前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的欧姆定律的适用范围主题范文,仅供参考,欢迎阅读并收藏。
例1. 手电筒的小灯泡上标有“2.5V,0.3A”,表示加2.5V电压时,通过的电流为0.3A,灯泡正常发光。1灯泡发光时的电阻是多少?
2灯泡正常发光时的功率?
3能灯泡正常发光10min消耗的电?
解:1 由欧姆定律得:R=U/I=2.5V/0.3A=8.3Ω
2由功率的公式得:P=UI=2.5V×0.3A=0.75W
3由W=UIt=2.5V×0.3A×10×60S=450J.
下面我们再来看一道题
例2. 某一电动机铭牌上标有“36V,0.5A”。求:
1. 问能否求出电动机正常工作时的电阻吗?
因为上题我们用欧姆定律求出灯泡正常发光时的电阻,同学们回答:能。大部分同学都很熟练的用R=U/I=36V/0.5A=72Ω 计算出电动机的电阻。
2. 问能否求出电动机正常工作时的功率吗?
学生根据功率的公式得:P=UI=36V×0.5A=18W。
3. 问能否求出电动机正常工作10min消耗的电能吗?
由W=UIt=36V×0.5A×10×60S=1.08×10 J
4.问能否求出电动机正常工作10min产生的热量吗/
学生根据焦耳定律,得Q= Rt= ×72 Ω×600S=1.08×10 J
教师首先引导学生比较电机消耗的电能和产生的热量关系发现:W=Q
思考1. 电动机消耗的电能是否全部转化为内能呢?
学生回答:不是。因为电动机消耗的电能主要转化为机械能和还有一部分内能。例如,电风扇消耗的电能主要转化为机械能(风扇转动)和内能(用手摸一摸开关旋钮感觉很热)
思考2.上述求解过程中什么地方出错?
学生发现:电动机的电阻不能用欧姆定律求,那么例1中的灯泡的电阻可以根据欧姆定律计算为什么?
因为灯泡消耗的电能全部转化为内能,是纯电阻电路。以根据欧姆定律计算电动机消耗的电能主要转化为机械能和还有一部分内能,电动机消耗的电能的电路是非纯电阻电路。电动机的电阻不能用欧姆定律求
例如:在LC振荡电路中,电容器放电完毕时,电路中的电流最大,自感电动势为零.学生难以理解.
错误认识一:电容器放电完毕时,由I=q/t可知,q=0,I也应等于零.
错误认识二:电容器放电完毕时,q=0,电容器两极间的电压U=0,由I=U/R可知电流I应等于零.
错误认识三:既然电容器放电完毕时,电流强度I最大,由I==ε/R可知,自感电动势ε=IR也应最大.
在高中物理新课程标准中,把科学探究和科学内容放到同等重要的地位,明确提出让学生“经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题”. 基于这一理念,人教版教材突出了规律的建立过程. 但在教学中发现,由演绎方法建立起的部分物理规律之中,存在着以特殊模型为前提演绎得出一般物理规律的现象;而对于由实验归纳方法建立起的部分物理规律之中,教材往往直接指出如何进行归纳,而没有充分体现过程与方法.
二、 对几个物理规律的重构建议
在人教版教材中,《动能定理》《焦耳定律》《闭合电路欧姆定律》三个物理规律都是以特殊模型为演绎起点、通过理论演绎建立起的一般规律,而演绎方法的规则是由一般到特殊,故教材的呈现方式隐含着逻辑问题;《楞次定律》是通过实验归纳方法建立起来的,但在对实验现象进行归纳时,没有充分运用科学方法引导学生进行探究,而是直接提示学生通过“中介”——“感应电流的磁场”来进行归纳. 有鉴于此,建议对它们的呈现方式进行重构.
1. 对动能定理的重构建议
(1) 教材分析
动能定理是通过理论演绎的途径建立起来的,具体过程如下:
由牛顿第二定律F=ma=m及功的定义dW=F?dx得F?dx=m?dx=mv?dv,
将上式积分有W=mv22-mv21.
教材据图1所示的物理模型,运用牛顿第二定律F=ma与运动学公式v22-v21=2ax进行理论演绎,得出W=mv22-mv21,并直接指出此式即为动能定理,纵观上面的推理过程,其逻辑关系实质如图2所示.
上述演绎推理的大前提是牛顿第二定律,小前提是物体做匀变速直线运动,那么,由此演绎得出的W=mv22-mv21的适用条件自然是与小前提相同的,因此,我们不能将其称之为动能定理. 尽管教材此后也就物体受多个力作用及曲线运动情况作了说明或提示,但仍然不是对动能定理真正意义上的建构,故有必要对其呈现方式进行重构.
(2) 重构方案
由于学生知识结构的限制,在高中阶段不可能运用理论演绎的方法建立起动能定理,为此,建议根据分类方法,分别就直线运动与曲线运动两类情况设计的递进性问题链,变理论演绎为演绎与归纳相结合,引导学生在问题解决中“发现”动能定理.
类型一:直线运动
问题1 在图1所示的水平面上,如果物体与水平面间有摩擦力作用,物体的动能变化量与什么功相对应?
通过对此问题的探究,把W=mv22-mv21的适用范围推广至多力做功情况,此时的W为合外力所做的功,同时能使学生产生问题意识,即:这一结论是否具有普遍性?是否适用变力、曲线运动情况?从而生成新的问题.
问题2 如图3所示,物体在粗糙的水平面运动,在l1、l2段分别受到水平力F1、F2作用,则物体在整个过程中的动能变化量与什么功相对应?
通过对它的探究,引导学生建构起多过程问题中功和动能变化量的关系,并把单过程中的合外力功W扩展至各过程中功的代数和,从而加深了对功W的理解.
问题3 如果物体在粗糙的水平面上运动时,受到的水平作用力F是变化的,则物体的动能变化量又与什么功相对应?
这是由问题2衍生出的直线运动中更为一般的问题,通过问题2的启发,学生能运用微元法进行演绎推理,并得出W=mv22-mv21.
在上面三个问题中,对应的物理模型都是在水平面上的运动物体,对于其他类型的直线运动,学生也容易得出W=mv22-mv21的结论,从而通过问题解决建构起直线运动中功与动能变化量间的关系,那么此结论对于曲线运动是否成立?如果成立,我们就发现了一条新的物理规律,由此生成类型二的问题.
类型二:曲线运动
问题4 从高为H处将一物体以一速度v0沿水平方向抛出,重力对物体所做的功与物体的动能变化量之间存在什么关系?
以此问题为支架,让学生进一步体会物理科学方法在探究过程中的作用,实践表明,学生对此问题能从两个角度进行探究,一是运用“猜想—检验”模式,先提出假说“重力对物体做的功等于物体动能的变化量”,然后运用平抛运动知识进行检验;二是运用微元方法,化曲为直,进行演绎推理. 同时,也使学生意识到要建立一个新的物理规律,还需要对一般的曲线运动进行分析,从而衍生出问题5.
问题5 如果物体做曲线运动,且受到变力作用,则物体的动能变化量又与什么功相对应?
对此,学生运用类比方法得出W=mv22-mv21.
在对以上两类问题探究的基础上,引导学生进行理论归纳,进而在问题解决中建构起具有普遍意义的动能定理.
2. 对焦耳定律的重构建议
(1) 教材分析
在物理学史上,焦耳定律是由焦耳通过实验归纳方法得出的. 而在新教材中,没有重现物理学史,而是以电流通过纯电阻元件为前提,通过理论演绎方法对其进行重构,具体的逻辑关系如图4.
显然,上面推理过程的大前提是普遍适用的电功公式W=IUt,小前提是电流通过纯电阻元件,因而得到的结论Q=I2Rt也只适用于纯电阻元件,而由实验归纳方法建立起来的焦耳定律是适用于任何电路元件的,故需要对其呈现方式进行重构.
(2) 重构方案
尽管运用理论演绎方法在建立焦耳定律时面临逻辑问题,但在课堂教学中,完全重现焦耳的实验归纳方法也是不可取的,因为在运用实验归纳方法时,要面临诸如实验类型、精度等一系列问题. 为此,建议运用理想实验与真实实验相结合方法来建构焦耳定律,具体内容如下.
①通过定性分析,得出影响焦耳热的物理量有R、I、t
②理想实验的设计及其思维操作
设阻值为R0的用电器通以电流I0,在时间t0内产生的焦耳热为Q0,依据等效思想,运用控制变量法来探究其他情况下产生的焦耳热与Q0的关系,进而建构起Q与R、I、t的大致关系.
问题1 在电流、电阻不变的情况下,探究焦耳热Q与时间t的关系.
理想实验:如图5,在电流I0、电阻R0不变情况下,在两个时间t0内产生的热量Q之和即为2t0时间内产生的热量Q1,故有Q1=2Q0,由此可见,Q∝t.
在上面设计的理想实验中,为探究焦耳热Q与时间t的关系,运用了倍增方法和控制变量法,把待探究的时间设计为t0的整数倍,便于学生发现焦耳热Q与时间t的关系,下面两个理想实验的设计思想与此相同.
问题2 在电流I0及时间t0一定的情况下,探究产生的焦耳热Q与电阻R的关系.
理想实验:如图6所示,在电流I0及时间t0一定的情况下,电阻为2R0产生的焦耳热与两个阻值为R0的电阻串联后在时间t0产生的焦耳热等效,也即Q2=2Q0,故有Q∝R.
问题3 在电阻R0及时间t0一定的情况下,探究产生的焦耳热Q与电流I的关系.
在运用理想实验得出Q与R、t的关系后,要探究Q与I的关系,可用倍增方法构造出电流为I0的情况,以便借助上面的结论进行思维操作.
理想实验:在电阻R0及时间t0一定情况下,通以2I0的电流时产生的热量为Q3,根据等效思想,其产生的热量等效为阻值为2R0的两电阻并联后产生的焦耳热之和,见图7. 由问题2知Q′3=2Q0,而Q3与Q′3的关系为Q3=2Q′3,也即有Q3=2Q′3=4Q0,故有Q∝I2.
③焦耳定律的建构
在对上面的理想实验的思维操作基础上,再运用综合方法,可建构起焦耳热Q与I、R及时间t的关系为Q=kI2Rt,其中常数k可由实验确定,从而运用理想实验等科学方法建立起焦耳定律.
3. 对闭合电路欧姆定律的重构建议
(1) 教材分析
教材的编写思想是通过理论演绎把能量守恒定律与闭合电路欧姆定律联系起来,充分体现功和能的概念在物理学中的重要性,同时又能帮助学生形成完整的认知结构. 基于这一思想,教材以纯电阻电路为前提,运用能量守恒定律建立起闭合电路欧姆定律,其逻辑关系如图8所示.
从上面逻辑关系可以看出,理论演绎的小前提是纯电阻电路,大前提是能量守恒定律,因而导出的E=IR+Ir及I=也只适用于纯电阻电路,但是教材紧接着又由只适用纯电阻电路的E=IR+Ir推出适用于一般电路的E=U外+U内,这就产生了逻辑问题. 因此有必要对其呈现方式进行重构.
(2) 重构方案
在运用能量守恒定律进行理论演绎时,应该遵循理论演绎的规则,即从一般情况出发,导出相应的规律,然后再运用理论演绎得出纯电阻电路中的闭合电路欧姆定律,具体方式如下.
对于图9所示的电路,电源电动势为E,内阻为r,方框内元件性质未知,电路中的电流为I,路端电压为U. ①在时间t内,外电路中消耗的电能E外为多少?②在时间t内,内电路中电能转化成内能E内多少?③在时间t内,电源中非静电力做的功W为多少?④根据能量守恒定律,W与E外、E内的关系是什么?
对于上面四个问题,学生依据有关功和能的概念及能量守恒定律得到IEt=IUt+I2rt,对其整理后得到E=U+Ir,其中,Ir是电源的内电压,故此式也可写成E=U外+U内,这两个关系式即为一般意义上的欧姆定律,它适用于一切电路.
对于纯电阻电路有U=IR,则有I=. 这是纯电阻电路中的闭合电路欧姆定律.
4. 对楞次定律的重构建议
(1) 教材分析
本节教材的编写是以问题与问题解决为纽带,引导学生从发现问题分析问题解决问题等步骤去掌握知识,意在突出科学探究,着眼于学生探究能力的提高,其教学流程如下:
其中重温的实验如图10所示,而且运用草图记录相关信息,以便归纳出楞次定律.
在运用图10所示的实验进行归纳时,面临一个关键问题,就是如何从众多的物理现象及实验因素中寻找归纳的方向,对此,教材直接提出:“是否可以通过一个‘中介’——‘感应电流的磁场’来表述这一关系”,以此引导学生归纳出楞次定律. 但问题的关键是,我们是怎么想到从原磁场方向与感应电流的磁场方向的关系进行归纳的?
(2) 重构方案
根据分类方法,影响感应电流方向的因素有如下三类:一类是外部因素(磁场强弱、磁场方向、磁铁运动方向、磁通量变化等);第二类是自身因素(线圈粗细、线圈的绕制方式等);最后是自身与外部相互联系的方式. 在探究感应电流方向与哪些因素有关时,需要围绕这三类因素设计一些针对性的问题,让学生在问题解决中,提出猜想,设计实验,修正猜想,最终“发现” 楞次定律,具体方案如下.
①探究感应电流方向与外界因素之间的关系
问题1 感应电流方向与磁场变化快慢有无关系?设计实验验证你的猜想.
问题2 感应电流方向与磁感应强度大小有无关系?设计实验验证你的猜想.
问题3 分析图10甲和图11所示的实验现象,说明影响感应电流方向的外界因素有哪些.
设置问题3的目的是引导学生对两类电磁感应问题的共同的外部特性进行归纳,总结出影响感应电流方向的外部因素是磁场方向和磁通量的变化,从而为进一步探究奠定基础.
②探究感应电流方向与自身因素之间的关系
为了探究感应电流方向与自身因素的关系,可设置以下两个问题.
问题4 试猜测感应电流方向与线圈的粗细、匝数是否有关,设计实验验证你的猜想.
问题5 感应电流方向与线圈的绕行方向是否有关?设计实验验证你的猜想,并把实验信息记录在草图上.
通过问题5,引导学生提出猜想,并通过控制变量法,在保证磁场方向和磁通量变化方式相同的情况下,设计出图12所示的实验对猜想进行检验,进而研究感应电流方向与绕行方向的关系.
根据实验所记录的信息发现,在线圈的绕行方式变化时,回路中的感应电流方向也随之变化,但是线圈中的电流绕行方向是不变的,此时引导学生探究在线圈的绕行方式变化时,什么因素是不变的?
实践表明,按此方法重构后,学生能寻找到以“感应电流的磁场方向”为中介进行归纳,于是衍生出问题6.
③探究感应电流方向与内外关联方式之间的关系
关键词:电磁;教学方法;学科体系
中图分类号:G712 文献标志码:A 文章编号:1674-9324(2014)17-0064-02
一、电磁学
电磁运动是物质的一种基本运动形式,电磁学的研究范围是电磁现象的规律及其应用。其具体内容包括静电现象、电流现象、磁现象、电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,在教学实践中,应从以下几个方面来认真分析处理教材。
1.电磁学的两种研究方式。整个电磁学的研究可以分“场”和“路”两个途径进行,这两种方式在中职教材里均有体现。只有在明确它们各自的特征及相互联系的基础上,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。场的方法是研究电磁学的一般方法。场是物质与物质的相互作用的特殊方式。中职汽车电气设备构造与维修教材中的电磁学部分完全可用场的概念统帅起来,组成一个关于场的系统,该系统包括中职教材电学部分的各章内容。“路”是“场”的一种特殊情况。可以这样理解,整个教材结构是以“路”为线的大骨架,其思路可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。“场”和“路”之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的,而“场”是电磁运动的实质,因此可以这样去定义即“场”是实质而“路”是方法。
2.教学知识规律。教材知识内容可归结为物理范畴。物理知识的规律体现为一系列物理基本概念、定律和原理的规律,以及它们的相互联系。物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较找出它们相互之间存在着的关系,并把这些关系用定律的形式表达出来。物理定律的形成,也是在物理概念的基础上进行的。但是,物理定律并不是绝对准确的,在实验基础上建立起来的物理定律总是具有近似性和局限性,因此其适用范围有一定的局限性。该部分内容所遵循的是电学部分的重要物理规律即库仑定律。库仑定律的实验是在空气中做的,其结果跟在真空中相差很小。其适用范围只适用于点电荷,即带电体的几何线度比它们之间的距离小到可以忽略不计的情况。在物理学范畴中,恒定电流是重要的物理规律。它的内容有欧姆定律、电阻定律和焦耳定律。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系,电阻是电路的物理性质,适用于温度不变时的金属导体。“磁场”这一部分内容阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念。
“电磁感应”这部分内容,重要的物理规律是法拉第电磁感应定律和楞次定律。在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线。本部分以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础。电磁感应的重点和核心是感应电动势。运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的。
“电磁振荡和电磁波”内容是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步。
3.电磁场物质属性的表现,使学生建立世界是物质的观点。电现象和磁现象总是紧密联系而不可分割的。大量的科学实验证明在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其他电荷有力的作用。运动电荷的周围除了电场外还存在着另一种场――磁场,磁体的周围也存在着磁场。磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。现在的科学实验和广泛的社会生产实践完全肯定了场的客观存在,并证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。运动的电荷(电流)产生磁场,磁场对其他运动的电荷(电流)有磁场力的作用。所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的。麦克斯韦用场的观点分析了电磁现象并取得如下结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场。按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场。电磁场由近及远的传播就形成电磁波。从场的观点来阐述路即电荷的定向运动形成电流。产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场。导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处.导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷。当导体中电势差不存在时,电流也随之而终止。
二、学科体系的系统性贯穿始终,知识学习与智能训练融合于一体
1.场的客观存在及其物质性是电学教学中一个极为重要的问题。电场强度、电势、磁场磁感应强度是反映电、磁场具有物质性的实质性概念。电场线、磁感线是形象地描述场分布的一种手段,要进行比较,找出两种曲线的共性和区别以加强对场的理解。
2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用。在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等。场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度。在电场中用电场力做功,说明场具有能量。通常说电荷的电势能是指电荷与电场共同具有的电势能,离开了电场就无从谈起电荷的电势能了。
3.演示实验和学生实验,使得抽象的概念形象化。把各种实验做好,不仅使学生易于接受知识和掌握知识,也是基本技能的培养和训练。安排学生自己动手做实验,加强对实验现象的分析,引导学生从实验观察和现象分析中来发展思维能力。从物理学的特点与对中学物理教学提出的要求来看,应着力培养学生的独立实验能力和自学能力,使知识的传授和能力的培养统一在使学生真正掌握科学知识体系上。
4.培养学生运用所学知识去分析和解决问题的综合能力。学习电磁学首先要抓住场和路这两个方面,解答综合题时,首先应搞清不同的运动形式或不同的物理过程是怎样联系在一起的。一般联系渠道有两条:一是力,二是能,从而形成两条解题思路。从力的角度考虑,全面分析受力情况(三种性质的力和电磁场力)并和运动状态的改变联系起来。从能的角度来考虑,紧紧扣住能的转化和守恒定律,从而引导学生认识能的转化和守恒定律的正确性和普遍性。经过教学实践使学生明确:能量的不同形式,就是物质运动的不同形式;能量由一种形式转化为另一种形式就是物质运动由一种形式转化为另一种形式;能量不能创生也不能消灭,就是运动的不可消灭性。
三、结语
1 所确立的核心问题要充分调动学生已有的缄默知识,激发学生参与体验的欲望
新课程改革的目标之一是:改变课程内容“难、繁、偏、旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能.基于缄默知识的核心问题教学模式中的“核心问题”是一个问题或本堂课学生所要完成的任务,教师设定了核心问题,还需要在课堂中创设一定的问题情景,激发学生的兴趣,引导他们更好的理解核心问题,核心问题的解决过程也就是任务的完成过程.通过这一核心问题或任务来帮助学生发现、提出、分析和解决问题.在设置核心问题或任务时,教师应充分考虑到学生头脑中缄默知识的存在,帮助学生将有关学习活动的缄默知识显现化并得到检验、批判和应用.缄默知识最大的特点在于它不脱离认识主体,只有学生本人,尤其是他的缄默知识是发展自己认识能力的向导和主人.学生的已有知识对于新的学习起着至关重要的作用.因此,核心问题的提出及脚手架的搭建只有建立在学生现有缄默知识的基础上,才能有效地实现本课的教学目标,更好的调动学生的自主活动使教学的结果性目标与体验性目标都获得更高的[HJ1.2mm]达成度.
比如研究课《欧姆定律》确立的核心问题:利用桌上器材,探究给定元件的I、U关系.这一核心问题的设计是基于学生目前的认知水平及缄默知识产生的.在初中的时候,学生已经学过:在导体两端加上电压,电路中就有了电流,且知道电流I与电压U有成正比的关系,这便是学生所拥有的缄默知识.再创设问题情景:是否所有的电学元件两端的电流I与电压U都有成正比这种关系呢?学生此时已被激发出好奇、求知的欲望,想要迫切的解决这个问题却对解决方法有些茫然,在这种氛围下提出本节课的核心问题,既使学生备感亲切,同时又给学生分析解决问题,获得新的认知指出了方向,在问题的解决过程中体验已有的缄默知识与物理知识之间的联系.
2 基于缄默知识的核心问题教学模式的学生活动原则是:核心问题的解决活动在前,应学习的知识与方法生成在后,即:让学生在体验中学习后达到知识的提升
建构主义学习理论认为学习者要想完成对所学知识的意义建构,即达到对知识所反映意义的深刻理解,最好的方法是让学习者到现实世界的真实环境中去感受、去体验,而不是仅仅聆听别人(如教师)的介绍和讲解.学生是知识意义的主动建构者而不是外界刺激的被动接受者,教材所提供的知识不再是教师传授的内容,而是学生主动建构意义的对象;媒体也不再是帮助教师传授知识的手段、方法,而是用来创设情境、进行协作学习和会话交流,即作为学生主动学习、协作式探索的认知工具.现代心理学研究表明,体验学习是人的一种基本的学习方式.在学习的过程中,不仅要用眼睛看,用耳朵听,用嘴说话,用手操作,用身体去亲生体念,而且要用脑去思考探究,用心灵去意会感悟,并内化为自己的缄默知识,外化为行为习惯,在体验性学习中,学生“在做中学”和“在做中体验”,发挥各自的聪明才智,学会分享和合作,从中获得积极的感受,促进了学生在语言和身心等方面素质的发展.
在研究课《欧姆定律》实施过程中,笔者摒弃原来旧的教学方法(仅简简单单进行讲解,或让学生自习、背公式等),采用核心问题教学法,把教学的重心放在伏安特性曲线上,在学生利用图象归纳得到欧姆定律的适用条件之前,先让学生利用给定器材,通过实验探究不同元件的I和U的关系,在实验中初步体验I、U、R三者的关系,笔者观察到,学生在动手进行实验探究的过程中,对观察到的某些现象发出了兴奋的惊叹声(与已有的缄默知识发生了冲突).此外,笔者让学生分析测得的实验数据,在坐标纸上取适当的标度,建系描出I-U的关系图线(此图线即元件的伏安特性曲线),这就让学生将体验中的缄默知识显性化,为后面的反思提升及运用反馈环节打下了基础,同时培养了学生处理信息的能力、获取新知识的能力及交流与合作的能力.
3 将活动中的体验提升为知识和方法后,教师应对学生获得的体验进行检测,让学生在运用中修正并内化所学知识,进入到新的缄默状态
新课标下教学目标的检测认为,预先制定检测手段使教学手段做到有的放矢,使检测与评估贯穿教学过程成为可能.检测内容与要求使教学内容更加突出,检测结果则使教师做到教学状态心中有数.预先制定检测能为学生提供是否到达目标的检测机会,而减少教师的一言堂、不着边际的自我表演现象发生,使学生成为教学的主体得到落实.
此外,学生得到的体验不但是感受、情绪,而且要在问题解决活动中,因与学科的基础知识、基本思想产生心灵的呼应而体验到其对自己的意义,且能将体验提升为知识和方法,运用于习题中.当学生能思路清晰地运用提升到的知识和方法去处理实际问题时,就意味着学生修正内化了所学知识,进入了新的缄默状态.
一、规律教学在物理教学中的意义
中学物理是一门以观察和实验为基础、以探究物理规律并应用物理规律为目的的学科。物理规律(包括定律、定理、原理和定则等)是物理现象、过程在一定条件下发生、发展和变化的必然趋势及其本质联系的反映。它是中学物理基础知识最重要的内容,是物理知识结构体系的枢纽。因此,规律教学是中学物理教学的中心任务。
物理规律教学是物理教学的根本方法之一。教学实践证明:只有重视物理规律,才能有利于掌握物理知识,提高思维能力、探究实践能力、自主学习能力和分析问题总结规律的能力,还可以激发学生学习物理的兴趣。这对全面提高物理教学质量有着重要的意义。
二、物理规律的类型
1.实验规律
物理学中的绝大多数规律,都是在观察和实验的基础上,通过分析归纳总结出来的,我们把它们叫做实验规律。如欧姆定律、焦耳定律、电磁感应定律、阿基米德原理、功的原理等。
2.理想规律
有些物理规律不能直接用实验来证明,但是具有足够数量的经验事实。如果把这些经验事实进行整理分析,去掉非主要因素,抓住主要因素,推理到理想的情况下,总结出来的规律,我们把它叫做理想规律。如牛顿第一定律。
3.理论规律
有些物理规律是以已知的事实为根据,通过推理总结出来的,我们把它叫做理论规律。如能量守恒定理是根据能量相互转化和转移推导出来的。又如万有引力定律是牛顿经过科学推理而发现的。
三、如何上好规律课
在物理规律的教学过程中,不仅要让学生掌握规律本身,还要对规律的建立过程、研究问题的科学方法进行深入了解和亲身体验,更重要的是让学生知道如何应用规律来解决具体问题。为此,对不同的物理规律应采用不同的教学方法。
1.创设情境,激发兴趣,培养学生良好的学习听课习惯
例如,在讲气化和液化时,用手指沾水(或酒精)在黑板上写“同学们好”,不一会儿水干了,提问:“水到哪儿去了?”学生观察现象,思考解答问题,得出蒸发的概念。用创设的情境引入蒸发,学生感到自然,容易接受,更易激发学习兴趣,学生会很认真地听课。教师强调观察什么、思考什么,这样可以培养学生良好的学习听课习惯。
2.设计方案,经历探究,体验过程,在过程中培养学生的创造性思维和动手能力
弄清物理规律的发现过程,实验规律都是经过多次观察和实验,进行归纳推理得到的。理想规律都是由物理事实,经过合理推理而发现的。理论规律是由已知规律经过理论推导而得到的新规律。实验规律的教学方法:
(1)探索实验法――寻找物理规律
探索实验法就是根据某些物理规律的特点,设计学生分组实验,让学生通过自己做实验,总结出有关的物理规律。
(2)验证实验法――加深物理规律的理解
验证实验法是采用证明规律的方法进行教学,从而使学生理解和掌握物理规律。具体实施时先由教师和学生一起提出问题,将物理规律直接告诉学生,然后教师指导学生并和学生一起通过观察分析有关现象、实验结论,验证物理规律。
(3)演示实验法
演示实验法就是教师通过精心设计的演示实验,引导学生观察,根据实验现象,师生共同分析、归纳,总结出有关的物理规律。
3.总结概括,感知规律,通过规律教学,让学生形成物理知识体系
4.物理规律往往都是在一定的条件下建立或推导出来的,只能在一定的范围内使用,超越这个范围,物理规律则不成立,有时甚至会得出错误结论
在物理理论规律教学中,要引导学生注意物理规律的适用范围,使他们能够正确使用物理规律解决实际问题。
5.在规律教学中,要指导学生运用物理规律去分析和解决具体的物理问题,在使用中进一步加深对物理规律及其物理意义的理解,通过反馈进行矫正知识
6.延伸迁移,举一反三,开拓创新,巩固提高
一、人为夸大物理学习的难度,使学生产生了学习物理极强的心理障碍
学生接触物理学科的知识、应用物理学科的知识最早应该在日常生活过程中。从书面获得物理学科的知识应该在小学,原来的《自然》、现在的《科学》,只不过那时没有指明,这之前应该对物理并不畏惧。当进入初二,正式接触物理这门学科后,我们的教师为了让学生重视物理学科的学习,往往强调说:物理这门学科很难,你稍不注意就会学不好,它比其它任何一门学科都难。高年级的学生也会以过来人的身份对学弟学妹们说:物理难哦,女生学物理很恼火哦。那么,物理就此贴上了“难”的标签。由于各方面因素的影响夸大了学习物理的难度。学生上课就特别专注,导致紧张过度,当然就不容易学好。刚开始一学不好,就更紧张甚至恐惧,形成恶性循环。有同学曾对老师说:我还是很想把物理学好,不知怎的想上物理课,又害怕物理课,越是专心越是听不懂。而别的同学怎么就那么容易听懂呢?
那么作为物理教师该如何作呢?我认为:首先物理教师不能说物理难。告诉同学:只要认真和努力物理很容易。古语曾说:难者不会,会者不难。其次,列举一些同学学习物理很成功的例子,也可列举一些同学物理学科补弱成功的例子。这样对初中物理没有学好的高一新生是一次鼓励。否则,会破罐子破摔,放弃物理学科。另外,适时通过小实验和剖析日常生活中的物理现象激发学生学习物理的兴趣,甚至让学生动手操作体验成功。
二、学科间知识不能融会贯通造成分析、处理物理问题的难度增加
从我求学到从教至今,应该说学习物理的重要工具就是数学。有人曾说过,数学家不一定是物理学家,但物理学家一定是数学家。应该说物理学家在数学的某一领域一定有很高的造诣。中学阶段物理学习中涉及的数学知识应该是非常基础的。比如匀速直线运动中速度——时间(图像)、位移——时间(图像)、恒力产生的冲量——时间(图像)等就是正比例函数的知识。匀变速直线运动中速度——时间(图像)、电学中路端电压——电流(图像)等就是一次函数的知识。匀变速直线运动中位移——时间(图像)、平抛运动竖直位移——水平位移(图像)等就是二次函数的知识。学生在遇到这类问题时很难与相关的数学中的函数解析式以及斜率、截距联系起来。甚至有些疑惑:怎么物理中也有这样的关系?或者不能大胆的、游刃有余的运用。
我在教学中遇到这类问题时,首先复习数学知识,并在教学中和学生共同讨论哪一个量分别与数学中的量对应,这样学生接受起来就很容易。并在教学中引导学生各学科之间不是截然分割而是有联系有些甚至是相通的。那么以后再遇到同类的问题学生理解的难度就小多了,甚至处理物理问题很顺畅。当然物理学习过程中还有很多地方要用到数学知识,比如方程组的求解、极值问题、临界问题等。
又比如化学中学的质子、中子、电子、粒子、正粒子、负粒子的质量数和所带的电荷数不能大胆的运用于物理也使学生感到物理难。当然还有生物等其它学科。
三、生活中的实际物理现象的干扰影响了对物理模型的理解
物理在研究某一问题时,为使其简化,提出了很多理想模型。比如光滑、质点、点电荷、真空、不及空气阻力、理想气体、理想变压器、理想电流表、理想电压表、匀速、匀变速等。然而在实际中都不能达到,因此由理想情况下得出的结论和实际现象总会有差异,有时差异很大。而学生在学习物理的过程中处理物理习题时往往不自觉的与生活中观察到的现象或者生活经验联系起来,很容易得出错误的结论。
因此在物理教学中要把每一个概念讲懂、讲透,让学生真正透彻理解概念显得尤为重要。把理想模型与实际物理模型处理好,在教学中承认差异,但只要差异小,在误差允许的范围内,我们研究理想情况也就有价值了。如果能以实验逐渐趋于理想化就更好了。比如在力和运动的关系,实际生活中匀速直线运动是没有的,但我们可以通过给物体一个初速度,逐渐减小接触面的粗糙程度,物体运动的距离会越来越远,速度改变越来越慢,当没有摩擦,便作匀速直线运动,理论上是可以的。实际情景是不可能的,只能无限接近匀速直线运动。又比如在进行自由落体运动教学时,让学生讨论:你能让物体真正地作自由落体运动吗?如果你想,应该怎样做?
四、不能恰当地类比,造成对物理知识的理解难度增加
在气体一节教学时,我们知道:温度升高,分子热运动加剧是从宏观总体效果来说的,有的分子运动反而变慢了。如果我们把这一现象与某一次考试某班物理平均成绩上升了,但肯定有少数同学物理成绩反而下降作类比对学生理解气体分子的运动情况是很有帮助的。又比如在电流一节教学需让学生理解:电荷定向移动形成电流。我们可以把这一现象与体育课上学生在体育教师的口令下学生沿跑道进行的跑步练习做类比。又比如学生对看不见、摸不着的电场、磁场理解很困难,很容易犯的错误:电荷受电场力、磁场力变小了,电场强度、磁场强度也就变小了。对电场强度、磁场强度是由电场、磁场本身决定这一点很容易忽略,容易错误的认为没有表现出来就认为不存在。这一点可以和我们的体重作类比:当我们站在体重计上有体重的显示,那我们从体重计上下来后就没有体重了吗,回答是否定的,而且我们的体重不仅存在而且是由我们人本身决定的。
五、对概念、公式、定理、定律的适用范围、条件的理解不准确造成解题错误
关键词:物理学史;物理复习课教学;学习兴趣;复习效率;创新能力
中图分类号:G633.7 文献标识码:A 文章编号:1674-9324(2012)05-0073-02
新课程标准背景下,在实现物理教育的目标中,物理学史由于它所具有的丰富的教育因素,所以物理学史对实现物理课程的三维目标起着特定的作用,在应试教育向素质教育转变的过程中可以发挥出独特的教育功能,能特别是情感价值观教育功能。但实际高考大纲对物理学史的要求并不高,高考基本不作要求。目前学校和老师对成绩非常看重,我们平常的考试中和高考考得并不多,所以在实际教学中老师学生普遍认为物理学史教学可有可无。特别是复习课教学惜时如金,更把物理学史踢得远远地,最多背几个著名科学家人名。我却不这样认为。经过几年教学实践尝试,我认为高中物理复习课教学可以充分利用物理学史更好地进行知识与技能的教学,过程与方法的教学,兼顾情感态度与价值观的教育。
一、物理复习课教学中利用物理学史,可以激发学生复习过程的学习兴趣
在进行章末复习或单元复习时,一般的程序是先梳理知识点体系,呈现概念规律结论的逻辑关系,再总结训练应用题型,过程单调枯燥。不妨来个小插曲放松激发一下学生学习兴趣:让学生再从物理学史角度回顾印证一下概念规律结论的知识点体系,或由教师搜集整理补充一些概念规律结论的知识点体系的相关物理学史。形式要灵活,可以是课堂上学生几分钟讨论、展讲;也可以留成作业让学生课下搜集整理一些概念规律结论的知识点体系的相关物理学史资料,自主地了解物理发展的历史,定期在自习课的时间举办学生物理学史讲座;也可以是教师采用多媒体设施播放一些物理学史科教系列片。这种复习措施不仅激发了复习的兴趣,在实施过程中也潜移默化地实现了物理学史的情感教育功能。如原子核物理复习教学从物理学史角度建立复习线索:总结“十大人物九大发现”,①汤姆生发现电子,建立了原子的“枣糕模型”;②卢瑟福通过α粒子散射实验,建立了原子的“核式结构”;③卢瑟福通过α粒子轰击氮核,发现了质子;42He+147N178O+11H(实验用放射源放出α射线);④玻尔提出了氢原子模型;⑤贝克勒耳发现天然放射现象,证明原子核有复杂结构;⑥玛丽・居里和玻埃尔・居里(大居里)通过天然放射现象研究,发现了放射性元素钋和镭及其衰变规律;⑦查德威克用α粒子轰击铍核发现了中子,42He+94Be126C+10n;⑧约里奥・居里和伊丽芙・居里(小居里)用α粒子轰击铝箔,探测到中子和正电子,发现了放射性同位素,42He+2713Al3015P+10n?摇3015P3014Si+0+1e;⑨爱因斯坦发现了核反应中的质量与能量的联系:质能方程E=mc2。
二、物理复习课教学中利用物理学史,可以提高物理概念规律的复习效率
1989年出版的《普及科学──美国2061计划》的总报告指出,“大部分科学概念是缓慢形成的,凝聚着许多研究人员的心血。没有历史实例,不论记忆多少一般概念,最多也不过是一些口号”。科学史与基础科学教育相结合可以说已是一种教育改革的必然趋势,我们教学的目的不是让学生知道“欧姆只是一个定律,科里奥利只是一个加速度,开尔文只是一个温度,阿伏伽德罗仅仅是一个数目”。背过物理概念、定律和一些结论,并不是真正理解物理学。获得的知识的多少与深度不仅在于结论,更重要的在于探究的发展过程。在概念规律复习教学中进行必要的物理学史回顾,能使学生再次提升对物理概念规律的理解,从知识结论的获得过程中认识它的建立的起因、探究过程、科学的思想方法、适用范围,体验认识科学理论真理的相对性,从而会提高物理概念规律的复习效率。比如,人们对光的认识,就经历了牛顿的微粒说,惠更斯的波动说,麦克斯韦的电磁说,爱因斯坦的光子说,最后物质波模型的建立才使得光的波粒二象性特点被大家普遍认可。学生了解光的认识发展史必然会使学生对涉及的一系列概念、规律和科学思想深刻理解。又例如,动能和动量概念的建立来自于历史上对运动的量的描述的争论。又例如能量子概念及规律的由来。还有“牛顿运动定律”的发现过程等等。
三、物理复习课教学中利用物理学史,可以提高实验设计创新能力
著名教育家叶圣陶先生说“什么是教育,简单一句话,就是要培养良好的习惯.”那么什么是习惯呢?习惯是经过反复练习而形成的较为稳定的行为特征,学习习惯是指学生为达到好的学习效果而形成的一种学习上的自动倾向性.推行素质教育,既要求教师教会学生获取知识,更要求教给学生获取知识的方法,培养锻炼他们的各种能力.无论是知识的获得,还是能力的养成,智力的发展,都需要一个过程.既然是一个过程,那么贯穿过程的良好的学习习惯就显得非常重要.只有养成了良好的学习习惯,物理概念的准确形成和物理知识向能力的转化才有基础. 可见,培养能力固然是教学的主要目的,而培养学习的良好习惯也是值得研究的重要课题.
物理学科由于其自身的特点,学生在开始正规的学习之前,在生活中或多或少都有一些接触,但是有很多认识都是不科学的,这往往就成为了物理学习的障碍.这也可以从心理学上的首因效应来解释.例如,最常见的错误,认为重的东西下落得快,轻的东西下落得慢.连亚里士多德都犯了这样的错误,何况普通的初中生呢;再如,学生往往认为篮球能在空中飞行是因为受到了手对篮球的作用力,在画受力分析图时就会多画一个力, 却不能很好的认识到篮球在空中能飞行是因为具有惯性;而对于惯性的理解,学生也存在很大的误区,惯性只和物体的质量有关,但学生觉得,既然超速的汽车很难停下来,所以得出一个自以为很棒的结论,“惯性和物体的速度有关”……这些类似的错误在物理学习中都是相当常见的.这些问题和学生的一些不好的习惯也是相关的,如:不会自己主动研读教材,只会死背老师上课讲的结论性的话和书上的黑体字段落;不会观察实验,悟出道理,只是把演示实验当作“看热闹”;做练习不愿去分析,只顾死套公式,得到一个正确答案就算完事等等.这些习惯如果不纠正,即使再怎么用功,也无法把物理学好.所以要培养好习惯的第一步,就要注意防止和纠正这些不好的习惯.
1.研读教材的习惯
研读教材有两层含义:一是普通的阅读浏览,可以了解大致内容;二是弄清物理概念、规律是怎样引入的或得出的,它们的内容、物理意义如何,单位是什么,这个物理规律或公式有什么适用条件,用来解决什么问题等.通过精读,将知识前后联系,纵向对比,使知识系统化、条理化,把握教材的内涵和外延,明确公式和定律的适用范围及条件.在此阅读的基础上必须要有自己的思考,此为研读.由于物理概念的特殊性,笔者在教学的过程中经常指导学生从课本中找关键词,寻找物理概念的本质.比如学习摩擦力的时候,方向的判断是一个难点,课本上是这样说的 “静摩擦力的方向总是和物体相对运动的趋势相反;滑动摩擦力的方向总是和物体的相对运动方向相反.”学生如果只是死背概念的话,是没有用的.
阅读是自学的一种主要形式,通过阅读教科书,可以独立领会知识,把握概念本质内涵,分析知识前后联系,反复推敲,理解教材,深化知识,形成能力.学习层次越高,自学的意义越重要,目前我国的中高考为选拔有学习潜能的学生,对考生的自学能力有较高的要求. 就学习过程而言,教师只是引路人,学生是学习的真正主体,学习中的大量问题,主要靠自己去解决.
最后是鼓励学生课外阅读科普读物,并推荐一些适合学生口味,能对物理产生兴趣的课外读物,使学生增长知识、开阔眼界、活跃思维,培养学生的发散思维和阅读教材的能力、习惯.
2.善于思考、理解问题的习惯
子曰“学而不思则罔,思而不学则殆”.“学而不思则罔”就是说学生学习如果只是死记一些知识,而不去认真思考、加以消化, 那么,学来的东西是空的,不会有什么收获,而对绚丽多彩的物理世界,变化多端的物理现象,就更要下功夫多想多问才能学好.
要培养学生注意教材的叙述中学会科学的思维方法,归纳抽象出力、速度、压强等概念,怎样在实验的基础上通过科学推理得出牛顿第一定律,怎样从实验数据概括出欧姆定律等,更要培养学生从教师的讲授中学会提出问题发现问题和解决问题的思路和方法等等.
学生在新课学习中,要着重理解为什么要引入物理概念,怎样引入物理概念.对于物理量要理解它的物理意义,明确它的定义式,单位是如何规定的.对于物理规律要明确它的适用范围,掌握并理解它的几种不同表达形式(文字表述、数学表达式、图像表示).这些也是学习理科时容易被学生忽视的重要问题.此时,作为教师要起到一个好的引导作用.比如指导学生解题时,教师应该指导学生.在领悟这道题的基础上,让学生明确物理公式的适用范围对于物理学习的重要性.在日常的课程教学中,切忌就题论题,要着重引导学生从例题中进行思考,进行理解,逐步培养学生自主思考的能力.应注意掌握应用物理规律解决实际问题的一般思路和方法,并在应用中加深对物理概念和规律的理解.