前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高层建筑结构的设计原则主题范文,仅供参考,欢迎阅读并收藏。
关键词:高层建筑;抗震;原则;注意问题
Abstract: With the increase in high-rise buildings, seismic resistant analysis and design is becoming more and more important. This paper combines personal experience on high-rise building structural design principle is analyzed, and the seismic design common problems were analyzed, and puts forward some corresponding methods and measures for improvement.
Key words: high-rise building; seismic; principle; attention problems
中图分类号:TU761.6文献标识码:A 文章编号:
1、高层建筑的概述
在古代人们就开始建造高层建筑,比如埃及的亚历山大港灯塔,高100 多米,为石结构。现代高层建筑发展迅速,在大中城市随处可见。高层建筑是指超过10 层的住宅建筑和超过24 米高的其他民用建筑。高层建筑可以带来明显的社会经济效益;首先,使人口集中,可利用建筑内部的竖向和横向交通缩短部门之间的联系距离,从而提高效率;其次能使大面积建筑的用地大幅度缩小,有可能在城市中心地段选址;第三,可以减少市政建设投资和缩短建筑工期。由于高层建筑的高度比较高,所以解决水平抗剪问题成为关键,而抗震是解决水平抗剪 问题的一个重要因素。然而对于不同的结构形式,同一设防烈度下,抵抗地震能力有很大区别,因此选择合适的结构形式对于高层建筑尤为重要。
2、高层建筑抗震结构设计的基本原则
2.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。③承受竖向荷载的主要构件不宜作为主要耗能构件。
2.2 尽可能设置多道抗震防线
①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。
②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。
③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。
④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。
2.3对可能出现的薄弱部位,应采取措施提高其抗震能力
①构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。
②要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。
③要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。
④在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
3、高层建筑结构抗震设计应注意的问题
3.1应重视建筑结构的规则性
结构的平面布置不规则、平面布局的刚度不均都会对抗震效果产生不利影响。因此,在高层建筑结构抗震设计中,不应采用严重不规则的设计方案。在高层建筑中抗震设计中,提倡平、立面布置规正、对称、减少偏心,建筑的质量分布和刚度变化均匀。以往震害经历表明,此种类型的建筑在地震时比较不容易受到破坏,容易估计出其地震反应,易于采取相应的抗震措施。
3.2对地基的选择
选择坚硬的场地土建造高层建筑,可以明显地减少地震能量输入,从而减轻地震的破坏程度。高层建筑宜避开对抗震不利的地段,当条件不允许时应采取可靠措施,使建筑在地震时不致由于地基失稳而遭受破坏,或者产生过度下沉、倾斜。 为了保证高层建筑的稳定性,要求基础要有一定的埋置深度。埋深基础四周土壤的被动土压力,能够抵抗高层建筑承受水平载荷所产生的倾覆和滑移。天然地基基础埋深为建筑高度的1/15,桩基基础埋深为建筑高度的1/18。针对地下室分缝处,应有500以上空隙用砂回填夯实;若地下室一面为开口,应保证开口以下至少2米以上覆土。
3.3结构的抗震性能
由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒。为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。
框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁、柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力。为了保证钢筋砼结构在地震作用下具有足够的延性和承载力,应按照“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。
3.4抗侧力结构和构件应设计成延性结构或构件
目前我国采用的传统抗震结构体系是延性结构体系,即适当地控制结构的刚度,但容许结构构件在地震时进入非弹性状态,并具有较大的延性,提高结构的耗能能力,以消耗地震能量,减轻地震作用,减小楼层地震剪力,使结构物裂而不倒。在施工时应采取软垫隔震、滑移隔震、摆动隔震、悬吊隔震等措施,改变结构的动力特性,减轻结构的地震反应。
3.5多道设防
多道设防,就是设有多道抗震防线,避免因部分结构的破坏而导致整个体系丧失抗震能力。一个好的抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接来协同工作。强烈的地震后往往伴随多次余震,倘若只有一道设防,在首次受到破坏后再遭余震,建筑结构将会因损伤积累而导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,并建立一系列分布的屈服区,主要的耗能构件应有较高的延性和适当刚度,以提高结构的抗震性能,尽量避免倒塌。
4、如何做好防范高层建筑抗震意识
4.1应当注意防震缝的设计,必须留有足够的宽度。
4.2平面形状或刚度不对称,会使建筑物产生显著的扭转,震害严重。
4.3凸出屋面的塔楼受高振型的影响,产生显著的鞭梢效应,破坏严重。
4.4高层部分和低层部分之间的连接构造不合理。
4.5框架柱截面太少,箍筋不足,柱子的延性和抗震能力不够而发生剪切破坏或柱头压碎。
4.6由于沿竖向楼层质量与刚度变化太大,是楼层变形过分集中而产生破坏。
4.7地基的稳定性问题要特别注意。
4.8伸缩缝和沉降缝宽度过小,碰撞破坏很多。
4.9不应在建筑物端部设置楼梯间,楼板有大洞口,因刚度不均匀而产生扭转。
4.10外纵墙门窗洞口过大,连梁尺寸太小,容易产生破坏。
4.11中间部分楼层柱子截面和材料改变或取消了部分剪力墙,产生刚度或承载力突变,形成结构薄弱层。
(1)高层建筑结构计算简图的合理化原则计算简图是计算高层建筑结构设计的基础,其合理性能直接关系到高层建筑的结构的安全性。由此可见在进行高层建筑结构设计时要坚持计算简图合理化原则,且高层建筑实际结构的节点不是单一的,故必须要将简图的误差控制在规范的范围内。
(2)高层建筑结构基础方案的合理化原则高层建筑的地质条件是高层建筑结构基础方案的设计参考依据。其结构基础方案的合理化要求对高层建筑的结构类型、施工条件、荷载分布情况、与邻近既有建筑物的关联性等因素进行综合考虑。高层建筑结构设计基础方案通常情况下要确保其能够最大程度发挥地基的潜力,高层建筑设计必须要具备相应的地质勘察报告。
(3)高层建筑方案的合理化原则高层建筑结构方案的合理化指的是高层建筑结构设计方案必须要与结构体系的结构形式的要求保持充分的一致性,同时要满足经济性的要求。结构体系的具体要求要保证具有简单性、受力明确性等,综合考虑工程设计的需求、施工材料、地理条件、施工条件等,同时还要兼顾建筑的暖气、水和电额的相互协调。
2高层建筑及超高层建筑结构抗震设计目标分析
高层建筑的抗震设计在整个建筑设计中具有重要的作用。在设计时要考虑到重现期大约为7度的地震,建筑物只能出现的损伤都可以忽略,在进行结构设计时要使结构的反应状态基本处于弹性反应状态。对于重现期与9度的地震水准较为接近的地震,在设计时要对最大地震的震动进行预计,并设计为在真正遇袭情况下能有效防止倒塌情况,并能够证实以下几点:
(1)对于结构中的所有的延性的构件,要保证其非弹性变形必须低于其变形能力;
(2)对于非延性破坏模式的结构部件,要求其对于力的需求要大于等于其名义上的强度;(3)对于超高建筑物或者较为复杂的建筑物的设计上,对于起到控制作用的构件还需要保证其在受到中等震级地震的振动下仍能够保持其自身一定的弹性。
3设计要点分析
(1)重视概念设计对于超高建筑结构设计以及复杂建筑结构设计上,要重视其结构概念的设计,在设计时要尽量提升建筑结构的规则性和均匀性;要确保结构的传力途径清晰和直接,尤其是结构的竖向和抗侧力传力的途径;在设计上包保证结构具有较高水平的整体性设计;设计时要将节能减排的置入,以建立合理的耗能机制,创建绿色建筑;在设计时要充分考虑到结构与建筑结构材料的利用率,确保形成较为完整的结构受力整体。这一设计过程的实现,得力于建筑师以及结构工程师之间的良好沟通交流,以更好的实现建筑和结构之间的统一。
(2)选择科学、合理的抗侧力体系大量研究表明,在设计时选择较为合理的结构抗侧力体系,能有效保证高层建筑以及复杂高层建筑的安全性。在选择时要注意结合建筑物的实际高度对结构体系进行选择;在进行建筑设计时要尽可能的确保结构抗侧力构件之间相互联结和组合;对建筑设计中可以根据多重抗侧力结构体系的具体情况进行设计,要综合分析每种结构体系的优点及适用性,对各种体系的贡献度进行合理的评估与评判。
(3)注重抗震设计在满足建筑的功能性的基础上,高层建筑和超高层建筑的重要设计环节就是抗震设计,该设计是建筑安全性较为重要的一步。在对高层建筑进行抗震结构设计时,建筑材料的选择一定要慎重,保证质量。大量研究表明,在地震时要减少能量的输入能够有效减少地震对高层建筑的损害。
要做到以下几点:
(1)在对建筑构件的承载力进行验收时要对建筑结构在地震作用下的层间位移限值实施较为有效的控制。
(2)在对高层建筑的具体工程项目进行设计时,要积极采取基于位移的结构抗震方法,对设计方案要进行定量的具体分析,确保结构的变形延性能够满足地震的预期要求。
(3)综合分析建筑构件的变形以及建筑结构的位移之间存在的精确大关系,有效确定构件的具体变形值。
(4)结合建筑物的实际情况,如建筑界面的应变分布以及建筑界面的具体大小具有针对性的分析,并结合其具体构建要求进行设计。
关键词:高层建筑;建筑结构;抗震设计;设计应用
中图分类号:TU97文献标识码: A
引言
地震作为最严重的自然灾害之一,一旦发生,就会给社会带来巨大的人员伤亡和经济损失。近几年来,国内外地震灾害频发,无情地剥夺了上百万人的生命。而这些伤害基本上都是由于建筑物的倒塌引起的,尤其是高层建筑。若在建筑结构的设计当中能加强抗震概念的设计,将会从一定程度上减小损失。因此,如何才能够提高高层建筑的抗震性能的概念设计已经成为了建筑行业研究的重点工作。
一、抗震概念设计
传统的结构设计理论为建筑结构设计提供了一些计算方法,但是这些方法主要是针对结构设计中的一些细节,而忽略了对整体结构的考虑。因此,传统的结构设计理论并不能完全地适用于高层建筑的抗震设计,照本宣科式的结构设计不能满足现代建筑物的要求。在高层建筑的抗震设计当中,设计师们都会融入概念设计。抗震概念设计是指根据以往的工程经验和地震灾害的发生情况,从整体上研究工程项目的抗震决策,包括使用材料的种类、抗震方案以及结构的内部构造等等方面。
二、高层建筑结构设计中抗震概念设计的意义
高层建筑结构设计中应该非常重视抗震概念设计,因为高层建筑结构非常复杂,当发生地震时具有动力不确定性特点,人们对地震时对结构认识的局限性,再加上材料性能和施工安装的变易性、模拟地震波的模糊性等因素,导致计算结果和实际之间具有很大的差异。简单的依赖数值计算获得结构并不能有效的解决高层建筑的实际抗震问题,尤其是地质特征的差异性原因,导致许多国家甚至是地区指定的抗震规范都有明显的差异。高层建筑结构抗震概念设计在依据数值计算的基础上,还增加了实践经验元素,并且结构概念设计甚至比分析计算更重要,使得这一抗震设计理念能够满足区域差别下从事高层建筑结构设计的实际需求。强调高层建筑结构设计中抗震概念设计的重要性,其目的是为了引起高层建筑结构工程是在进行建筑结构设计时,特别重视相应的结构规程以及抗震概念设计中的相关规定,从而摆脱传统的结构设计中只重视计算结果的误区,要求结构工程师严格的按照结构设计计算原则,再结合地区的抗震规范,以此保证高层建筑结构的抗震性能。
三、高层建筑结构设计中抗震概念设计的原则
(1)结构的整体性。在高层建筑结构中,楼盖的整体性对高层建筑结构的整体性起到十分重要的作用,其相当于水平隔板,不仅要求聚集和传递惯性力至各个竖向抗侧力的子结构,还要求这些子结构具有较强的抗震能力,能够抵抗地震作用,尤其是当竖向抗侧力子结构的分布不均匀、结构布置复杂以及抗侧力子结构的水平变形特征存在差异时,整个高层建筑就依靠楼盖使抗侧力子结构进行协同工作。
(2)结构的简单性。结构的简单性指的是结构在地震作用下具有明确、直接的传力途径。在高层建筑抗震设计规范中明确规定“结构体系应该有明确的计算简图与合理的地震作用传递途径”,只有结构简单,才能对结构的位移、内力以及模型进行分析,准确的分析出高层建筑抗震的薄弱环节,然后采取相应的措施,避免薄弱环节的出现。
(3)结构的刚度。结构的刚度和抗震能力水平在地震作用下是双向的,确定结构的刚度,然后合理的布置结构能够抵抗任意方向上的地震作用。通常状况下,地结构沿着平面上两个主轴方向都应该具有足够的刚度与抗震能力,结构的刚度不仅仅应该控制结构的变形,还应该尽可能降低地震作用对高层建筑结构的冲击,如果结构发生较大的变形,将会产生重力二阶效应,导致结构失衡而被破坏,降低高层建筑的抗震可靠性,因此,在抗震概念设计中,应该重视结构的刚度设计。
(4)结构的规则性与均匀性。高层建筑的竖向和立面的剖面布置应该规则,结构侧向刚度的变化应该巨晕,避免侧向刚度以及抗侧力结构承载力的突变。沿着建筑物的竖向,机构布置和建筑造型应该规则和相对均匀,避免传力途径、刚度以及承载力的突变,防止结构在竖向上的某一楼或者少数楼层之间出现薄弱的环节。
四、抗震概念设计在高层建筑结构设计中的应用
(1)抗震概念设计应该重视高层建筑的结构规律。在高层建筑的抗震概念设计应用中,应该对高层建筑的体型设计进行科学的修正,保证在质量、刚度、对称、规则上分布均匀,保证设计的整体性,避免局部出现刚度过大的问题。高层建筑的结构布局对抗震概念设计具有十分重要的作用,简单、对称的建筑在地震中的应力分析和实际反映很容易做到,并且能够达到相一致,但是在凹凸的立面与错层设计的高层建筑中,当地震发生时将会产生复杂的地震效应,很难做到对高层建筑抗震效果的最佳分析。因此,高层建筑的抗震概念设计应该重视结构的规律性。
(2)抗震概念设计在结构体系上的应用。高层建筑抗震结构体系是抗震概念设计的关键,抗震概念设计在结构体系上的应用依据高层建筑物的高度以及抗震等级选择合适的抗侧力体系,通过概念近似手算确定结构设计方案的可行性以及主要构件的基本尺寸。抗震结构方案选择的合理性,直接影响建筑抗震概念设计的经济性与安全性。合理的选择建筑结构体系,应该注意以下三个方面:其一,选择建筑结构体系时,应该对因为部分结构或者部分构件的破坏而导致整体建筑结构体系丧失对抗震能力或者重力荷载的承载能力,应该坚持抗震设计原则中的赘余度功能和内力重分配功能,这一原则的重要性在许多建筑物地震后的实际状况中都得到了很好的印证;其二,选择建筑结构体系时,不仅仅应该要求建筑体系的受力明确、传力合理以及传力路线,还应该有合理的地震作用传递途径和明确的计算简图,这些都应该和不间断的抗震分析相符合;其三,其中延性是建筑结构中的重要特性之一,结构体系的变形能力取决于组成结构的构件和连接的延性水平,提高结构构件的延性水平,是提高高层建筑抗震设计概念在建筑结构设计应用中的重点问题,通过采用竖向和水平向混凝土构件,能够增强对砌体结构的约束,当配筋砌体在地震中即使产生裂缝也不会倒塌或者散落,保证高层建筑早地震中不至于丧失对重力荷载的承载能力。
(3)抗震概念设计在结构构件上的应用。高层建筑抗震的实现需要各个构件的支撑,因此,抗震结构体系中的各个构件都必须具有一定的刚度与强度,并且还应该具有可靠的连接性。高层建筑的结构体系是一个多层次超静定结构,因此其抗震结构也应该设置多道抗震防线,这样在地震作用下,即使一部分构件先被破坏,剩余的构件依然具备支撑的作用,形成独立的抗震结构,承受地震力与竖向荷载。因此,合理的预见高层建筑结构先屈服或者破坏的位置,适当的调整构件的强弱关系,形成多道抗震防线,实现对高层建筑结构体系的合理控制,这是结构抗震耗能的一种有效措施,是建筑抗震结构概念设计的重要内容。
结束语
高层建筑的结构设计不仅仅是种技术,某种程度上更是一门艺术。无论什么设计,它都没有唯一的答案,只有通过不断的比较、研究,才能找到最优方案。这就要求设计师们不懈努力地去追求完善的设计方案。随着社会的发展,高层建筑的设计已经不能盲目地照搬课本上的规范和计算机程序,需要创新。总而言之,一幢建筑物,要想做到“小震不坏,中震可修,大震不倒”,就应该要做好文中所提到的几个重点。高层建筑物中的抗震结构设计使建筑结构的设计更加人性化,更加合理化。除此之外,抗震概念设计不仅拓宽了建筑结构设计的思路,同时还为高层建筑的设计提供了新的方向,在建筑行业当中发挥了重要的作用。
参考文献
【关键词】高层建筑;结构设计;扭转;受力性能;结构方案;计算简图
中图分类号:TU208 文献标识码: A
前言
高层建筑的出现是科技发展、社会进步、建筑行业提升的重要标志,当前,国家和城市发展越迅速,高层建筑的数量和层次就越高,很多大城市已经开始了超高层建筑的设计和施工,并已经逐渐成为一种社会和行业发展的趋势。在这样的趋势下,高层建筑结构设计工作就显得尤为重要,在设计工作中要通过科学的手段、统筹的方法和高超的技巧将设计的合理性、安全性和需要的广泛性和差异性有效地统合在一起,满足从行业到社会,从个人到集体,从需要到发展等各方面的需要。当前,各界为建筑行业提出了做好高层建筑结构设计的要求,因此,在高层建筑结构设计中要了解高层建筑结构的特点,注意设计中的要点,重点对高层建筑结构的扭转和受力性能进行关注,在坚持安全、质量和经济的原则下,提升高层建筑结构设计的水平。
一、高层建筑的结构特点
1、重视对待轴向变形。高层建筑中,由于竖向负荷较大的原因,可能会引起在柱中较大程度上的变形,从而对连续梁、弯矩产生比较大的影响,该影响包括两个方面:一方面是,会增大端支座负弯矩的数值或者是增大跨中正弯矩的数值,另一方面是,减小连续梁中间支座的负弯矩值。除了这两方面的影响外,还会影响预测构件的侧移和剪力,以及影响构件的下料长度,对于对构件的侧移和剪力的影响,将其和构件竖向变形相比较,就会得出较为不安全的结果;对于对预测构件下料长度的影响,可以采取根据计算轴向变形数值,然后针对性的对下料长度进行调整分配。
2、重要的高层建筑结构设计指标是结构延性。高层建筑和低层建筑的区别之一就是:在建筑结构方面,高层建筑的结构较柔和,同时也就保障在地震作用下高层建筑的变形更大。为了避免高层建筑在遭受较大冲击后,在进人高层建筑塑性变形阶段的前提下,高层建筑仍可以具有较强的变形能力,也就是避免高层建筑的倒塌,需要在高层建筑结构设计时采取恰当合理的措施,达到保障高层建筑结构具有应对较大冲击的延性。
3、高层建筑结构设计的决定性因素是水平荷载。一方面,对于大多数的高层建筑楼房来说,竖向荷载基本上是定值,而水平荷载,比如地震作用和风负载,荷载值随着高层建筑结构动力特性的不同而发生较大程度上的浮动变化;另一方面是,由于高层建筑楼房自身的重量和楼面引起的弯矩和轴力的数值,与建筑物的高度的一次方成正比,而水平荷载产生的倾覆力矩和引起的轴力与建筑物高度的二次方成正比。
三、高层建筑结构设计的要点
1、高层建筑的构造措施
高层建筑结构设计中要重点对剪力、压力、柱体等相关结构和特性进行强化,同时要加强弯力矩的防护,提高拉力的大小,提升构造梁的性能,要注意对薄弱部位的加强,特别重点考虑的构造要点有:延性、温度应力、薄弱层厚度,钢筋锚固长度,抗震结构层次等主要环节,要达到高层建筑结构的设计合理化,就必须做好上述构造方面的设计。
2、高层建筑结构的计算简图
计算简图是高层建筑结构设计和高层建筑结构计算时的中要基础,因此,需要选择适宜的高层建筑结构计算简图。在计算简图中要对高层建筑结构的刚节点和铰节点进行重点把握,同时要控制计算简图的误差,使其限定在高层建筑结构设计的允许范围中。在高层建筑结构计算简图的应以中要对构造的重点防护措施进行强化,这样有利于控制高层建筑结构的稳定。
3、高层建筑结构的方案
结构方案的经济性、科学性和合理性是整个高层建筑结构设计的关键,要采用高层建筑结构的合理形式和经济形式,这样可以使高层建筑结构得主要性能和要求达到相应的设计。在方案中要注意竖向和水平向的规则,同时,要注意在同一结构单元内不能应用同样结构体系和方式,以避免高层建筑结构出现问题。
4、高层建筑的基础方案
在高层建筑结构进行基础设计师要重点考虑高层建筑结构的荷载分布、高层建筑工程的地质条件、高层建筑的施工条件。设计高层建筑结构时要重点考虑到对地基潜力的挖掘,因此,在高层建筑结构设计阶段要对工程地质勘查报告的内容和技术参数进行重点了解,以便形成具有科学性和合理性的高层建筑结构基础方案。
四、高层建筑结构设计的基本要求
1、高层建筑结构设计的规则性
高层建筑结构设计应符合抗震概念设计的要求,应采用规则的设计方案,不应采用严重不规则的结构体系。高层建筑结构设计应该具备多道抗震防线;具有合理的承载力和刚度分布的结构水平和竖向布置,避免因扭转和突变效应造成局部薄弱部位。
2、高层建筑结构设计的平面规则布置
高层建筑结构平面布置需要能抵抗竖向和水平荷载,对称均匀,明确受力,传力直接,减少扭转的影响。在地震作用下,建筑的平面要简单规则,在风力作用下可以适当放宽要求。建筑的抗震设防要求建筑的平面形状宜对称、简单、规则,才能达到减震的目的。
五、高层建筑结构设计问题的防范和处理
1、高层建筑结构设计中的扭转问题
在进行结构设计时,我们需要建筑的三心尽可能汇于一点,即三心合一。高层建筑结构设计的扭转问题就是指建筑的三心在结构设计过程中未达到统一,结构在水平荷载的作用下发生扭转振动的效应。
2、高层建筑结构的受力性能
对于高层建筑物最初的方案设计,建筑师考虑更多的是应该是它的受力性能,而不是详细地确定它的具体结构。沉降缝两侧单元层数不同时,由于高层的影响,低层的倾斜往往很大,因此沉降缝宽度可按高层单元的缝宽要求来确定。
3、高层建筑结构设计中的其它问题
一是,剪力墙的墙肢与其平面外方向的楼面梁连接时,应采取在墙与梁相交处设置扶壁柱或暗柱,或在墙内设置型钢等至少一种措施,减小梁端部弯距对墙的不利影响。二是,对各抗震等级框支梁纵向钢筋的最小配筋率提高了要求,同时增加了最小面积配箍率的要求。三是,严格要求各抗震等级剪力墙在各种情况下的厚度与层高。四是,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。
六、结束语
综合全文,近些年我国的高层建筑建设行业迅速发展,而高层建筑结构设计是高层建筑建设行业的关键因素,高层建筑建设行业的进一步发展,使得对高层建筑结构设计质量的要求越来越高。高层建筑结构设计质量好坏直接影响到整个高层建筑是否具有安全性,直接影响到高层建筑建设行业是否达到可持续发展。本文从高层建筑结构设计的原则人手,对高层建筑结构设计的特点进行详细的概述,进而引出高层建筑结构设计中应该注意的问题,并对这些问题进行简单的概括。
[参考文献]
[1]蒋最.浅探高层建筑设计和城市空间合理化[J].城市建设理论研究(电子版)
关键词:现代;高层建筑;结构设计
中图分类号:TU208文献标识码: A
我国城市化进程的不断加快和土地资源短缺是推动高层建筑发展迅速的主要因素,随着人们生活、精神的需要,高层建筑结构趋于多元化、特色化发展,推动其结构设计和功能的开发。高层建筑结构设计分析是建筑技术施工的基础和前提,关系着建筑的安全与质量,因此,综合分析高层建筑的结构设计特点非常重要。
浅析高层建筑结构的体系构成
目前,根据我国建筑的技术条件,高层建筑的结构形式以钢筋混凝土为主。其结构体系主要有以下四种。
1.1框架结构体系
框架结构体系是高层建筑核心结构体系之一,是承载主要负荷的体系,由相互连接的不同材料的建筑构件组成的。在高层建筑中,该结构体系应用比较广泛,具有分隔维护作用强、灵活性好、施工简单等特点,是整个建筑的骨架。框架结构体系除了具有稳定建筑物内部结构的作用外,还具有联系协调其他各重要结构的作用。除此之外,框架结构还是混凝土等其他他附属结构从属支点。因此,设计高层建筑框架结构体系时,要结合建筑本身特点,科学设计,严格施工,保证结构体系的施工质量。
1.2剪力墙结构体系
剪力墙结构体系的形成是由于受力主体的构件是平面剪力墙,其单片剪力墙承载主要的荷载力,是高层建筑常用的建筑结构形式。剪力墙体系主要由钢筋混凝土构成,加之其结构形式产生的内部应力,使其具有较高的强度和刚度,能够很好地控制建筑物的水平力。剪力墙结构体系一般分为两部分,分别是高剪力墙及底墩剪力墙,两部分作用不同,前者是建筑楼层间的主要承力结构,为增强其刚度和强度,其墙体设计的很厚且墙根处常安装墙墩。后者一边高度较低,主要承担建筑物内楼梯的承载力。底墩剪力墙的设计要考虑多方面因素,如室内设计的美观,所以其厚度较前种薄,因此,为增强其承载力和强度,在底墩剪力墙内部设置加强钢筋。剪力墙结构体系属于弯曲型位移曲线的刚性结构,有较好的延展性和均匀传力性能,是保证高层建筑安全稳定的重要结构体系。
1.3 筒体结构体系
筒体结构体系范围比较广泛,一般将筒体结构用做抗侧力作用的都属于筒体结构体系,是空间跨度较大或超高层建筑的首要选择。筒体结构体系的应用是随着高层建筑技术不断成熟而迅速发展起来的,在筒体结构体系应用的初期,由于建筑设计技术的限制,其自身优势没有得到发挥,布置较死板,与其他结构不协调,未被广泛应用。随着建筑技术的不断发展,3D设计技术的广泛应用,筒体结构体系被优化,性能优势比较突出,在建筑中得到广泛应用。目前。高层建筑的筒体结构体系型式多样,筒体作为一种空间受力结构,包括实腹筒和空腹筒两种类型。实腹筒是一种三维竖向结构单体,由平面或曲面墙围成。空腹筒是由钢筋混凝土制成的密排柱或窗裙梁构成的,是主要的受力结构。筒体结构体系的广泛应用,保障了超高层建筑物的安全稳定和内部美观。
1.4框架与剪力墙混合结构体系
框架-剪力墙结构体系是将剪力墙科学适量的布置在框架结构中以适应不同功能要求的体系,该结构构成一种新受力形式,由框架及剪力墙组成两种抗侧力承载水平和垂直负载。框架一剪力墙体系的位移曲线呈弯剪型,该结构的侧向刚度大小由剪力墙的厚度设置决定,剪力墙的布置还可减小建筑物施工中的水平位移。由刚度较强的楼板和连梁共同工作组成的框架-剪力墙体系使整体结构承受的剪力明显降低且趋于均匀分布。在高层建筑施工过程中,必须保证剪力墙的刚性符合建筑标准,设计时协调好剪力墙与框架的衔接性。在高层建筑中,框架-剪力墙结构体系广泛应用在超高层建筑中。
高层建筑结构设计的基本原则与特点
2.1高层建筑结构设计的基本原则
现代高层建筑结构设计必须根据其功能需要遵循以下三个原则:首先,科学性原则。现代高层建筑的设计要以科学合理为基础和前提,与时俱进的同时,要端正态度,对建筑设计负责,应用科学的方法分析计算工程相关数据,合理规划设计方案,实现高层建筑的科学性。其次,实用性原则。现代高层建筑结构设计在考虑特色与创新的同时,还要充分考虑到其实用性原则。高层建筑设计要考虑其功能需求,优化配置设备和施工技术,实现建筑设计规划的经济实用与高效合理。最后,安全性原则。现代高层建筑最受人们关注的就是安全问题,在建筑结构设计时要着重考虑其抗震性与抗风性,选择经济合理的构型方案,保障结构整体的刚度与承载力。
2.2高层建筑结构设计的特点
现代高层建筑趋于功能多元化方向发展,其结构设计有以下特征:第一,体现结构延性。结构的延展性与地基和桩基的承载力有关,与建筑重量成正比,所以,现代高层建筑设计都会体现结构的延展性,通过增加建筑延展性的方法提高建筑物的抗震性能,增强建筑物的稳定性。第二,体现节能性。节能性是现代建筑设计的关键环节之一,在实际施工设计中,节能性主要体现在墙体建筑材料和墙体涂料的选择上。墙体建筑材料一般选择隔热性好的,可以提高外墙阻热的材料实现节能性目的。墙体涂料一般选用颜色较浅、反射性强的涂料,可减少太阳辐射作用,达到节能目的。第三,体现抗震性能。现代高层建筑设计必须拥有良好的抗震性能,其抗震设计主要分为概念设计和计算设计。其中,建筑结构设计的抗震计算设计是假设情况下进行的,充分考虑到地震时存在的不确定因素与复杂因素,其计算设计必须谨慎科学。除此之外,抗震设计还体现在结构外形和内部结构的设计上,良好的抗震外形和稳定的内部结构都是体现其抗震性能的有效保证。值得注意的是,在结构施工时的材料选择和技术要求都应严格进行,各结构体系的衔接与加固必须谨慎,保证施工高质量,就是保证建筑高安全稳定性。第四,把握轴向变形。轴向变形是由竖向荷载超出框架承受限值引起的,影响对大多数的连续梁弯矩,易发生连续梁中间支座沉陷,使其非正常弯曲,严重时会导致梁体裂缝或折断,从而导致施工事故发生。在设计时为避免轴向变形的发生,一般的处理方式有减轻框架和框剪体系的荷载及增强框架和框剪体系的强度。高层上部的结构材料选择材质轻、强度高且附属结构少的材料。通过增加连系梁内加强筋的方式增强其抗变形能力,减少轴向变形的发生。
3.现代高层建筑的结构分析
针对建筑结构的受力性能科学合理的分析计算,保证建筑结构的质量与安全非常重要,分析现代高层建筑结构的方法有很多,常用的方法有常微分方程求解器分析和有限条法和样条函数法分析。常微分方程求解器是利用有限元技术和能量泛函变分求解常微分方程组,该方法可减少误差,精确计算建筑结构中楼板形变是的静力和动力。有效条法的作用是科学的选择结构计算模型,进行等效连续体和条元的函数计算。样条函数是分段多项式的一种,具有良好的位移模式曲线连续性和拟合度,通用性极强。
结语:
现代建筑技术手段的发展进步,将高层建筑推向规模化的发展趋势,现代高层建筑结构的设计与分析是保证建筑质量的前提,是高层建筑健康长远发展的保障,所以,必须加强对高层建筑结构与设计的重视与研究。
参考文献:
[1] 落俊丽 . 浅析高层建筑结构设计中的基础设计 [J]. 城市建设理论研
究,2012(16).
[2] 万年春 . 高层建筑结构设计中常见问题探讨 [J]. 企业技术开发(下
半月),2009(02).
关键字:高层民用结构,建筑设计,结构体系
Abstract: China as a big country, it is always the question of the development of the society forward a contradiction. Among them, the land for construction and for the problem and the life of people most closely related. Along with the social development process forward great, big cities house prices high, small city house prices all the way up the phenomenon will float for a long time, so high building will become solve urbanization process of the problems of the gastronome. But now with the high building more and more be developers and consumers, it has exposed. This paper through the high civil buildings on the structure of the subtle analysis, and then put forward the corresponding solutions and opinion planning.
Key word: high civil structure, building design, structure system
中图分类号:TU318 文献标识码:A 文章编号:
城市发展的进程必将伴随着土地价格的不断攀升,现代人们对生活质量的要求亦越来越高。建筑行业同样如此,民众对民用建筑的需求和要求一样逐渐增强,如何设计出令群众满意,且建筑自身安全性高、经济、舒适的房屋,已经成为当前建筑、结构设计师们首要考虑的问题。
一 高层建筑结构的特征和设计原则
高层建筑在经受由于风的外力所产生的横向荷载的同时,也要经受其竖向的荷载,并且还要十分注意其对地震的抵抗能力。一般情况下,影响高层建筑的主要因素就是外界地震和风力所产生的纵向及水平方向的荷载。其次,与低层建筑楼房相比,高层建筑的设计要更柔和一些,因此如果发生地震,这些建筑物的变形就可以更大一些。为了避免房屋倒塌,需要特别在建筑构造上采取一定的措施,以此来保证建筑足够的延展性。
考虑到上述结构设计特征,设计师在规划时必须要遵循一定的原则,才能保障高层建筑的安全性及居住的舒适性。
首先,选择合理的高层建筑结构计算简图。设计师们必须选择合理的结构计算简图。如果选择了不合理的计算简图,最后就很可能会造成结构安全事故的发生。鉴于此,我们经常说,高层建筑结构设计安全的前提就是合理的计算简图的选择。除此之外,设计师们要应该时刻要求自己采用相应的构造方法,以此来保证最终的安全。
其次,选择合理的高层建筑结构基础设计。我们在选择基础方案的时候,应该使各个地基具有的潜力得到最大限度的发挥,并且在一定的情况下要求进行地基变形的验算。正常情况下,设计师应该按照高层建筑地质条件进行基础设计的选择。如果没有高层建筑的详细的地质勘察报告,那么我们就要进行现场勘察,并且,想方设法获取周围建筑物的相关资料。在正常情况下,我们应该采用相同的基础方案去设计相同的结构单元。
第三,选择合理的高层建筑结构方案。满足经济性的需求,和满足结构形式以及结构体系的要求,是我们进行合理的结构方案设计所必备的三个要素。受力明确和传力简单是结构体系的两个要求。在相同的结构单元当中,我们当然应该选择相同的结构体系来处理,但是如果我们在地震区建立高层建筑,那么其应力就需要平面和竖向的规则。我们确定的结构方案,应该是在进行了地理条件的考察,工程设计的需求,施工条件的考核,以及材料的分析等基础上,并和建筑、电力、暖气和水等专业的综合协调下才确定的。
第四,对计算结构进行准确的分析。科技的进步使我们的计算技术被广泛的应用于建筑结构设计当中。但在当前市场上却存在着各种各样、众目繁多的计算软件,这样就导致我们采用不同的软件会得到不尽相同的计算结果。所以,建筑结构设计人员务必先要了解各种不同软件的使用范围和条件之后,再选择合适的软件进行计算。另外,往往由于计算机的程序和高层建筑结构的实际情况不尽相符,所以计算机在进行辅助设计的时候,会出现人工输入错误或者因为软件本身的缺陷而导致计算、结果不准确的问题,基于此,结构设计工程师如果得到计算机软件计算出的结构之后,必须进行核对,然后进行合理判断,这样才能得出准确的结果。
最后,高层建筑的结构设计要采用相应的构造措施。强柱弱梁,强剪弱弯 ,强节点弱构件,这是高层建筑结构在设计时的通用原则。因此,在设计师进行高层建筑结构设计的过程中,必须首先理解上述原则,然后掌握它,加强薄弱部位,对钢筋的执行端锚固长度给予足够的重视,并且还要重点考虑构件的延展性和温度应力对构件的影响。
二 对高层建筑结构的分析
多层和高层结构的差别其实主要就在于其层数和高度的不同,但从实际情况上来看,二者其实并没有本质的差别,它们都要抵抗竖向以及水平荷载的作用,从设计原理及设计方法而言,基本上是相同的。但是在高层建筑当中,我们往往要使用更多的结构材料来抵抗外界荷载,尤其是水平荷载。因此抗侧力结构就成为众多工程结构设计的主要问题。鉴于此,设计时我们往往要满足多种要求,尤其是自身有别于多层建筑的特殊要求和设计特点。
因此,我们在进行高层建筑结构的设计时,要重点把握以下几个方面:第一,水平荷载问题。随着楼层高度的增加,水平荷载会成为控制作用。因此,在水平力作用下结构是否优化,材料用量都有很大的差别。第二,随着楼层高度的增加,地震作用对高层建筑危害的可能性也在相应增加。所以,高层建筑的抗震设计理应受到设计师们的高度重视。第三,结构侧移日渐成为高层建筑结构设计中的重要因素。随着建筑高度的增加,水平荷载作用下结构的侧移变形会迅速增大,所以应该将结构在水平荷载作用下的侧移控制在一定的限度之内。
三 高层建筑结构设计问题分析及对策
首先,超高是高层建筑结构中普遍存在的问题。基于这个问题,我国的建筑规范对高层建筑结构的高度有着严格的规定。对于这个高层建筑的超高问题,在新规范中不但把原来限制的高度规定为A级高度,此外,还增加了B级高度,这就使得高层建筑在结构的处理及设计方法和措施等方面都有了改进。而在工程设计的实施过程中,由于建筑结构类型的改变而造成对高层超高问题的忽略,在施工图审查时将不会得到通过。这种情况下,会要求重新进行设计,另外,可能也会进行专家的会议论证等。如果一旦出现这种情况,那么整个建筑工程的造价和工期都会受到极大的影响。
第二,高层建筑结构设计中短肢剪力墙的设置。目前,我国的建筑新规范中,短肢剪力墙指的就是墙肢的截面的高度和厚度比在4~8之间且截面厚度不大于300mm的墙,2010版《高层建筑混凝土结构设计规程》对短肢剪力墙的设置有所限制,规程规定:抗震设计时,高层建筑结构不应全部采用短肢剪力墙,B级高度高层及9度区A级高度高层不应采用具有较多短肢剪力墙的剪力墙结构。因此,在高层建筑的结构设计中,我们必须尽可能的减少或者避免使用短肢剪力墙。
第三,超高层建筑结构设计嵌固端的设置。我们知道,在一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。在地下室的顶板或者人防的顶板的位置设置高层建筑的嵌固端,结构工程设计人员必须考虑到嵌固端设置有可能会带来的问题。考虑嵌固端的的楼板的设计,综合分析嵌固端上下两层的刚度比,并且要求嵌固端上下两层的抗震等级是一致的。我们在进行高层建筑的整体计算时必须要考虑到嵌固端的设置问题。综合分析嵌固端的位置和高层建筑结构的抗震缝设置的协调问题。
第四,高层建筑结构的规则性。我国关于高层建筑的规范中,政府部门对于高层建筑的规则性提出了很多的限制要求,例如,规定了结构嵌固端的上下两层的刚度比,包括平面规则性等等,并且硬性规定了高层建筑不能采用严重不规则的设计方案等等诸如此类的问题。因此,设计师如果要避免后期施工阶段的改动,那么就必须在进行高层建筑结构的设计时就严格遵循规范的限制条件。
关键词:高层建筑;结构设计;桁架转换层;筒体
Abstract: Firstly, exposit complex high-rise building development status from the system structure, size, new materials and construction technology and structural design methods, and analyzed the basic provisions of the complex high-rise building structure and layout principles, and explored framework Shear the wall construction requirements and the tube structure design features, the last explored truss conversion layer structure design applications.Key words: high-rise buildings; structural design; truss transfer stories; cylinder
中图分类号:TU31文献标识码:A文章编号:2095-2104(2012)02-
近些年,由于城市用地紧张,建筑物向空中和地下发展,公众审美观的多样化促使建筑师对建筑形态不断变化和创新;房产市场需求的不断变化,业主和建筑师设计了众多体型复杂和内部空间多变的高层建筑。高层建筑的复杂性给结构工程师提出了挑战,要求结构分析、设计技术不断向前发展,同时要求建筑师在创作过程中要与结构工程师密切配合,努力探寻建筑结构比较合理的构成,努力使结构既合理又能实现较理想的建筑构成。因此笔者结合设计的体会,对复杂高层建筑结构的若干关键设计要点进行探讨。
1复杂高层建筑发展现状
1.1结构体系、体型
随着高性能建筑材料和新施工技术的快速发展,九十年代以来,高层建筑结构体系呈现出多样性和复杂性的发展趋势。如:简体结构、带加强层的框架一筒体结构、连体结构、巨型结构、悬挑结构、错层结构等。同时,人们对复杂高层建筑结构的建筑功能提出了新的要求,这样多用途、多功能发展的高层建筑平面布置和立面体型日趋复杂。结构平面形式多样,如三角形、梭形、圆形、弧形,以及多种形式的组合等也经常采用。高层建筑立面体型也有丰富的变化,立面退台、部分切块、挖洞、尖塔、人悬臂等,使高层建筑的刚度沿竖向发生突变。
1.2新材料和施工技术
进入九十年代以后,在高层建筑,特别是复杂高层建筑的建设中高性能的混凝土以及具有良好可焊性的高强度钢材得到了广泛的应用。混凝土强度等级从C30逐渐向C60甚至更高的等级发展。钢材方面,其韧性、耐火性、可焊性的大大提高以及钢产量增加使得越来越多的高层建筑采用钢―混凝土土组合结构或者全钢结构,大大减轻了结构的自重,推动高层建筑结构向着更复杂化的方向发展。在高层建筑现浇钢筋混凝土施工技术方面着重解决了模板、混凝上、钢筋三个方而的问题,提出了新的施工技术。
2高层结构基本规定与布置原则
在高层建筑中,除了要根据结构高度选择合理的结构体系外,还要恰当地设计和选择建筑物的平面、剖面形状和总体型。这些往往都在初步设计阶段由建筑设计选择。
2.1房屋总高度与高宽比
高层建筑结构应根据房屋高度和高宽比、抗震类别、抗震设防裂度、场地类别、结构材料和施工条件等因素考虑适宜的结构体系。钢筋混凝土高层建筑结构适用的高度分为A级和B级,B级高度高层建筑结构的最大适用高度可比A级适当放宽,但其结构抗展等级、有关的计算和构造措施相应加严。一般应将结构高宽比H/B控制在5~6。高层建筑的高宽比是对结构刚度、整体稳定、承载能力和经济合理性的宏观控制。
2.2结构平面布置
高层建筑的开间、进深尺寸和构件类型应尽量减少规格,以利于建筑工业化。结构平面布置必须考虑有利于抵抗水平和竖向荷载,受力明确,传力直接,力争均匀对称,减少扭转的影响。在地层作用下,建筑平面要力求简单规则,风荷载作用可适当放宽。明显不对称的高层建筑结构应考虑扭转对其受力产生的不利影响。
2.3结构竖向布置
结构竖向布置要做到刚度均匀而连续,避免刚度突变。沿竖向刚度改变主要有以下两个原因:一方面是抗侧力结构框架、剪力墙和简体等)的突然改变布置;另一方面是结构的竖向体型突变。在实际工程抗震设计时,结构的承载力和刚度自下而逐渐减小,一般情况是沿竖向分段改变构件截面尺寸和混凝土强度等级,这种改变使刚度发生自下而上递减。
2.4抗震投计的基本原则
为了使高层建筑有足够的抗震能力,达到小震不坏、中层可修、大层不倒的要求,应考虑下述的抗展设计基本原则。1)选地有利的场地,避开不利的场地,采取措施保证地基的稳定性。2)合理选择结构体系。对于钢筋混凝土结构,一船来说纯框架结构抗震能力较差;框架―剪力墙结构性能较好,剪力墙结构和简体结构具有良好的空间整体性,刚度也较大,历次地震中震害都较小。3)平面布置力求简单、规则、对称,避免应力集中的凹角和狭长的缩颈部位。 4)竖向体型尽量避免外挑,内收也不宜过多、过急.力求刚度均匀渐变,避免产生变形集中。5)高层建筑突出屋面的塔楼必须具有足够的承载力和延性,以承受高振型产生的鞭梢效应影响。必要时可以采用钢结构或型钢混凝土结构。6)在设计上和构造上实现多道设防。如框架结构采用强柱弱梁设计,梁屈服后柱仍能保持稳定,框架―剪力墙结构设计成连梁首先屈服,然后是墙肢,框架作为第三道防线;剪力墙结构通过构造措施保证连梁先屈服,并通过空间整体性形成高次超静定等。7)合理设置防震缝。一般情况下宜采取调整平面形状与尺寸,加强构造措施,设置后浇带等方法尽量不设缝、少设缝。必须设缝时必须保证有足够的宽度。8)节点的承载力和刚度要与构件的承载力与刚度相适应。9)保证结构有足够刚度,限制顶点和层间位移。10)构件设计应采取有效措施防止脆性破坏,保证构件有足够的延性。设计时应保证抗剪承裁力大于抗弯承载力,按“强剪弱弯”的方针进行配筋。为提高构件的抗剪和抗压能力,加强约束箍筋是有效措施。11)采用何种结构型式,应取决于所用的结构体系和材料特性,还取决于场地土的类型,避免场地土和建筑物发生共振。对钢筋混凝土结构,历次震害表明:刚度较大的结构一般震害较轻。由于钢筋混凝土构件截面大、刚性大、变形能力较差,比较适宜用提高承载力、控制塑性变形的方法来提高抗震性能,相反,钢结构的特性是截面小、延性好,适合采用柔性结构方案。
3简体结构设计要点
当建筑功能不希望采用密柱时,可采用大柱距框架,这时便构成图(b)所示的简体―框架结构。一些办公和通讯建筑由于功能上的要求,不能设置内筒,这时可采用单―曲框简结构,如图(c)所示。当建筑物高度大,受到的水平荷载较大,筒中简结构的强度和刚度不能满足要求时,可以采用多重筒结构(d)]和成束筒结构(组合筒结构)[图 (e)。在建筑平面内也还可以布置多个简体,形成多简体结构[图(f)]。
图1筒体结构的类型
关于矩形平面高层建筑简体结构的受力变形特性,在组成筒体结构的体型尺寸方面,要符合一定条件才能出现。比如,矩形框简的整体空间作用,指翼缘框架和腹板框架的共同工作,即冀缘框架与腹板框架共同担负整体弯矩的作用。而只有在简体较高、弯矩较大的情况下,空间作用才显著。如果筒体总高度很低,整体弯矩很小,翼缘框架与腹板框架的共同作用将十分微弱,水平荷载基本上由脂板框架承拉,因此,常要求筒体的高宽比H/B>3。又如,当矩形框筒的长宽比很大时,长边的剪力滞后作用十分严重,中间柱的轴力很小,其空间作用亦将降低。因此,常要求简体的宽度比L/B<2。
4框架―剪力墙的构造要求
带边框剪力墙截面应符合下列规定:(1)抗震设计时,一、二级剪力墙的底部加强部位剪力培厚度均不应小于200mm,且不应小于H/16;其他情况下不应小于160mm,且不应小于H/20,A为层高。(2)带边框剪力墙的混凝土强度等级宜与边框柱相同。(3)与效力墙重合的框架梁可保留,也可做成宽度与墙厚相同的暗梁。暗梁截面高度可取墙厚的2倍或与该片框架梁截面等高,暗梁的配筋可按构造配置且应符合一般框架梁相应抗展等级的最小配筋要求。(4)剪力墙截面宜技工字形设计,其端部纵向受力钢筋应配置在边框柱截面内。(5)边框柱截面宜与该摄框架其他柱的截面相同,边框柱应符合框架柱构造配筋规定;剪力墙底部加强部位边框校的箍筋宜沿全高加密;当带边框剪力墙上的洞口紧邻边框拄时,边框拄的箍筋宜加密。带边框剪力墙的设计应使之能整体工作。首先,墙板自身应有足够厚度以保证其稳定性,条件许可时应尽量满足条文中的厚度要求。其次,墙截面的设计应将之作为工字形截面来考虑,因此端部纵向钢筋应配置在边框柱截面内,而边框校又是框架的组成部分,故其构造应符合框架往的构造要求。
5桁架转换层结构设计应用
在目前工程界所研究的转换形式中,转换桁架具有受力明确,结构自重和抗侧刚度比转换梁小、传力途径清楚的特点,有利于通风采光和大型管道等设备系统的布置,可以充分利用转换层的建筑空间,在建筑上可以获得优异的建筑艺术效果和建筑功能,因而在高层建筑结构设计中屡次出现。当采用空腹桁架、斜杆桁架或迭层桁架作转换构件时,桁架下弦宜施加预应力,形成预应力混凝土桁架转换构件,以减小因桁架下弦轴向变形过大而引起桁架及带桁架转换层高层建筑结构在竖向荷载下次内力的影响和提高转换桁架的抗裂度和刚度。采用转换桁架将框架一核心筒结构、筒中筒结构的上部密柱转换为下部稀柱时,转换桁架宜满层设置,其斜杆的交点宜为上部密柱的支点。采用空腹桁架转换层时,空腹桁架宜满层设置,应有足够的刚度保证其整体受力作用。当桁架高度超过层高时,转换构件宜采用迭层桁架。
带桁架转换层高层建筑结构设计必须遵循以下原则:“强化转换层及其下部、弱化转换层上部”;桁架转换上部框架结构按“强柱弱梁、强边柱弱中柱”的原则;桁架转换按“强斜腹杆、强节点”的原则。一般情况下,为了确保塑性铰在梁端出现,使柱比梁有更大的安全储备,转换桁架上部框架结构按“强柱弱梁、强边柱弱中柱”的原则进行设计。其中上部结构必须满足轴压比要求、抗剪要求及构造要求,柱按普通钢筋混凝土框架结构的设计,确定截面尺寸。设计时转换桁架上层柱的柱底尽可能避免边柱出现塑性铰,此时为了 满足转换层上、下层等效剪切刚度(等效侧向刚度)比,并且保证桁架转换层框架结构有更好的延性。特殊情况下,当很难满足轴压比的要求时,转换桁架下层柱的轴压比,转换桁架以下柱可采用高强混凝土柱、钢骨混凝土柱等有效方法来调整截面尺寸、刚度及其延性。
6结语
总之,在我国高层建筑迅速发展的今天,作为设计人员,我们应该把握复杂高层建筑的设计的基本规定,明确布置原则,并重视抗震要求,相信随着建筑设计水平的不断提高,我国的复杂高层建筑会达到世界先进水平。
参考文献:
[1]霍小平.高层建筑创作中的结构构思[J].建筑与结构设计,2006,07,19~23
[2]高层建筑混凝土结构技术规程JGJ3~2002.中华人民共和国建设部
[3]郑茂川.建筑结构系统[M].科技图书股份有限公司,2006
[关键词]高层建筑 结构设计 抗震设计 原则 内容
中图分类号:T2 文献标识码:A 文章编号:1009-914X(2016)07-0194-01
随着社会经济发展对生态环境和资源的破坏,自然灾害的发生频率比较大,对人类自身和建筑的稳定性造成严重的影响。所以为了保证建筑结构的稳定性,保证居民的生命财产安全,设计人员在进行高层建筑结构设计的过程中会广泛应用抗震设计,对提升高层建筑结构的稳定性起到较好的作用,促使高层建筑结构抵御自然灾害的能力,有利于高层建筑居民生命财产安全的保,对我国建筑行业的进一步发展具有较大的促进作用。
一、抗震概念设计
在抗震设计中,概念设计的应用已经成为设计者关注的设计理念,尤其是在现在的高层建筑物中。高层建筑结构设计过程中的抗震概念设计是指在进行建筑物结构抗震设计时,根据地震灾害和工程经验等所形成的基本设计原则和设计思想,从概念上,特别是从结构总体上考虑抗震的工程决策,即正确地解决建筑物抗震方面的总体方案、材料使用和结构内部构造,从而达到合理的抗震效果。
二、抗震概念设计的一般原则
1、简单性结构的简单性是指结构在地震的作用下具有直接、明确的传力的途径。在建筑抗震设计规范中做出强制性条文要求,“结构体系应该有明确的计算简图与合理的地震作用传递途径。”只有结构简单,才能对结构的计算模型、内力和位移进行分析,避免薄弱部位的出现,因此对结构的抗震性的估计也相对可靠。
2、规则性与均匀性建筑以及抗侧力结构在平面的布置上应该规则和对称,并应该具备良好的整体性;建筑物的立面与竖向的剖面布置应规则,结构侧向刚度的变化应均匀,竖向抗侧力结构的材料强度及截面大小应自下而上逐渐减小,避免抗侧力结构的承载力以及侧向刚度的突变。平面布置的均匀规则,使建筑分布质量产生的地震惯性力以比较短且直接的途径进行传递,并使结构刚度分布与质量分布相互协调,限制刚度和质量之间的偏心。沿着建筑物的竖向,建筑造型与结构布置相对均匀,避免了承载力、刚度以及传力途径的突变,以限制其结构在竖向的某一楼层或者少数几个楼层之间敏感薄弱部位的出现。
3、整体性楼盖对于高层建筑结构的整体性起到重要作用,它相当于水平隔板,不仅聚集、传递惯性力到各竖向抗侧力的子结构,而且要求这些子结构能够承受地震作用,特别是当竖向抗侧力子结构的布置复杂或者不均匀或者抗侧力子结构的水平变形特征存在差异时,整个建筑就依靠楼盖使抗侧力子结构的协同工作。
三 、高层建筑物结构设计中抗震概念设计的主要内容
1、建平面和立面的布局
建筑平面和立面设计的规整性在建筑结构设计中是最基础的设计内容,也是非常关键的设计内容。建筑平面和立面在进行抗震设计时,一定要保证其规则性以及简洁性的,要让其刚度中心与的结构质量中心相互重合。有些建筑结构平面设计的不够规范,其房屋质量中心很难和刚度中心重合上的,要是有地震发生,其结构会受到影响而有扭转现象发生,这会让地震对建筑结构的破坏强度有所增加。所以在设计建筑立面的时候,尽量不要有那种突然变化的阶梯型立面,让房屋重心尽可能地降低,而且其立面结构的凸出高度最好不要高于建筑太多,这样能降低地震发生时对建筑结构产生的鞭梢效应。如果建筑高度越高的话,它就会受到更多的地震破坏,所以在进行建筑抗震设计的时候,多层砌体房屋总层数最好不要超过规定的限值,而且总高度最好也在规定限值内。建筑平面和立面在设计的时候,一定会有不规则设计方案出现,这时候要尽可能选取合适的位置对防震缝进行设置,把不规则和体型比较复杂的建筑平面拆分成多个小的独立单元进行设计。在这其中还要将建筑造型以及建筑的功能等因素都考虑在其中,以保证建筑平面的布置足够简洁,立面外观造型设计足够规整,让建筑整体结构都有较好的视觉效果,这样也能让建筑结构抗震性能有所提高。
2、合理地进行结构的选型和布置
在结构的选型方面应根据建筑的重要性、房屋高度、设防烈度、场地、基础、材料、地基与施工等因素,经济技术和经济条件比较后综合确定。结构的布置应遵循平面布置力求对称,竖向布置力求均匀的原则。在纯框架结构的高层建筑物中应尽可能避免将框架柱与楼梯的踏步斜梁和平台梁直接相连,这样会使框架柱变成短柱,地震时易发生剪切破坏。
3、确保结构的整体性
为了有效的保证建筑结构的安全性,建筑结构的稳定性需要有保证,只有这样,在发生自然灾害的时候,建筑结构中的各个部件的作用才能发挥较大的作用,不同的结构部件之间也能够协同工作,在发生地震灾害时,高层建筑结构的整体性作用才能够得到有效的发挥,这样一来,高层建筑结构的抗震能力才能得到充分的发挥。建筑结构的空间稳定性和结构整天的刚度对建筑结构的抗震能力具有密切的联系。型钢混凝土结构是一种良好的抗震结构,但是需要具有一个前提,就是型钢混凝土的施工质量要有保证;而现浇钢筋混凝土结构也经常被用于抗震结构,因为其的刚度和整体性比较好,是比较理想的抗震结构,使用这种结构不但可以消除散落的滑移的问题,增强楼板的刚度,增加结构的整体性,而且由于砌体结构以剪切变形为主,层间的变形可以控制,所以对平面墙体的要求就可以适当放宽。
4、非结构部件的处理
在地震的作用下,建筑物中的内隔墙、框架填充墙、楼梯踏步板、建筑物墙板等结构也会不同程度地参与工作,可能改变某些构件的承载力、刚度与传力路线或者整个结构,产生意外的抗震效果,或者造成预料外的局部震害。妥善的处理这些非结构部件,可减轻地震灾害,提高建筑物的抗震可靠度。
四、结语
综上所述,随着社会市场经济体制的逐渐完善,城市中的高层建筑逐渐增多,但是其的稳定性和安全性受到了人们的广泛关注。因此在高层建筑的设计阶段,需要加强对高层建筑结构稳定性设计进行高度重视,可以广泛的应用抗震设计技术,能够极大的提高建筑结构的稳定性和可靠性,从而保证高层建筑具有较强地域自然灾害的能力,不仅能够维护高层建筑居民的生命财产安全,同时还能够促进我国建筑行业的蓬勃发展。
参考文献
[1] 徐萍,叶明峰.抗震概念设计在建筑结构设计中的应用[J].工程技术,2011.
[2] 韩恒梅,王丽静.高层建筑的抗震概念设计[J],煤炭工程,2008.
[3] 张军.关于高层建筑结构的抗震概念设计[J].山西建筑,2009.
关键词:高层建筑,结构设计,问题,原则
1 高层建筑结构设计原则
高层建筑结构设计原则,是高层建筑结构设计过程中需要注意和遵循的重要标准和准则,也是高层建筑设计单位提高高层建筑结构设计质量与效益的重要保障。只有在一定的高层建筑结构设计原则支持下,才可以进行建筑结构设计。总体来讲,高层建筑结构设计原则主要包括以下几点:
1.1 基础方案合理。
合理的建筑结构基础方案是高层建筑结构设计的前提和基础,在实际的建筑结构基础方案设计中,设计单位需要根据实际施工地质条件,根据实际建筑结构施工需求进行设计。同时建筑结构基础方案需要配置完善的施工地质勘察报告,最大程度的发挥建筑物地基的潜力,必要的情况下设计人员还需要对地基的变形做好相应的验算。另一方面,设计单位还需要对建筑物进行综合性分析,尤其是对于建筑物负荷以及上部结构类型,通过对这些综合性分析,最终选定最适合的基础方案,从而可以在提高设计质量的基础上获得更好的经济效益。
1.2 计算简图适当。
计算简图设计,也是高层建筑结构设计中需要注意的重要问题,主要原因在于高层建筑结构设计时需要对一些基本的数据进行计算分析,而这些计算分析都必须要建立在计算简图的基础之上。只有通过计算简图基础之上的数据分析,才可以提高高层建筑结构设计的安全性以及牢靠性。举例来讲,建筑物结构节点问题,建筑物结构节点并不是我们传统观念中的铰节点或者是钢节点,设计单位在进行计算简图设计时,需要对建筑物结构节点进行深入研究,提高计算简图计算的精确性,进而将计算简图的误差控制在合理的范围内。
1.3 结构措施完善。
除了基础方案合理以及计算简图适当这两大基本原则之外,还有一条基本原则是设计单位经常忽略的,那就是结构措施完善原则。设计单位在进行建筑物结构的设计时,需要注意结构组件的延展性,例如建筑物中钢筋的锚固长度等。同时,设计单位还需要注意建筑物薄弱环节以及建筑物本身温度对于建筑物组件的影响,对于这两方面的问题,在实际的设计过程中,需要遵循“强柱弱梁、强剪弱弯以及强压弱拉”的基本原则,只有这样才可以提高高层建筑结构设计的安全性以及牢靠性。
2 高层建筑结构设计问题与策略
2.1 高层建筑结构设计高度问题及解决。
我国有关部门对于高层建筑结构体系的最大高度问题,出台了一系列的规章制度,对其进行了严格的规定与规范,其中之一便是《高层建筑混凝土结构技术规程》。该《高层建筑混凝土结构技术规程》对于高层建筑结构体系的高度问题规定,主要是从经济性以及适用性等方面进行规范的。《规程》所规定的结构体系最适宜高度,不仅仅与我国建筑施工技术水平以及建筑水平相关,而且还与我国国民经济发展水平,与建筑工程规范体系相协调。但是在实际的高层建筑结构设计以及施工中,出现了许多与《高层建筑混凝土结构技术规程》规定相违背的高度。举例来讲,在有些建筑物设计以及施工过程中,甚至出现了高达四百多米的组合机构大厦以及三百多米的混凝土结构体系的广场。尤其是近几年来,建筑物的高度不断增加,建筑物自身的参考系数已经超出了《高层建筑混凝土结构技术规程》的规定,例如在安全指标、荷载取值以及延性要求、材料性能、力学模型选择等方面。为此,对于这些高层建筑结构设计高度问题,设计单位需要严格根据《高层建筑混凝土结构技术规程》等有关规定,对设计高度保持科学严谨的态度。
2.2 钢筋混凝土梁承载力问题及解决。
一般来讲,城市高层建筑主要是以写字楼以及其他办公场所为主,因此,在实际的高层建筑结构设计过程中,设计单位需要着重考虑到空调、消防等设备。这些设备不同于其他设备,它们往往是布置于楼层的梁底之下的,如果没有梁底开洞,就没有办法进行设备的安装。因此,在设备安装之前,设计单位需要对梁的承载力进行分析以及计算,避免出现由于梁底承载力不足而出现安全结构问题。对于梁底开洞之后的承载力,设计单位可以通过孔洞周边补强筋以及开孔梁挠度、裂缝宽度等数据进行分析。对于钢筋混凝土梁腹部开孔,国家出台了有关政策,例如《高层建筑混凝土结构技术规程》《混凝土结构构造手册》等,对于钢筋混凝土梁腹部开孔的位置、流程、环节以及大小等进行了科学的规定。设计单位在进行钢筋混凝土梁承载力计算时,还需要参考不同种类腹部开孔方式,提高钢筋混凝土梁承载力计算的精确度,这对于提高建筑物的稳定性以及安全性意义重大。除此之外,还可以对钢筋混凝土梁承载力进行有效地计算。在计算过程中还需参考不同种类的腹部开孔方式。
2.3 抗震构造与框架梁设计问题及解决。
为了进一步提高城市高层建筑结构设计的安全性以及稳定性,建筑结构设计单位在高层建筑结构设计方面做出了重大的努力,取得了重大的突破,高层建筑结构安全性以及稳定性水平得到进一步提升。但是由于我国的建筑物抗震标准较低,在抗震与构造方面,很难处理好结构设计与抗震烈度之间的关系。为此,在实际的高层建筑抗震与构造设计中,抗震与构造设计需要有一定的弹性,这样才可以满足高层建筑结构设计安全性以及稳定性要求。举例来讲,中震烈度的重现期是475年,被超越率是10%;大震的重现期约为2000年,被超越率是2%。我国建筑构造规定的安全度及抗震计算方法也相对较低,且在轴压比、配筋率以及梁柱承载力匹配程度等抗震延性的相关规定也不够严格。结构设计造价在建筑整体投资之中比例的减少也应给予重视,尤其是在高烈度区域应有严格的抗震方法以及构造措施来保证建筑物结构的稳定性与安全性。另一方面,在实际的高层建筑结构设计过程中还需要进一步解决与框架柱和剪力墙相连的框架梁设计问题。就高层建筑结构的截面设计而言,竖向变形差过大通常会导致与框架柱和剪力墙相连的框架梁出现超筋现象,进而影响到框架梁截面设计。
框架梁端部竖向变形差所引起的剪力和固端弯矩的计算函数式如下:
其中,MAB/MBA为框架梁固端弯矩;QAB/QBA为框架梁端剪力;Δ为框架梁端部竖向变形差;Ib为框架梁截面惯性矩;I为框架梁计算长度。
针对与框架柱和剪力墙相连的框架梁超筋问题,可以从优化结构的轴压比以及提高计算方法的合理性两个方面进行解决。