前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的建筑结构设计中的抗震设计主题范文,仅供参考,欢迎阅读并收藏。
关键词:建筑结构;抗震;设计
抗震设计在建筑设计中具有十分重要的意义。与普通建筑工程相比,建筑的构造与之明显不同,无论是规模还是构件都存在着较大差异。一旦建筑质量出现问题,所带来的后果不堪设想。因此,在设计阶段就要充分落实好质量控制。其中抗震设计与高层建筑工程整体质量存在着密切关联。通过有效的抗震设计,可让建筑结构的刚度、延性、整体性达到相关要求,使建筑整体稳定性得以提升。换句话说,抗震设计是否合理直接关系到建筑物的质量,应给予重视。
1 建筑结构抗震设计基本原则
1.1 保证建筑结构构件具备必要的功能
建筑结构抗震设计过程当中,要确保建筑结构构件具备良好的承载性能、刚性、延性以及稳定性,建筑结构构件要按照‘强剪弱弯、墙底层柱、强节点弱’的构件设计基本原则,构件设计的过程当中针对有可能造成构件薄弱的位置采取相应的促使结构抗震性能提升的有效方法。一般情况下,主要耗能构件是不以承受竖向的承载为主的。
1.2 尽可能多的进行抗震防线的设置
一个良好的抗震结构系统通常是由几个具备良好延性的分体系共同构成的,同时良好的延性结构构件可起到各构件之间良好的连接作用。譬如:框剪结构是由延性框架与剪力墙两个分体共同构成。通常情况下,当地震发生之后会在接下来的一段时间会有多次余震的发生,若在建筑结构设计中只有一道防线,那建筑结构必将在第一地震之后有接下来出现的几次余震遭受巨大的影响,久而久之,甚至还会有建筑倒塌的事情发生。建筑抗震结构系统要尽最大限度上满足建筑的冗余度要求,建筑结构设计的过程当中要做到下意识的创建屈服区分布系统,这样可达到最大限度上吸取及消耗地震能量的作用,进而可促使建筑抗震能力得到大幅度的提升。
2 建筑结构设计中抗震设计的要点分析
2.1 建筑场地的选择
在进行建筑结构抗震设计时应该选择合适的建筑场地,这是做好建筑抗震设计的首要工作,建筑结构设计人员应该尽可能的选择开阔、平坦的地段作为建筑工程的建设场所,同时保障建筑工程现场范围内土地具有足够的硬性和密度,保证其硬度和密度能够满足建筑结构的荷载承重要求。在进行建筑场地选择时应该尽可能的避免河岸边缘、采空区、山岳、软土等地段,主要是因为上述场地土体的凝结度、坚硬度以及密实度等,不能够很好的抵抗地震灾害过程中对土地造成的影响,出现土地承载力不足的问题。
2.2 抗震结构的选择
选择合适的抗震结构对于提高建筑结构的抗震性能具有至关重要的作用,通过选择刚度高、强度优的建筑主体结构设计方案,在很大程度上能够降低建筑结构变形的概率,以此保障建筑结构的安全性。在选择抗震结构时应该注意以下几个方面:(1)建筑结构设计人员应该对抗震结构进行全面、细致的分析,同时还应该考虑非结构构件的抗震性,特别是注意非结构构件的强度、刚度等;(2)抗震结构必须具有足够的承载能力、良好的变性能力以及消耗地震能量的能力,钢筋混凝土结构的塑性内力重分布能力较好,能够有效的吸收与消耗地震能量;(3)抗震结构应该具有明确的计算简图与地震作用传递途径,楼屋盖梁系布置过程中应该尽可能的选择垂直重力荷载,这样能够以最短的路径将地震荷载传递到柱、墙等竖向构件上,在进行转换结构布置时,应该尽可能的保证其能够对上部结构竖向构件传来的垂直重力荷载进行一次或者两次转换,真挑剔抗侧力结构体系由支撑结构、剪力墙、框架结构等组成;(4)在进行抗震结构体系设计过程中应该尽可能的避免出现由于部分构件或者结构受损,导致整个抗震结构丧失对重力荷载的能力或者抗震能力,因此应该保证抗震结构具有内力充分配功能以及足够的赘余度,即使在地震过程中建筑部分构件或者结构退出工作,其他构件依然能够承担竖向荷载,避免出现建筑整体结构失稳或者失效的现象;(5)在进行建筑抗震结构设计时应该从建筑结构的整体抗震性能出发,保证建筑结构的底层结构、内部结构以及楼盖等能够形成一个有机的整体,保证建筑整体连接过程中力传递的合理性,在地震灾害的冲击力作用下始终以一个整体进行抵御,这样能够有效的防止出现建筑单一结构抵抗性不足造成的建筑整体结构崩塌的现象;(6)建筑结构在受到地震作用时,为了提高建筑结构的整体抗震性能应该保证结构能够抵挡来自所有方向的作用力,保证主轴方向上具有足够的稳定性、刚度以及强度抵抗地震灾害带来的作用力,并且建筑结构的稳定性越好、刚度越强、强度越高,则建筑结构抵抗平面方向上地震冲击力的能力越强。
2.3 建筑结构参数计算工作
建筑结构参数设计对于提高建筑的整体抗震性能具有至关重要的影响,设计人员在进行建筑结构设计过程中应该对建筑结构需要承受的作用力进行明确、清晰的计算,同时完成对不同建筑结构类型在地震冲击力作用下需要具备的荷载作用承受参数的计算工作,模拟地震灾害发生过程中的建筑结构抗震模型,采用计算机技术对建筑结构的各参数进行计算,保证建筑结构设计与施工过程中各种受力参数的科学性和合理性,能够显著的提高建筑结构的整体抗震性能。
2.4 多重抗震防线的设置
通过设置多重抗震防线,能够有效的提高建筑的抗震性能。在进行建筑结构抗震设计时,应该选择具有良好延展性的构件作为第一道抗震防线,同时设置其他的抗震防线,形成完整的抗震防线体系,当第一道抗震防线破坏之后,其他抗震防线发挥作用,以便于提高建筑的整体抗震性能,为人们的生命和财产安全提供可靠的保障。
3 结语
综上所述,现在有关地震作用的研究越来越深入,抗震理论的总结也越来越全面,经过几次地震灾害之后,工程人员和研究人员更加重视对地震设计的总结,抗震设计也更加的被关注,也有很多专注于抗震设计的研究会不断的成立。现代的塑性分析已经到了相对完善成熟的程度,但是还有很多问题需要进一步的研究和解决,这也将会成为以后抗震分析的重要方向。建筑结构的抗震作用与人类的生命安全和财产安全关系密切,结构的抗震性亟待提高,抗震理论的分析也需要不断的完善。目前,我国建筑行业迅速发展,高层建筑不断出现,这就要求在结构设计中要更加重视抗震性能的设计。
参考文献
[1] 张志峰,姜歆瑗.刍议建筑结构抗震设计[J]房地产导刊,2014(7).
[2] 华颖.抗震概念设计在高层建筑结构设计中的应用[J].中华民居(下旬刊),2013(06).
关键词:建筑结构,抗震设计,方法。
中图分类号:TU973+.31 文献标识码:A 文章编号:
一、建筑结构抗震设计
一般来说,所谓的建筑结构的抗震设计就是指通过地震时对建筑结构的破坏,结合建筑结构工程长期实践所积累的经验,总结形成的一种基本的设计方法与设计思想,也是进行建筑与结构整体布置并且确定细部构造措施的一个过程。地震动理论上来说就是一种随机的振动,它具有人们难以把握的随机性、复杂性与不确定性,要想很精确地预测某建筑物可能遭遇的地震的特性与参数,就目前来说我们还很难有更好的方法。在建筑结构的抗震设计分析这个方面,由于我们不能够很充分地考虑建筑结构的空间作用、建筑结构的性质、建筑的材料以及外界引起变化等等很多种不同的因素,因此有着一种不确定性的存在。所以建筑结构的抗震设计不能够全部的取决于计算结果,更应该以建筑结构工程抗震设计的基础理论以及经过长时间建筑工程抗震经验所能够总结出来的建筑工程抗震设计方法为基本出发点,进而更好的提高建筑结构的抗震性能。
二、结构抗震概念设计的重要性
2.1 概念设计是解决地震不确定性的好方法。我们对地震破坏机理还不十分清楚, 对地震的破坏现象也只是停留在感性认识阶段,建筑物抗震计算的原理只是一种近似方法,却不能代表建筑本身在地震中的真实反应。概念设计的思想不妨是个解决这个问题的好方法。地震是一种随机振动,有着难以把握的复杂性和不确定性,要准确地预测建筑物遭遇地震的特性和参数,尚难以做到。在建筑抗震理论未达到科学严密的今天,单靠计算很难使建筑具备良好的抗震能力。因此,结构工程师必须重视建筑总体抗震能力的概念设计。
2.2 概念设计是工程师进行结构设计创新的原则和方法。概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。
三、常用建筑结构抗震设计方法
3.1 根据建筑结构基本构造来进行抗震设计
一般情况下,采用钢筋混凝土框架结构时,是通过控制钢筋砼构件的截面尺寸,以及最小配筋率来实现抗震设计。建筑的砖混结构,一般比较常见的构造方法有限制房屋的整体高度和建筑的层数与层高;在建筑的横纵墙中设置钢筋混凝土构造柱,并且还要设置一些防震缝等等。在修订后的建筑结构抗震设计规范中增加了一些强制性的条例,例如:突出建筑屋顶的楼、电梯,要求构造柱延伸到建筑的顶部,并且与顶部的圈粱连接在一起,以此来拉结突出部分与主体结构成为整体,提高整体的承载力,并且对结构自身的刚度有着比较大的提高,这个应该在抗震设计中加以充分的思考。
3.2 根据建筑结构性能目标来进行抗震设计
建筑物在发生地震的时候有高度的安全性,是抗震设计的最终目的,所以建筑结构的抗震设计要求以将要建设建筑物的地区可能会发生的大地震的烈度为基本的设计标准,而且还要以建筑自身以及建筑物的内部没有造成破坏为最终目标来确定建筑结构的抗震性能指标。建筑结构的某些非抗震的下部结构以及建筑结构的基础部位也需要有一定程度上的抗震能力,在发生大地震的时候建筑结构要基本保持在所能承受的弹性范围之内。另外,建筑结构的抗风性能也应得到重视。因由于风压所产生的建筑水平振动很有可能导致建筑的安全使用性能降低,以及使得抗震构造构件的耐久性能受到破坏。因此,建筑结构要有一定的比较好的性能指标,以便达到高的抗震设计要求。
3.3 根据建筑场地和建筑规划来进行抗震设计
建筑结构要有较好的抗震性,需要选择比较稳定性的建筑场地。另外,具有抗震性的建筑需要有抗震层的设置,而且建筑结构的外部空间应该进行包括邻栋间距、建筑外观等等的一些舒适感以及安全性能的角度的考虑。而且在进行建筑结构的场地规划的时候,也应该从适应建筑上部结构的位移等特点与性能方面的角度来考虑。建筑物在经过长时间的使用后,建筑结构的整体可能发生移动的范围之内不应该存在障碍物。在建筑结构可能发生移动的范围之内一般来说会设置一些建筑的出入口,并且还要注意不能因此而使得人受到一些伤害,最好为了避免人或者车辆比较容易通过出入口,应该设置一些门墙或者指示标记等等。
四、加强建筑工程抗震措施
4.1 选址要科学合理
《中华人民共和国防震减灾法》规定,对于重大建设工程和可能发生严重次生灾害的建设工程,必须进行地震安全性评价;并根据地震安全性评价的结果,确定抗震设防要求,进行抗震设防。建筑物建造在软弱地基或可液化场地或临近地震断层,地震对场地的液化作用导致地基失效,建筑物倾斜而易于倒塌。务必重视社会经济系统的安全,规划时应注意避免导致地震次生灾害或使次生灾害限于局部。新设计建筑物时,要选择对抗震有利的地段,避开对建筑不利的地段,不应在危险地段建造各类工业与民用建筑。
4.2 采用合理的结构形式
目前我国建筑常用结构形式有砖混结构、钢筋混凝土结构、钢-混凝土组合结构、钢结构。可根据不同的地区,不同设防烈度选择不同的结构形式。钢筋混凝土本身具有柔性,因而这种结构的建筑物变形能力好,承载能力高,一般来说抗震能力也强。在确定结构方案时,应根据建筑的功能要求和抗震要求进行合理选择。从抗震角度来说,结构的侧移度是选择结构体系时要考虑的重要因素,特别是对于高层建筑的设计,这一点起控制作用,随着多层和高层房屋高度的增加,结构在地震作用以及其他荷载作用下产生的水平位移迅速增大,要求结构的抗侧移刚度必须随之增大。而不同类型的钢筋混凝土结构体系,由于构件及其组成方式的不同和受力特点的不同,在抗侧移刚度方面有很大差别,他们具有各自不同的合理使用高度。
4.3 切实提高设计质量
地震尤其是震级和烈度较高地震,危害性非常大,建筑物的抗震性能就显得尤为重要。目前我国抗震设计的目标是"小震不坏,大震不倒"。目前我国建筑结构设计水平还很低,大量的建筑所采用的建筑方案不是很合理,导致结构方案无法合理布置,增加材料用量。其实,从建筑设计的角度出发,在正确的抗震理论指导下,依据合理的设计原则,同样可提高甚至保证建筑结构的安全可靠性。其原则包括:结构构件应具备足够大的承载能力;结构应具有足够大的刚度以减小地震作用下的扭转和位移;结构应具有足够大的延性和耗能能力,这一点对结构在强震作用下的安全性尤为重要。
五、结束语
综合运用抗震原则,以提高承载力、刚度和延性为主导目标,多道防线刚柔结合,同时保证结构体型简单,结构受力和传力途径直接,整体结构与结构构件共同作用,如此一来就可以从设计上确保建筑结构在地震作用下的安全性。
参考文献:
[1]张文银,高莉.建筑结构抗震设计[J].山西建筑.2008 第32 期.
【关键词】建筑结构设计;抗震设计;重要性;作用
为了使人民群众的生命、财产在地震的自然灾害中减少伤害损失,因此我们需要对在建的建筑进行抗震设计防护评估,需要对抗震设计在建筑结构设计中的应用进行探讨,进而增加其应用范围,最大限度的减少损失。
一.建筑结构设计中抗震设计的重要性
建筑的结构设计在整个建筑施工中造价比重较大,建筑的结构设计中心理念在于“实用、经济和安全”,抗震设计在建筑结构设计中的应用基于这一中心理念而产生。
1、是保护人民群众的生命财产安全。人类社会在发展过程中,首先要解决的就是温饱与安全的需求,如据有关报道,在2008 年的汶川地震的主震区内,完好的建筑几乎没有。除却地震本身的烈度较高,破坏性较强的原因之外,一个更重要的问题值得我们的深思,就是建筑结构的抗震能力非常差,一方面在技术水平上缺乏突破,另一方面一部分人受利益驱动,往往在施工过程中,存在偷工减料等行为,导致了建筑物抗震能力薄弱,加强建筑结构抗震设计的重要性,对于保护人民群众的生命财产安全不言而喻。
2、是具有良好的社会正向效应。整个社会发展是一个复杂的系统,从这一战略高度加以认识的话,我们不难发现,建筑物抗震结构设计的加强对于构建和谐社会具有重要意义,良好的建筑物抗震能力,有利于维护社会稳定,对于建设“美丽中国”,实现“中国梦”,具有良好的社会效应。因此,不能孤立的片面的静止的对待建筑结构抗震设计。
3、是促进建筑结构设计技术与理念的创新与发展。以地震多发地区的日本为例,1880年横滨地震之后,日本成立了日本地震学会,1891 年在浓尾地震之后,鉴于地震给建筑物造成的重大损害,日本成立了“震灾预防调查委员会”,开始着手进行抗震结构设计研究。经过近百年的发展,日本的建筑物结构抗震设计无论是在技术还是在理念上都处于领先的地位,但只解决了大部分问题,地震持续时间对震害的影响始终在设计理论中没有得到反映。
二.建筑结构设计中的抗震设计
1、建筑结构设计中的抗震设计理念。我国《建筑抗震设计规范》(GB50011-2010)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。
2、建筑中的建筑结构抗震规范。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。
3、抗震措施。在对结构的抗震设计中,除要考虑概念设计、结构抗震外,历次地震后人们在限制建筑高度,提高结构延性等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。
三、抗震设计在建筑结构设计中的作用
由于地震的不确定性和破坏性特点,因此在建筑结构设计中应用抗震设计体现了设计的安全概念以及对自然灾害的预防措施。下面笔者从提高建筑结构的抗震力和降低地震作用对建筑的影响几个方面论述抗震设计在建筑结构设计中的应用。
1、降低地震对建筑的影响。现最被工程界认可的一个办法是在建筑基础与建筑的主体部分之间加设一个隔震层,有的设计师在建筑物的顶端部分加设一个“反摆”。此反摆的作用是能够在地震时使建筑物的位移方向相反,降低了加速度,降低地震的作用。根据相关研究分析,如果对“反摆”设置合理,那么对降低地震作用的概率可达65%,也能最大限度地减少建筑物内的物品受损程度。这一方式在国内外正被广泛地研究,并应用到了实际的工程建筑中,取得了较好的成效。
2、提高建筑结构的抗震力。出于对建筑结构抗震功能的保证,在建筑结构设计中要特别注意做到以下几点:a.在建筑结构设计中要考虑地基的稳定性因素,挑选对抗震有益的地基,防止地基变形影响抗震功能;b.同一建筑结构单元要设计在性质一样的地基上,要把地基最大潜力融入建筑的结构设计,有利于发挥地基的抗震功能;c.建筑结构设计尽量做到规则、对称,以降低地震作用导致的建筑变形度以及避免地震作用力集中导致建筑扭曲的状况发生;d.建筑的整体结构设计中要多加几道抵抗防线,以提高建筑结构的抗震力,同时建筑结构受力设计要明确,防止存在建筑结构局部薄弱。
3、保证建筑的刚度。在建筑结构的设计过程中,合理地设计和确定建筑物的刚度非常重要。因此首先要考虑到的是采用大量的钢筋混凝土。主要是在已有的钢筋混凝土之上使用“钢结构”对其进行进一步加层加固。加固分为两种情况:a.如果所需要进行加层的建筑结构的体系是钢结构,而国家规定:上部是钢结构、下部是钢筋混凝土两种不同的体系结构是不符合抗震规范的。b.假设屋盖的部分是采用钢结构,而钢筋混凝土仍然是作为整个建筑结构的抗侧力的主要体系,则必须根据相关的规定进行抗震设计。
4、设防标准。我国明确规定,建筑的使用价值被区分成4个类别:甲乙丙丁。甲类和乙类建筑:当抗震设防的烈度是6度~8度时,应该符合本地的抗震设防再高1度;丙类建筑:丙类建筑的抗震措施以及抗震作用都应该要符合本地的抗震设防要求;丁类建筑:在通常情况之下,地震措施可以相对于本地抗震设防的要求适度降低,但地震作用必须符合本地的抗震设防要求。
结束语
综上所述,在面对地震这样的自然灾害时,人类无法控制只能够进行力所能及的防护。提高建筑建筑的抗震能力是防护和减少人民生命财产损失的一种途径.
参考文献:
[1]宋海燕 谈抗震设计在建筑结构设计中的应用 [J] 《山西建筑》 -2013年27期-
关键词:建筑结构;抗震;设计;理论;措施
中图分类号:TU2文献标识码: A
基于性能的结构抗震设计是近年来才提出的,其设计标准为“小震不坏、中震可修、大震不倒”,是目前各国采用最多的抗震设计思想。通过这种方法对建筑抗震设计进行优化,可以有效的减少因地震灾害造成的伤亡事故,因此,该设计理念在今后将会有更加广阔的发展前景。
一、基于性能特性研究的抗震设计理论概述
1、基于性能的结构抗震设计含义
采用合理的抗震性能目标和适应性结构抗震措施对建筑结构进行优化,使建筑结构在各种级别地震的作用下所形成的最终的破坏程度达到相应的结构设计要求,通过对工程项目进行生命周期的费用效率分析,选择并确定一种安全可靠且符合经济合理化的优化平衡。从简单的含义上看,就是利用性能标准选择结构措施,并使之符合使用标准和经济标准。
2、基于性能的抗震理论特征
基于性能的抗震设计理论实际上是一种在对地震灾害分析和对现行的抗震设计理论的反思的基础上产生的,此理论的设计理念和方法与传统的设计不同,但是其设计的依据却蕴含来了现有的设计理论和经验,具体的特征如下:
1)支持采用多级设防的目标,基于性能抗震设计理论提出了多级目标设计的理念,此种分级方式即考虑到了生命安全也从经济性上考虑,最大限度的降低业主和社会的损失,保证在其可承受的范围内,以此为基础更加注重非结构件和内部设施的保护,将经济效益的机制引入到了设计中,利用经济决策方式通过进行费用效率分析,在可靠和经济之间需求平衡,以确定最佳的抗震方案,达到优化设计的目的。
2)扩展空间,体现设计的个性化。设计人员就可以在此性能目标的基础上选择设计方法,采用相应的构造措施,而此种设计更加的灵活,对调的设计积极性和新材料、新技术、新工艺等的应用打开了方便之门,同时结构的抗震能力是在抗震性能的目标下形成的,也是的建筑的抗震能力可以预见。
3)设计方法多元化。目前基于性能的抗震理论还没形成统一的研究方法,很多学者采用结构层间变形或者定点移位作为性能指标,其从传统的以力学为基础的设计转变为以形变为基础的设计,从弹性设计的方法转变为弹塑性的设计方法,解决了传统设计理论上的缺憾,尽可能的是的建筑结构的预期功能和实际地震中起到的功能相一致,以保证设计的有效性。
二、基于性能的抗震结构设计的内容
1、地震设防的水准设定
地震设防的标准是指设定未来可能作用在建筑上的地震等级和作用效果,美国工程师协会曾提出,基于结构性设计理论追求能控制结构所可能发生的各种地震破坏的水准,因此需要根据不同的重现期选择可能发生的对应不同的地震动参数。结构损坏严重威胁生命安全,虽然损伤但没有倒塌,经济上的损失已经超过了业主可以接受的最大上限。
2、结构抗震的性能目标设定
从地震设防的角度看,规范提出的抗震目标实际上是最低的设防标准,而结构抗震设计则是根据业主需求采用的设防标准,其要高于规范设定的范围。使用者可以根据自身的情况出发,设定一个合理的性能目标。为了方便结构设计,这些定性的性能指标最终将被量化,成为具体结构设计的重要参数依据。
3、基于性能的结构设计实施
此项内容就是要求将结构的性能要求转化为合理的性能参数以此形成具体的指导设计的基础性数据。为了达到这一目标,需要配合合理的处理和分析方法,将前面的目标转化为与性能指标相关量化数据,使之作为指导设计的具体指标。
三、高层建筑结构基于性能的抗震设计
按照前面的理论分析的思路,下面就某个高层项目的性能抗震设计的过程进行例举阐述,以说明在高层建筑中实施性能抗震结构设计的流程和措施。
1、工程基本情况
某城市的高层建筑,按照建筑的整体设计要求,工程项目地下结构为三层,地上为三层裙楼,主要塔楼设计为45层,从工程的高度超过了150m。项目的主体采用的是混凝土框架加核心筒的结构形式。按照业主的需要,建筑的设计使用年限为50年,整体钢筋混凝土结构为二级,根据地域情况,此建筑为丙级,抗震设防为7。
2、对结构性能的目标选择
通过对工程具体情况的分析,设计人员通过对工程的具体情况的把握,并与业主方进行了沟通,取得了一致意见,整体结构在震中出现的逐级的损坏,即整体结构都会出现不同程度的损坏,而大部分为轻微,部分出现中等损坏构件进入到屈服阶段,出现裂缝,整个楼体的安全性降低,结构需要进行安全性的支护方可允许人员进出,如果恢复使用将需要进行大面积维修。
3、性能目标的实现措施
1)小震目标
工程在结构设计的过程中,设计人员通常采用的是计算机辅助设计,即利用软件将性能目标和实际的结构的参数联系起来,从而获得可以指导工程建设的具体结构参数。在计算中主要遵循的是高层建筑结构空间的有限元分析和计算方法,利用三维建模的方式进行模拟分析,如表1所示,为具体的计算后的结构参数。同时在具体的模型仿真对比中,估算其经济指标,使之满足业主的经济效益。表格中各种参数都达到比超过出了国标的要求。
2)中等地震的目标实现
结合前面的设计参数,对中等地震中所要达成的目标进行细化,并在基础数据的基础上对某些参数进行修正,使之到达设计的目标。根据目标要求,中震情况下,地震对结构件的影响使之超过了弹性变形范围,结构的损坏将出现硬性的结构损伤,但是其范围是可以修复,此时的重点就是通过结构的合理设计保护重点结构的安全,即舍弃某些结构件的完整,而保护主体框梁的安全。在此设计的思路上对整个设计的参数进行细部调整。对抗震承载力系数进行调整等,通过这些措施结构的初步设定参数得到必要的调整,使的满足小震目标的某些参数提升达到中等地震的设防目标。
3)大震情况的目标实现
在设计中,与中震目标实现相似,在利用软件进行分析和比对的时候,将其设定的范围进一步扩大,模拟在罕见的高烈度地震的影响下结构所产生的应力改变和相互作用,实际上就是将结构所产生的水平和竖向位移设定为最大,并以此对结构参数进行调整,使之达到:结构不出现扭转的效果;第一批塑性铰出现在某些楼层的梁上;在水平应力的作用下底部的剪力墙再进入塑性变形,以此保证剪力墙为建筑的“脆弱”部位,消除地震的某些应力效应,而保证框架结构的安全,使之始终不能达到塑性阶段。这样将就可以是结构在大震中只出现剪力墙的损坏,而保证主体框架的安全,最终达到大震下的性能目标。
四、构造设计的措施
该项目中对剪力墙的设计采取了一些控制措施,如:剪力墙加强范围进行了适当的扩大,向下和向上进行了必要的拓展,在地下一和地上一层的范围内进行了剪力墙的增强,主要是增加了约束构件,控制其形变范围。边缘约束构件设计使得箍筋范围符合国标要求,并增加了纵筋的配筋率,同时对剪力墙的控制达到其剪应力标准,构件的长度为剪力墙的25%,在强化区域采用箍筋和型钢进行加固处理。
五、结束语
总之,在性能设计中核心的思路就是按照建筑的实际情况和客户需求,并参考国标设定建筑的抗震设防的目标,并按照结构的性能特性计算出结构所需要的基本参数,以此获得较好的抗震效果,同时结合经济性指标是项目达到安全和经济的双赢。
参考文献:
[1]闫旭梅.高层建筑结构抗震设计分析[J].科技传播,2010(08)
【关键词】建筑设计;抗震结构;设计分析
引言
有关建筑工程的抗震设计已经引起了世界各地的高度认识,它对人们的生产生活有着重要的影响。在建筑设计的过程中,设计人员要重视抗震方面的问题并采取有效的措施来降低地震对建筑工程的破坏,进而保障人们的切身利益。
1.抗震设计的基本原则
为了使建筑物达到抗震的效果,在对建筑工程进行设计的过程中首先要考虑建筑物的整体结构,然后注意某一结构在地震情况下的整体反应,随后对其进行分析,通过分析计算、材料的选择和方案的规划来进一步的提高建筑工程的抗震效果。在地震发生的过程中,尽量的避免建筑物因薄弱部分而引起的一定程度的破坏。在建筑设计的国政中要遵循以下几点原则。
1.1 对建筑结构进行整体的规划
设计人员在进行建筑设计的过程中要综合规划抗侧力的结构,进而保证建筑设计的均匀、对称和规整。在进行实际设计的过程中,设计人员要将规则的图形或者是对称的图形作为构造形式并在此基础上调整调整建筑结构的整体性,进一步的实现惯性力的聚集和传递,将地震过程中的破坏力分开,以此来保证建筑物在地震过程中的安全。
1.2 保证建筑物的结构刚度
在对建筑物进行设计的过程中,要考虑地震作用力的双向性,进而保证建筑物能够从各个方向对作用力进行抵抗。设计者还要将主轴方向上的刚度控制在合理的范围。另外,结构刚度方面的设计还要能够防止建筑物的过度变形,柔性结构对外力进行分担,进而避免地震作用力下的整体结构变形,导致人员伤亡和财务损失。
1.3 抗震防线的设置
建筑工程的结构体系包括很多的结构分体,这些结构分体进行协调合作,进而降低地震对建筑物的影响。有些地震在发生之后还伴随着很多次的余震,并且余震的级别不一,所以设计人员要设计多道抗震的防线,以此来保证建筑物尽量不受余震的影响。抗震的防线要通过有效的方式安置在结构在内外部,设计人员还要尽最大努力来处理结构刚和柔的关系,进而提高建筑物抵抗地震的能力。
2.建筑抗震设计中的问题
2.1 结构体系与材料方面的缺陷
建筑物所用的材料和结构体系是人们逐渐开始重视的问题,它们的正确选择对于地震多发区有着重要的意义。目前,我国的建筑结构主要以钢筋混凝土为主,所以在变形控制的过程中要充分考虑钢筋混凝土的位移限制。但刚框架系统工作也很难改善较大的变形侧移度。这种情况不仅不利于提高抗震效果,而且也会加大钢结构的荷载力。从整个结构体系来考虑,结构转换层的设置非常的重要,对加强层和转换层强度的刚度强化,在一定程度上会造成刚度的突出,从而增加相邻柱构件间的剪力,所以我们要谨慎的选择结构模式,避免负面作用的产生。
2.2 高层建筑的不断增多
随着社会的不断发展,高层建筑在我国逐渐的增多,但是一些高层建筑的高度已经超出了国家规定的范围,我们要高度重视这种高层建筑。首先设计人员要进行实际的调查,并在实际案例的基础上进行合理的论证。其次还要多次进行模型试验。由于高层建筑的高度已经超过了国家的规定,所以在实际的地震过程中,地震作用力的破坏力就会大大的增强。随着建筑物高度的增加,很多技术指标都超出了合理的范围,所以地震对它的破坏程度会远远的增加。
2.3 短柱和轴压比在设置过程中所存在的问题
在很多高层建筑在施工的过程中,为了保证控制柱的轴压比例,促使柱的断面增大,这种情况即使采用高强度的混凝土也不能进行有效的缓解。限制柱轴压比在作用是为了使柱子在偏压状况下,避免产生屈服的状况,进而造成混凝土被压碎,导致结构的延性变差,进而影响建筑物的抗震能力。
3.提高建筑物抗震能力的策略
3.1 对整体构造进行有效的优化
设计人员在对建筑物进行设计的过程中,首先要考虑结构体系对于地震作用力的抵制效果,并且还要重视对不同的结构体系所财务的抗震措施以及不同体系对经济和安全带来的影响。设计人员要结合工程的实际情况,做好整个结构体系的优化工作。在对结构体系进行设计的过程中,要保留一定的余度,以此来保证某部分结构在遭到破坏之后,其余的架构可以对作用力进行均衡,这样就可以保证部分构件的破坏不会影响到整体的抗震性能。在对建筑进行设计的过程中,设计人员需要把震害的传递路径清晰的标注于结构图当中,以此来保证他们在设计的过程中能够全面的顾及抗震设计的要求,使各个部件都能保证应力传递过程的连续性。
3.2 对抗震位置进行合理的选择
设计人员在进行抗震的时候要选择比较有优势的抗震场所,而且不可以在震害影响较大的地区进行工程建设,借助地理条件来尽可能的减轻地震的危害。在工程中不能将地质不均匀地区和软弱地质区域设置为抗震场地。如果不可避免的在这种区域中进行抗震设计,首先要对地基进行处理设计,以此来保证地基结构达到规定的强度,在达到规定的基础上才可以展开进一步的抗震设计。另外,设计人员要根据地基场地的实际情况来财务核实的措施。
3.3 对结构荷载进行恰当的处理
为了保证建筑物有效的抵抗地震灾害,设计人员在结构设计的过程中要遵循强弱协调的设计原则,对剪、节点、柱等的位置强度进行合理的提升,并对梁、弯、拉力中心等部位的强度进行削弱。为了避免节点过早的被破坏,设计人员需要使柱端的承载力大于梁端的承载力。与此同时,设计人员要根据具体的规范要求对各个构建的荷载进行合理范围内的调整。
3.4 在建筑设计的过程中,设计人员要根据不同的建筑结构类型,选择适合建筑物的抗震构造,以此来保证整个建筑结构与抗震结构一起来抵抗地震,在最大程度上较少地震所带来的危害。利用砖混结构进行建造的建筑,它的抗震设计应该使用水平圈梁加内外连续墙的构造,其中水平圈梁能够施加一定的约束力来抵抗强大的外力。内外结构墙用来加强塑性变化和位移程度的,以此来保证工程具有很好的整体性与延展性,进而加强建筑的防震能力。
3.5 对结构的自重进行弱化
在地基条件相同的情况下,设计人员对建筑进行抗震结构的设计。如果在设计的过程中能够低结构的自重,那么便可以合理的增加建筑的层数,进一步的控制成本,这种作用在软土地基的情况下会更加的明显。另外建筑的质量会直接影响地震的效应,如果建筑物的层数过多,那么在地震的作用下,就会增加坍塌的危险。为了尽可能的缓解这一现象,可以用轻质材料来减轻控制结构本身的重量。我国现代的建筑行业对建筑的抗震性能提出了更高的要求,我们要根据预期的地震作用来控制变形能力。在进行设计的过程中,要关注构建的承载力,并通过参数关系来确定构建的最终值。
4.小结
随着经济的发展,我国建筑行业也有了很大发展,而且高层建筑也逐渐的融入我们的生活,这种情况对抗震设计工作也提出了更高的要求。抗震设计是最有效最直接的抗震措施,世界各国也在抗震结构设计方面做出了很大努力,并有取得了很好的成果,但是地震的发生存在很多的不确定性,抗震设计方面还存在一些问题需要我们去分析和改进。我们要在现有成就的基础上,结合实际生活对建筑物的要求,树立先进的理念,使用科学的研究方法,使抗震结构设计获得更快速的发展。
参考文献:
[1]刘东辉.试析建筑结构设计中抗震理念的运用[J].中国建筑金属结构,2013(2):75.
关键词:抗震概念设计;建筑结构;工程设计;抗震性
对于高层建筑结构设计,要遵守抗震设计规范,从抗震概念设计应用入手,结合工程实际情况,提出定量控制要求。值得注意的是,开展高层建筑结构抗震设计,要在概念清晰且技术可靠的基础上,合理的设计建筑结构,以确保建筑的抗震性能。通常情况下,高层建筑结构抗震设计,需要从概念设计、抗震计算、抗震措施等方面加以把控,以确保设计的合理性。
1高层建筑结构抗震性设计的意义
贵州省位于我国南北地震带南段的东侧,省内西部部分区域位于地震带上。贵州地震的频度与强度为中等水平,地震平面分布不均。若发生地震,会造成极大的损失,以尼泊尔大地震为例,涉及到多个多家,地震造成近4000人死亡,约7000人受伤,对尼泊尔国造成超过50亿美元的经济损失,由此可见地震的损失性。在地震中,建筑既是人们的保护工具,也是威胁人们安全的物体,若能够提升建筑的抗震性,对保护人们的财产与安全,有着积极的作用,因此加强高层建筑结构抗震性设计研究,有着必要性。
2抗震概念设计应用的基本要点
2.1合理选择建筑结构
高层建筑结构抗震性设计,最为重要的是建筑体形和结构设计,占据着重要地位,多数倒塌建筑主要是因为规划不合理造成的,所以要科学的选择水平面与垂直面,提升建筑的抗震性能。一般来说,建筑平面形状规则,直接影响着建筑的抗震性,平面形状平整度越高,则建筑的抗震性能就越强,图1为水平地震作用。规则平面能够承担荷载作用,建筑结构的整体性较为突出。在高层建筑结构设计中,于高度方向,需要保证结构布置的连续性,实现侧向刚度保持连续,以免出现薄弱层。
2.2合理选择传力路线
高层建筑结构抗震设计多利用计算机程序,来确保计算的准确性,建筑结构设计人员只需要掌握简单的计算方法即可。利用计算机,在获取受力状态下,形成建筑结构件计算简图。接着利用力学模型和数学模型,从地震反应入手,做好详细的分析,明确计算结果,合理选择建筑结构路径,提高传力路线选择的效率。
2.3合理选择建筑位置
通过相关研究发现,建筑物损毁与建筑所处的地形,有着直接的关系。除此之外,建筑损坏和地基、断层等,也有着紧密关系。以覆盖土因素为例,建筑破坏率和此因素呈现的是正相关,覆盖土层厚度小,证明土质偏硬,具有较强的稳定性,当遇到地震时,不易发生倒塌情况,因此在设计高层建筑时,要选择硬质地基,降低地震效应,确保建筑结构的稳定性[1]。
2.4设置多条抗震防线
高层建筑结构抗震设计时,需要设置多条抗震防线。考虑到地震时间存在差异,伴随多次余震,受到地震反复冲击,会给建筑结构的稳定性造成损坏,若高层建筑物设置一道防线,当建筑受到一次破坏后,难以抗衡后续破坏,因此需要设置多道保护,确保高层建筑结构的稳定性。
3抗震概念设计在高层建筑抗震设计中的具体应用
3.1提升结构延性
高层建筑抗震设计水平低于地震等级,极易因为脆性破坏,造成建筑倒塌,所以在建筑结构抗震设计中,要提高结构延性,增强建筑结构抵抗能力。可以从以下方面入手:①材料。选择延性材料,此类材料的应用,当发生非弹性变形,或者发生反复弹性变形时,其延性不会明显下降。②杆件。通过控制杆件的延性,包括塑性变形与能量收纳与耗散等,提高结构延性,通常从墙肢与框架的柱等方面捂手。③构件。构件的延性指的是某个构件的塑性变形与能量消耗的能力,通过控制墙体或者框架延性,来提高建筑结构整体延性。总得来说,建筑结构延性指的是抗倒塌能力与塑性变形能力。在设计时,可以采取以下措施:①在平面上,增强突变处与转角处等构件的延性;②对于竖向,则可以加强薄弱楼层的延性,比如体型突变处、主楼与裙房相接的楼层等;③增强首道抗震防线部分的构件延性[2]。
3.2提升结构的整体性
高层建筑结构的整体性较强,能够确保建筑结构在地震力的作用下,处于协调运行的状态,可避免建筑倒塌。采取以下措施:①选用钢结构支撑结构。钢结构作为建筑行业的新技术,其市场份额不断扩大,贵州地区已经逐步引入钢结构,比如贵州钢结构发展中心楼,楼层高24层,建筑面积为26000m2,建筑承板使用的是钢筋线桁架工艺,建筑整体性较好,抗震性能较好。高层建筑结构设计中,采取钢结构支撑体系,对提升高层建筑框架结构中的侧向刚度,有着积极的影响,可以抵抗水平荷载,提升高层建筑整体强度。与纯框架架构相比,支撑结构稳定性较好,将窗台下方-下层窗户顶部区域位置,作为支撑位置,合理设置支撑,能够达到结构支撑要求。采取环向封闭同一平面,能够提高建筑钢结构侧向刚度,在强震区应用,其效果更为凸显。②抗侧力结构。若高层建筑结构为多种框架结构形式,应用钢结构,可以承载建筑物竖向负载与部分横向负载。采用抗侧力结构,可以按照建筑的各类要求,来选用抗侧力结构。若高层建筑中桁架高度和单楼层相同,可以利用交错桁结构,来设置上下楼层,确保各单元设置的灵活性。应用此结构,在钢结构平面内,梁柱弯矩较小,侧向位移也较小。
3.3准确计算结构抗震
开展高层建筑结构抗震设计前,需要准确的计算建筑结构的地震作用,接着计算结构与构件的地震作用效应,并且和其它载荷效应,做好相互结合,检验建筑结构抗震承载力与变形,确保能够达到新《建筑抗震设计规范》(GB50011-2001)规范相关要求。需要做好以下计算:①地震作用计算。建筑结构抗震承载力主要考虑水平地震作用,高层建筑结构设计,还需要注意竖向地震作用。②抗震验算。主要包括截面抗震验算、弹性变形验算、薄弱层弹塑性变形验算等[3]。
3.4做好非结构部件设计
非结构部件指的是建筑结构分析中,不考虑侧向荷载与重力荷载的建筑部件,包括内隔墙与墙等。虽然建筑结构设计时,此类部件不参与荷载分析,但若发生地震,此类部件会起到作用,极有可能会改便建筑结构承载力,或是提升建筑抗震性,或是增加破坏性,因此需要做好非结构部件的处理。可以采取以下措施:①加强建筑框架和填充墙之间的联系,使得填充墙可以成为建筑主体抗震结构的组成部分。对于墙体连接,可以采取柔性连接方式,削弱墙柱的联系,避免发生嵌固作用。②对于附着在建筑楼与屋面结构的,需要做好此类非结构构件和主体结构的连接处理,以免发生地震时,造成人员伤亡。③加强幕墙和装饰贴面等和建筑主体结构的有效连接,避免贴面损坏。
3.5做好倒塌分析
开展高层建筑结构设计时,采取倒塌分析法,做好建筑倒塌分析,以优化建筑结构抗争性设计,达到抗震标准。可以借鉴超高层建筑经验,譬如:某超高层建筑为Ⅷ度抗震设防烈度建筑,在建筑结构设计时,利用倒塌分析法,进行结构设计方案分析,发现采取内嵌钢支撑剪力墙方案,能够有效的增强建筑结构强度。基于倒塌分析,明确此工程采取全支撑方案建设总材料用量可节约11.2%,建筑结构抗倒塌储备能力可以增加14.8%,建筑的抗震性能较好。采取对比各种最小地震剪力系数调整方案,能够明确采取调整地震剪力,开展刚度验算,设计建筑构件承载力,能够获得较好的效果,此方案和提高刚度缩短建筑结构自振周期的方案相比,具有较强的经济性。对于建筑结构倒塌关键位置,能够提高建筑结构整体的抗倒塌能力,此方案的实施,增加钢用量约0.1%。总而言之,在建筑结构设计时,做好倒塌分析,能够准确衡量各类结构设计方案的效果,明确各类抗震措施对建筑结构抗震性能的影响,发挥着积极的作用[4]。
4结束语
应用概念设计,开展高层建筑结构抗震设计,需要充分的借鉴工程经验,严格按照建筑抗震设计相关规范,采取相应的措施,提升建筑结构的整体性能,提高结构的抗震性能。
参考文献
[1]陆新征,杨蔚彪,卢啸,齐五辉,刘斌,张万开,叶列平.倒塌分析在某500m级超高层建筑抗震设计中的应用[J].建筑结构,2015(23):91~97.
[2]刘均伟.高层建筑结构设计中抗震概念设计的运用研究[J].山西建筑,2016(20):43~44.
[3]雷雨润.高层建筑结构中抗震概念设计的应用[J].建设科技,2017(08):80.
关键词:建筑结构 抗震设计 结构动力特性 战略规划
一、研究背景以及结构抗震理论的发展
近年来,我国地震频发,自2008年“5·12”汶川大地震之后,2009年6月30日云南姚安6.0级地震,2010年4月14日青海玉树发生7.1级地震,2012年9月7日云南彝良、贵州威宁交界处发生5.7级地震,2013年4月20日四川省雅安市芦山县发生7.0级大地震等等。在地震中,无一例外的伴随着大量房屋倒塌以及其他建筑物被损毁的现象,不仅仅造成了大量的财产损失,也严重威胁人民群众的生命安全。而且注入日本等一些地震多发地区对于建筑物结构的抗震设计要求较高,我国近年来对此也不断加以重视,也取得了一些进展,但是由于各方面的原因,整体建筑物的抗震能力还较差。事实上,国家在建筑物抗震设计当中,明确提出三个标准:“小震不坏,中震可修,大震不倒。”地震防烈度7度以下(含7度)为小震;8度为中震;9度以上(含9度)为大震。因此,对于建筑物结构设计中的抗震设计是应该有着明确的规划和指导的。
自20世纪以来,结构地震反应计算方法的发展,大致可以划分为三个阶段。第一阶段为静力理论阶段---静力法。1920年,由日本大森房吉提出。假设建筑物为绝对刚体,结构所受的水平地震作用,可以简化为作用于结构上的等效水平静力F,其大小等于结构重力荷载G的k倍。第二阶段是反应谱理论阶段,地震反应谱是单自由度弹性体系在地震作用下其最大的反应与自振周期的关系曲线称为地震反应谱。1943年美国皮奥特( M. A. Biot)发表了以实际地震记录求得的加速度反应谱,提出的“弹性反应谱理论”。由于反应谱理论正确而简单地反映了地震特性以及结构的动力特性,从而得到了国际上广泛的承认。实际上到20世纪50年代,反应谱理论已基本取代了静力法。目前,世界上普遍采用此方法。 第三阶段是动力分析(时程分析法)阶段,时程分析法将实际地震加速度时程记录作为动荷载输入,进行结构的地震响应分析。不仅可以全面考虑地震强度、频谱特性、地震持续时间等强震三要素,还进一步考虑了反应谱所不能概括的其它特性。时程分析法用于大震分析计算,借助于计算机计算。
二、建筑结构抗震设计的重要性分析
一是充分保护人民群众的生命财产安全。人类社会在发展过程中,首先要解决的就是温饱与安全的需求(马斯洛的需要层次理论可以说明),如据有关报道,在2008年的汶川地震的主震区内,完好的建筑几乎没有。除却地震本身的烈度较高,破坏性较强的原因之外,一个更重要的问题值得我们的深思,就是建筑结构的抗震能力非常差,长时期以来,国人对于建筑的抗震设计重视不够,一方面在技术水平上缺乏突破,另一方面一部分人受利益驱动,往往在施工过程中,存在偷工减料等行为,导致了建筑物抗震能力薄弱,加强建筑结构抗震设计的重要性,对于保护人民群众的生命财产安全不言而喻。
二是促进建筑结构设计技术与理念的创新与发展。我们知道,日本是一个地震多发地区,事实上,在1880年以前,日本对于建筑物结构的抗震设计也不是很重视。1880年横滨地震(M=5.4)之后,日本成立了日本地震学会,1891年在浓尾地震之后,鉴于地震给建筑物造成的重大损害,日本成立了“震灾预防调查委员会”,开始着手进行抗震结构设计研究。经过近百年的发展,日本的建筑物结构抗震设计无论是在技术还是在理念上都处于领先的地位,如大量的震害分析表明,反应谱理论虽考虑了振幅和频谱两个要素,但只解决了大部分问题,地震持续时间对震害的影响始终在设计理论中没有得到反映。这是反应谱理论的局限性,后来,日本大规模的采用动力分析(时程分析法)。
三是具有良好的社会正向效应。整个社会发展是一个复杂的系统,从这一战略高度加以认识的话,我们不难发现,对于建筑物抗震结构设计的加强对于构建和谐社会具有重要意义,良好的建筑物抗震能力,能够减轻人民群众的生命财产损失和风险,有利于维护社会稳定,对于建设“美丽中国”,实现“中国梦”,具有良好的社会效应。因此,不能孤立的片面的静止的对待建筑结构抗震设计。
三、建筑结构设计抗震设计的对策分析
一是加强对建筑结构抗震设计的战略规划。建筑结构抗震设计是一个系统工程,涉及到众多方面的内容,如建筑场地、地基与基础;结构地震反应分析和抗震验算;多层砌体结构抗震设计;钢筋混凝土结构的抗震设计;多、高层钢结构房屋的抗震设计;单层钢筋混凝土厂房的抗震设计;结构隔震与消能减震控制等等。因此,要从战略层面加以重视和规划,我国有《建筑工程抗震设防分类标准》、《城市抗震防灾规划管理规定》等国家标准,对建筑物抗震设防分类、责任划归、防灾规划均有具体划分。应该加强在实际工作中的执行力度。
二是优化建筑结构抗震设计的技术方法。建筑结构抗震设计的基本方法与不做包括,首先计算结构的地震作用—地震荷载;其次计算结构、构件的地震作用效应—M、Q、N及位移;再次,地震作用效应与其他荷载效应进行组合、验算结构和构件的抗震承载力及变形。
我们知道,地震作用和结构抗震验算是建筑抗震设计的重要环节,是确定所设计的结构满足最低抗震设防安全要求的关键步骤。由于地震作用的复杂性和地震作用发生的强度的不确定性,以及结构和体形的差异等,地震作用的计算方法是不同的。
三是加强结构抗震设计的二次优化。在当前的地震多况下,尤其是烈度较大的情况下,抗震结构设计的二次优化至关重要。在多遇地震作用下结构的弹性变形验算,属于第一阶段的抗震设计内容;在罕遇地震作用下结构的弹塑性变形验算,属于第二阶段的抗震设计内容。经过第一阶段抗震设计的结构,构件已经具备了必要的延性,多数构件可以满足在罕遇地震下不倒塌的要求;对某些处于特殊条件的结构,尚须计算其在罕遇地震作用下的变形,即进行第二阶段抗震设计,以考察安全性。在此基础上,确定建筑物的相关结构内容,从建筑方来讲,总想把外立面做得很美观,显得特别复杂;但从抗震角度讲,外观越复杂的,恰恰就越不抗震,因此,更应该充分重视建筑结构设计,选择合理的建筑结构,不能因噎废食。
参考文献:
[1]吕西林,蒋欢军.建筑结构抗震研究的若干进展[J].同济大学学报(自然科学版),2004,32(10):1278-1284.
[2]李碧雄,甘立刚,王清远等.基于震害和数值分析的加固建筑结构抗震性能评估[J].四川大学学报(工程科学版),2010,42(5):142-149.
[3]耿中举.建筑结构抗震加固方法应用探析[J].城市建设理论研究(电子版),2013,(12).
[4]夏念恩,谭正清.从汶川地震谈对建筑结构抗震的几点思考[J].黄冈职业技术学院学报,2008,10(4):11-13.
地震是一种自然现象,也是一种不可抗力的自然现象。如果强烈地震发生在我们的居住地,将会发生不可预料的后果。所以,为了防止、减少建筑物的地震破坏工程技术人员与设计人员有必要对建筑结构的抗震性分析与抗震性研究。
关键词: 建筑结构设计;地震下结构特点;抗震性;结构延伸性;研究
中图分类号:S611 文献标识码:A 文章编号:
引言
通过在地震下结构的特点,来确定建筑结构设计中的原则,从而找出抗震合理的应对措施。提高建筑抗震性能的重要措施就是增强结构延性,故建筑结构应设计成延性结构。结构中抵抗较大地震作用下的非弹性变形的主要是由延性来,故在地震作用下,结构的延性与结构的强度拥有非常重要的意义。地震力降低系数对设防烈度地震作用的整体降低实际上决定了结构的屈服水准和对结构延性需求的大小。目前,能力设计法已经被各国普遍接受,通过能力设计法,形成合理的耗能机制,使塑性铰出现在延性易于保证的部位;确保结构在未达到所需要的延性前不至于发生剪切失效;并在细部构造措施上来保证延性的充分发挥。
1.在地震下结构的主要特点
地震以波的形式从震源(地面上的相对位置称震中)向周围快速传播,通过岩土和地基,使建筑物的基础和上部结构发生不规则的往复振动和激烈的变形。结构在地震时发生的相应运动叫做地震反应,包括位移、速度、加速度。另外,结构内部发生很大的内力(应力)和变形,在它们超过了材料和构件的各项极限值后,结构就会出现各种不同程度的破坏现象,比如砼裂缝,钢筋屈服,显著的残余变形,局部的破损,碎块或构件坠落,整体结构倾斜,倒塌等等。
在震中区的附近,地面运动振动激烈,且频率高就是垂直方向方向的运动,水平方向振动是比较弱的;距震中较远处,垂直方向的振动衰减快,其加速度峰值约为水平方向加速度峰值的1/2至1/3。故对地震区的大部分建筑来说,水平方向的振动的主要因素是引起结构强烈反应和破坏。
2.建筑结构设计抗震性的基本原则
2.1 结构构件应当具有必要的承载力、刚度、稳定性、延性等方面的性能
(1)结构构件应满足“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。
(2)对结构可能造成的相对薄弱部位,应当采取提高抗震能力的措施。
(3)承受竖向荷载的主要构件不应作为主要耗能构件。
2.2 抗震防线应尽量设置几道
2.2.1一个抗震结构体系应由若干个延性较好的分体系构,并由延性较好的结构构件连接共同工作。比如由延性框架和剪力墙两个分体共同组成的框架剪力墙结构,双肢或多肢剪力墙体系组成。
2.2.2强烈地震通常会有余震,若只设置一道防线,在第一次破坏后再遭余震,就会因损伤积累使房屋倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区内,主耗能构件应该具有较高的延性和适当刚度,来使结构能吸收和耗散大量的地震能量,提高结构抗震性能,防止大型震时倒塌。
2.2.3适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。
2.2.4在抗震设计中某一部分结构设计超强,很有可能造成结构的其他部位相对薄弱,故在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都要深思熟虑。
2.3 针对可能出现的薄弱部位,提高其抗震能力采取措施
2.3.1在强烈地震下不存在强度安全储备的构件,构件的实际承载能力分析是判断薄弱部位的基础。
2.3.2要使楼层或部位的实际承载能力和设计计算的弹性受力的比值在总体上要保持一个相对均衡的变化,一旦楼层或部位的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。
2.3.3防止在局部上加强而没有考虑整个结构各部位刚度、承载力的协调。
2.3.4在抗震设计时有意识、有目的地控制薄弱层或部位,使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
3.建筑结构设计中抗震性能力的应对措施
3.1 增强建筑物的刚度和整体性
建筑物是由纵、横向承重构件和楼盖构成成的结构体系,它必须有足够大的整体刚度和整体稳定性。还要考虑抗侧力构件的布置以和结构质量的分布。刚性楼盖能保证各个抗侧力的构件按各自侧移刚度合理分配地震作用。较理想的抗震构件是使用现浇钢筋混凝土砼楼板和屋盖,它具有良好的整体性、水平刚度大的优点,可减少滑移、散落问题,它还可适当放宽平面上墙体对齐的要求,可以有效地控制层间变形。较强的楼板及屋盖水平刚度还能有效地传递荷载,尤其是在上下墙体在平面上没对齐时,它们起到一定的传递水平力的作用,对楼板和屋盖现浇还能增强其对墙体的约束。由此说明,采现浇楼、屋盖能有效增强建筑结构空间刚度和整体稳定性,从而提高房屋的抗震性能。
3.2保证结构的延性能力
为满足建筑物在遭受大地震时还具有较强的抗震能力,可以采用使部分结构构件破坏来延性耗散地震能量,来减少整体承受的地震能量。结构延性能抵抗地震作用下的非弹性变形,其对于结构抗震性能的作用丝毫不逊于结构的强度。为使结构在地震中表现出必要的延性,就要尽可能使塑性变形更多地集中在具有一定延性能力的构件上。
3.3 提高短柱的受压承载力
短柱的受压承载力的提高可以通过减小柱截面、提高剪跨比,来改善整个结构设计中的性能。减小柱截面和提高剪跨比,提高混凝土的强度等级就是最直接的方法有效的方法,也就是采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但是因为高强度混凝土材料本身的延性较差,应谨慎采用或配合使用其它措施。
3.4采用钢管砼柱
钢管砼是套箍砼的一种特殊形式,将砼填入薄壁圆形钢管内形成组合结构材料。因为钢管内的砼受到钢管的侧向约束,造成砼处于三向受压状态,从而使砼的抗压强度和极限压应变得到很大的提高,砼特别是高强度砼的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋, 其管径与管壁厚度的比值至少都在九十以下,相当于配筋率至少都在4.6%。
当采用了高强度砼和合适的套箍指标后,可大幅度提高柱子的承载力,通常柱截面可比普通钢筋砼柱减小一半以上,消除了短柱并具有良好的抗震性能。
3.5加强建筑工程过程中的施工管理工作。科学合理的建筑抗震设计,必须是由高质量高水平的施工才能完成实现。如果说设计是“理论”,那么施工必然就是“实践”了,施工是实施设计意图,施工质量的好差,这将直接影响到建筑物的抗震能力。如果施工质量存在重大问题和隐患,倘若遭遇强烈地震问题将会暴露无遗。做好施工质量的关键在于严格按施工规范或编制施工组织设计并按规定施工。现在使用的抗震设计规范与施工规程,对于施工标准、施工技术与措施和施工质量等都作了明确详细的规定,要求严格执行国家制定的建筑抗震设计规范,特别是强制性抗震技术规范。
4 结束语
我们已经经历过汶川大地震,玉树大地震,我们看到了一座座倒塌的建筑,看到了一个个鲜活的生命埋葬在建筑物中。我们已经没有能力和勇气再看到这样的事件再次发生。所以工程技术设计人员应对建筑结构进行充分研究和合理设计,使在地震作用下结构的薄弱环节得到有效控制,进而提高建筑的抗震性能。
参考文献:
[1]刘伯权,刘鸣,叶燎原.建筑结构抗震设计[M].北京建材工业出版社,1996.
[2]王社良.抗震结构设计[M].3版.武汉理工大学出版社,2007.
关键词:高层建筑;结构分析;结构布置;概念设计
0 引言
现行建筑结构抗震设计准则是“小震不坏”、“中震可修”、“大震不倒”,即以满足截面承载力要求保证“小震不坏”;由结构非线性反应计算进行变形条件的验算从而实现“大震不倒”;以特定配筋增强截面及构件延性达到“中震可修”。现行抗震规范的这种设计思想在建筑结构的设计实践中遇到了很大的困难。首先是“大震”作用下建筑结构的变形验算基本上没有进行,原因是缺乏有说服力的结构非线性地震反应分析方法;其次是“小震”作用下建筑结构线性地震反应分析方法要么过于粗糙、简单,要么过于复杂、耗时,有的甚至无法进行精确分析。而现行的高层建筑结构的抗震构造措施过于强调提高截面构件的延性,缺乏提高整体结构抗震性能的有效构造措施。近十几年来,国外中、强地震震害表明,依此种设计思想设计的建筑结构倒塌的极少,能基本保证生命安全,但其财产损失往往超过了社会和业主所能承受的范围。社会和业主希望能震前预知结构可能的损失,更希望能按照其意图制定并实现结构的抗震性能目标。
一、抗震结构设计的性能目标
结构抗震设计的目标是使整体结构能发挥耗散地震能量的作用,避免结构出现敏感的薄弱部位。地震能量的聚散,如果仅集中在少数薄弱部位,必会导致结构过早破坏,目前各种抗震设计方法的前提之一就是假定整个结构能发挥耗散地震能量的作用,在此前提下才能以多遇地震(小震)作用进行结构计算、构件截面设计并辅以相应的构造措施,必要时采用弹性时程分析法进行补充计算,试图达到罕遇地震(大震)作用下结构不倒塌的目标。
它表明传统的地震危险性概率分析方法仍然是地震动性能划分的有力工具,但已不是单一用途的地震危险性分析方法,多种用途的危险性分析才能适应这种设计方法的要求。因而对各种梁、柱、墙构件乃至整体结构实验结果及震害调查结果的定性定量分类,用强大的数据库进行综合非常必要。这种数据库甚至可提供构件及结构性能标准的图形形式。
图1即为性能目标的详图,明确了性能目标所要求的定量标准、分析方法,指明了性能的抗震设计理论的研究方向及应着重研究的关键技术问题。
图1 性能目标详图
二、例案
例1、地震区的底框房屋设计时应注意到上下是两类受力性质截然不同的结构,极限变形能力相差悬殊。在小震作用下是上部砖房起控制作用,当处于弹性阶段时,验算的重点是砖墙部分;当砖墙开裂时,验算的重点是框架部分。另一方面还要注意底框房屋其侧向变形协调是靠楼板有足够的水平刚度来实现的。因此,底层楼板不仅需要现浇来达到其应有的水平刚度,且还需要有一定的厚度。
例2、 1972年某区域地震,一幢15层的大厦其平面布置图见图2,结构严重破坏。分析其结构体系,存在许多概念设计的错误。平面、立面布置严重不均匀、不连续等,地震时产生较大的偏心扭转效应,最终导致柱子严重开裂,钢筋被压曲,电梯井、楼梯间也遭到严重破坏。
图2 某大厦平面布置图
例3、一位著名结构设计大师在1963年某市设计的大厦,其平面布置图见图3。这幢楼的设计是这位大师运用概念设计思想的早期代表之作,堪称概念设计之典范。在1972年某市发生的强烈地震,多座楼房倒塌,而这座大厦虽位于震中,承受了比设计地震作用0.06 g大六倍的地震作用而未倒塌,墙体仅有很小裂缝。该建筑由四个柔性筒组成,对称地由连梁连接起来,在风荷载和多遇地震作用下,结构表现为刚性体系,在大震作用下,通过连梁的屈服,四个柔性筒相对独立,成为具有延性的结构体系,结构的地震作用明显减小,由于结构对称布置,防止了明显的扭转效应。
图3 某大厦平面布置图
三、优化准则及其保证措施
考虑地震作用时必须充分领会和灵活运用抗震概念设计的优化准则,并采取相应的构造措施。
(1)优化准则“强节弱杆”――防止节点破坏先于构件;“强柱弱梁”――防止杆系发生楼层倾移破坏机制,要求柱的抗弯能力高于梁的抗弯能力;“强剪弱弯”――防止构件剪力破坏,要求杆件的受剪承载力高于受弯承载力;“强压弱拉”――对杆件截面而言,为避免杆件在弯曲时发生受压区混凝土破裂的脆性破坏,使受拉区钢筋承载力低于受压区混凝土受压承载力。
(2)保证措施有两个方面:一是调整或限制构件的荷载效应,二是强制规定必要的构造措施。这两个方面在高层建筑混凝土结构技术规程(JGJ3-2002)有详细的规定,有的则是以强制性条文提出严格要求。如:高层建筑混凝土结构技术规程(JGJ3-2002)中第6.3.2条的第1点限制梁端截面混凝土受压区高度与有效高度之比,就是保证梁的变形能力,而它又决定于梁端塑性转动量,而塑性转动量又与截面混凝土受压区的相对高度密切相关;试验研究结果表明要使钢筋混凝土梁的位移延性系数达到3~4,混凝土受压区相对高度必须控制在0.25~0.35。又如:对钢筋混凝土杆件而言,杆件截面的平均剪应力过高,都会降低箍筋的抗剪效果,平均剪应力较小时,可以避免出现剪切破坏,所以建筑抗震设计规范(GB50011-2001)中第6.2.9条规定钢筋混凝土结构的梁、柱、抗震墙和连梁的截面组合剪力设计值应符合下式要求:
总之,高层建筑混凝土结构技术规程(JGJ3-2002)中许多条文以及强制性条文都是与这“四强四弱”密切相关的。因此,必须在充分理解规范、规程中的具体条文的基础上,运用相应的构造措施。
四、结论