公务员期刊网 精选范文 数学问题论文范文

数学问题论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学问题论文主题范文,仅供参考,欢迎阅读并收藏。

数学问题论文

第1篇:数学问题论文范文

一、提问的科学性

我们向学生传授的是科学知识,一个问题的提出应注意其蕴含的科学性,问题的提出,其包含的内容应是准确无误的。如在认识圆时,对于圆是怎样的一种图形,教师在发问中就要在语气中强调“一种怎样的图形”,“一种”两字看似无关紧要,其实却反映了一个整体与部分的关系。又如在学习了圆柱和圆锥两种立体图形后,在小结这两种图形关系时,教师往往会问:圆锥和圆柱的体积有怎样的关系?学生也往往会作出“圆锥体积是圆柱体积的三分之一,圆柱体积是圆锥体积的三倍”这个令教师满意的回答。然而,稍一注意,我们就会发现教师这一提问内容的本身就存在错误,因为并不是所有的圆柱和圆锥都有这种关系,一般来说,只有在高与底都相等的情况下,这一答案才成立。这里,相信教师提问也是针对等底等高这一情况的,但如在提问中不注意细节的处理,使内容发生科学性错误,那么长期下去,将会给教学带来很大的负面影响。

二、提问的合理性

问题具有了科学性,同时还要注意合理性。因为我们的服务对象是小学生,因此问题的提出必须要考虑到学生这一客观主体。一个提问,它必须是准确、具体、不产生歧义的。有一位教师在复习了应用题的数量关系和解题步骤后问了这样一个问题:解应用题的关键要抓住什么?根据刚才的复习,答案可以有两种:一种是抓住数量关系,一种是抓住应用题的解题步骤。因而一问下来,学生左右为难,无所适从,时间在沉默中被白白浪费掉。其实,细细回想一下,课堂上出现的“冷场”情况,有很多时候就是由于我们教师本身的提问存在不合理情况,难以为学生理解而造成的。

三、提问的适时性

适时,即掌握提问时机,就是教师要善于利用或创设一个最佳时间,提出问题,使问题在解决的同时,唤起学生内心的解题向往,积极思维,发展思维。数学课上,每一个问题的提出都是不应受教师主观意志左右,随心所欲的,一个问题出来后,能否为学生所解答,其一要受学生原有认知水平限制,要有知识铺垫作基础,否则问早了,学生认知结构或思维过程上出现断层,欲速则不达。问迟了,提问的结果可能会皆大欢喜,但却使提问失去了促进学生思维,发展学生思维的作用。其二还要受学生主观能动性影响。学生情绪饱满,充满求知渴望,思维处于兴奋状态,此时一石能激千层浪,反之则千呼万唤难出来。因此,掌握好恰当时机,在问题提出后,能够使学生“跳一跳,摘下那个桃”,这是每一个数学教师应该努力的方向。

四、提问的价值性

每节课都有其明确的教学目标、教学方向,作为一个数学教师应善于把教学目标通过一个个具体问题体现出来,将教学内容转化为问题,通过学生的智能活动,取得最佳效果,这里就有一个问题选择的工作。对一个数学教师来说,你的课堂教学提问应该是有实际价值,即把握本课的关键问题,富于启发性,能围绕体现教学目标,帮助学生掌握知识,发展智力和培养能力的。如在教学三角形面积计算公式推导过程中,教师就要抓住“为什么要除以2?”这个最有价值的问题来组织每个环节的教学,突破这个难点,当这个问题得到解决后,学生对三角形的面积计算公式,等底等高的三角形和平行四边形面积之间的关系也就能很好地理解、掌握了。因此,数学教师除了向学生传授知识外,同时还应该以自己充满逻辑顺序,思路慎密的提问去启发学生思维,在潜移默化中使学生思维顺着正确的方向发展下去,养成初步的学习思维习惯,学会思考,正所谓“授之以渔、益其终身”。

第2篇:数学问题论文范文

因此,<<课程标准>>更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。因此,在数学教学中应重视学生的生活体验,把数学教学与学生的生活体验相联系,把数学问题与生活情境相结合,让数学生活化,生活数学化。

在日常教学中通过以下途径可以把数学教学与学生生活有机地结合起来:

一、使教学内容生活化

1.发掘教材中的生活化学习资料:在新教材的编排中,穿插了一些供学生阅读的短文,即“读一读”栏目。我们在教学时,经常组织学生认真学习,并要求学生发表学习心得,上台演讲等。这些材料一方面可以帮助学生了解有关数学知识的产生和发展,把握数学与生产生活实际密不可分的关系,另一方面可以通过了解我国在数学上的重大成就,激发学生的爱国热情。

2.发掘实际生活中的学习材料:包括关注校园生活中的数学资源,留心社会生活中的数学资源,了解家庭生活中的数学资源。校园、家庭、社会环境都是学生生活的场所,通过对这些资源的收集利用,使学生感受到数学与我们的生活密不可分,我们应该学好数学,用好数学。

二、使教学过程生活化

1.导入的生活化:“良好的开端是成功的一半”。心理学研究表明,当学习内容和学生熟悉的生活情境越贴近,学生自觉接纳知识的程度就越高。我们在导入时注意从生活实例引出数学问题,引起学习需要,使学生积极主动地投入到学习探索之中。例如:在“线段的垂直平分线”的新课导人中,我设计了以下情景:“如图,A、B两镇要在公路旁合建一所中学,经费已有着落,但学校选址上有争议,为了交通方便,决定建在公路旁,A镇人希望建在C处,B镇人希望建在D处,同学们请你们给予调解一下,应建在何处,到两镇距离都是一样的?”同学们听后跃跃欲试,但又拿不出可行的具体方案。教师因势利导地说,我们只要学好线段垂直平分线的知识,就可圆满地解决这个问题了。这样做激发了学生的求知欲望,活跃了课堂气氛,使学生体会到数学在现实生活中的重要作用。

2.例题的生活化:使用的教材很难尽善尽美地符合所有学生的知识和生活经验教学时,我们经常结合自己的教学状况,对教材中一些学生不熟悉的、不感兴趣的内容及其情节和数据做适当的调整、改编,用学生熟悉的、感兴趣的、贴近他们生活实际的数学问题来取代。例如:在教学“二元一次方程组的应用”时,我将例题变成一道联系班级实际的应用题:“在HfJ~JJ举行的七年级拔河比赛中,规定每队胜一场得二分,负一场得一分,每场比赛都要分出胜负。如果我班想在全部22场比赛中得到4O分,那么我们班的胜负场数应分别是多少?”由于学生亲身体验了拔河比赛的全过程,学习的积极性大大增强,很快就投入到讨论问题的氛围中。

3.练习的生活化:“学以致用”明确地说明了我们教学的根本目的,因此数学练习必须架设起“学”与“用”之间的桥梁,把练习生活化。在讲述函数内容时,我编写了以下练习:霸州二中计划购置一批某型号电脑,市场价每台5800元,现有甲、乙两电脑商家竞标,甲商家报出的优惠条件是购买1O台以上,从第l1台开始每台按7O计价;乙商家报出的优惠条件是每台均按85计价,两家的品牌、质量、售后服务均相同,假如你是该校有关部门的负责人,你选择哪家?请说明理由。通过此题的练习,让学生了解如何提高经营和消费的决策能力,加深数学与生活的联系,提高应用数学的能力。

三、课外应用的生活化

数学应用于实际,才会变得有血有肉、富有生气,才能让学生体验到数学的价值和意义,确立用数学解决实际问题的意识和信心。教师要引导学生用数学的眼光去观察、分析、解决生活中的问题。

1.开设生活化的数学实践活动,让学生在活动中应用、发展数学。例如:在学习了三角形的相似之后,让学生分组到操场上测量旗杆的高度。学习了统计图表以后,让学生三四人一组到十字路口去收集某一时刻的车流量,然后制成一张统计表。引导他们运用所学知识和方法去分析解决生活中的实际问题,使他们意识到数学知识真正为我们的学习、生活服务。

2.引导学生运用所学的数学知识和方法解决日常生活中的实际问题:例如:让学生设计并剪制匀称美观的轴对称及中心对称图案,适当地用在黑板报、宣传栏上,用在主题班会的布景上,或运用轴对称及中心对称知识设计建筑物造型、家居饰物,改变自己房间的局部布局等。

3.写数学小论文和日记:如在学了多边形的知识后,让学生写一写《生活中的瓷砖》,学了一次函数后,让学生写一写《我们身边的课桌椅》等。数学论文不仅使学生学到了数学知识,提高了数学应用的能力,而且也提高了学生的习作水平。数学日记写出了学生学习数学的感受与得失,反映学习过程中的喜悦与困惑,便于师生间更好的交流。

第3篇:数学问题论文范文

[论文摘要]众所周知,数学是一个理性乏味的科目,很多学生因此对数学产生厌倦心理,教师在教学过程中,需要掌握一定的方法和策略,才能积极有效地使学生学好数学。本文从情景教学与提出问题两方面为小学数学教学提供策略可供参考。

新课改时期的数学教育更加注重教学的趣味性与有效性,以及学生实践能力探究能力与自主学习能力的培养,“情境—问题”的教学策略是数学教学的一个好方法,根据课本内容与要求,创造数学情境,以此来发现问题,提出问题,解决问题,再通过创设新的情境,发现新的问题,解决新的问题,这样的教学方式不仅增添了课堂学习乐趣,也培养了学生自主探究能力和创新能力。

一、怎样创设数学情境

1、创设生活情境

众所周知,我们的生活离不开数学知识,每一天,从早上起来就要计算这一天的收支状况,都要用到数学知识,创设生活情境,诱发学生提出问题,独立思考,再去解决问题;

例如:在讲到“三角形”这一章节时,教师可结合生活中例子,提出问题,为什么照相机的支架是三角状的;为什么挂上窗户的挂钩之后,呈现三角形就不会晃了;为什么停自行车时,总是用两个车轮子和一个车梯着地,车子就停稳了;测量时为什么总是用三脚架却不是四脚架或五角架呢?

伴随着教师的这些问题,学生会自然地进入到这些真实的生活情境中,仔细观察,经过深入思考与理解,最后,总结出原来无论是照相机支架还是窗户的挂钩,都呈现出三角形的形状,他们之所以能稳定不动,就是因为三角形具有稳定性,从而,理解出三角形具有稳定性的原理。

通过创设生活情境,把所要学的知识贯穿于实际生活之中,更形象,更有助于学生加深对数学知识的理解。

2、强调过程式情境

要想彻底理解数学原理,就应该知道他的来龙去脉,也就是他的推导过程,所以,教师在教学过程中,要着重教授学生知识的推导过程,而不是果断地给出结论,要回答为什么是这样,这样的结论是怎样得出的,教师一定要向学生展示说明这个过程,讲解要简单通俗,饶有趣味。

例如:在讲解三角形内角和定理时;教师可以先让学生猜测三角形内角和是多少,然后找一个三角形,把他的三个角剪下来,再拼到一起,最后,向学生展示证明过程,这个证明过程也要采取师生之间互动的方式,让学生积极参与到证明过程中来,这样才能使学生更深刻地理解知识,更彻底地掌握知识。

二、怎样有效地提出问题?

问题的提出是衡量一个人创造性与数学能力的重要评判标准,有效地提出问题不仅是一种有效的教学方法,也是改进学生解决数学问题能力的手段,从而促进学生对知识本身的理解,增强创新能力,实践能力。那么,应该运用怎样的策略提出高明的问题呢?

第一,通过比较统一数学原理在不同情境内的应用,比较不同定义、不同规律之间的差异,比较相互矛盾的证明和理论;从而发现并提出问题。

第二,观察特殊数学题目,从中总结出一般规律,设想这个规律能否扩大到一般领域,还是只适用于特殊情况,怎样才能扩展到一般领域呢?

例如:已知平行四边形的面积公式,可以推导出三角形面积公式,那么可以推导出矩形的面积公式吗?正方形呢?

第三,在一般条件下能够运用的原理和知识,在极端条件下还会成立吗?如果出现新的问题该怎样处理?

例如:两点之间,线段最短。那么如果这两点之间山水阻隔呢?该怎么取最短距离呢?

第四,从正面能理解的问题,放到反面还会成立吗?

例如:“三角形具有稳定性”是正确的命题,那么他的逆命题

“具有稳定性的图形一定是三角形”是正确的命题吗?

第五、同样的一个结论,如果条件改变,还会是同样的结论吗?

例如:加法中可以用交换律解决问题,那么乘法中也会有交换律吗?乘法中有分配率,那么加法中会有分配率吗?

文中提供的这些策略只供参考,更多的方法和策略还需要在实践中不断地探索和总结,希望这些策略能拓展一下思路。

总结:

数学作为一门科学,他的研究来源于生活,最终的用途也是服务生活,所以,要通过一定的生活情境来展开对数学知识的学习和探索,同时,要想深刻扎实理解一个数学原理,必须知道他的推倒过程和思路,所以,要强调过程式情景教学;通过有效地提出问题,来深化对数学知识的理解和运用,达到举一反三,融会贯通,教师要不断总结实践经验,鼓励学生自主探索,对学生提出的问题进行思考和总结,积极听取学生意见,从而总结出更多的方法和策略促进教学活动的有效进行。

参考文献:

[1]刘会东.创设问题情境激发学生参与意识[j].科技创新导报,2010(12)

[2]唐绍纶.创设教学情境提高教学效率[j].高等函授学报,(自然科学版)2008(3)

[3]吕传汉,汪秉彝.中小学"数学情境与提出问题"教学的理论基础及实施策略[j].贵州师范大学学报(自然科学版),2007(1)

第4篇:数学问题论文范文

论文摘要:高等数学已成为许多高校非数学专业的基础必修课,是高等教育必不可少的基础课程,它一方面为学生的后继课程的学习做好铺垫,一方面对学生科学思维的培养和形成具有重要意义,因此既是一门重要的公共必修课,又是一门重要的基础课。为了保证以更好的教学质量完成教学工作,笔者对怎样设计高数课问题进行了详细的分析。

1 铺垫性问题的设计

这是常用的一种方式,在讲新知识前,先提问有联系的旧知识。例如我们讲定积分的换元积分法、分部积分法时,可提问不定积分的换元积分法与分部积分法公式,再结合牛顿-莱布尼兹公式,最后得到定积分的换元积分法、分部积分法公式。又例如在讲“求区间上一元函数的最值”这类问题时,提问有关函数的单调性和极值的问题。当提出“求区间上的函数最值能否象求函数的极值那样去求”时,就使学生紧紧围绕“求区间上函数的最值”问题而积极思考,在教师借助函数图像得出关于“求区间上函数的最大值与最小值”问题的几种情况后,在此基础上让学生自己编题,自己讲解,提示同学总结出“关于求区间上函数的最大值与最小值”问题的规律,这样不仅可以培养了学生数形结合的数学思想,同时也提高了学生分析问题解决问题的数学思维能力。

2 迁移性问题设计

学习迁移,是指一种知识学习经验对另一种知识学习的影响。不少数学知识在形式、内容有类似之处,对于这种情况,教师可以在提问旧知识的基础上,有意设置问题,将学生已经掌握的知识和方法迁移到新的知识结构中去。例如我们在讲点的轨迹方程的概念时,即空间曲面方程和空间曲线方程的概念,可以先提问平面曲线方程的概念,接着再讲“在二维向量空间推广为三维向量空间后,平面曲线方程的概念也就类似地推广为空间曲面或空间曲线方程”,之后再讲曲面、曲线方程的定义,这样学生学起来会比较容易,就将已获得的知识或方法迁移到未知的知识学习中去了。

3 矛盾式问题设计

矛盾式问题设计是指从问题之间产生矛盾,让学生生疑,从而使学生产生强烈的探索动机,并且通过判断推理获得独特的识别能力,强化思维的深刻性。

4 趣味性问题设计

数学课不可避免地存在枯燥无趣的内容,这就要求教师有意识地提出问题,创造轻松、愉快的情境,以激发学生的兴趣,从而使学生带着浓厚的兴趣去积极的思考。

5 辐射性问题设计

辐射性问题是指以某一知识点为中心,引导学生多角度多途径思考问题,纵横联想所学知识,沟通不同部分的知识和方法,对提高学生的思维能力和探索能力大有好处,这种提问难度较大,必须考虑学生的接受能力。在讲完一个例题后启发学生一题多解或题目的引申性提问等都属于这种类型。例如,求半径为a的圆的周长?这类问题,可先利用直角坐标的曲线弧长公式来求,然后也可继续用参数方程形式的曲线弧长公式求解,最后用极坐标的曲线方程形式的弧长公式来求解。

6 反向式问题设计

反向式问题设计就是考虑问题的反面情况或意义,或者把原命题作逆命题的转化。这样有利于探索结果。例如在讲空间解析几何曲面方程的定义时设置这样一个问题:“在空间解析几何中,任何曲面或曲线都可看作是满足一定几何条件的点的轨迹,用方程或方程组来表示,从而得到曲面方程或曲线方程的概念。现在有一圆柱面,它可被视为已平行于z轴的直线沿着xoy平面上的圆C:x2+y2=a2平动而成的图形,试求该圆柱面的方程。”

分析:在圆柱面上任取一点P(x,y,z),无论在什么位置,它的坐标都满足方程x2+y2=a2,相反地,满足方程的点也都在圆柱面上。可设置问题:如果已知圆柱面的方程为x2+y2=a2,那么圆柱面上的点的坐标是否都满足方程?相反地,满足方程的点是否也都在圆柱面上?“这样采用互逆式的提问,学生会进一步明确曲面与它的方程之间的联系,从而解决了曲面方程和曲线方程的定义不容易理解的难题。

7 阶梯式问题设计

阶梯式问题设计是指运用学生已知的知识,沿着教师设计好的“阶梯”拾级而上,这样既符合学生的认知心理又能有效的引导学生的思维向纵深发展。例如讨论所有的初等函数在其定义域内的区间上皆连续这个问题时,可设置如下问题:①由一元函数极限的四则运算法则及连续性定义能否得到连续函数的四则运算法则?②由一元函数的复合函数极限法则及连续性定义能否得到复合函数的连续性法则?③一切初等函数是否都是由五种基本初等函数经过有限次四则运算及复合得到的?④那么一切初等函数在其定义域内是否皆连续?

这样从特殊到一般提出问题,一步一步引导学生思考问题,最终解决问题。

8 变题式问题的设计

变题式问题的设计是将原有问题进行改造,使题目精髓渗透到题目中去,这样可以使学生在思路上突破原有思维模式,转换思考方向,从而透过现象揭示本质。

这样通过问题的转换,可以开拓新的探索方向,培养学生的创新思维能力。

总之,教师要精心设计课堂上的教学问题,而常见的“对不对”、“是不是”等简单问法不可取,应多层次,多方位,多角度的提出问题,激发学生的求知欲,竞争欲,进而提高分析、综合、逻辑推理的思维能力。

参考文献:

[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社.

第5篇:数学问题论文范文

借鉴多元智能理论构建小学高年级数学生活化课堂教学模式的实践研究

2、课题研究的背景和意义

(1)课题的研究现状

在众多开展多元智能理论研究的课题中,进行多元智能理论在小学数学学科教学中的改革尝试的还鲜有人为。

(2)课题研究的实际意义和理论价值

1、理论价值:本课题的研究是对小学高年级数学课堂中多元智能相关理论的细化和补充,同时是对生活教育理论的充实。因此,借鉴多元智能理论构建小学高年级数学生活化课堂教学模式的实践研究具有重要的理论价值。新的《数学课程标准》10分重视数学与生活的联系,指出:学生的数学学习内容应当是现实的、有意义的、富有挑战的,数学教学应该从学生的生活经验和已有知识背景出发,向他们提供充足的从事数学活动和交流的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,同时获得广泛数学活动验。

荷兰教育家弗赖登塔尔的名言数学源于现实,寓于现实,用于现实道出了学习数学的根本目的。新课标的理念,数学教学应该与孩子的生活融合起来,从孩子的生活经验和已有的知识背景出发,让孩子在自己的生活中去寻找数学发现数学探究数学,做到生活经验数学化,数学问题生活化,从而体现数学源于生活数学寓于生活用于生活的思想.1次以此激发学生学习数学的兴趣,学会用数学的思维方式去观察和分析现实的社会,去解决日常生活中和其它学科中的学习问题,最终为学生的终身学习和可持续性发展奠定良好的基础.

2、实践价值:本课题的研究有利于促进学生多元智能的发展。有利于带动教师业务水平和教科研的水平提高。多元智能理论是1个开放的、不断生成中的理论,开展这样的研究,必然会使参与课题研究的教师获益匪浅。因为,多元智能理论对小学数学教师提出了很高的要求。首先,教师应更新知识结构,善于学习、接受新教育理念,了解新的教学动态。其次,教师应具备全能意识与技能,创设能鼓励各种智能发展的学习环境,满足不同学生的需求,因为教学中教师的身教最有说服力、最具示范性。再则,教师之间必须加强团队合作。多元智能教学需要多元化教学技能,而教师个体能力毕竟有限,很难集全能、多面手于1身,客观上要求不同或相同学科教师之间的团队合作,共同探讨多元智能的课程设计与实施方案,集思广益,优势互补,实现教与学的最优化。同时,研究有利于转变教学观念,促进教学方式的改变。

在研究中教师必将带来全新的课堂,实现面向全体学生,促进他们生动、活泼地全面发展。构建数学生活化课堂的实验研究就是要善于挖掘数学内容中的生活情景,把学生熟悉的生活情境和感兴趣的事物作为教学活动的切入点,把数学教学与学生生活紧密结合起来,使数学知识成为学生看得见、摸得着、听得到的现实;让学生能主动地尝试着从数学的角度寻求解决问题的策略,切实体验到数学存在于生活;让学生能运用所学数学知识解决实际问题,切实体验到数学能应用于生活;因此本课题的研究在是实践上对教师队伍的建设学生的发展以及构建和谐的数学学习环境都具有重要的积极现实意义。

3、课题研究的范围和基本内容:

1、研究范围的界定:

研究对象:实验小学56年级

概念界定:

数学生活化:从学生的生活经验和已有生活背景出发,联系生活讲数学,把生活问题数学化,数学问题生活化。体现数学源于生活,寓于生活,为生活服务的思想。以此来激发学生的学习兴趣,学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中的问题。

2、研究的基本内容:

1。通过调查研究发现小学高年级学生不同的智能强项及学习数学的水平.

2。研究在小学数学空间与图形。统计与概率。数与代数。实践应用与解决问题几部分教学内容如何在课前向生活开放,在课上如何再现生活,在课后如何向生活延伸.

3。构建适合实验小学高年级学生实际的数学生活化课堂教学模式.

4、研究的方法:

1、文献资料法:认真学习多元智能理论,学习陶行之生活即教育理论、《数学课程标准》等1些相关理论或文件精神,摘录对课题研究有借鉴的指导作用的理论知识,供学习和研究借鉴,做好资料的收集和存档工作。

2、问卷调查法:在实施课题阶段,对被实施此课题之前的本校的56年级学生采用问卷调查方式进行调查研究,用以了解学生的数学发展现状与不同学生的智能强项,据调查结果有针对性采取相应的策略与手段。

3、行动研究法:结合教学实际,在数学课堂教学中,勤于将自己从课题研究中获得的教学理念转化为教学行为,在实施的过程中不断总结、反思、修正、再实践,逐步积累经验。

4、个案分析法:重视对典型学生学习状况的跟踪分析,从中寻找课题研究进展的突破口。

5、经验总结法.

5、研究假设和理论依据:

1、研究假设:通过研究发现小学高年级学生不同的智能强项及学习数学的水平,营造生活化的数学课堂,可以促进学生的个性发展,提高学生的数学学习质量.培养学生的实践能力,使学生感受数学知识在生活中的应用,感受生活的数学与数学的生活,沟通数学解题方法与生活问题解决策略之间的联系.用多元化的教学内容为学生的个性化发展搭建平台,让每个学生的智能得到充分的发展并且成就积极的自我.

2、课题研究的理论依据:

加德纳的多元智能理论、陶行知的生活教育理论、数学课程理论、教育理论

6、研究阶段:

本阶段的主要任务有:

1.制定课题实施方案。

2.组织有关教师对课题研究的可行性和操作性作充分的论证。

3.做好对课题人员的培训工作,组织课题组成员进行学习,收集理论依据,以保障课题的顺利开展。

本阶段是实验工作的关键阶段,必须认真组织实施,抓好每1个环节,这个阶段收集到的资料和得到的结论,对整个实验是否能达到预期目标具有重要意义。

本阶段的主要任务有:

1.搜集材料,设计出针对高年级学生实际情况调查的智能光谱问卷

2.实施调查研究,对调查和测量的结果,进行统计分析.分类统计,比较、寻找原因,提出教育设想,撰写各个子课题报告。

3、课题组成员分别通过课堂教学和实践活动,研究在小学数学空间与图形。统计与概率。数与代数。实践应用与 解决问题4部分教学内容如何在课前向生活开放,在课上如何再现生活,在课后如何向生活延伸的基本策略.构建适合实验小学高年级学生实际的数学生活化课堂教学模式.

4、组织课题组有关成员进行课题研究的再次论述。

5、做好课题阶段小结,每学期1次,根据课题研究过程中出现的问题不断修正课题实施方案。

2、收集整理有关课题研究的资料(个案、论文、学生成长追踪记录、家长学校教学情况等)。

3、请有关专家对课题进行成果论证

4、成果推广。

7、成果的形式和课题组成员分工

1、成果的形式:

课题中期:完成《借鉴多元智能理论构建小学高年级数学生活化课堂教学模式的实践研究》论文

最终成果:《借鉴多元智能理论构建小学高年级数学生活化课堂教学模式的实践研究》研究报告。

2、课题组成员及其分工

课题组负责人:王玉玲小学高级教师,本科学历。曾经担任过国家级105重点课题的子课题研究任务和市级课题的研究。

课题组成员及分工

赵凤君、李宏宇:研究在小学数学。实践应用与解决问题部分教学内容如何在课前向生活开放,在课上如何再现生活,在课后如何向生活延伸.

苏惠贤、刘素丰、王恩瑞:研究在小学数学统计与概率部分教学内容如何在课前向生活开放,在课上如何再现生活,在课后如何向生活延伸.

8、经费预算与设备条件要求:

1.学校领导班子对本课题的研究非常重视,通过必要的经费支持

第6篇:数学问题论文范文

关键词:数学专业;英语课;教学质量;教学方法

近年来,很多高校将数学专业英语课列入数学专业的人才培养方案,其目的是希望通过数学专业英语课教学进一步提高数学专业学生阅读和翻译英文资料的能力,为学生撰写英语论文和开展研究打好基础。但是,目前数学专业英语课教学仍存在不少问题。对此,笔者进行了总结,并在分析问题产生原因的基础上探讨提高教学质量的途径。

一、数学专业英语课教学存在的问题

(一)缺乏稳定的专业英语教师队伍。很多高校数学院(系)都安排英语好的数学教师教授数学专业英语课。这些教师具有扎实的专业知识,但是英语语言的综合应用能力难以满足教学要求,主要表现为英语听说能力较弱,常常采用汉语授课,无法满足数学专业英语课的教学要求,严重影响了学生的学习积极性和参与性。

(二)学生对数学专业英语课的重要性认识不足,学习积极性不高。多数院校都将数学专业英语课安排在大三或者大四,而这一时期的学生把主要精力放在学习专业课程上,所以很少有学生在数学专业英语课学习中做到课前预习和课后复习。此外,数学专业英语课的考核方式主要是考查考试,这也在很大程度上影响了学生的学习积极性。

(三)教师在教学内容的把握上存在问题。为了最大限度地利用所选教材,一些教师不加区别地讲授书本内容,致使“满堂灌”的现象十分普遍。这使学生觉得教学内容单调乏味,在一定程度上抑制了学生的学习积极性,限制了英语教学的发展空间,严重影响了教学效果。一些教师在实际教学中仍将数学知识和英语语法的讲解作为教学重点,忽视了对数学专业学生英语实践能力的培养,因而无法提高学生的综合素质。

(四)教学方法落后。在数学专业英语课教学中,很多教师采取以教材为蓝本、以讲授书本知识为主的传统教学方法。教师占据课堂教学的主导地位,控制讨论的话题、内容、过程和参加者,学生很难有机会主动参与课堂教学和表达自己的见解。这样,师生之间缺乏互动交流的机会,因而学生体会不到学习的乐趣,口头表达和运用能力得不到提高。

二、数学专业英语课存在问题的原因分析

(一)主观因素。在教师方面,由于数学专业英语课对教师的专业知识和语言运用能力要求较高,很多教师很难圆满完成教学任务,他们常常是在外界压力下接受该课程教学任务的,因而在备课、讲课时都没有处在积极主动的状态。在学生方面,大三或者大四的学生对数学专业理论知识有了比较系统的掌握,而且英语水平已经达到了一定的水平,很多学生已经通过国家英语四、六级考试,认为可能解决数学问题的翻译和相关英文文献的阅读问题,甚至有些学生认为借助一些软件就可以翻译,因而对数学专业英语课的学习重视不够。另外,数学专业英语课的考查考核方式使学生放松了对该课程的学习。

(二)客观因素。一些高校不重视数学专业英语课,投入不足。由于数学专业英语课是近年来的新增课程,很多学校在这方面的教育资源较少,投入积极性不高。例如:压缩教学时数,将大纲中要求的一学年减为一学期;缩减教师配置,通常安排一位教师负责全院(系)学生的专业英语课,因而授课教师无法进行教学心得体会交流;采用大班授课方式,影响教学效果。

三、提高数学专业英语课教学质量的途径

(一)培养一支稳定的数学专业英语课教师队伍。数学专业英语课教学属于语言教学,要求教师不仅具备系统的专业知识,而且具备扎实的语言功底,能够熟练运用英语进行表达。教师应该不断更新自己的数学专业知识,了解该专业的最新发展动态,从实际出发开展教学,并积极研究语言教学理论,参加定期的教学交流活动,以提高自身的素质。学校可以通过培训的方式提高数学专业英语课教师的英语水平,也可以积极引进英语水平较高的数学教师,充实专业教师队伍。

(二)提高学生对专业英语课的认识,激发学生的学习兴趣。教师应该帮助学生明确学习目的、端正学习态度。学生学习数学专业英语是为阅读英文专业文献、进行专业研究作准备的。教师可以通过一些简单的实例让学生体会到仅靠已有的英语水平难以准确理解和把握专业文献,从而帮助他们走出学习误区,这样才能使学生以正确的学习态度学习该课程。教师还应该努力激发学生的学习兴趣,在教学中注重课堂教学设计的多元化,做到教学内容丰富、表现形式多样。同时,创新教学模式,采用互动式教学法,如专题讲解、师生互讲等,积极引导学生参与讨论。教师也应该积极改革考核方式,加强考核的科学性。

(三)突出对学生实际应用能力的培养。高校应该适当增加数学专业英语课的教学课时数,而教师在选取合适的教材后可以对教学内容进行适当处理,采用专题讲解方式开展教学,也可以把学生感兴趣的相关知识引入教学中。在进行专题讲解时,教师要先纵向概括,再选取一些材料进行横向分析。例如:在用英语来表述数学理论推导过程时,教师先总结性地给出一些证明中常用的表达形式,再结合教材中的一些短文让学生体会这些表述的运用。科技文章的语体特点是用词准确、语气正式、陈述客观、逻辑性强、专业术语多,因而专业英语课教学的重点在于学生对专业词汇、句子、翻译技巧的掌握。教师在教学过程中应引导学生掌握专业词汇构词法,帮助学生扩大词汇量;注重培养学生分析句子结构的能力,通过分析文献资料中常见长难句的结构特点提高学生翻译长难句的能力。教师在教学过程中还应注重培养学生触类旁通、举一反三的能力。

(四)教学方法多样化。在教学对象的性质和教学内容上,专业英语教学比大学英语教学更加复杂,所以在选择教学方法方面对教师提出了更高的要求。在数学专业英语课教学中,教师经常用到的教学方法有互动式教学法、多媒体教学法等。

互动式教学法可以很好地提高学生的语言应用能力。学习语言是为交流服务的,因此,教师在数学专业英语课教学中应积极采用互动式教学法,让每个学生都有机会参与教学活动。一方面,教师应尽量采用英语教学,给学生创造一个良好的语言环境,在讲解重点和难点时可以通过提问、分组讨论等方式让学生参与到教学活动中,使学生从被动接受变为主动学习;另一方面,教师在教学过程中要注意观察学生的反应,根据学生的反应调整教学进度、创新教学方法,充分调动学生的学习积极性。

多媒体教学可以真正实现个性化教学,从而有效地培养学生的自主学习能力。多媒体技术使教学内容既能看得见,又能听得见,再加上网络资源丰富且生动直观,因此,教师可以通过鲜明的图像、有趣的声音刺激学生的视觉和听觉,吸引学生的注意力,充分发挥学生的主动性与积极性,从而达到学生快速掌握学习内容的目的,大大提高教学效率。例如:笔者在讲授数学发展简史时,通过多媒体播放短片《唐老鸭漫游数学王国》。借助于学生熟知的卡通形象唐老鸭,笔者教会学生一些专业单词的读音。而学生在观看、讨论、思考的过程中,很快就掌握了这些专业单词,从而大大提高了学习效率,提高了运用英语进行分析、综合、抽象、概括、联想和想象的能力。这也让学生切实地感受到数学是一门有用的科学。于是,学生从传统的知识被动接受者转变为主动发现者、建构者,并渐渐地养成自主学习的习惯。

总之,数学专业英语课程不是一门专业课和英语课简单相加的课程,而是一门英语语言知识与数学专业知识紧密结合的课程。只有学校、教师和学生三方面长期努力,才能真正提高该课程的教学质量,实现提高学生数学专业英语语言应用能力的教学目标。

参考文献:

[1]王丽琴.非英语专业研究生科技英语翻译教学的探讨[J].科技创新导报,2009,(36).

第7篇:数学问题论文范文

审视目前的小学数学教学,课堂提问存在着不少误区:(1)问题总是教师课前预设好的。课堂生成的问题常被置之不理,或者轻描淡写,不了了之,白白浪费了可贵的课堂生成资源。(2)提问的主体仍然是教师。提问还是教师的特权,“满堂问”代替“满堂灌”时有发生,学生只能忙不迭地应对教师的一个个问题,挖空心思揣摩教师的“标准答案”,学生的创造性常被扼杀。(3)学生很少有提问的机会。学生的问题没有机会提出来,不懂只能装懂。为此,笔者认为,有必要重新认识小学数学课堂提问的内涵,让课堂提问发挥积极的作用,使课堂因提问而变得更有魅力更加精彩。

二、重新理解课堂提问的内涵

提问指“提出问题来问(多指教师对学生)”(《现代汉语词典》P1239),可见,课堂上提问并不是只限于教师对学生,也可以学生来提问。提问是让人回答的,目的是为了激发人的思维,引起思维的碰撞。因而,提什么样的问题,什么时候提问,谁来提问等等,这些值得我们重新思考。课堂提问有以下四层内涵:(1)提问具有预设性。主要是指,课堂提问可以是教师课前预设的。课堂提问设计得如何,直接影响教学的进程和质量。(2)提问具有生成性。课堂教学是动态生成的过程,课堂提问也必须体现生成性。教师要善于发现课堂教学中出现的问题资源,并充分利用,合理挖掘即时问题,提高提问的针对性。(3)学生参与提问。主要是指课堂提问不是教师的特权,学生同样是提问的主体,要让学生质疑问难,在解决问题的过程中,促进智慧的成长。(4)提问是交流的载体。新课程提倡师生交流、互动,而提问正是一个有效的载体。教师的提问引起学生的思考,而学生的提问正是学生思维的展示与暴露。

三、改进课堂提问的策略

基于以上分析,笔者提出以下三方面改进课堂提问的策略:预设具有价值的问题,把握重要的生成问题,引导学生提问解疑。

(一)预设具有价值的问题

1.问题富有思考性。思维是数学的心脏,而思维是从问题引发的。问题富有思考性是指,教师设计的问题突出教学目标,能激发学生思维的兴奋点,引起学生进行深刻、周到的思维活动。问题富有思考性,首先要体现教学重点难点,切入口要适当,促进学生思维能力的提高。其次,要适合学生的“最近发展区”,问题难度太大,学生望而却步;难度太小,引不起学生兴趣。例如,学习“角的认识”,教师要求学生过同一点画几条射线,接着设问:除了射线,你还能发现什么数学图形吗?学生积极地投入到观察思考之中,不仅找出了不同的角,还指出了角的边、顶点,角的大小与边叉开的大小有关等相关知识。

2.问题具有启发性。问题具有启发性是指能引起学生联想而有所领悟的问题。在课堂教学中,学生面对问题无法解答是难免的,教师的启发十分必要,方法很有讲究。“要使启发指向学生的思维过程和思维方法,进而获得思维的结果,教师要提炼相应的元认知提示语。”[1]教学中关注学生的认知基础和生活经验,由表及里,由远到近,由具体到抽象,由元认知提示语过渡到认知提示语。例如,学习“梯形面积公式”的推导,启发学生:你想梯形面积公式可能是怎么样的呢?以前三角形面积公式是怎么推导的?等等。让学生经历体验的过程,提升思维水平。

(二)把握重要的生成问题

1.创设生成问题。课堂教学是“动态生成”的,这已成为人们的共识。然而,如何落实在教学行为上,还有待努力。课堂教学创设生成问题,就是一个有效的切入口。所谓创设生成问题,就是课前预设的问题一旦在课堂教学的实施中受阻,要及时调整问题,创生出新的问题,推进课堂教学的顺利进行。创设生成问题,首先要注意因势利导,即顺着事情的发展趋势进行引导,创设此时此地有利的问题;其次,要随机应变,即跟着情况的变化,掌握时机,灵活应付。或全部改变,或局部修整,使得问题更有利用教学目标的实现,教学环节的递进。例如,探索“三角形内角和”,教师的问题是:“你知道三角形的内角和是多少吗?有什么办法说明?”预设学生可能有以下几种方法:(1)用量角器量;(2)把角剪下来拼;(3)把角折一折等。但是,在实施中发现,学生用量角器量都有误差,另外的方法又别无选择。教师因势利导,创设富有启发性的问题:除了量,你还有什么好方法知道三角形内角和是不是180°?学生逐步想到并应用其它的探索方法,三角形内角和进行多种解读。

届次

23

24

25

26

27

28

金牌数(枚)

15

5

16

16

28

32

2.放大有效问题。放大有效问题就是在课堂教学中,发现学生中的闪光点,智慧碰撞的火花,教师有意识地以问题的形式进行放大,以引起深入讨论,有利于解决鲜活的问题。首先,要及时追问,即追根究底地问。对于学生中有价值的发现,教师要明察秋毫,把握机遇。例如,在解决“中国代表团在第23届----28届奥运会上获得金牌数统计如下表,相邻的两届奥运会金牌数最大增幅是百分之几?”的问题时,一般学生都这样解答:26届到27届是(28-16)÷16=75%。而一个学生认为,应该是24届到25届(16-5)÷5=220%。此时,教师及时追问:“他说得有道理吗?请大家开动脑筋发表意见。”经过摆事实、讲道理,统一了认识:虽然26届到27届相差12枚,确实是最大的,但是比较增幅是百分之几,不能只看相差数,而要与原来的基数去进行比较,使同学们明确透过现象看本质的道理。其次,要舍得放弃,就是有的问题虽然有价值,但不是本课的主要内容,不适合于当堂解决问题,就可以“暂缓处理”。这样处理的目的,还是为了保证有充分的时间解决主要问题。

(三)引导学生提问解疑

1.鼓励学生提出问题。学生提出问题是研究课堂提问的一个重要话题。美国教育家布鲁巴克曾说:“最精湛的教育艺术,遵循的最高准则,就是学生自己提出问题。”[2]还有的学者指出:“如果学生能够自己提出疑惑,学习就不再是一种异己的外在力量,而成为一种发自内心的精神解放运动。”[3]鼓励学生提出问题,首先,要引导学生敢问。师生是教学活动中的有机整体,教师的作用应体现在营造师生“一体化”的课堂氛围,实现师生间平等的对话。要善于观颜察色,当学生不知所措时,当学生眉头紧销时,当学生互相张望时,可能就是有疑惑时,就要鼓励学生大胆说出心中的疑团。其次,要引导学生会问。要让学生在提问的过程中学会提问,并逐步提高问题的质量。经常表扬学生提出的好问题,进行“看谁的问题好”的比赛等,有利用学生提高问题的质量。例如,一位教师教学三角形的认识,在找出生活中许多三角形的应用的例子后,正要进入下一阶段三角形的稳定性教学时,一学生提出问题:“生活中怎么会有那么多三角形呢?”这样的问题承上启下,不仅引起学生的思考,又为探究三角形的稳定性提供了很好的机遇,教师及时加以表扬,并就他提出的问题进行讨论,学生对同伴的问题充满好奇,学习的积极性高,学习的效果好。

2.引导学生解决问题。提出问题只是手段,解决问题才是关键。引导学生解决问题是指,面对学生提出来的问题,教师要进行合理处理,巧妙地引导学生探索并解决问题,培养学生解决问题的意识。值得注意的是,学生能够解答的让学生解答,教师不能越厨代庖;学生不能解决的,教师作适当启发,让学生试着解答,教师只能充当“合作者、引导者、组织者”的角色。例如,学习“平均数”,设置问题:“学生去离学校5千米的公园春游,行走了20分钟,休息20分钟,继续行走了20分钟到达目的地。同学们行走的平均速度是多少?”一个成绩不错的学生问:“老师,‘休息20分钟’要不要计算呢?”教师不置可否,把绣球抛给了大家:“你们说呢?”同学们争论不休,许久没有结论。就在学生愤悱状态,教师引导:“请对照我们讨论的数量关系‘平均速度=总路程÷总时间’思考一下”。经过互动交流,终于解决了问题,学生露出满意的微笑。

[参考文献]

[1]韩龙淑,涂荣豹.数学启发式教学中的偏差现象及应对策略[J].中国教育学刊.2006(10):66

第8篇:数学问题论文范文

评价是教学活动中常用的一种手段。小学数学的解题评价是实施

数学学习评价的重要组成部分。解题评价是向学生反馈学习情况的一种形式,是帮助老师、家长全面了解学生学习情况的一种手段,目的是激励学生的学习热情,促进学生的全面发展。

《数学课程标准》指出“评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们的学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”因此,小学数学的解题评价应充分关注学生的个体差异,发挥其导向、调控、激励、诊断等功能,促进学生全面、持续、和谐地发展。

二、解题评价的内容

小学数学解题评价的核心内容是评价小学生的数学解题能力。具体内容是评价解题思路、解题方法、解题过程、解题结果。

1、解题思路合理与否。对解题思路的评价是一种较高级的思维活动。它是依据一定的评价标准,对各种解题思路权衡比较、全面剖析而作出某种判断的复杂思维过程。注重培养学生对解题思路的评价能力和习惯,就可使学生不仅知其然,而且知其所以然;不仅仅是多学到一种解法,更重要的是站在评价水平的高度上思辨问题。一般说来,凡解题思路合理,即为正确。这是思路评价中的最基本标准。

2、解题方法独创与否。看看哪些解法与众不同,别出心裁。

在正确、合理的思路中选择出比较简捷的解法,剔除那些过繁过难的罕见解法或司空见惯的一般解法。

3、解题过程简捷与否。看看解题过程是否简捷,剔除那些繁难的过程。

4、解题结果正确与否。看看解题结果是否正确。一般说来,解题结果正确与否不作为评价解题是否正确的唯一标准,也不作为评价解题是否正确的主要标准。这是解题评价中的最基本标准。

三、解题评价的形式

解题的评价形式通常不外乎下列四种:

1、教师对学生的评价教师对学生解题的评价包括定性和定量两个方面。定性评价,主要指言语褒贬,应努力挖掘学生解题中的闪光点,在坚持实事求是的前提下讲究评价语言的艺术性——做到褒中有贬,贬中有褒,把握分寸和技巧,使学生心悦诚服。定量评价,主要出现在作业和试卷上,一般来说,定量的评价既要严格又要灵活,对于后进生要尽量宽容,不宜太苛刻,要用发展的眼光看待学生的进步。

2、学生对学生的评价既可以同桌互评,也可以四人一小组讨论,还可全班选代表。这是老师用得较多的形式。

3、学生对自己的评价学生个体的自我评价,是最高形式的鉴赏活动。因此,教师的着眼点应较多地投入到培养学生的自我评价能力上去,通过激发评价兴趣,培养评价习惯,进而提高评价水平。可以说,学生自我评价水平的提高,就反映着解题能力的提高,但解题能力提高,并不等于自我评价能力也得到相应的提高了。

4、家长对学生的评价家长对孩子的期望值较高,因此家长对学生的评价宜坚持客观评价为主。

四、解题评价的原则

对学生解题的评价,既要关注学生知识和技能的理解和掌握,更要关注学生技能的形成和发展;既要关注学生解题的结果,更要关注学生学习的过程中的变化和发展。

笔者认为解题评价的过程中要坚持以下四个基本原则:

1、判断性原则恰当判断学生对基础知识和基本技能的理解和掌握速度。“判断性原则”应遵循《课程标准》的基本理念,以学段的知识与技能目标为标准。应该强调的是,学段目标是学段结束时学生应达到的目标,应允许一部分学生经过一段时间的努力,随着数学知识与技能积累逐步达到。因此,教师可选择“推迟判断法”评价方式。如果教师对某次学生的解题觉得不满意,可允许学生重新解答。

当学生通过努力后,改进原解题的错误后,教师可给出鼓励性评语。这种“推迟判断法”评价方式淡化了评价的甄别功能,突出反映了学生的纵向发展。特别是对学困生而言,能让他们看到自己的进步,感受到获得成功的喜悦,从而激发新的学习动力。

2、激励性原则目的以激励为主的评价原则。《数学课程标准》“评价建议”要求“发挥评价的激励作用,保护学生的自尊心和自信心。”在解答一题多解类题目或开放类题目时,对学生说出、写出的不同解法,教师要加以激励,如写出激励性评语:“你真棒!”“你真了不起!”……在阅卷时,应适当给第一种解法以外的每种解法加分。以此来培养学生的创新精神,培养学生的创新能力,增强学生的自信心。

3、过程性原则一种重过程轻结果的评价原则。《数学课程标准》要求“注重对学生学习过程的评价。”“课改前的评价过分关注评价的结果,而忽略了对过程的评价。”特别对解题的评价要忽略关注结果,更要重视解题的过程。

如学生在进行简便计算时,简算过程是对的,但结果却计算错了;再如,在解答某道应用题时,学生的分析思路是对的,但由于未看清数字,在解题列式时算式是错的。这时,我们就不能光看算式本身和结果的正确性,而要看到学生思维的正确性。只不过要在旁加注“提示语”,如“如果你细心些!相信你一定能解答正确。”在评价时,要给大部分的分数。

4、发展性原则新课改倡导的“立足过程,促进发展”的评价原则。对学生的评价应当从甄别式评价转向发展性评价。在评价学生的解题时,既要评价学生对数学知识与技能的理解和掌握,更要评价他们技能的形成和发展。应当增强评价的诊断功能和促进功能,更注重学生解题的发展过程,重点放在纵向评价,强调学生解题的过去与现在的比较,着重于学生素质的增值,不是简单的分类级排次序,使学生真正体验到自己进步。

五、解题评价的策略

笔者结合教学实际,谈谈执行《数学课程标准》情况下解题的评价策略——阶段性评价策略、对象性评价策略、相对性评价策略、多元性评价策略、激励性评价策略。

1、阶段性评价策略由于数学知识呈现阶段性,导致解题思路的阶段性,这就是“双基”所起的前提作用。如“一个正方形周长是6分米。求它的面积。”三年级学生还没有学过小数和分数,因而能把6分米化成60厘米做出(604)(604)=225(平方厘米)的解答,理当首肯。但到了高年级,这种解法未必唯一。

2、对象性评价策略某种解题思路的优劣,主要取决于解题对象的认知水平、解题经验、策略及非认知因素的协同作用。某种解法对于教师来讲确实妙不可言,但学生一点也不能理解,又怎么能说是最佳呢?对于甲生来说属于一般的思考方法,对于乙生可能就觉得十分独特。因此,解题思路的优劣随解题对象而变异。这就要求教师了解每个学生的思维特点及头脑中认知结构的组织成分,对其解题思路做出“因人而异”的判断,切忌以优秀生的思路水平为标准去要求、衡量一般生及后进生的思路。

3、相对性评价策略某种解题思路的优劣往往是相对的,有的思路独特但计算繁琐;有的计算简便但思路普通;……教师评价时要

从多种不同角度、层次进行分析比较,促其提高。

如,《东方生活报·小学校园文化》2004年第9期的《不同的比较方法》:“两个学生在比赛跳绳。一名男生3分钟跳了297个,一名女生2分钟跳了194个。谁跳得快?”(苏教版小学教科书《数学》第五册第55页第8题)

解法一:先算出两人每分钟各跳了多少个,然后比较:谁跳得个数多,谁就跳得快。

男生每分钟跳297÷3=99(个),女生每分钟跳194÷2=97(个),99>97,因此男生跳得快。

解法二:男生每分钟跳297÷3=99(个),如果他只跳2分钟,共跳99×2=198(个)。男生2分钟跳的198个比女生2分钟跳的194个多,因此男生跳得快。

解法三:女生每分钟跳194÷2=97(个),她如果也跳3分钟,共跳97×3=291(个)。男生3分钟跳的297个比女生3分钟跳的291个多,因此男生跳得快。

解法四:男生每分钟跳297÷3=99(个),如果女生第1分钟与男生跳同样多,她第2分钟只跳了194-99=95(个)。男生第2分钟跳的99个比女生第2分钟跳的95个多,因此男生跳得快。

解法五:女生每分钟跳194÷2=97(个),如果男生第3分钟与女生每分钟跳得同样多,他前2分钟共跳了297-97=200(个),200>194,因此男生跳得快。

解法六:如果算出两个人在同一时间内各自跳的个数,再比较大小,谁跳的个数多谁就跳的快。因为2与3是相邻的两个自然数,所以可以先算出两人分别在6分钟内各自跳的个数,再比较大小。(想想:还可以算出哪些时间内各自跳的个数?)

男生6分钟共跳了297×2=594(个),女生6分钟共跳了194×3=582(个)。(想一想:为什么可以这样列式?)594>582,因此男生跳得快。

当然,可以先算出跳同样多的个数各自用去的时间,然后比较:谁用的时间少反而跳得快。不过,这道题比较复杂、繁琐。

解法一思路清晰,计算简便,后进生能做出解法一,要从根本上加以肯定;解法二、三、四、五适宜中等生;解法六思路新异但较难理解,适宜优等生。

4、多元性评价策略现在有种误解,以为最佳思路仅有一种,否定最佳思路的多元性。其实,在众多解法中,有时往往有几种思路平分秋色,难以说清谁鹤立鸡群,只能模糊地都定为“好解法”而加以肯定。

如,2004年12月17日《小学生数学报》B2版的《装配自行车》:“一个自行车厂要装配32辆自行车,有60个车轮够不够?”(苏教版小学教科书《数学》第五册P7)

解法1:因为每辆自行车要装配2个车轮,所以32辆自行车需要32×2=64个车轮。已有的60个车轮比需要的64个车轮少,因此不够装。

解法2:因为每辆自行车要装配2个车轮,即前后轮各装1个,32辆自行车各装32个前轮、32个后轮,32辆自行车共需要装32+32=64个车轮。60<64,因此不够装。

解法3:因为每辆自行车要装配2个车轮,所以60个车轮只能装60÷2=30辆自行车。30<32,因此不够装。

解法4:要装配的32辆自行车,如果每辆自行车先装1个前轮或后轮,共装了32个车轮,准备的60个车轮还剩60-32=28个。剩下的28个车轮再给32辆自行车各装1个后轮或前轮,少4个。因此,要装配32辆自行车,只有60个车轮不够。

上面介绍的加、减、乘、除四种方法,你能说清哪种思路最佳吗?

5、激励性评价策略有些解思路的确不同凡响,赢得师生一致公认为“最佳思路”,教师就应毫不含糊地加以肯定和表扬,通过记优分、用学生姓名命名“鬃解法”等鼓励先进,激励全体学生善于开动脑筋,大胆别出心裁,这样更能有效地训练学生思维,提高思维品质。

如解答装苹果的应用题:“小猴买来一批苹果,每筐装5千克,可以装6筐。现在只有5只筐,把苹果都装上,平均每筐多装多少千克?”(《数学奥林匹克天天练·小学二年级》,南京大学出版社)

王强:先根据“每筐装5千克”和“可以装6筐”这两个条件,可以求出这批苹果的总重量是5×6=30(千克),再根据“总重量30千克”和“装在5只筐”可以求出现在平均每筐装30÷5=6(千克),最后算出平均每筐多装6-5=1(千克)。综合算式:5×6÷5-5=1(千克)

第9篇:数学问题论文范文

由于武术是一门理论高深、技能高超的高级体育运动,是对学习者体能素质与运动基本功的极大考验,然而中学生由于课业负担繁重,时间和精力都十分有限,要想确保学生能够在有限的教学课堂中从快乐中获得知识,就要注意对武术课堂教学内容的甄选,要在教学大纲所要求的范围内来选择那些学生能够接受、消化并实用的学习内容和动作项目,并试着通过通俗易懂的语言来向学生呈现与讲解这些武术知识,从而推动武术教学课堂的顺利开展。

二、因材施教,安全必要

武术运动是对学生基本运动能力的考验,不同学生的身体素质、运动能力都各不相同,这就要求武术教学也要以学生的体能素质为核心进行因材施教,教师要充分认识到这一点。例如:身强力壮、天生爱运动的男生可以选择相对剧烈、高难度的动作进行教学;相反,身单力薄、身体较弱的女生则适合相对轻柔、缓慢的动作,这样才能使不同才智的学生各有所得,各有发挥。同时,安全意识必须贯穿于整个武术课堂教学的始终,特别是一些高难度的动作教师必须亲自守护,重点监督学生的动作规范与要领,确保学生能够严格依照规定科学练习。同时,也要提高他们的身体协调能力,适当地控制训练强度,可以通过适当休息进行调节,防止出现学生由于过于疲惫昏厥的现象。

三、游戏教学,兴趣引导

在武术运动开始阶段,学生身体处于安静状态,很难进入激烈运动状态,可以引入游戏来激起学生的亢奋情绪,常用的游戏方法有:武友相聚、大刀接力等,通过这些方法来聚焦学生的神志,学生的神经、肌肉会自然进入紧张氛围,身体也会慢慢走向运动状态,为接下来的武术练习做好准备工作。特别是一些高难度动作更应该引进游戏,从而全面完善学生的肌肉质量。学生具备了练习武术的基本身体素质,才能达到对武术的疯狂热爱,从而增强学生的耐力,提高学生的品质。在一堂紧张的练习课的末尾,教师可以适当引入一些较为轻松的游戏来帮助学生放松神经、梳理肌肉,为学生带来全新的感受,使学生身心得到全面的锻炼,对接下来的教学课堂充满期待。

四、侧重武术套路形成特点与原则教学

武术教学的核心在于在具备了基本功的基础上掌握武术套路,无论教师选定那一套武术教学策略,都要确保学生能够深入理解其动作特征以及其中所蕴含的思想原则,这样才能确保学生习武不偏离方向,走入正轨。例如:常见的套路动作表现为打、攻、摔、踢等,动作的主要特征体现为进攻与守护,要向学生全面介绍这些动作规律,培养学生的肢体灵活度及保持平衡的能力,这样才能确保稳扎稳打。而且学生一旦明白了各种武术套路的特征,就能够凭借自身的体能条件来恰当地择取练习方法,确保不同的学生各自发挥自身功力。

五、引入多媒体,渲染气氛

体育教学也应该同现代化接轨,利用现代化教学技术来优化教学秩序,提高教学水平,渲染气氛,使学生能够身在其中感受到武术的美。教师可以通过多媒体技术来为学生播放一些典型的武术动作,例如:一些古装武侠剧中的武术片段,学生通过观看激烈的画面,自然会产生对武术功夫的崇敬,同时,也可以利用多媒体资源来为学生播放武术背景音乐,让学生伴随着音乐来练习,增加学生的学习热情,让学生在音乐与肢体锻炼的双重带动下身心得到锻炼与发展,只有这样才能带来良好的教学效果。(本文来自于《新课程导学》杂志。《新课程导学》杂志简介详见)

六、总结