前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高层建筑结构设计要点主题范文,仅供参考,欢迎阅读并收藏。
关键词:高层建筑,结构,设计,要点
前言
高层建筑本身的特点决定着建筑结构的特殊性,比如结构复杂,建筑施工的工作量很大,施工的周期较长等,所以,如果在结构设计方面发生问题,不但会使得经济造成巨大的损失,而且也会危及人们的生命以及财产的安全,因此,我们要对高层建筑结构设计要点严格把握,并且对工程施工的各种相关因素全面考虑,详细的分析及把握影响建筑质量的潜在问题,从而采取有效的方法及措施进行防治。
一、高层建筑结构体系
1.高层建筑的剪力墙体系
在高层建筑设计结构体系中,其重要组成部分就是剪力墙,在高层建筑承受风荷载或高层建筑承受地震作用方面,剪力墙有着积极性的作用。因为其不仅对结构中水平构件所产生的竖向荷载能够承担,而且对外部因素所引起的振动作用也能够承担。
2.高层建筑的框架―剪力墙体系
高层建筑中常见的结构体系就是框架―剪力墙体系,垂直荷载的力量是框架所能承受的,而剪力墙所承受的则是水平剪力。剪力墙的设置不仅能够在很大程度上增强建筑的侧向刚度,使其水平位移变小,而且还能够使框架所受的力实现均匀分布。
3.高层建筑的筒体体系
高层建筑筒体结构体系由框架―剪力墙结构与全剪力墙结构综合演变和发展而来。筒体结构体系是将剪力墙或密柱框架集中到建筑的内部和而形成的空间封闭式的筒体。其特点是剪力墙集中而获得较大的自由分割空间,目前在高层建筑中被广泛应用。
二、高层建筑结构设计要点分析
1.选择合理的结构方案
高层建筑的结构设计不仅要具有较高的经济性,更要满足使用性及合理性,因此在进行高层建筑结构设计时,首先就要选取一种既可行又满足较好经济性的结构形式及体系。其中要注意如下问题:首先在同一结构单元中,最好不要混合使用不同的结构体系,同时还要综合考虑使用要求、地理环境及施工条件等实际情况,还要协调好建筑电气及水暖等配套设施的设计,从而选择最优的建筑结构体系。
2.选择合适的基础方案
综合考虑高层建筑物的上层结构类型和地基的承受能力,对建筑物的结构设计。尽量充分利用地基的承受强度,建筑合理的高度,必要时要求进行地基变形的检验。根据当地的地质调查结果,对高层建筑结构基础设计。建筑设计人员在进行建筑地基基础设计的时候,必须要根据当地的设计规范标准,由于我国各个地方都会有自己地区规划制定的《地基基础设计规范》,各个地区制定的规范对建筑结构设计师在设计时有着非常重要的帮助。
3.选用适当的计算方法及简图
在高层建筑结构设计中,要注重相关计算方法的选择,以保证强度等计算结果能够满足真实情况,从而更好的为结构设计提供依据。此外,由于建筑结构设计是在结构计算的基础上开展的,一旦计算方式不准确,导致计算结果有误,就会严重影响高层建筑的结构设计质量,更可能造成安全事故的发生,并带来巨大的损失,因此在高层建筑结构设计中,要注意相关计算方法的选择及计算简图的选取。同时,计算简图还应有相应的构造措施来保证。实际结构的节点不可能是纯粹的铰结点和刚结点,但与计算简图的误差应在设计允许范围之内。
4.正确分析计算结果。
计算机技术是在结构设计中普遍采用的技术,但是随着目前软件种类繁多,软件的不同往往也会导致计算结果的不同。所以,设计师要对程序的适用范围以及条件进行全面的了解才可。设计师在拿到计算结果时一定要对其认真分析,并且慎重的校核,其原因是计算机在辅助设计时常常会因为结构实际情况与程序不相符合,或人工输入有误,或软件本身有缺陷从而导致计算结果错误,这就需要设计师以此做出合理判断。
5.采取相应的构造措施
“强柱弱梁、强剪弱弯、强压弱拉原则”是在进行高层建筑结构设计时需要牢记的,并且一定要注意构件的延性性能;对薄弱部位加强;对钢筋的锚固长度也要注意,更要注意的就是钢筋的执行段锚固长度;同时对温度应力的影响力等也要考虑。
6.高层建筑结构抗震设计
由于高层建筑的楼层数较高,特别是某些超高层建筑,如果遇到如地震等灾害时,其抗震能力得不到有效的保证,就使其变形及破坏力都会远远的大于其它类型的建筑,因此要综合多方面因素,全面的提升高层建筑的抗震能力。
首先要注重地基的选择及设计,高层建筑最好应建筑在土地较硬的地区,并远离河岸,同时还要注意,不要在断层或地陷等较易发生地震的地区建造,如果地基选择不合理很可能影响到其抗震能力。其次,在设计阶段还要注重建筑材料的选取,将钢筋与混凝土结合在一起的建筑形式主要是利用钢筋与混凝土具有相似的膨胀系数,在任何环境下都不会产生过大的应力,同时这两者之间的粘结性很好,特别是将钢筋表面预置肋条或在钢筋的端部弯起弯钩,可大大的提高钢筋与混凝土之间的拉力,可以更好的提高建筑的强度及抵抗外力的能力,从而更好的满足人们的使用要求。而在高层建筑的设计施工中会在框架结构中融入一定的剪力墙结构,从而更好的实现不同建筑的功能及相应的强度要求。
结束语
综上所述,我国城市化建设速度的不断加快,使得提高城市土地利用率的相关问题越来越被社会所重视,与此同时,各种形式的高层建筑拔地而起,从而缓解了城市居民住房紧张问题,但是由于高层建筑本身的结构特点,决定着其相应的结构设计必须满足一定的强度及使用要求,这对建筑设计师来说是一项艰巨的任务。要想保证高层建筑施工质量,首先在结构设计阶段就要保证其设计方案完全符合国家的相关标准,并结合其实际用途,抓住设计要点,并对较易发生的潜在问题的设计进行及时排除,确保施工方案得以顺利的展开,从而保证整体高层建筑的施工质量,为人们的正常使用提供较高质量的保障。
参考文献
【关键词】高层建筑;设计特点;结构设计;整体稳定
1 引言
高层建筑是社会生产的需要和人们生活需求的产物,是现代工业化、商业化和城市化的必然结果。科学技术的发展,高强轻质材料的出现以及机械化、电气化在建筑中的实现等,为高层建筑的发展提供了技术条件和物质基础。随着高层建筑结构高度、复杂程度等的不断增加,高层建筑结构设计也带来了许多新的课题和更高的挑战。因此,如何设计出安全、功能齐全、舒适美观、经济合理,同时又要符合人们精神生活要求,满足人们生产和生活的需求的建筑,是结构设计师们必须要面对和解决的首要问题。为此,本文对高层建筑结构设计进行了简要的探讨。
2 高层建筑结构设计特点
高层建筑结构设计特点主要有以下几点:1)水平荷载是结构设计时的决定性因素。这是因为结构由自重等竖向荷载产生的轴力和弯矩的大小,仅与楼房高度的一次方成正比;而结构由于水平荷载产生的倾覆力矩及在竖构件中产生的轴力,是与楼房高度的两次方成正比;同时,对一建筑来说,自重等竖向荷载基本上是定值,而风荷载和地震作用等水平荷载,其数值是随结构动力特性的不同而有较大幅度的变化;2)轴向变形不容忽视。因为在高层建筑中,自重等竖向荷载很大,能够使柱产生较大的轴向变形,从而会对连续梁弯矩产生较大的影响,对预制构件的下料长度产生影响,另外对构件的剪力和侧移也会产生影响,易使结构设计不够安全;3)侧移是结构设计的关键因素。水平荷载下结构的侧移变形随着楼房高度的增加迅速增大,因此水平荷载作用下结构的侧移应控制在规定限度之内;4)结构延性是重要设计指标。与较低楼房相比,高层建筑结构在地震作用下的变形更大一些。为了能让结构在进入塑性变形阶段后仍具有较强的变形能力,防止建筑倒塌,必须采取一定的构造措施,以保证结构具有足够的延性[1]。
3 工程实例
本工程为一24层大楼,建筑高度为81.2m,该工程底下3层用于商业活动,4层为设备夹层,其余层用于酒店,地下设有一层地下室。抗震设防烈度为7度,场地类型为Ⅱ类。
3.1 主体结构选型
由于本工程为24层,高度为81.2m,属于高层建筑,同时结合高层建筑结构设计的特点,主体结构采用双向现浇钢筋混凝土框架剪力墙结构,如图1所示。该结构体系能较好地满足建筑使用功能,剪力墙结合建筑功能双向均匀对称布置贯通落地,结构横向高宽比为4.27,小于7,采用框架剪力墙结构能够满足结构抗震、抗风和承受重力荷载作用等各项技术要求,结构整移、稳定及构件节点延性也都能较好地满足要求。
3.2 楼盖结构选型及楼屋面板设计
由于本工程主体结构采用了双向现浇钢筋混凝土框架剪力墙结构,为了能与之相适应,楼盖结构也应选用现浇钢筋混凝土梁板结构。结合建筑平面布置,考虑有利于提高结构横向刚度,楼盖次梁沿横向布置,支承于纵向框架梁上,他、如图1所示。楼屋面板采用多跨连续板,其中商业层板厚120mm,其余层为100mm。
3.3 剪力墙截面
剪力墙端柱以及剪力墙厚度,分别见表1,表2。
表1剪力墙端柱截面尺寸(mm)
1~3层 4~8层 9~12层 13~15层 16~25层
混凝土强度 C40 C40 C40 C30 C30
端柱截面
尺寸 850×850 750×750 700×700 700×700 600×600
表1 剪力墙厚度(cm)
1~3层 4~12层 13~25层
混凝土强度 C40 C40 C30
厚度 30 25 20
4 高层建筑结构设计及构造要求
以框架剪力墙高层建筑结构为了,说明高层建筑结构设计及构造要求。框架剪力墙中的框架和剪力墙的截面设计除了满足框架和剪力墙截面设计的一般原则外,还应重点注意以下几点要求[2]。
4.1 框架部分抗震等级、适用高度和高宽比的调整
抗震设计时,地震造成的对房屋的倾覆力由框架和剪力墙两部分共同承担。若由框架承担的部分大于倾覆力矩的50%以上时,说明框架部分已居于较主要地位,应加强其抗震能力的储备。如可以通过按纯框架结构的要求来确定其抗震等级或轴压比按纯框架结构的规定限制来实现。
适用高度和高宽比则可取框架结构和剪力墙结构两者之间的值,视框架部分承担总倾覆力矩的百分比而定,当框架部分承担的百分比接近于0时,取接近剪力墙结构的适用高度和高宽比;当框架部分承担的百分比接近于100%时,取接近框架结构的适用高度和高宽比。
4.2 框架剪力墙中框架总剪力的调整
框架剪力墙结构中,柱和剪力墙相比,其抗剪刚度很小,故在地震作用下,楼层因地震引起的总剪力主要由剪力墙来承担,框架柱只承担很小一部分,因此框架由于地震作用所造成的内力很小,而框架作为抗震的第二道防线,过于单薄是不利的,为了保证框架部分有一定的抗震能力储备,规定框架部分所承担的地震剪力不应小于一定的值。框架剪力的调整应在楼层剪力满足楼层最小剪力系数的前提下进行。
4.3构造要求
框架剪力墙结构中剪力墙的配筋的构造要求:剪力墙都是主要的抗侧力构件,承担较大的水平剪力,因此,必须规定剪力墙设计的最基本的构造要求,使剪力墙具有最低限度的强度和延性保证。对剪力墙周边设置的梁和端柱,其配筋和截面尺寸也应符合相应的要求。
5 高层建筑结构设计要点
5.1水平位移的控制
高层建筑受风荷载和地震荷载的影响很大。为此本文主要对这两种荷载作用下结构的水平位移进行了分析。在正常的使用条件下,高层建筑结构应具有足够的刚度,避免产生过大的位移影响结构的承载力、稳定性和使用要求。正常使用条件下结构的水平位移按弹性方法计算[3],高层建筑结构的层间弹性水平位移应满足 ,本工程中 =1/800。
本工程中,结构在风荷载作用下,顶点水平位移 , ,则 , ,满足要求;最大层间相对水平位移: , ,满足要求。
本工程中,结构在地震荷载作用下,顶点水平位移 , ,则 , ,满足要求;最大层间相对水平位移: , ,满足要求。
正常使用条件下,限制侧向变形的主要原因有:防止主体结构开裂、损坏;防止填充墙及装饰开裂、损坏;过大的侧向变形会使人有不舒适感,影响正常使用;过大的侧移使结构产生附加内力。
5.2结构整体稳定分析
由于高层建筑结构的刚度一般较大,且有许多楼板作为横向隔板,所以高层建筑在竖向重力荷载作用下产生整体失稳的可能性较小。高层建筑结构的稳定验算主要是控制在风荷载或地震荷载作用下,重力荷载产生的二阶效应不致过大,以免引起结构的失稳倒塌。一般高层建筑结构构件的长细比不大,其挠曲二阶效应的影响相对很小,一般可以忽略。但由于高层建筑结构的侧移较大,约为楼层层高的1/3000~1/500,重力荷载的p-Δ效应相对明显,可使结构的位移和内力增加,甚至导致结构失稳。因此,高层建筑结构的稳定设计,主要是控制和验算结构在风或地震作用下,重力荷载产生的p-Δ效应对结构性能降低的影响以及由此可能引起的结构失稳[4]。
本工程中,结构整体稳定验算如下:13~25层各层重力荷载设计值G1=9384kN,4~12层各层重力荷载设计值G2=9572 kN,13~25层各层重力荷载设计值G3= 23816kN。 ,取 = , ,结构双向整体稳定满足要求。
6 结语
本文结合笔者多年从事建筑结构设计工作的相关经验,对高层建筑结构的设计特点进行了简单的概述。以某高层建筑结构设计
为例,对主体结构选型、楼盖结构选型及楼屋面板设计、剪力墙截面设计进行了简要的概述。指出了在高层建筑结构设计中应重点注意框架部分抗震等级、适用高度和高宽比的调整、框架剪力墙中框架总剪力的调整、构造要求。最后对高层建筑结构设计中的侧移控制和结构整体稳定性进行了详细的分析,以提高工程建设的经济性和安全性。
参考文献:
[1]夏卓文.高层建筑结构设计特点与剪力墙设计[J].住宅科技.2007,2:29~32.
[2]周 云.高层建筑结构设计 [M].武汉:武汉理工大学出版社,2006.
关键词:高层建筑;结构设计;结构受力特征;要点分析
引言:
近年来随着科学技术的发展,尤其是钢铁、电梯、塔吊等相关事物的出现以及后来钢筋混凝土、钢结构的应用,都为高层建筑的发展创造了前所未有的机遇,高层建筑也成为城市空间中一道独特的风景。近年来我国的高层建筑也发展迅速,随着结构理论和技术的发展,高层建筑结构形式趋于多样化,高层建筑的表现形式也多种多样,结构设计的经济性合理性也愈发重要,优秀的结构设计方案可以带来可观的经济效益和满足建筑美学要求,建筑结构设计在建筑实现过程以及城市建筑发展中起着至关重要的作用。以下是探讨结构设计几个需要注意的要点:
一、高层建筑的地基与基础设计方面
地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础也是整个工程造价的决定性因素,因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。
在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。
地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。
二、高层建筑结构受力方面
1.对于一个建筑物的最初的方案设计,建筑师考虑更多的是它的空问组成特点,而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成,因此结构必须能将它本身的重量传至地面,结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。
2.与竖向荷载相比,侧向荷载对建筑物的效应不是线性增加的,而随建筑高度的增高迅速增大。例如,在所有条件相同时,在风荷载作用下,建筑物基底的倾覆力矩近似与建筑物高度的平方成正比,而其顶部的侧向位移与高度的四次方成正比,地震的作用效应更加明显。在高层建筑中,问题不仅仅是抗剪,而更重要的是整体抗弯和抵抗变形,可见,高层建筑的结构受力性能与低层建筑有很大的差异。
3.对于低层、多层和高层建筑,竖向和水平向结构体系的设计基本原理都是相同的,但是,随着高度的不断增加。竖向结构体系成为设计的控制因素,其原因有两个:其一,较大的垂直荷载要求有较大的柱、墙或者井筒;其二,侧向力所产生的倾覆力矩和剪切变形要大得多。
三、高层建筑结构的选型阶段
对于高层结构而言,在工程设计的结构选型阶段,结构工程师应该注意以下几点:
(一)结构的规则性问题
新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。
(二)结构的超高问题
在抗震规范与高规中。对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑,因此。必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题。导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。
(三)短肢剪力墙的设置问题
在新规范中,对墙肢截面高厚比为5-8的墙定义为短肢剪力墙。且根据实验资料和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。
(四)嵌固端的设置问题
由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。
四、结构计算与分析方面
在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。
(一)结构整体计算的软件选择
目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。
(二)是否需要地震力放大,考虑建筑隔墙等对自振周期的影响
该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。
(三)振型数目是否足够
在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。
(四)多塔之间各地震周期的互相干扰,是否需要分开计算
一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。
(五)非结构构件的计算与设计
在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大。因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。
关键词:复杂高层;超高层;结构设计;设计要点
在高层和超高层建筑的结构设计工作中,面临的问题十分复杂,与普通建筑相比,高层和超高层建筑的结构设计工作难度更高。为了解决高层及超高层建筑结构设计的难题,有必要对复杂高层与超高层建筑结构设计要点进行探讨研究,这对我国城市发展以及建筑行业的发展都将起到重要的意义。
1、复杂高层和超高层建筑与普通建筑在结构设计上的区别
复杂高层和超高层建筑与普通建筑在结构设计上具有很大的不同,普通高层建筑的高度一般不超过200m,而复杂高层和超高层建筑的高度通常在200m以上,甚至可达到上千米。另一方面,普通高层建筑大多为钢筋混凝土结构,而复杂高层和超高层建筑通常采用混合结构或钢结构。此外,在复杂高层和超高层建筑的结构设计工作中,需要面对抗震要求、风荷载、舒适度、避难层、机电设备层、施工因素等一系列难题,可见复杂高层和超高层建筑的结构设计难度要远大于普通高层建筑。
2、进行复杂高层建筑与超高层建筑的结构设计时需考虑的问题
2.1设计方案方面的问题
在对建筑结构进行设计的时候第一步就要对建筑物的结构方案问题进行重要的思考。特别是对于那些复杂高层与超高层建筑来说,如果因为在选择结构设计方案的时候没有恰当的选择,那么就很容易引起整个结构设计方案大幅度的调整。正因如此,设计单位在对建筑物进行设计方案的制定时,不仅仅要把专业的东西结合进去,还要对去其他地区的实例进行考察,结合多方面的东西,来对方案进行有效的确立。
2.2建筑结构类型方面的问题
对复杂高层建筑与超高层建筑在展开选择结构类型的时候,结构设计工作者不仅仅要对建筑所在的地区的抗震度进行充分的考虑,还应该对建筑地区的外部环境的地质进行合理有效的分析。不仅如此,在一个方面还应该大量的减少建筑成本,对建筑工程造价问题进行充分合理的考虑,如果条件一样的话尽量选择成本比较低的借建筑结构。
3、复杂高层与超高层建筑结构设计要点
3.1严格选择合理的结构抗侧力体系
不同高度的高层建筑物,所采用的结构抗侧力体系也各不同,不同高度建筑物常用的结构抗侧力体系也不尽相同。在建筑结构设计上,要保证结构抗侧力构件能有效结合为一个整体,在复杂高层和超高层建筑结构体系设计过程中,如果采用多层抗侧力结构体系,那么应分析每种抗侧力结构体系的作用,要根据其作用的不同,对抗侧力构件进行科学的布置。在条件允许时,复杂高层和超高层建筑结构的抗侧力构件应该尽量做到相互连接,增强结构整体性,如可以通过伸臂桁架将核心筒和框架柱相互组合,例如广州东塔及其组合抗侧力体系,该建筑在结构设计中,就是通过伸臂桁架将核心筒和框架柱相互连接。另外也可以将通过环带桁架、巨型斜撑将框架柱组合成整体,进而形成巨型框架,此外还有深圳平安大厦及其组合抗侧力体系,该建筑在结构设计中,就是通过环带桁架、巨型斜撑将框架柱组合成整体。此外,也可以将纵横向墙体相互组合,形成组砼筒体或者组合墙,此抗侧力体系均可用于复杂高层和超高层建筑。
3.2概念设计的重要性
从以往的建筑工程中得出的经验,对于复杂高层和超高层建筑,应重视在其结构概念设计上的重要性,主要应重视以下几点:
(1)控制好建筑结构的均匀性和规则性,保证建筑结构的稳定性。
(2)保证建筑结构竖向和抗侧力有直接且有效的传力途径。
(3)保证建筑工程结构的整体性。
(4)在结构设计上,要保证绿色环保、节约能源。
建筑工程的结构设计要想满足以上几点,需要结构工程师和各专业设计之间的共同努力协作,只有协作好才能达到设计标准,保证工程质量。
3.3控制结构设计指标及计算结果的合理性
(1)合理选择分析软件
在建筑结构设计工作中已经普遍采用了信息化技术,目前计算机软件的种类十分繁多,各个软件的侧重点也不尽相同,因此,设计人员应该对各种软件有所了解,根据工程项目的实际情况,选择科学适用的计算机软件。
(2)充分考虑荷载作用
1)地震荷载
在复杂高层和超高层建筑进行结构设计时应考虑地震荷载的问题。对建筑施工场地进行地震安全性评价,结合安评内容并与规范规定采用的地震力合理对比,小震时应进行包络设计,同时根据规范要求合理选用地震波。
2)风荷载
在复杂高层和超高层建筑结构的设计过程中,风荷载对建筑物的影响很大,随着建筑物高度的增加,其风荷载也在不断的增加,对于建筑高度超过200m以上的建筑物,应进行风洞试验。
(3)合理控制关键设计指标
一定要合理控制各项关键设计指标,包括剪重比、自振周期、位移比、层间位移角、侧向刚度比与抗剪承载力比、核心筒和框架部分剪力与弯矩分配、单位面积下的重力荷载代表值、整体稳定性验算等等。
3.4结构性能优化分析
(1)在进行方案设计时,必须有结构专业的人员参与其中。
(2)复杂高层和超高层建筑在选择结构类型时,一定要充分考虑工程所建地的工程地质情况。
(3)要考虑工程的造价成本问题,在保证安全、质量的前提下,应尽可能选择造价较低的结构类型。
(4)要重视抗震设计,在复杂高层和超高层建筑的抗震方案设计过程中,要慎重的选择建筑结构的抗震材料,应有效控制地震发生时楼层间的位移限值,通过对发生改变的建筑构件和建筑层间的位移进行分析,得出构件的变形值,合理选择建筑结构的抗震方案。
3.5工程施工过程对设计的要求
在进行设计的过程中一定要充分考虑施工因素的影响,如在复杂高层和超高层建筑中,竖向构件的压缩变形会使建筑物的外形发生改变,而且影响建筑的内力分布。因此,为了避免建筑的外形发生改变,提高建筑结构设计的合理性,保证施工过程的安全,应对复杂高层和超高层建筑进行施工过程模拟和预变形演练。另外,在结构设计时,一定要注意复杂节点部位钢筋及钢材传力的可靠性,同时要考虑现场施工的可实施性。如在型钢混凝土梁柱节点中主筋与型钢相交时,通常采取以下4种处理措施:型钢表面焊接钢筋连接套筒;钢筋绕过型钢;钢筋与型钢表面加劲板相焊连;钢板上开洞穿钢筋等。在实际设计中,一定要合理选择处理措施,保证现场施工的可实施性。
4、结束语
综上所述,复杂高层和超高层建筑的结构设计特别关键,它直接关系到建筑物的质量和安全。所以我们在进行结构设计过程中,一定要综合考虑建筑物的抗侧力性,只有确保建筑结构体系的稳定才能保证建筑的安全。概念设计在复杂高层和超高层建筑结构设计中,占有很重要的比重,概念设计是否合理决定着高层建筑结构设计的好坏。在进行结构设计时,每个环节的设计都应高度重视,从而使建筑结构体系达到安全稳定,满足人们的使用功能要求。本文主要对复杂高层与超高层建筑结构设计要点提出几点建议,希望对相关设计工作有所帮助。
参考文献:
[1]董兴明.复杂高层建筑结构设计要点分析[J].中原建筑,2014(9):70-72.
[2]辛晓宇.复杂高层、超高层建筑设计要点分析[J].科技创新与应用,2012(5):219-220
关键词:高层建筑;结构设计;抗震
Abstract: The high-rise building is the city's main buildings, it create the contour of the city interesting, this paper discussed a few key points of the structural design of high-rise buildings.Key words: high-rise buildings; structural design; earthquake
中图分类号:TU2 文献标识码:A文章编号:2095-2104(2012)02-
高层建筑随着城市化的发展越来越多样化,而出现的问题也更加复杂。随着层数和建筑高度增加,利用结构空间作用,又发展了框架―――简体结构、简中简结构、多简结构和巨型结构等多种结构体系。高层建筑结构的承载能力、侧移刚度、抗震性能、材料用量和造价高低,与其采用结构体系有着密切关系。不同结构体系,适用于不同层数、高度和功能的建筑。
在高层结构设计中,水平力是控制的主要因素,在地震区水平力是高层建筑结构设计的决定因素。剪力墙结构刚度大、周期短、地震作用大,在设计中应注意调整结构刚度。近年来出现了一系列新的结构体系,其中有巨型框架结构、巨型桁架结构、悬挂和悬挑结构。目前采用这些结构体系的工程尚较少,经验不多,对于这些结构的研究也不够深入、成熟,尚不能普遍推广于设计与施工中。
一、概念设计与理论计算概念设计是指一些难以做出精确力学分析或在规范中难以具体规定的问题,必须由工程师运用“概念”进行分析,做出判断,以便采取相应措施。概念设计带有一定经验性。高层建筑结构的抗震设计计算是在一定假定条件下进行的。尽管分析的手段不断提高,分析的原理不断完善,但是由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多。尤其是当结构进入弹塑性阶段之后,会出现构件的局部开裂,甚至破坏,这时结构就很难用常规的计算原理去进行内力分析。实践表明,在设计中把握好高层建筑的概念设计,从整体上提高建筑的抗震能力,消除结构中的抗震薄弱环节,再辅以必要的计算和结构措施,才能设计出具有良好抗震性能的高层建筑。将注重概念设计作为高层建筑结构的最高原则提出,其主要内容为:(一)应特别重视建筑结构的规则性(包括平面规则性和竖向规则性)。(二)合理选择建筑结构体系包括:
1、明确的计算简图和合理的地震作用传递途径;
2、避免因部分结构构件的破坏而导致整个结构丧失承受重力、风载和地震作用的能力;
3、结构体系应具备必要的承载能力和良好的变形能力,从而形成良好的耗能能力。(三)采取必要的抗震措施提高结构构件的延性。
二、结构整体稳定和倾覆问题(一)整体稳定
建筑物在竖向荷载作用下,由于构件的压屈,可能造成整体失稳。我国国内高层建筑层数大多在40层以下,刚度很大,整体稳定一般不存在问题。当高宽比H/B>5时,应验算其整体稳定性。(二)倾覆问题
高层建筑由于总高度值很大,基底面积小,在水平荷裁和水平地震作用下,产生很大的倾覆力矩,如果倾覆力矩超过稳定力矩,则建筑物将会发生倾覆,此方面地层灾害实例也已证实。在抗倾覆验算中,倾覆力矩按风荷载或地震作用计算其设计值。计算稳定力矩时,楼面活载取50%,恒载取90%,要求抗倾覆的稳定力矩不小于倾覆力矩设计值。对于高度超过150m的高层建筑应进行整体稳定性及抗倾覆验算。
三、水平作用任何建筑结构都要抵抗竖向荷载和水平荷载,在低层和多层结构设计中,往往是以重力为代表的竖向荷载起控制作用,对于高层结构的设计,尽管竖向荷载仍对结构设计产生重要作用,但起控制作用的是水平荷载。之所以如此,其根本原因在于侧移和内力随高度的增加而迅速增长,例如一根悬臂杆件,在竖向荷载作用下,产生的轴力仅与高度成线性比例,但在水平荷载作用下,其弯矩与高增加。因此,在高层建筑结构设计中,抗侧力的设计是关键,水平荷载是决定因素。对于一定高度的建筑物,作为其水平荷载的风荷载和地震作用将随结构动力特性的不同而有显著的变化。
四、轴向变形任何建筑结构在外力作用下产生的位移都包括弯曲、轴向变形和剪切变形三部分。在低层建筑结构设计中,通常只考虑弯曲变形,而忽略铀向变形和剪切变形的影响,因为一般结构构件的轴力和剪力产生影响较小,可不考虑。而高层建筑由于层数多、轴力大,再加上沿高度积累的轴向变形显著,轴向变形会对高层结构的内力产生很大影响。此外,高层结构中的剪力墙的截面也往往很大。因此,剪切变形的影响不可忽略。采用框架体系和框架―――剪力墙体系的高层建筑中,框架中柱的轴向压力往往大于边柱的铀向压力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种差异轴向变形将会达到较大的数值,其后果相当于连续梁的中间支座产生沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。故在高层建筑设计中,轴向变形不能不考虑。在高层建筑结构的力学计算中,根据所选计算手段,所计算的构件变形因素是有区别的。对于简化助手计算方法,一般只计算最基本的变形。采用计算机方法计算时,计算的变形因素要多一些。当用空间协同工作方法时,考虑了梁的弯曲、剪切变形,考虑了柱、剪力墙的弯曲、剪切和轴向变形;当用完全的三维空间分析方法时,除考虑了前面全部变形外,还增加了梁、柱、剪力墙的扭转变形,以及剪力墙墙体截面的翘曲变形。
五、侧移成为控制指标与低层或多层建筑不同,结构侧移已成为高层建筑结构设计的关键因素。随着建筑高度增加,水平荷载作用下结构侧向变形迅速增大,结构侧移与高度呈现四次方关系上升。在高层建筑结构设计中,不仅要求结构具有足够的强度,还要求具有足够的抗倒移刚度,以保证结构在水平荷载作用下所产生的侧移限制在一定范围内。侧移是高层建筑的要害问题,之所以要控制结构侧移,其主要原因有:(一)侧移过大,使建筑物内的人在心理上产生不适应,控制结构侧移是保证建筑物正常使用的需要。(二)侧移过大,使建筑物内的填充墙、建筑装饰和电梯轨道等服务设施产生裂缝、变形,甚至损坏。(三)侧移过大,将导致结构开裂或损坏,进而危及结构正常使用和耐久性,实际上控制结构构件裂缝就是限制结构侧移。(四)地震对建筑物的破坏程度,主要取决于结构侧移大小,如果结构变形能力不足以抵御地震输入能量对结构变形的要求,结构则会发生倒塌。
六、抗震设计
抗震设计要求更高在高层建筑结构的抗震设防设计时,要考虑正常使用时的竖向荷载、风荷载,还必须使建筑结构具有良好的抗震性能,做到小震不坏、中震可修、大震不倒。计算结构的延性是困难的,结构或构件的延性是通过一系列的构造措施实现的。在高层建筑设计中,为使结构具有良好的延性,构件要有足够大的截面尺寸,柱的轴压比、梁和剪力墙的剪压比、构件的配筋率都要适宜,应遵照规范、规程的要求。
摘要:高层建筑由于其层数较多、空间结构的变化性较大,对于安全性、耐久性以及抗震性能具有特殊的要求,高层建筑结构设计直接影响建筑质量。因此,高层建筑的建设单位极其注重结构的设计工作。本文根据笔者多年高层建筑结构设计经验对高层建筑结构设计的基本要求、设计原则进行了论述,对其设计方法和优化措施进行了探讨。
正文:
近年来,高层建筑发展很快,结构形式发生了很大变化,无论是内部结构还是外部结构,都越来越符合现代人的生活方式与使用要求,但是在进行建筑结构设计的时候,必须要保证建筑结构的整体性能,否则会造成不可估量的后果。
1 高层建筑结构设计概述
1.1 设计原则
1) 适用性。高层建筑中结构设计的适用性原则,是以该建筑设计时所设定的具体使用年限为参照,保证建筑的结构设计能够在此年限中,使自身的裂缝、变形、振动等各项性能变动,始终控制在允许的限度内,使建筑在各项结构性能的支撑下,得以为建筑用户正常顺利地提供各方面的使用功能。
2) 安全性。高层建筑中结构设计的安全性原则,亦是以设计使用年限为依据,使该建筑的结构设计在预定年限范围内,始终可以达到对内部与外部各项荷载力的有效承受,即使遭遇某些偶然的破坏性事故,也要能够使自身结构控制在整体稳定的状态中,避免出现大范围的结构性损害。
3) 耐久性。高层建筑的耐久性设计原则,是指建筑的结构设计必须在规定的使用年限内,维持足够的结构耐久性,比如,混凝土结构出现的裂缝宽度不得超出允许的范围,且钢筋保护层的厚度不能够变得过于单薄,以免钢筋在遭受外部潮湿空气的状况下出现锈蚀问题。
4) 可靠性。可靠性的设计原则,是指高层建筑的结构设计,必须在设计的基准期与建筑的使用年限范围内,充分达到耐久性、安全性、稳定性、刚度、动力性能等各方面的性能要求,即使超出年限的基准期范围,也能够在各项性能出现不同程度降低的基础上,维持正常的使用。
1.2 设计要求
1) 刚度要求。高层建筑面临着众多的水平作用力影响,容易出现较大幅度的侧向位移,设计人员在进行混凝土结构设计时,必须在保证其具有足够强度的基础上,同时使其具备合理的刚度及自振频率,进而将楼层水平位移控制于允许范围。
2) 侧向力。目前,高层建筑的结构设计中,其结构内力与变形等问题,主要受到地震的水平作用力及外部环境中的风力等因素的影响,层数的不断增多会带动水平作用力的持续加大。所以,在设计混凝土结构时,必须要充分地将这些侧向力的影响考虑在内。
3) 延展性。高层建筑的结构柔性比低层的楼房要高,一旦遭遇地震等问题,会发生更大幅度的作用变形,若要避免建筑在地震等作用下发生倒塌变形等问题,就必须在进行混凝土结构的设计时,使其结构具备足够的延展性能。
2 高层建筑混凝土结构的具体设计方法
2.1 完善单元结构的布局设计
独立的结构单元设计,是高层建筑中的主要结构设计内容,此结构设计工作适合采用简单、规则的平面形式,但平面的整体长度与突出部分的长度应当控制于适宜的范围,且具备均匀分布的承载力与刚度,同时,竖向结构适合采取均匀、规则的形式,以保证建筑的外挑与内收问题得到有效的控制。
要达到这一目标,混凝土结构的设计者,应当在制定结构设计方案的阶段,便努力地将概念设计的理念与知识作为参考,使建筑的适用性与美观度等要求在得到满足的基础上,通过进行优化设计,使其结构的平面与竖向布局尽可能地实现简单、均匀与规则性,保证其结构刚度与承载力的合理分布,避免建筑独立结构单元出现过于集中的塑性变形或应力。
2.2 优化高强的混凝土与钢筋使用
高层建筑建设需要耗费较多的混凝土、钢等材料,若混凝土和钢的强度过大,势必会造成建筑材料总造价的超限,同时加大其他构件的造价,从而降低建筑建设的经济效益。因此,混凝土的结构设计人员应当对高强度的混凝土与钢筋的使用进行合理的优化控制。
以软土地基上的高层建筑设计为例,该结构地基受到的荷载较高,设计人员可以通过优化高强度的混凝土以及钢筋的使用,使建筑中各构件的截面尺寸得到合理优化,从而减轻建筑的结构自重,使建筑的基础工程建设难度得到大幅度的削减,降低工程的地基处理工作造价。
再以位于震区的高层建筑的结构设计为例,建筑的自重与地震作用程度成正比例关系,设计人员通过将高强度的混凝土与钢筋的使用量减少,可以在减轻其梁、板、墙、柱等构件自重的基础上,降低地震的作用力,进而保证建筑结构的安全程度,使建筑的整体安全度得以提升。
2.3 合理设计剪力墙平面结构
1) 以建筑的各项基本结构功能为依据,在满足这些功能的前提下,尽可能地使剪力墙的布置实现相对的集中化与均匀化,对具有较高的恒载或者平面形式变化较大的部位设计剪力墙,应当尽量缩小其间距。2) 以建筑的主轴方向或者是其他方向为基准,对剪力墙进行双向的布置,且墙肢截面适合为具备较小的侧向刚度的简单规则的形式,在设计中还要尽量地减少对短肢剪力墙的使用。
3 高层建筑的混凝土结构具体设计优化措施
3.1 结构安全性
1) 设计人员应当在保证建筑各项功能的同时,通过考虑结构自身的抗震性能及外部人为因素可能造成的结构破坏,有目的地将高层建筑的抗震等级提升。同时,还要从整体上,加强结构设计的稳定性与牢固度,避免将砖砌体承重或者装配式的混凝土结构应用于高层的公用属性较高的建筑中,而要优先选取现浇的钢筋混凝土的结构。
2) 设计人员要从建筑建设过程中及投入应用后的各个方面入手,综合考虑其荷载变化的状况,尽可能地将建筑结构的荷载标准值与构件承载力设置出较大的弹性裕度,并且为楼面等部位进行额外的增加荷载的设计,以保证建筑在各级的地震与火灾等灾害中,都可以实现对于自身结构安全的维护。
3.2 抗震概念
高层建筑的混凝土结构在应用过程中,最容易受到的破坏,便是来自于地震威胁,在进行设计的过程中,设计人员要以抗震概念设计为依据,通过进行抗震试验得出该建筑结构的抗震等级,或者借鉴相似建筑的抗震设计经验等,对高层建筑的结构体系、平立面设计、结构构件延展性等进行优化设计,以使建筑的抗震能力得到有效的提升。
3.3 耐久性
1) 选择良好的混凝土材料。
设计人员应当在保证混凝土材料的质量与基本性能的基础上,重点从结构的稳定性能、抗侵入性能、抗裂性能等几个方面入手,选择坚固、耐久、洁净的骨料,含碱量与水化热反应较低的水泥,减少对于硅酸盐水泥与用水量的应用,并适当地将矿物掺合料加入到材料中。
2) 优化结构使用设计工作。
高层建筑中的混凝土结构物普遍包括多个构件,每一个构件所处的环境存在显著的差别,这就决定了不同构件具备的耐久性寿命存在差异,因此,设计人员要根据实际的使用环境,明确建筑中不同结构构件的使用界限与注意事项。以屋面、阳台及女儿墙的设计为例,这些部位的梁柱构件,耐久性寿命普遍低于室内,必须合理设定这些部件维修或更换的时间。
3) 合理设计结构构造形式。
设计人员根据建筑的具体侵蚀环境与设计使用年限,设计厚度在 20 mm ~70 mm 之间的混凝土保护层,并通过协调构件的截面积与表面积,避免侵蚀性物质集中停留区域的形成,同时注意高侵蚀度的环境中,混凝土墙板的通风效果,并注意配筋间距的合理设计,以减少钢筋锈蚀、保护层剥离等问题的出现。
4 结语
高层建筑结构设计是影响建设质量的关键决定性因素之一,因此,建筑设计人员必须加强对于其设计原则的分析与掌握,立足于具体的设计原则及要求,从整体的设计工作及具体的设计内容等方面入手,采取有效的策略,以推动其结构设计的优化完善。
参考文献:
[1] 王广辉. 浅析高层建筑中混凝土结构的优化设计[J]. 科技风,2011( 7) :44-45.
关键词:高层建筑结构设计
随着我国国民经济不断发展和人民生活的迅速提高。业主及建筑师的创新艺术使得钢筋混凝土高层建筑发展被广泛应用。高层建筑结构设计给工程设计人员提出了更高的要求,下面就结构设计中的问题进行一些探讨。
1 高层建筑结构设计的意义及依据
1.1概念设计的意义
高层建筑能做到结构功能与外部条件一致,充分展现先进的设计.发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。
1.2概念设计的依据
高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。
2高层建筑结构设计体系
2.1 结构的规则性问题
新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。
2.2 结构的超高问题
在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A 级高度的建筑外,增加了B级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。
2.3 嵌固端的设置问题
由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了自嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计 嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。
2.4 短肢剪力墙的设置问题
在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。
3高层建筑的整体隐定性
对高层建筑来说.在抗震没汁中,房屋的高宽比是一个需慎重考虑的问题。
3.1对整个建筑进行抗倾覆稳定性验算,使地震作用下的倾覆矩与相应的重力薪载在基础与地基交界面上的合力作用点.不应超出力矩作用方向抗倾覆构件基础边长的1/4。
3.2加大建筑物下部儿层的宽度.使其满足规范高宽比的限值,从而保证上部结构的稳定。
3.3使基础有足够的 置深度。有些裙楼和高层主楼从地上到地下用变形缝彻底分开.导致主楼基础埋深不够,地震时会使建筑物发生滑移、整体倾斜甚至倾覆
3.4对于高宽比很大的高层建筑,建议采用桩基础,桩基础钢筋在承台内的锚固长度要足够大。因为桩是埋在土中的细长构件,由于桩土摩擦力的存在,桩的抗拔性能较好,从而能很好地抵抗上部结构的倾覆。避免采用天然地基或复合地基上的浅基础。
4 结构设计应注意的问题
4.1周期控制
结构周期反映了结构体系的柔刚性,周期越长说明结构的整体刚度越柔,同时结构的位移也就越大,控制结构的位移和控制结构的周期是同一性质的,结构位移与结构周期是息息相关的,前者随后者的增大而单调增长。新抗震规范和高规还进一步提出了对结构扭转为主的第一周期与平动为主的第一周期之比的限定规定。对于侧向刚度沿竖向分布基本均匀的较规则结构,其规律性较强,扭转为主的第一周期Tt和平动为主的第一周期T1都比较好确定,但是对于平面或竖向布置不规则的结构,则难以直观地确定Tt和T1。为了便于设计人员执行这条规定,在新规范软件中增加了根据振动方向因子判断各振型的振动形态功能和主振型判断功能。
4.2控制层刚度比
层刚度和层刚度比是两个重要参数。目前计算层刚度主要有三种方法:a.层剪力与层间位移比值方法。b.剪切刚度方法;c.剪弯刚度方法;按抗震规范定义:层的抗侧移刚度实际上就是使层刚心产生单位所需的水平力。层刚度比可以判断各层间的刚度均匀分布,在新高规4.4.2条,l0.2.6条,4.4.3条,5.3.7条对高层结构的层刚比作了规定。
4.3控制扭转不规则
根据新抗震规范3.4.2条及表3.4.2.1的规定,楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍,同时抗震规范3.4.3条规定,扭转不规则时,应计及扭转影响且楼层竖向构件最大的弹性水平位移和层间位移分别不宜大于楼层两端弹性水平位移和层间位移平均值的1.5倍;因此通过控制结构的扭转位移,使结构具备必要的抗扭刚度,保证结构满足地震作用下的抗扭要求,更好地满足结构的抗震安全性。
4.4偶然偏心影响
根据高规第3.3.3条规定:计算单向地震作用时应考虑偶然偏心的影响。做法是把各楼层质心求出后,按规范规定的偏移值向同一个方向偏移。
因是质心偏移,当考虑耦连计算时结构的动力特性均会改变,程序计算出各种组合后按最不利情况进行配筋计算。按“高规”规定,一般工程均应考虑偶然偏心影响。当考虑双向地震作用时可以不考虑偶然偏心的影响,“抗震规范”中规定规则结构不进行扭转耦连计算时,采用增大边榀内力的简化处理方法。实际工程计算建议采用考虑扭转耦连的方式进行计算。
4.5对振型数量的要求
“高规”中第3.3.10条,第3.3.1l条及第5.1.13条规定了计算地震作用时的最少振型数量。实际上最根本的要求是要保证振型参与质量达到总质量的90%以上程序自动计算各个振型数时的振型参与质量,当用户输入振型数量不足时,设计人员可以增加振型数使振型参与质量达到总质量的90%以上。
5 结语
钢筋混凝土高层建筑结构设汁是一个长期、复杂甚至循环往复的过程,任何在这个过程中的遗漏或错误都有可能使整个设计过程变得更加复杂或使设计结果存在不安全因素。所以把每个重要问题都考虑全面了,才能保证结构设计的安全。
参考文献
1、《混凝土结构设计规范》.GB 50010―2002.
关键词:钢筋混凝;高层结构;设计
中图分类号:TV331 文献标识码: A
引言
高层建筑是社会生产的需要和人类生活需求的产物,是现代工业化、商业化和城市化的必然结果。而科学技术的发展,高强轻质材料的出现以及机械化、电气化在建筑中的实现等。为高层建筑的发展提供了技术条件和物质基础。简要论述了高层建筑结构的特点、现状及今后的发展趋势。随着高层建筑在我国的迅速发展,建筑高度的不断增加,建筑类型与功能的愈来愈复杂,结构体系的更加多样化。高层建筑结构设计也越来越成为结构工程师设计工作的主要重点和难点之所在。
一.结构选型
对于高层结构而言,在工程设计的结构选型阶段,结构工程师应该注意以下几点:
1.1结构的规则性问题
新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。
1.2结构的超高问题
在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。
1.3嵌固端的设置问题
由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。
1.4短肢剪力墙的设置问题
在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。
二.结构计算与分析
在结构计算与分析阶段,决定工程设计质量好坏的关键在于如何准确、高效地对工程进行内力分析并规范地进行设计和处理。
2.1随着科学技术的发展,目前高层建筑的结构分析基本上都采用计算机软件进行,但计算机软件无法代替人的设计概念,在这一阶段,首先进行计算机软件选择。由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果多少会出现偏差。如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。因此,在进行工程整体结构计算和分析时必须对计算软件进行合理的筛选,并从不同软件大大小小的不同的计算结果中,判断哪个是最可取的结果,这将是结构工程师在设计工作中首要的工作。
高层设计的难点在于竖向承重构件的合理布置。而布置的是否合理,可通过以下几个参数进行控制。轴压比:控制结构延性;剪重比:控制各楼层最小地震剪力,确保结构安全性。剪重比过大或者过小都无法满足承重或者抗震需求,因此,剪重比的取值大小要控制在适宜的范围内计算位移;刚度比:控制结构竖向规则性,避免产生刚度突变。位移比:控制结构平面规则性,以免产生扭转。周期比:控制结构扭转效应。
2.2是否需要地震力放大.考虑建筑隔墙等对自振周期的影响,新的设计规范中,根据大量工程的实测周期,已经明确的提出了各种结构体系下高层建筑结构计算自振周期折减系数,此处为强制性的规范,需在设计过程别注意。
2.3振型数目是否足够。结构设计规范中提出了振型数目的要求,明确了该参数的最小限值,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要对振型数目的取值进行调整。
2.4多塔结构和分缝结构的计算分析。在一段期间内,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的重要问题。如果分开计算,则容易导致下部裙房及基础计算误差较大,无法考虑各塔之间相互影响。因此,在将各塔分开计算周期的基础上,应当首先进行整体计算。而与多塔结构不同,对于分缝结构,最好的办法则是将各独立单元分开计算,如一定要合在一起,那么可以按照多塔模型计算,计算周期比时也应同多塔一样分开计算。对于整体的配筋计算,也与多塔有所不同,多塔应以不切开的模型为准,分缝结构则没有此类限制。在此基础上,还需注意,在分缝结构按多塔处理时,如果其分缝处不是真正的独立迎风面,将会出现风荷与实际受力状态不符的状况,应注意修正风荷载数值。
2.5非结构构件的计算与设计。在高层建筑中,为了达到建筑美观的效果或基于某种功能性的需求而设计的非主体承重骨架体系中的非结构构件的安全性也不容忽视,在这部分内容中,尤其是高层建筑屋顶处的装饰构件进行设计时,必须严格按照规范中的非结构构件的计算处理措施进行设计。
三.关于强柱弱梁的设计
为了达到小震不坏、中震可修、大震不倒的抗震设防目标,强柱弱梁的设计理念被提出。柱破坏了建筑物整个都会倾覆,而梁破坏则仅是某个区域失效,因此,柱较之梁破坏的损害更大,当前我们的经济已高速发展,我们结构设计人员在设计中一定要将这一概念设计贯彻下去。必须严格控制柱轴压比,对柱断面及配筋设置时应分部位处理;边柱、角柱应适当加强,特别是角柱,建议应全柱加密箍筋,且柱筋品种不宜过多,矩形截面柱尽可能对称配筋。
四.地基与基础设计
地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础是整个工程造价的决定性因素,因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。地方性的“地基基础设计规范”能够将
各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。
结束语
钢筋混凝土高层结构设计是D个复杂且又循环往复的过程,任何在这个过程中的遗漏或错误都可能导致整个设计过程变得更加复杂或使设计结果存在安全隐患,为了保障质量安全,这就要求设计者严格按照设计规范进行设计。建筑结构设计质量密切关系到人民生命财产的安全,我们必须在工作中,不断地学习、总结,不断的进步与完善。
参考文献:
[1]仲纪贵.钢筋混凝土高层结构设计常见问题探讨[J].南北桥,2009(1).
[2]王忠武.钢筋混凝土高层结构设计常见问题探讨[J].中华民居,2010(11) .
【关键词】高层建筑;剪力墙;结构设计;关注要点
近几年来,由于人们对建筑的需求,促使我国的建筑行业迅猛发展,为了更加合理有效的利用土地的使用面积,更多的高层建筑如雨后春笋般的涌现出来,而人们对于建筑的功能、结构以及设计都提出了新的要求。由于剪力墙具有独特的优势,促使其成为了高层建筑中广泛应用的一种结构,在建筑行业中占有重要的位置,发挥着关键作用。如何通过把握剪力墙结构设计中的要点,充分发挥其作用,做到经济,安全,外形美观成为了广大专业人士关注的重点。
1剪力墙结构设计的原则
(1)剪力墙的厚度一般比较小,而高和宽的尺寸却比较大,受力形态接近于柱体[1]。但是它与柱体还是存在一定的区别,主要表现在剪力墙肢长与厚度之间的比值,在比值小于等于3时,可以按照柱体来设计,当比值在3~5之间时,被视为异形柱,需要按照双向受压构件设计。(2)剪力墙的主要特点:在同一平面内荷载力和刚度比较大,而在平面外的荷载力和刚度就相对较小。因此,需要注意不要在平面外接搭,如果实在避免不了时就要按照相关规定采取相对应的措施,确保剪力墙平面外的安全。(3)在剪力墙的结构设计中,墙属于一个平面构件,在承受着沿着平面作用的水平剪力和弯矩之外,还需要承担竖向压力。由于在多力结合状态下工作,除了要满足刚度的要求之外,还需要满足非弹性变形下的延性[2]。(4)墙体的设计主要是计算水平和竖向作用下的结构整体的内力,在求得内力后,根据偏拉或者偏压来进行斜截面受剪荷载力和正截面荷载力的计算。
2某高层建筑工程的结构设计概况
某高层建筑工程,如图1。主要采用剪力墙结构,地下一层,地上十五层,共计十六层,地下室层高3.8m,电梯机房高3.1m,水箱高3.0m,室内外高度差0.2m。在该建筑工程中应用剪力墙结构来承受建筑自身具有的水平荷载力和垂直荷载力,其自身的刚性结构体系具备高抗侧强度,用来进行抵抗水平侧力。
3关于剪力墙结构存在的主要问题
因剪力墙具有较高的刚度性、整体性以及抗侧力性,现代高层建筑施工中对于剪力墙结构的应用较为广泛[3]。但是其自身也存在着一定的问题:因为剪力墙具有很高的刚度和较强的抗侧力,在地震效应较高的情况下,就会提高建筑基础以及上部结构的建筑成本;在建筑的过程中,如果混凝土使用较多,就会对建筑物自身的重量以及对具有的平面功能造成影响;剪力墙墙肢结构本身的轴压力不高,就不能充分发挥自身承载压力的作用;剪力墙结构都有相应的配筋标准,如果配筋率太低就会影响其延性。所以,将剪力墙结构运用在高层建筑的结构设计中时,不但要考虑到剪力墙结构的抗侧能力,还要对建筑工程的成本进行考量。
4高层建筑剪力墙结构设计的关注要点
在高层建筑中使用剪力墙结构,主要是针对以下几点进行分析:
4.1布置剪力墙结构
钢筋混凝土剪力墙能够承担风荷载力、水平地震作用力以及竖向荷载力,所以在设计剪力墙时,要考虑建筑物的基本要求,布置剪力墙时尽量形成连续的完整框架,尽可能进行规则的对称布置,防止出现扭转效应。(1)关于短肢剪力墙结构的选择使用短肢剪力墙结构可以对建筑进行灵活设计,能够减少建筑结构的重量,但是这种结构的抗震性能不高,无法很好的保证建筑的安全性,所以要慎重选择短肢剪力墙结构。(2)关于独立的小墙肢高层建筑结构中如果出现独立墙肢,会给施工增加难度。在工程设计中,可以通过合并洞口,科学布置剪力墙的方式来消除独立墙肢,施工难度可以降低。(3)关于剪力墙结构整体刚度剪力墙结构刚度很大,一般来说周期较短,相应地震力较大,如果剪力墙结构刚度过大,不仅材料消耗多不经济,而且因为地震效应比较高,连梁超筋、墙肢以及截面无法满足抗剪力的标准,会增大截面设计的难度,所以,对剪力墙结构的整体刚度需要通过合理计算和有效控制,才能确保达到位移限值的标准,对于剪力墙整体刚度的计算如表1。
4.2控制结构参数
对刚重比、位移比、侧向刚度比、层间位移角等参数进行控制可以有效的保证结构布置的合理科学性。在高层建筑中,竖向构件本身的层间位移、水平位移与该楼层平均值之间的比值就是位移比,主要是限制结构布置本身的不规则性,可以有效防止出现大的偏心力和防止建筑结构主线的扭转效应。位移比限制是在考虑到偏心力的因素下,根据刚性楼板进行确定,高层建筑中竖向构件中的位移比是不能超过1.2的。剪力墙的布置对此影响很大,应尽量按4.1条的原则来布置,方可达到即经济且安全性能好的目的。
4.3关于剪力墙结构的计算和配筋
4.3.1关于剪力墙的墙身剪力墙结构中包括水平向钢筋和竖向钢筋,在进行剪力墙构造和计算时,要对钢筋数量进行确定,主要是对正截面中的抗弯承载力与斜截面中的抗剪承载力进行验算,同时应满足规范的最小配筋率要求。剪力墙结构的厚度主要是根据抗震等级系数进行选择。为了使剪力墙结构的刚性、稳定性和抗震性能够发挥最好的效果,一级二级剪力墙底部的部位墙厚需要超过200mm,超过高层的1/16,其他部分墙厚需要超过160mm。在墙端头无暗柱或翼墙时,墙厚度要超过高层的1/12,这些规则适合高层建筑,但是不适合八度地震区剪力墙结构的设计。对于高层建筑在1~3级抗震等级的剪力墙中,水平、竖向分布筋的最小配筋率需要大于0.3%,部分框支剪力墙底部的增强部位的配筋率需要大于0.35%[4]。4.3.2连梁的计算连梁可以提高剪力墙的刚度,起到连接墙肢的作用。在对高层建筑结构进行计算的过程中,要适当的折减连梁的刚度,折减值控制在0.5以上,最好是控制在0.5~1.0以内。如果折减刚度后发现建筑结构的承载力不足,可以采取降低连梁高度和减小整体刚度的方式来解决承载力的不足[5]。
5结束语
在建筑行业朝着高层建筑形式快速发展的过程中,剪力墙结构的运用越来越广泛,需要将剪力墙结构的优势发挥到最大,以提高建筑的安全性和抗震性。因此需要结合实际情况进行科学合理的设计剪力墙结构。
参考文献
[1]吕瑞孝,姜剑虹.高层建筑剪力墙结构设计需关注的要点[J].科技信息,2011(19):381,412.
[2]叶钟.试分析建筑结构设计常见的问题及措施[J].江西建材,2017(01).
[3]张良.框架剪力墙结构建筑施工技术分析[J].信息系统工程,2013(04).
[4]王孟国.建筑工程剪力墙结构设计方法分析[J].住宅与房地产,2016(36).