可借助多媒体教学工具,利用相关教学短片帮助学生理解。将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”,并且引导学生明白电阻是导体自身的特有属性,电阻的大小是受到温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,电阻不会随着电流或者电压的大小改变而改变,只是运用电压和通过的电流比例数值表达起来比较方便。
很多学生在学习欧姆定律之后,错误地以为电阻是受电流与电压影响的。相关教师一定要及时纠正学生的错误理解,教师在做演示实验时,需要让学生明白研究方法。运用控制变量法来研究,如电阻不变,研究电流与电压之间的数量关系;电压不变,来分析电阻与电流之间的量变关系,并且要直接将实验方法演示给学生看,从而加深学生的理解。
三、让学生一带一,提高学生掌握程度
不同的学生对欧姆定律的掌握程度不尽相同,教师可将成绩优秀的学生与成绩较差的学生进行分组,形成学习氛围较好的学习小组。采取团体合作的方式来帮助学生学习,有些学生面对老师和面对同学学习效果也不同。学生相互之间的沟通比较方便,理解能力也大体相同,进步速度也相对较快,教师从一旁进行指导。让学生在掌握了基础的相关知识以后,教师再进行分析,让学生充分掌握后再进行巩固提高,能提高举一反三采取多方面思维的能力。学生之间相互讨论,也能形成良性的竞争式学习,另外树立学习的榜样,也能从心理上鼓励学生主动学习,帮助学生产生学习兴趣和学习积极性。并且让学生不定期进行交换学习,以促进学生的整体学习水平。这样既能促进学生相互之间学习进步,又能培养学生团结合作的精神。
总之,欧姆定律作为电学的基础,学生必须真正掌握该定律,教师在实际教学过程当中,应该对物理教学内容进行细化和具体化,让不同层次的学生群体都能充分掌握。此外,还要引导学生在思维方面和动手实践方面进行改进,并且从中归纳出一些行之有效的教学方法,从而让学生更好地掌握欧姆定律的基础理论,为以后的学习做好铺垫,提高相关教学任务的质量,在实际教学过程当中,注重培养学生的动手实践能力、案例分析和其他方面解决问题的能力,让学生能够掌握控制变量法。同时要培养学生积极探索事物本质的科学精神,切实提高学生的物理综合素质。
参考文献:
[1]宣小东.对现行教材中欧姆定律教学设计的一些思考[J].物理教学探讨,2005(3).
[2]许忠林.初中物理欧姆定律教学中常见的问题及对策研究[J].成才之路,2015(9).
[3]符东生.关于初中“欧姆定律”教学的思考[J].物理教学,2014(8).
[4]王存香.《欧姆定律》教学思考[J].数理化解题研究,2014(5).
重点设计简单的电路、串联和并联电路中的电流、电压关系、探究影响电阻大小的因素、滑动变阻器的使用方法和变阻的判断、欧姆定律、测量电阻的阻值等。
难点对知识的考查已经从知识型转向能力型,侧重于对科学探究过程、研究问题的科学方法的考查。从知识点看,围绕欧姆定律展开的各种题型仍是命题的焦点。
例1 (2007年浙江省丽水市)小雯设计了一个测量物体重力的“托盘秤”,如图甲是原理示意图,其中的托盘用来放置被测物体,OBA是可绕O点转动的杠杆,R1是压力传感器(其电阻值会随所受压力大小变化而变化,变化关系如下表),R0为定值电阻,V为显示重力大小的仪表(实质是一个量程为0~3V的电压表)。已知OB:OA=1:2,R0=100Ω,电源电压恒为3V(忽略托盘、杠杆及压杆的重力)。
(1)托盘上没放物体时,压力传感器R1的电阻值是Ω。
(2)当托盘上放被测物体时,电压表的示数如图乙所示,则此时压力传感器R1上的电压是多少?
(3)第(2)题中被测物体的重力是多少?
解析(1)由表中压力与电阻的关系可知,当托盘上没放物体,即压力为0时,R1的电阻值是300Ω。
(2)由图可知,R0和R1串联,电压表串联加在R0两端的电压,根据串联电路的电压关系知,加在R1两端的电压为:U1=U-U0=3V-2V=1V。
(3)根据串联电路的电流规律及欧姆定律,I1=I0=U0/R0=2V/100Ω=0.02A
R1=U1/I1=1V/0.02A=50Ω
查表得:F=250N
Gl×OB=Fl×OA
G=Fl×OA/l×OB=250N×2/1=500N
答案(1)200Ω (2)1V(3)500N
点评从近年中考命题来看,电学创新试题有以下特点:试题由知识立意转向能力立意;试题联系实际,设置的情景较新(如油量表、测风仪和压力秤的制作及使用等);重视知识形成过程和科学方法的考查。预计今后的中考仍将以能力考查为主,题型将会更灵活,开放设计性问题和联系实际的题目会增多。
二、电功、电功率和关系、电和热关系及其应用
重点 电能的意义、电能表的使用、电功与电功率的概念和单位、计算公式和应用、探究小灯泡电功率、电和热关系及其应用等。
难点试题情景性、灵活性较强,目的很明显,不要求同学们死记硬背,而是注重知识的灵活运用。对实验的考查也加大了力度,如探究方案设计和评价、数据的分析处理能力等要求较高;电力综合和电热综合,以往的中考试题中,这类题目的计算难度较大,主要是重计算。而近年来,这种命题思想已彻底改变,计算只是作为解决身边实际问题的过程中的一个方式而已。真正运用的知识并不难,难的是如何根据题目提供的信息去提取、收集、整理信息,并得出结论,对考生的创新能力和实践能力要求高。
例2 (2007年山东省济宁市)下图是家庭常用的电热水壶。
(1)结合你对电热水壶的了解,就电热水壶的结构和使用过程中出现的一些现象,提出一个与物理有关的问题,并给出简要回答。
示例:问题:用电热水壶烧水时,壶嘴为什么冒白汽?
答:是水蒸气从壶嘴冒出后,遇冷液化形成小水珠的缘故。
问题:
答:
(2)暑假里的一天,李红去商店购买电热水壶,售货员给他了一份推销××牌电热水壶的宣传广告,其内容如下:
请你根据上面提供的信息,计算:
①电热水壶正常工作时的电阻是多少?
②电热水壶正常工作3分钟消耗多少电能?
③请你估计本地夏季自然界中水的温度为_________℃ ,根据你的估计值,若将一壶水烧开需要吸收多少热量?[c水=4.2×103J/(kg・℃ )气压为1标准大气压]
④根据上述计算结果,请你对上述宣传广告中“电热水壶的优点”有关内容作出评价。并给消费者提一条有益的建议。
解析题目注重考查了同学们的开放性解题意识、利用所学知识辨别真伪、是非的能力。是一道既考查知识、又培养能力的综合试题。(1)围绕电热水壶的制作材料、使用注意事项等方面提问。(2)正确估计夏季水温是解答本题的难点与关键;作评价与提建议一定要注意有理有据、合理恰当。
答案⑴①用电热水壶烧水为什么不能灌的太满?因为水热胀冷缩,水受热膨胀溢出有危险。②电热水壶的提手为什么用胶木的?因为胶木是绝缘体和热的不良导体。③电源插头处为什么用较好的绝缘材料?防止漏电等。
⑵ ① 电热水壶的额定功率P=1000W额定电压U=220V由P=U2/R得:R=U2/P=(220V)2/1000W=48.4Ω
② 电热水壶工作3min消耗的电能:W=Pt=1000W×3×60s=1.8×105J
③ 估计的水温只要在10℃~35℃之间皆可
一壶水的体积V= 2L=2.0×10-3m3
水的密度ρ=1.0×103 kgm3
一壶水的质量m=ρV
=1.0×103kgm3×2.0×10-3m3
=2kg
若估计的水温按20℃,用这种电热水壶烧开一壶水需要吸收的热量为:
Q=cm(t2- t1)=4.2×103J(kg・℃) × 2 kg ×(100℃ - 20℃)= 6.72×105J(水的初温取值范围:10℃~35℃,吸收的热量范围:(7.56~5.46)×105J均为正确)
④ 评价电热水壶3min内产生的热量Q=W= 1.8×105J,该热量远远小于烧开一壶水所用的热量(或电热水壶3分钟消耗的电能远小于烧开一壶水需要的热量),所以3分钟不可能将水烧开,此宣传广告不可信。
建议请消费者慎对宣传广告,购买前要科学分析、充分了解后再买。答案合理即可。
高二上学期知识点总结
第一章静电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.6010-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=B,UAB=WAB/q=-EAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)}
10.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106F=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.6010-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
第二章、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值()}
3.电阻、电阻定律:R=L/S{:电阻率(?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(),r:电源内阻()}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+RxR真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)R真
选用电路条件RxRA[或Rx(RARV)1/2]
选用电路条件RxRV[或Rx(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件RpRx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件RpRx
注1)单位换算:1A=103mA=1061kV=103V=106mA;1M=103k=106
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联的总电阻大于任何一个分电阻,并联的总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
第三章、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:LB){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=m2r=mr(2/T)2=qVB;r=mV/qB;T=2(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料
第四章、电磁感应
1.[感应电动势的大小计算公式]
1)E=n/t(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的变化率}
2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
3)Em=nBS(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2/2(导体一端固定以旋转切割){:角速度(rad/s),V:速度(m/s)}
2.磁通量=BS{:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
4.自感电动势E自=n/t=LI/t{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),I:变化电流,?t:所用时间,I/t:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106H.(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。
第五章、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsint电流瞬时值i=Imsin(=2f)
2.电动势峰值Em=nBS=2BLv电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2;I1/I2=n2/n2;P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损=(P/U)2R;(P损:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位::角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:电=线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
物理可以说是高中所有学科中最难的一科,因为高中物理不仅知识点多,需要理解的知识也很多,下面给大家分享一些关于高三物理知识点小归纳,希望对大家有所帮助。
高三物理知识点11.光的直线传播
(1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证。
(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小。
(3)日食和月食:
人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即"伪本影")能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食。
2.光的反射现象---:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象。
(1)光的反射定律:
①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧。②反射角等于入射角。
(2)反射定律表明,对于每一条入射光线,反射光线是的,在反射现象中光路是可逆的。
3.平面镜成像
(1)像的特点---------平面镜成的像是正立等大的虚像,像与物关于镜面为对称。
(2)光路图作法-----------根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。
(3)充分利用光路可逆-------在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。)
4.光的折射--光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射。
(2)光的折射定律---①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧。
②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数。(3)在折射现象中,光路是可逆的。
5.折射率---光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr。
某种介质的折射率,等于光在真空中的传播速度c跟光在这种介质中的传播速度v之比,即n=c/v,因c>v,所以任何介质的折射率n都大于1.两种介质相比较,n较大的介质称为光密介质,n较小的介质称为光疏介质。
6.全反射和临界角
(1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射。
(2)全反射的条件
①光从光密介质射入光疏介质,或光从介质射入真空(或空气)。②入射角大于或等于临界角
(3)临界角:折射角等于90°时的入射角叫临界角,用C表示sinC=1/n
7.光的色散:白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七种色光的光束,这种现象叫做光的色散。
(1)同一种介质对红光折射率小,对紫光折射率大。
(2)在同一种介质中,红光的速度,紫光的速度最小。
(3)由同一种介质射向空气时,红光发生全反射的临界角大,紫光发生全反射的临界角小
高三物理知识点21.电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。
(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
2.磁通量
定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb
求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。
3.楞次定律
(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的理解
①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
4.法拉第电磁感应定律
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt
当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。(1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。(2)公式的变形
①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt。
②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt。
5.自感现象
(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。
(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。
高三物理知识点31.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA[或Rx>(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp
注:
(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串_阻大于任何一个分电阻,并_阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率_,此时的输出功率为E2/(2r);
一、挖掘教材内容,利用教材对学生进行爱祖国,热爱科学和献身科学事业教育。
物理教材中包含了许多可以对学生进行爱祖国,热爱科学和献身科学教育内容。如:牛顿的忘我工作,勤奋和悉心钻研精神;安培的刻苦学习、专心致志。欧姆的坚持不懈精神;法拉第的高尚品质和致力于科学研究精神。从我国古代指南针、地动仪、火箭的发明,到现代的“两弹一星”、“神舟号”成功收回以及“嫦娥一号”绕月。教师应善于挖掘利用这些辉煌的科学成就激发学生民族自豪感和为科学而学习的责任感。同时,借助生活案例,用浅显的语言,把生活与书本融通起来,从而达到“化简”教材的目的。用知识的魅力去影响学生,提高学生学习科学知识的积极性。
二、物理课的教学应贴近学生的生活,切中他们的脉博,及时了解学生学习的情况,不断强化学生的学习兴趣,调动学生学习的积极性和主动性。
物理学研究的是自然界最基本的运动规律,而自然界中的物理现象蕴藏着无穷奥秘。让学生从身边熟悉的生活,现象中探究并认识物理规律,同时将学生认识到的物理知识和科学研究方法和社会实践及其应用结合起来。让他们体会物理在生产和生活中的实际应用的价值,这不仅可以增加学生学习物理的乐趣,而且还将培养学生良好的逻辑思维习惯和科学探究能力。因此教师应从学生的亲身体验来提高课堂教学效果。
从生活中获取的经验,学生感受比较深。根据学生的这种心理特点,在物理的教学过程中,把学到的物理规律,力求使之贴近生活,去解释日常生活中遇到的现象,把物理规律同学生的生活经验对号入座。这样即可以加深学生对所学规律的理解,又会使学生觉得物理知识非常有用,从而激发出对物理的浓厚兴趣。例如:在讲授分子扩散现象时,可以先给学生讲一个生动的贴近生活的故事:中国的茅台酒在参加国际评酒会时,国外参展的酒,由于其包装精美,受到与会厂商、官员青睐,而中国的茅台因包装粗糙无人问津。这时中国外交官急中生智,立即将一瓶茅台摔在地上,此时展厅内酒香飘逸,从此茅台酒驰名中外打入国际市场,给国家带来了丰存的经济利益,接着问:“飘逸的酒香怎么来的?”引入所讲的内容。接着让学生举出日常生活中见到的扩散现象,在教师的引导下归纳出扩散的概念。最后利用学生举出的日常生活中最熟悉的墙角堆放的煤染黑墙壁的例子,启发学生扩散现象是发生在所有物体之间的。再例如:能的转化和守恒定律是物理学中最重要的规律之一,但比较抽象,在教学中可多举一些学生熟悉的例子进行解释,如冬天热水泡脚,能的转移。双手相互摩擦做功,双手觉得暖和,能的转化。太阳能热水器将太阳能转化为热能,煤燃烧将化学能转化为热能。这些都是生活中最常见的例子,但放到这里就具有很丰富的物理知识,把抽象的变成简单易懂的。
三、对学生进行情感教学
1、在中学物理教学中实施情感目标,首先要面向全体学生,使每个学生的兴趣,爱好、特长、个性都得到和谐充分发展,把传授知识与情感有机结合起来。其次要激发学生学习兴趣,开发智力、培养学生学习的自觉性、使学生感到学习又艰苦又愉快。
2、创设物理情境,激发学生学习兴趣
教学中充分利用演示实验,学生随堂实验和分组实验,小实验和小制作,课本的封面、插图和漫画、想想议议、阅读材料、科学家的故事、教学挂图和模型带趣味性的物理问题去吸引学生,培养学生的学习兴趣,让学生在充满乐趣中掌握知识。
3、注重教学艺术,改进教学方法,激发学生思维的积极性。
4、鼓励性提问,注重对学生作业、测试作业适时肯定,成立物理兴趣小组,使学生表现自己,鼓励学生参加小制作、小发明和社会实践活动,鼓励学生对老师提建议,从而激发学生的上进心,自尊心。
5、建立良好的师生关系。
教师在课堂感情要真挚,教态和蔼;课后要关心学生的学习和生活,尊重和信任学生,平等的对待每一位学生,对差生更要关怀备至。这样学生才会把老师当作知心朋友,他们才会把心里话,真实的教学信息告诉教师。
四、重科学探究,提倡学习方式多样化
国际物理教育委员会前主席焦塞姆说:“最好的老师,是让学生知道他们自己是自己最好的老师。”学生在探究性学习中不仅能着重产生浓厚的学习兴趣,而且还能感受到自己的失败与错误,逐步走向正确,真正体会到成功的喜悦。
教师的首要任务在于营造生动活泼的教学气氛,使学生形成探求创新的心理愿望和性格特征,教师在备课时首先要考虑为学生创设探索情境通过创设与教材内容有关的情境,要精心设计物理概念和规律的形成过程和应用过程,形成“参与体验内化-外延”的“科学探究”物理课堂教学模式。下面以欧姆定律教学为例。
1、创设情景,提出问题,科学猜想
以调光台灯切入,问:调光台灯是调节了电路里的什么物理量使灯的亮暗发生变化的?再通过演示实验观察电流的变化与灯亮暗变化的关系,问:“电流的变化与哪些因素有关?”鼓励学生大胆猜想,电流与电阻、电压有关系。这样就确定研究方向。
2、引导讨论,设计方案
启发和引导学生设计研究解决问题的方案,先应用控制变量法设计总体方案:控制电阻不变,研究电流与电压的关系;控制电压不变,研究电流与电阻的关系。如何研究?再进行局部设计:由学生小组讨论、设计电路,让学生交流自己的设计,并评价他人的设计,以器材的作用和选择加以讨论。
3、学生操作,实施方案
让学生相对独立地进行实验操作、采集数据。教师地学生的操作技能、仪器使用上给予帮助。
4、分析讨论,得出结论
从实验得到的两组数据引导学生用计算和图像分别分析电流与电压、电流与电阻的关系;再进行综合,得到结论。
5、反思应用迁移
关键词:电磁;教学方法;学科体系
中图分类号:G712 文献标志码:A 文章编号:1674-9324(2014)17-0064-02
一、电磁学
电磁运动是物质的一种基本运动形式,电磁学的研究范围是电磁现象的规律及其应用。其具体内容包括静电现象、电流现象、磁现象、电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,在教学实践中,应从以下几个方面来认真分析处理教材。
1.电磁学的两种研究方式。整个电磁学的研究可以分“场”和“路”两个途径进行,这两种方式在中职教材里均有体现。只有在明确它们各自的特征及相互联系的基础上,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。场的方法是研究电磁学的一般方法。场是物质与物质的相互作用的特殊方式。中职汽车电气设备构造与维修教材中的电磁学部分完全可用场的概念统帅起来,组成一个关于场的系统,该系统包括中职教材电学部分的各章内容。“路”是“场”的一种特殊情况。可以这样理解,整个教材结构是以“路”为线的大骨架,其思路可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。“场”和“路”之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的,而“场”是电磁运动的实质,因此可以这样去定义即“场”是实质而“路”是方法。
2.教学知识规律。教材知识内容可归结为物理范畴。物理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系。物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来。物理定律的形成,也是在物理概念的基础上进行的。但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性。该部分内容所遵循的是电学部分的重要物理规律即库仑定律。库仑定律的实验是在空气中做的,其结果跟在真空中相差很小。其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况。在物理学范畴中,恒定电流是重要的物理规律。它的内容有欧姆定律、电阻定律和焦耳定律。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系,电阻是电路的物理性质,适用于温度不变时的金属导体。“磁场”这一部分内容阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念。
“电磁感应”这部分内容,重要的物理规律是法拉第电磁感应定律和楞次定律。在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线。本部分以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础。电磁感应的重点和核心是感应电动势。运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的。
“电磁振荡和电磁波”内容是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步。
3.电磁场物质属性的表现,使学生建立世界是物质的观点。电现象和磁现象总是紧密联系而不可分割的。大量的科学实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其他电荷有力的作用。运动电荷的周围除了电场外还存在着另一种场――磁场,磁体的周围也存在着磁场。磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。现在的科学实验和广泛的社会生产实践完全肯定了场的客观存在,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。运动的电荷(电流)产生磁场,磁场对其他运动的电荷(电流)有磁场力的作用。所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的。麦克斯韦用场的观点分析了电磁现象并取得如下结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场。按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场。电磁场由近及远的传播就形成电磁波。从场的观点来阐述路即电荷的定向运动形成电流。产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场。导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷。当导体中电势差不存在时,电流也随之而终止。
二、学科体系的系统性贯穿始终,知识学习与智能训练融合于一体
1.场的客观存在及其物质性是电学教学中一个极为重要的问题。电场强度、电势、磁场磁感应强度是反映电、磁场具有物质性的实质性概念。电场线、磁感线是形象地描述场分布的一种手段,要进行比较,找出两种曲线的共性和区别以加强对场的理解。
2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用。在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等。场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度。在电场中用电场力做功,说明场具有能量。通常说电荷的电势能是指电荷与电场共同具有的电势能,离开了电场就无从谈起电荷的电势能了。
3.演示实验和学生实验,使得抽象的概念形象化。把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练。安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力。从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上。
4.培养学生运用所学知识去分析和解决问题的综合能力。学习电磁学首先要抓住场和路这两个方面,解答综合题时,首先应搞清不同的运动形式或不同的物理过程是怎样联系在一起的。一般联系渠道有两条:一是力,二是能,从而形成两条解题思路。从力的角度考虑,全面分析受力情况(三种性质的力和电磁场力)并和运动状态的改变联系起来。从能的角度来考虑,紧紧扣住能的转化和守恒定律,从而引导学生认识能的转化和守恒定律的正确性和普遍性。经过教学实践使学生明确:能量的不同形式,就是物质运动的不同形式;能量由一种形式转化为另一种形式就是物质运动由一种形式转化为另一种形式;能量不能创生也不能消灭,就是运动的不可消灭性。
三、结语
一、抓住主干知识及主干知识之间的综合应用
在第二轮复习中,我们不可能再面面俱到,眉毛胡子一把抓,而且时间也不可能充许这样做。概括起来高中物理的主干知识有以下方面的内容:(1)力学部分:物体的平衡;牛顿运动定律与运动规律的综合应用;动量守恒定律的应用;机械能守恒定律及能的转化和守恒定律。(2)电磁学部分:带电粒子在电、磁场中的运动;有关电路的分析和计算;电磁感应现象及其应用。(3)光学部分:光的反射和折射及其应用。
在各部分的综合应用中,主要以下面几种方式的综合较多(在高考中突出学科内的综合已成为高考物理试题的一个显著特点):(1)牛顿三定律与匀变速直线运动的综合(主要体现在力学、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式)。(2)动量和能量的综合这是解决物理问题中一个基本的观念,一定要加强这方面的训练,也是每年必考内容之一;(3)以带电粒子在电场、磁场中为模型的电学与力学的综合,主要有三种具体的综合形式:一是利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场中的运动;二是利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动;三是用能量观点解决带电粒子在电场中的运动。(4)电磁感应现象与闭合电路欧姆定律的综合,用力学和能量观点解决导体在匀强磁场中的运动问题;(5)串、并联电路规律与实验的综合, 主要表现为三个方面,一是通过粗略的计算选择实验器材和电表的量程;二是确定滑动变阻器的连接方法;三是确定电流表的内外接法。对以上知识一定要特别重视,尽可能做到每个内容都能过关,绝不能掉以轻心。
二、选题要精,讲评要细,做题注意精细结合
选题要精,主要体现在新颖性、梯度性、适度性、针对性和创新性,在第二轮的复习中,可谓是模拟试题满天飞,如何样采用这些资料呢?首先对手中的资料要仔细的分析,在此基础上可在针对性地选取一些好题,采用拼盘的方式组织起来让学生练;(尽量不要用成套的原卷)。讲评要细,即重思路、善引导、做示范、细纠正。每次在讲评时,必须先对各题的得分情况进行具体的分析与总结(具体到每个同学的每个题的得分情况,及失分的原因),然后才能做到有的放矢,同时,要重视个别的指导,对问题较大或问题比较明显的单独进行点评。
三、量力而行,量体裁衣
在后阶段中的模拟题练习时,一般会遇到三种类型:一是有十足的把握能完成的;二是难啃的题,即有时反复看题都看不懂,很难进入物理情景的生题、难题,有时甚至通过老师的讲解都不明白的题;三是心中无底的题,即解答过程中能找得到一些头绪,好像能做得出,但心中又不能完全理解,不一定能得出正确的解答。对于以上三种题型,分别应以三种不同的对策应付。对第一类型:可以采取做过且过,主要目的在于复习、巩固,加深印象。 对于第二类题:只好舍痛割爱,得过且过,因为这类题可能已超出了你的能力水平范围,(在有些时候不得不承认自己的差距),否则会得不偿失,毕竟高考中这类题是极少数的,大部分仍是基础题,其中80%以上为中、易题,可谓退一步,海阔天空,而不会使自己钻死胡同,浪费大好时光。对第三类题的解决要作为重点对象,做到坚决不放过。往往这类题大都是隐蔽性强、有一定的情景迁移性,只要能正确把握问题的切入点,找到突破口,你就会恍然大悟,顿感柳暗花明又一村,原来也只是一些概念、规律的基本、直观的应用,(在信息题中这种类型占绝大多数)。一般在做完这样的题以后,更要反思,回味一番,分析自己是在哪些方面存在着欠缺,使自己能通过解答这一道题在知识上澄清了哪些概念的内涵和规律的外延,在分析、解决问题的能力和方法方面有哪些方面的体会和收获。这样才能使你的解题能力得到进一步的提高,做到会一题而懂一片,起到事半功倍的效果,这也是每个高三学生都希望达到的目标。
四、强化实验,注重实验设计、观察、操作和思维能力,提高实验技能
按照教育部制定的《高职高专教育基础课程教学基本要求》和专业培养的相关要求,数学教学须充分发挥数学知识在培养应用型技术人才中的作用,因此高职数学应该对不同专业的学生有不同的要求,不同专业的学生学习不同的知识和案例。但是纵观现在的高职数学教材,真正与专业相结合的案例教材很少。本文针对信息技术类专业,逐一分析每个章节理论知识所对应的专业案例,使我们的教材真正面向专业需求。
高职信息技术类专业的数学知识大概可以分为几个内容,极限与连续,导数与微分及其应用,不定积分与定积分及应用,常微分方程,线性代数,二元关系与函数,图论。下边依次对每个内容分析它的专业应用,通过案例来介绍知识在信息技术领域的应用,激发学生学习专业知识的积极性。
1极限与连续
本章内容主要要求掌握函数极限与连续、间断的定义及函数极限与连续相关性质,掌握一元函数极限的运算法则,能够应用极限运算法则求初等函数的极限,理解函数、极限与连续的几何应用。
极限与连续的应用引入斐波那契问题:[1]
我们通过“老鼠会”来说明斐波那契数列:有幼鼠一对,若第二个月它们成年,第三个月生下幼鼠一对,以后每月生产一对幼鼠,而所生的幼鼠亦在第二个月成年,第三个月生产另一对幼鼠,以后亦每月生产一对幼鼠,假设每产一对幼鼠必为一雌一雄,且均无死亡,试问k年后有多少对老鼠。按照规律可写出数列:
1,1,2,3,5,8,13,21,34,55,89,144,233,…
这是一个有限项数列,按上述规律写出无限项数列叫作Fibonacci数列,数列的通项可以用一个递推关系式写出,而老鼠最终会繁殖成多少就是对通项求极限的问题。
对于学信息技术专业的学生可以用C++程序来实现斐波那契函数,做到了一例两用。
2导数与微分及其应用
本章内容要求理解导数和微分的定义,掌握一元函数的导数和微分的计算公式,能运用求导法则和公式求函数的导数与微分。
这部分内容在信息技术领域中的应用包括:
(1)磁盘最大存储量。计算机上所有数据都存储在磁盘上,由操作系统把它格式化成磁道和扇区,磁道上的定长弧段可作为基本存储单元,根据其磁化与否可记录为0或1,这个基本单元就是bit,为了保障磁盘的分辨率,磁道宽度有最小值,每bit所占用的磁道长度有下限,那么一张存储区半径介于r和R之间的磁盘,最大存储量多大。这个问题必须具备专业背景的信息,根据专业知识列出磁盘总储量的表达式,然后就归结于求最值问题了。
(2)闭合电路负载电阻的最大功率。在闭合电路中,已知电源的内电阻、电动势,求负载电阻R为多大时功率P最大。这样的问题也是需要结合电学知识,根据欧姆定律得到目标函数,然后再求最值的问题。
3不定积分与定积分及其应用
本章要求理解不定积分的概念,熟悉不定积分的运算公式和法则,能快速准确地辨别函数的积分类型,并有针对性的实施积分运算,了解定积分的概念,掌握定积分换元积分和分部积分的计算要领,并会实施积分计算。
定积分在信息技术领域中的应用包括:
(1)交流电的功率。[2]对于交流电,其电流i(t)的大小和方向都随时间的变化而变化,因此i(t)是时间t的函数,通过电阻R所消耗的功率也随时间t的变化而变化。由于电流i(t)在一个周期T内消耗在电阻R上的功是非均匀变化的量,因此必须用定积分来计算。
(2)电场力对电荷做功问题。在点电荷电场中,一个电荷从一点移动到另一点,那么电场力对电荷所做的功也是一个定积分问题。因为电场力是与检验电荷与原电荷距离有关的一个变量,电场力所做的功是可加的,因此用定积分来解。
4一阶常微分方程及其解法
本章要求掌握一阶常微分方程的基本概念和求解方法,能够运用所学知识,认识和解决专业课程中微分方程的求解问题。对于本章内容的应用,主要有以下几方面:
(1)R-L闭合电路问题。由电阻R、电感L串联而成的闭合电路,简称R-L闭合电路,当电动势为E的电源接入电路时,电路中有电流通过,求电流与时间t的变化规律。这样的问题必须联系电学的相关知识,由基尔霍夫第二定律(回路电压定律)知道,回路总电压等于回路中的电动势,列出未知函数及其导数的关系式,这就是一个微分方程的求解问题。
(2)电容器充放电问题。电容器开始充电时和放电时,电容器上电压的变化规律问题,也要借助于基尔霍夫电压定律,即电阻上电压降+电容上电压降=外加电压降,列出未知函数电压及其导数的一阶线性非齐次微分方程,由通解公式求解。
5线性代数
本章要求掌握矩阵的概念和运算,会判断矩阵的秩,会求逆矩阵,能够求解一般的线性方程组。本章内容的应用我们引入如下实例:
(1)电路设计问题。电路是电子元件的神经系统,参数的计算是电路设计的重要环节,其依据来自两个方面:一是客观需要,二是物理学定律。输入电压和输入电流与输出电压和输入电流之间可以通过一个转移矩阵建立联系,利用欧姆定理和楚列斯基定律,我们可以得到串联电路和并联电路的转移矩阵。设计一个梯形网络,使其转移矩阵是A,这个问题就是借助于矩阵和线性方程组求解的。
(2)信息加密解密问题。在军事通信中,常常把字符(信号)与数字一一对应,如果直接按照它们的对应关系传输,很容易被敌方破译,于是必须加密,即用一个约定的加密矩阵乘以原信号矩阵,传输信号矩阵就会改变,收到信号的一方再将信号还原。如果敌方不知道加密矩阵,则很难破译。所以,根据收到的信号破译原信号的问题就会应用矩阵求逆的知识。
6二元关系与函数
本章要求掌握二元关系的概念,关系的运算及类型,理解函数的概念。本章内容的应用我们可以引入一个数学模型――夫妻过河问题。[3]
有三对夫妻一同旅行,途中需要渡过一条河。按照古代当地的规矩,妻子不能在其丈夫不在场的情况下与其他男人在一起,而渡河的小船至多只可以载乘二人(无船夫)。问如何安排渡河程序,使这三对夫妻既不违反当时的规矩,又能顺利地渡过河去。
这类数学模型一般被称为状态转移模型,通过建立允许状态集合,借助于有序数组和状态转移方程把问题抽象成数学问题解决。状态转移问题一般并不一定有解存在,有解时解法又不一定唯一。当解法不唯一时,我们应该比较不同解法的优劣,从而确定出最优解法。
7图论
本章要求掌握图的基本概念,图的矩阵表示,最短路问题和树的一些概念和性质。本章的应用主要包括:
(1)公路沿线电话线设计。例如:8个城市v0,v1,…,v7之间有一个公路网,现要沿公路架设电话线,要求如何架设,使电话线总长最小。公路网对应一个加权图,边的权数表示公路的长度,这个问题就是求图的最小树。
关键词:物理 电工 电磁学 学习
一、认识中学电磁学整体结构
电磁学包括静电现象、电流现象、磁现象,中学物理的重要组成部分,电磁学的研究范围是电磁现象的规律及其应用,其具体内容包括电磁辐射和电磁场等。电现象和磁现象,这两种现象总是紧密联系而不可分割的,在学习时应透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,不能孤立地、分散地学习。对此,应从以下三个方面来认真分析。
1. 电磁学的两种研究方式。
整个电磁学的研究是以“场”和“路”两个途径进行的,这两种方式均在高中教材里体现出来。只有明确它们各自的特征及相互联系,才能有计划、有目的地增强思维能力。
场的方法是研究电磁学的一般方法。场是物质,是物质的相互作用的特殊方式。中学物理的电磁学部分完全可用场的概念统帅起来:静电场、恒定电场、恒定磁场、静磁场、迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的内容。
“路”是“场”的一种特殊情况。中学物理以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。
“场”和“路”之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的。“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法。
2. 物理知识规律。
物理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系。
物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较,找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来。物理定律的形成也是在物理概念的基础上进行的。但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性。
库仑定律是重要的物理规律。库仑定律的实验是在空气中做的,其结果跟在真空中相差很小。其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系。电阻是电路的物理性质,适用于温度不变时的金属导体。
“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念。
“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律。在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线。本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础。电磁感应的重点和核心是感应电动势。运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的。
“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波,而对物质的波动性的认识提高了一步。
3. 通过电磁场在各方面表现的物质属性,在学习中建立“世界是物质的”的观点。
电现象和磁现象总是紧密联系而不可分割的。大量实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其它电荷有力的作用。运动电荷的周围除了电场外还存在着另一种场――磁场。磁体的周围也存在着磁场。磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。现在,科学实验和广泛的生产实践完全肯定了场的观点,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。
运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用。所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的。麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场。按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场。电磁场由近及远的传播就形成电磁波。
从场的观点来阐述路。电荷的定向运动形成电流。产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场。导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处。导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷。当导体中电势差不存在时,电流也随之而终止。
二、以“学科体系的系统性”贯穿始终,使知识学习与实验融合于一体
1. 场的客观存在及其物质性是电磁学学习中一个极为重要的问题。
场是学好电磁学的基础和关键。电场强度、电势、磁感应强度是反映电、磁场是物质的实质性概念。电场线、磁感线是形象地描述场分布的一种手段,要进行比较,找出两种力线的共性和区别以加强对场的理解。
2. 电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用。
认识场和受场作用这两类问题的联系与区别,比如场不是力、电势不是能等。场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度。在电场中用电场力做功,说明场具有能量。通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了。
3. 认真做好演示实验,使场抽象的概念形象化。
演示实验是非常重要的措施。把各种实验做好,不仅易于接受知识和掌握知识,也是基本技能的培养和训练。自己动手做实验,加强对实验现象的分析,从实验观察和现象分析中来发展思维能力。从物理学的特点与对中学物理教学提出的要求来看,应着力培养独立实验能力和自学能力,使知识的传授和能力的培养统一在使自己真正掌握科学知识体系上。
4. 培养综合运用所学物理知识去分析和解决问题的能力。