前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的智能技术论文主题范文,仅供参考,欢迎阅读并收藏。
[摘要]电子技术在现代汽车上应用越来越广泛,电子技术的应用对于改进汽车性能、提高行驶安全、降低污染、节约能源有着非常重要的作用。文章就现代汽车电子技术的应用、发展趋势及应用前景进行了综述。
[关键词]电子技术微处理器电子控制装置汽车传感器
随着微电子技术的不断发展,车辆中的电子自动化程度越来越高。可以说,机械技术构成了现代车辆的筋骨,电子技术则构成了现代车辆的神经中枢。汽车电子化的程度被看作是衡量现代汽车水平的重要标志,是用来开发新车型,改进汽车性能最重要的技术措施。增加汽车电子设备的数量、促进汽车电子化是汽车制造商夺取未来汽车市场的重要的有效手段。
汽车电子技术主要包括硬件和软件方面的内容:硬件包括微处理器及其接口、执行部件、传感器等;软件主要是以汇编语言及其他高级语言编制的各种数据采集、计算判断、报警、程控、优化控制、监控、自诊断系统等程序。
特别是微处理器的出现给汽车的电子自动化程度带来了革命性的变化,车辆上微处理器的使用数量激增,电子装置在整个汽车制造成本中所占的比例越来越大。例如,一些豪华轿车上,使用单片微型计算机的数量已经达到50个左右,电子产品占到整车成本的50%以上,微处理机将更广泛地应用于汽车安全、环保、发动机、传动系统、速度控制和故障诊断中,目前电子技术的应用几乎已经深入到汽车所有的系统。
一、电子技术在现代汽车中的应用
按照对汽车行驶性能作用的影响划分,可以把汽车电子产品归纳为两类:一类是汽车电子控制装置,汽车电子控制装置要和车上机械系统进行配合使用,即所谓“机电结合”的汽车电子装置;它们包括发动机、底盘、车身电子控制。例如电子燃油喷射系统、制动防抱死控制、防滑控制、牵引力控制、电子控制悬架、电子控制自动变速器、电子动力转向等,另一类是车载汽车电子装置,车载汽车电子装置是在汽车环境下能够独立使用的电子装置,它和汽车本身的性能并无直接关系。它们包括汽车信息系统(行车电脑)、导航系统、汽车音响及电视娱乐系统、车载通信系统、上网设备等。
1.在发动机上的应用
现代汽车发动机的基本功能没有根本变化,但引入了大量的电子控制装置,极大地改进了车辆的排放性能、燃油经济性和耐用性。发动机电子控制系统包括很多电子控制装置,电子燃油喷射和点火装置是其重要组成部分,除此外,还有自适应控制装置、智能控制装置及自诊断操作装置等。
现代汽车上,电子控制燃油喷射装置,因其优越的性能,已得到普及。这种新型燃油喷射装置可以自动保证发动机始终工作在最佳状态;电子点火装置(ElectronicSparkAdvance,ESA)由计算机、传感器及其接口、执行机构等部分构成。该装置可根据传感器送来的发动机各种参数进行运算、判断,然后进行点火时刻调节。在输出一定功率的条件下最大限度地节约燃油和净化空气。
各公司相继研制成功了多种新技术,并且投入了使用,取得了很好的效果。例如,由RobertBosch公司制造的计算机控制系统使用嵌入式微处理器技术实时监测发动机运转情况,确保喷射燃油量恰到好处,使燃油喷射量刚好满足要求,对清洁这些发动机大有帮助。
特别是电控直接喷射和共轨燃油系统两项技术的突破,催生了具有优良性能的新型柴油机的出现。这些新型柴油机电控、加速性良好、气味不浓也不产生烟尘、行程大并且耐用。
在通常的柴油机中,喷油泵在同一时间射出所有燃油,其结果就是产生柴油机标志性的乓乓的敲击声。在直接喷射时,燃料射入之前先有一小部分先行射入,这样当燃料射入时产生的敲击声会变得柔和。与此同时也可以降低燃烧温度,减少NOx(氮氧化物)的排放量。
共轨燃油系统的作用则在于它可以更好地控制燃油数量和喷射定时。共轨系统有一个高压泵,当喷油嘴开启时,高压使燃油产生很好的薄雾使得燃烧更加充分,同时还减少了尾气排放。
现代汽车的各种性能(燃油经济性、排放、驾驶性能和功率等)越来越好,而使这一切成为现实的正是电子技术与计算机辅助设计的结合。
2.在底盘上的应用
底盘电子控制系统包括很多电子控制装置,电子控制自动变速器(Electronic-C0ntrolledAutomaticTransmission,ECAT)是其重要组成部分。现在许多轿车的自动变速器是电子控制的,电子控制也就是微处理器控制。
自动变速器主要由液力变矩器和行星齿轮变速器组成,微处理器根据传感器输入信号和开关信号,通过电磁阀控制换档和变矩器锁止这两个工作过程,达到自动变档的最佳控制精度。发动机曲轴与变矩器涡轮之间通过离合器接合的装置也称为变矩器锁止,其作用是减轻变矩器涡轮与叶轮之间的打滑现象,改善燃油经济性。ECAT优点是加速性能好、灵敏度高、能准确地反映车辆行驶负荷和道路条件等。
自动变速器的电子控制装置是由信号输入系统、计算系统和控制信号输出系统这三部分组成。信号输入系统有:变速器输入速度传感器、变速器输出速度传感器、发动机冷却温度传感器、节气门位置传感器、发动机曲轴转速传感器、油温度传感器、歧管压力开关、制动开关等信号。这些信号反馈到ECU(在通用汽车上称为PCM-动力传动控制组件),在ECU进行计算然后输出控制信号,通过换档电磁阀、离合器电磁阀等控制换档和锁止动作。微处理器接到传感器反馈信号后,根据程序计算的结果发出控制信号接通变矩器的离合器电磁阀电源,驱使电磁阀启动,使离合器接合;如果切断离合器电磁阀电源则离合器分离。ECU是根据汽车行驶状态来操纵电磁阀通电开关开启或关闭的。当汽车速度比较慢或停止时,ECU不启动电磁阀,当汽车速度达到一定值时,ECU就会启动电磁阀使离合器接合。微处理器接到传感器反馈信号后,根据汽车车速、发动机转速及工作温度、节气门位置、歧管真空度、选档位置等输入信号参数选择换档。ECU根据即时变速杆的位置,对照参数计算选择最佳的档位位置,发出控制信号驱动换档电磁阀,令变速器换档。
通用、福特、丰田等等大厂商采用的自动变速器电子控制系统,根据与其连接的变速器和发动机的不同型号而不同,每个系统中的元件和系统的工作过程也随着不同的变速器而有所变化,但其基本的工作方式及基本部件还是一样的。
除此外,还有电子稳定智能控制装置(ElectronicStabilitvPro-gram,ESP)、电控悬架操作装置等。ESP将多种功能整合在一起,并在此基础上进行了扩展。与其他牵引力控制系统比较,电子稳定控制程序不但控制汽车驱动轮,而且可控制从动轮。通过安装在车辆上的轮速传感器、侧向加速度传感器和横摆角速度传感器,电子稳定控制程序能对车辆的状态进行实时监控,当感应到轮胎与地面失去附着力,车辆存在侧滑危险时,电子稳定控制程序会快速而有选择地对需要制动的车轮实施独立操作或降低发动机输出,以使车辆行驶方向尽可能保持与驾驶员的预期相一致,从而提升车辆在各种工况下的方向稳定性及可控性。
目前电控悬架,汽车的悬架系统一般是弹簧刚度和减振器阻尼特性不能改变的被动悬架,它不能根据使用工况和路面输入的变化进行控制和调整,故难以满足平顺性和操纵稳定性的更高要求5近年来,随着电控和随动液压技术的发展,弹簧刚度和减振器阻尼特性参数可调的电控主动和半主动悬架,在汽车上逐步得到应用和发展。
3.整车控制技术
整车控制技术包括车身电子控制、驾驶电子控制等系统。汽车车身电子控制技术所涉及的内容很多,主要包括对汽车照明灯和转向信号灯的电子控制、对电动座椅、电动门窗、电动门锁、自动雨刮等的电子控制以及多媒体系统等。目的是保证视野性、方便性、舒适性、娱乐性、通信功能等。目前车身电控技术呈现如下的发展趋势:进一步满足用户个性化的需求;先进的驾驶和乘坐信息系统,如车辆遥控检测、智能型防盗、乘座适应性控制、42V电子系统、环保设计系统等等。
传统的机械和液力驾驶控制系统由于结构的原因(间隙、运动惯量等),从控制指令发出到指令执行会有一定的延迟,这在极限情况下是不能允许的。电控驾驶控制系统是没有机械和液力后备系统的,电控驾驶控制系统主要由三部分组成:控制系统、执行系统、通讯系统。控制系统的功能是根据驾驶员的意图和车辆行驶状况,对执行器给出执行的设定值。执行系统的功能是在控制系统的控制下,完成具体的执行动作(转向、制动等)。驾驶电子控制技术在现代汽车中,已大量使用,完全取代传统的机械和液力驾驶控制系统是必然趋势。
4.主被动安全系统
汽车的操纵稳定性和安全性是衡量汽车性能的重要指标。电子控制技术的引入为汽车的稳定性和安全性提供了保障。
提高汽车的操纵稳定性,过去一直局限于通过改进轮胎、悬架、转向与传动系的性能来实现。随着计算机、传感器和执行机构的迅速发展,研发了各种显著改善操纵稳定性和安全性的电子控制系统如防抱死制动系统(Anti-LockBrakingSystem,简称ABS)、牵引力控制系统(TractionControlSystem,简称TCS,也称ASR)、四轮转向系统(4WS)、车辆动力学控制系统(VehicleDynamicControl,简称VDC,也称VSC、ESP)。其中,VDC是在ABS和TCS的基础上,增加转向行驶时横摆运动的角速度传感器,通过ECU控制各个车轮的驱动力和制动力,确保汽车行驶的横向稳定性,防止转向时车辆被推离弯道或从弯道甩出。
轮胎压力检测系统(TirePressureM0nit0ringSystem,简称TPMS)是在每一个轮眙上安装高灵敏度的传感器,在行车状态下实时监视轮胎的各种数据,通过无线方式发射到接收器,并在显示器上显示各种数据,任何原因(如铁针扎入轮胎、气门芯漏气)等导致的轮胎漏气、温度升高,系统都会自动报警,从而确保行驶中的安全,延长轮胎的使用寿命。
为了保证行车安全,安全气囊和座椅安全带控制系统是必不可少的。安全气囊的合理触发以及座椅安全带的及时束紧,需要安全系统对行驶状况的及时监测和判断。安全气囊和座椅安全带控制系统将采用越来越多的先进电子传感器、控制芯片以及电子控制装置。
二、电子技术在现代汽车中的发展趋势
随着高性能传感器、微处理器的研制成功以及网络、总线技术的完善,汽车电子技术将向集中综合控制和网络化方向发展。
1.集中综合控制
目前汽车电子技术向集中综合控制方向发展。例如,将发动机管理系统和自动变速器控制系统,集成为动力传动系统的综合控制(PCM);将制动防抱死控制系统(ABS)、牵引力控制系统(TCS)和驱动防滑控制系统(ASR)综合在一起进行制动控制;通过中央底盘控制器,将制动、悬架、转向、动力传动等控制系统通过总线进行连接。控制器通过复杂的控制运算,对各子系统进行协调,将车辆行驶性能控制到最佳水平,形成一体化底盘控制系统(UCC)。汽车的机械结构还将发生重大的变化,汽车的各种操纵系统向电子化和电动化发展,实现“线操控”。用导线代替原来的机械传动机构,例如“导线制动”、“导线转向”、“电子油门”等。
随着汽车电子装置越来越多,消耗的电能正在大幅度地增加。现有的12伏动力电源,已满足不了汽车上所有电气系统的需要,汽车12伏供电系统需向42伏转化。今后将采用集成起动机-发电机42伏供电系统,发电机最大输出功率将会由目前的1千瓦提高到8千瓦左右,发电效率将会达到80%以上。42伏汽车电气系统新标准的实施,将会使汽车电器零部件的设计和结构发生重大的变革,机械式的继电器、熔丝式保护电路将被淘汰。
2.网络化
汽车上的电子电器装置数量急剧增多,为了减少连接导线的数量和重量,网络、总线技术十分重要。集中综合控制要求有一个庞大而复杂的信息交换与控制系统,车用计算机的容量要求更大,计算速度要求更高。采用高速数据传输网络日益显得必要。光导纤维可为此传输网络提供传输介质,以解决电子控制系统防电磁干扰的问题。通讯线将各种汽车电子装置连接成为一个网络,通过数据总线发送和接收信息。电子装置除了独立完成各自的控制功能外,还可以为其他控制装置提供数据服务。由于使用了网络化的设计,简化了布线,减少了电气节点的数量和导线的用量,使装配工作更为简化,同时也增加了信息传送的可靠性。通过数据总线可以访问任何一个电子控制装置,读取故障码对其进行故障诊断,使整车维修工作变得更为简单。
三、结束语
汽车电子技术的应用将使汽车更加智能化和舒适。智能汽车装备有多种传感器,能够充分感知驾车者和乘客的状况,交通设施和周边环境的信息,判断乘员是否处于最佳状态,车辆和人是否会发生危险,并及时采取对应措施。今天,社会进入了信息网络时代,汽车已不仅仅是一种代步工具,人们已可以在汽车上收听广播,打电话,上互联网,处理工作。随着数字技术的进步,具有信息处理、通讯、导航、防盗、语言识别、图像显示和娱乐等功能的车载计算机多媒体系统的开发,汽车也将步入多媒体时代。可以预见到的将来,汽车装置自动导航和辅助驾驶系统,驾驶员可把行车的目的地输入到汽车电脑中,汽车就会沿着最佳行车路线行驶到达目的地。人们可以通过语言识别系统操纵着车内的各种设施,一边驾驶着汽车,一边欣赏着音乐电视,还可上网预定饭桌、机票等。
[参考文献]
[1]魏万云:《浅谈当代电子技术的发展》,《中国科技信息》2005年第5期。
[2]张凡、殷承良:《现代汽车电子技术及奠在仪表中的应用》,《客车技术与研究》2006年。
[3]刘艳梅:《电子技术在现代汽车上的发展与应用》,《中国科技信息》2006年第1期。
智能电网是指电力系统的发电、输电、变电、配电和利用和调等环节接对象,并不断开发新的控制、信息技术和管理等,并使上述技术的有机结合,从而实现电力连接之间相互交换信息,如最终实现电力生产、传输和使用的优化。结合我国的实际情况构建强大的智能电网,通过特高压电网作为主要的网络框架,使各级电网共同发展,从而实现我国电力系统“电力流、信息流、业务流”的智能电网,以保证电力系统的正常运行,降低能源消耗,改善效果是非常重要的。
2智能电网建设过程中中所运用的电力技术
在我国智能电网建设的过程中运用到的电力技术主要用一下几个方面第一是储能技术,其二是基于电压源换流器的柔性直流输电技术,第三是柔流输电技术;第四是风力发电技术;第五是太阳能发电技术;第六是高压直流输电技术。这六门技术在智能电网建设的过程中发挥着重要的作用,下面笔者就这六项技术展开简单的分析与研究。
2.1在电力系统中,实现智能电网受到各种技术因素的影响,还受到环境因素的影响。基于智能电网相关技术的分析,结合战略的发展趋势本文进行了讨论。摘要因为太阳能与风能能够直接连接到电网上,对与电池如何迅速地进行放电与充电问题,如何有效进对智能电网上的电池进行管理,成为了我们应该积极考虑的问题。基于上述的考虑,我们在智能电网的建设过程中,采用能源的存储技术,这种技术可以使上述的问题得到解决。在该技术中,最重要的组成技术就是飞轮的储能技术,这种技术借用电机作用,从而能够实现机械能与能源间的转换。也就是说当电网需要的时候,电机就可以成为发电机,其和飞轮的机械能可以快速转换为所需的功率,传输到电网系统。飞轮的制成材料是高强度的玻璃纤维,其通过一对磁悬浮轴实现悬浮在空气中的,因此我们说在飞作的过程中,几乎不会损失能量。而且风轮的转速能到40000r/min以上,这更提高了整个装置的转行效率。
2.2基于电压源换流器的柔性直流输电技术在灵活的直流电压源逆变器的基础上,在立足电压源换流器以及脉冲宽度调制调制的基础上,形成了两种技术组合成的一种新型直流技术。智能电网中的运用电压源换流器的柔性直流输电技术,不仅解决了直流和交流传动加载点之间的问题,还简化了设备,也有一个低得多的成本。
2.3柔流输电技术所谓的灵活交流输电技术,是一种集成电力电子技术,它可以灵活使用、方便快捷。这种技术可以有效而广泛地对当前的范围进行控制。而且在电力传输的过程中,柔性的交流输电技术还可以改善线传输能力,可以减少备用发电机组容量,提高电源智能电网的稳定性。
2.力发电技术当前在风力发电的市场上,主要采用的主流发电机组都是双向感应发电机与永磁同步发电机等设备。也就是说风力发电的过程中,可以根据风力转子励磁电流的频率、速度,有效地实现控制发电机组有功功率和无功功率额目的,利用让风力涡轮机的多级智能电网变速的特点,提高风能利用率,但是永磁同步发电机只能借助于全功率变频器才可以。因此我们说,在智能电网中运用风力发电技术,可以更好的利用自然资源与能力,节省更多的人力物力与财力,节能环保。
2.5太阳能发电技术太阳能发电也叫光伏发电,因为在智能电网中,太阳能经常使用一个光伏阵列或一个数字光伏模块和逆变器,蓄电池互连线,其是借助光伏阵列形成的。在光伏发电系统中,是基于一定的互连的当前值,因此在当前的调整中,在电池的帮助下,控制器对蓄电池组进行双向的充电和放电控制,实现智能电网的安全可靠运行稳定的电力供应。
2.6高压直流输电技术所谓的高压直流输电,是使用的稳定直流没有感抗,容抗也不工作,不同步问题,实现的。高压直流输电技术运用的远距离大公路的直流输电方式,这种方式在输电的过程中,电容量非常大,而且比较文星。尤其是在架空线路和电缆远距离输送传统电力,这种技术也同样适用于通信系统要求独立场合的连接。在智能电网中使用高压直流输电技术提高了电网的安全稳定性能。
3电力技术在智能电网建设活动中发挥作用
综上所述,电力技术在智能电网的建设中发挥了重要作用,在这一点上,总的来说是很容易的。电力技术在智能电网建设中的影响具体的来说不外乎一下几点:第一改善和提高电网运行水平和控制能力;第二满足用户对电能质量的需求,和改善电网服务质量;第三优化了电网资源配置能力;第四确保和提高电网互联的风能和太阳能系统容量;第五对大中型城市电网容量和电流的提高,有效促了信息社会的发展。
4结束语
面向智能电网的物联网应用功能框架,以各大环节具有差异性的特点为依据,从而提出了具有差异化的实际应用需求。进一步以每一个阶段所完成功能及支持技术的不同,并考虑到物联网基本网络模型,把面向智能电网的物联网分为三层网络体系构架,这三层网络体系分别为:感知延伸层、网络层及应用层。其中,对于感知延伸层来说,主要的监测目标诸多,涵盖了家具对象、电力对象及智能安防等一系列对象。网络层又细分为接入网与核心网,主要目的是对数据进行实时采集,并实现可靠性回传。另外,对于应用层来说,主要是针对智能电网各项业务需求,进一步构建各类电力应用平台,从而到达有效管理及监控的目的。面向智能电网的物联网技术及其应用分析文/罗巧华物联网是一种新型通信网络,具备智能化识别、定位、跟踪及监控管理等多方面的功能。本课题笔者在分析面向智能电网的物联网架构的基础上,进一步对面向智能电网的物联网应用方案进行了探究,希望以此为物联网应用的完善提供有效依据。摘要
2面向智能电网的物联网应用方案探究
下面笔者从两方面对面向智能电网的物联网应用方案进行探究,一方面为面向智能用电的物联网解决方案;另一方面为面向智能电网生产环节的传感器网络应用方案。
2.1面向智能用电的物联网解决方案
基于传统模式的用户当中,其智能用电物联网应用主要的连接对象为用户的智能双向电表。对于电网企业来说,主要是以用电性质和场合的差异性为依据,进而选取不同功能的智能双向电表,对用户进行电能计量及有关电能质量的监测等应用。在智能双向电表终端设备的运用下,能够实现对用户用电信息的统一性采集。智能电表是以传感器网络及现场总线等为渠道,然后在传输网及电力接入网的作用下,把电表数据传输到与之相关的应用平台,比如用电信息采集平台等。除此之外,基于智能用电过程中,电动汽车充电系统的应用也是非常重要的。该系统的主要应用内容主要体现在:其一,充电站设施的监测部分,涵盖了充电状态检测、视频检测及安防监测等。其二,传感器及RFID系统的设置,通过有效设置,能够对电动汽车运行情况及动力电池使用情况实现实时感知。
2.2面向智能电网生产环节的传感器网络应用方案
对于面向智能电网的物联网应用,主要的目的是使电力系统生成环节的信息化得到有效提高,同时提高自动化程度。要想使此类应用得到有效实现,需要依靠物联网末端的无线传感器网络,应用场景涵盖了变电站一次设备及二次设备以及高压输电线路等;在对设备运行情况及相关线路的运行情况进行感知及预测的基础上,使电网的安全水平得到有效提高,进一步使电网的运行成本降低。如图1所示,为一种适合用在智能电网生产过程环节的传感网络结构。当中,无线传感器网络通过对感知延伸终端各路信息的充分利用,把采集到的数据汇聚到网关节点上,然后由网关节点把分类预处理之后的数据信息传输到接入网当中,进一步实现进入电力通信核心网的统一性。数据在通过分析处理之后,在ICT平台的基础上,将相关指令发出,并以同样的方法逆向往终端网络节点上传输,从而使对全网的实时监测及故障处理能够得到充分实现。
3结语
1.1物联网技术在借还书自助服务中的应用在物联网中应用了射频识别系统,该系统能够辅助借阅者自助借书、还书。这样的服务方式就实现了自助效果,大大节省了读者借还书的时间,读者借还书过程中完全实现了智能化和自动化,只要借阅者把自己所需要的图书放置在借阅感应器之上,物联网技术系统中的射频识别系统就会自动识别出该书的信息。图书馆使用了物联网技术还可以开展为预借的书提供帮助模块,该模块的具体应用为在读者放取借书证以后,能够帮助读者把他们想要借到的书籍提取出来,这种方式实现了24小时不间断服务[8]。
1.2物联网技术在图书馆库存清点中的应用在传统图书馆图书管理中,清点库存,会需要大量的时间、人力、物力等,甚至还需要闭馆,这种库存清点方式对各个方面造成的不良影响都非常大。而物联网技术的应用只需要对书架上的书进行扫描就可以获得书的数量信息,操作方式简便,这种方式不但没有影响图书馆的正常工作,而且还提高了库存清点的准确性。通过射频识别系统,书的具体信息都会传入到图书馆的数据库当中,在数据库中就可以对这些信息整理分析,从而确定馆中图书状况,对于借阅和归还的数据信息还可以进行对比,并形成一定的统计数据,最重要的是,物联网技术系统可以实现多个平台同时进行库存清点,甚至还支持离线工作,这就大大提高了图书馆图书管理的智能化。
2物联网关键技术及未来发展
2.1感知、识别技术该技术是对实际世界内容进行感知的基础,感知技术所依靠的是一种传感器,在该传感器的作用下,能够对其范围内物体的信息进行整合。识别技术的代表为RFID技术,该技术是一种现代技术的集合,包括通信技术、数据技术等。当前,该技术主要是以高频与低频为主,超高频技术正在发展中,尚未成为主流技术,但是,在未来物联网技术的发展中,该技术是主要方向。和过去的条形码标签比起来,这种标签是有特定的元件和芯片组成的,每个标签都有独一无二的电子编码。该技术的应用,对于智能图书馆的建立具有非常重要的促进作用。
1.1无线网络
利用无线网络技术,可以建立远距离无线连接全球数据与语音网络,以及近距离无线连接红外与射频技术。相比有线网络来说其在数据的传输上对电缆传输方式进行了改善,以无线电代替传统网线,实现了无线通信,解放了地理位置对的限制,同时还与有线网络形成互为备份的关系。
1.2无线局域网
无线局域网即通过无线数据传送的一种计算机网络,与无线通信技术以及计算机网络技术相结合,对有线局域网进行了延伸,实现了利用无线局域网完成数据传输与接收,达到了不需连线传输的目的。
2无线网络技术在智能楼宇中应用概述
所谓智能楼宇其建设核心即多种系统的集成,想要满足集成系统的有效运行,必须要建立一个可靠性高的通信网络。随着计算机技术与网络技术的快速发展,一个现代化的智能楼宇基本上具备了安防、消防等系统外,还具有复杂的计算机通信网络,只有当建筑满足各项基础通信设备的运行需求,才可以更进一步实现电子邮件、电子数据传输、视频电视以及多年媒体通信等功能。而所有系统的实现必须要以无线网络技术为基础,将其作为连接各分项系统的桥梁。无线网络设计在智能楼宇中的应用,可以节省有线网络通信所需的电缆线,以更低的建设成本来获得相应的功能。并且还可以避免电缆线连接可靠性不高带来的网络故障问题,满足了计算机在一定范围不受位置限制的要求,为整个智能楼宇建立一个重要的技术平台。以某工程无线网络系统应用为例,主要由ZigBee无线传感器网络接入部分、以太网TCP/IP传输以及电力线载传输部分组成,其中ZigBee无线传感器网络可以将整个智能楼宇内有用数据收集汇总到ZigBee协议中规定中心节点上,基于此建立的最底层混合网络与传统方式相比不需要布线处理,并且具有较高的保密性能,整个施工周期也比较短,在建设完成后传输效果高。另外,通过电力线接入处理后,可以将楼层中原本一体的ZigBee网络划分为多个功能子网,受ZigBee协议规定信道频率影响,可以选择用频率复用的方式,将各子网设置为相同频率,利用本工程钢筋混凝土结构天然干扰屏蔽作用避免相同频率之间的相互干扰,可以更好的发挥出楼宇内各个子网传输的优势。一、三楼确定频率为1,二、四楼确定频率为2,可以在保证ZigBee信道数目的情况下,避免了各楼层之间信道的相互干扰。
3无线网络技术在智能楼宇中应用要点分析
将无线网络技术应用到智能楼宇建设中时,为保证无线通信网络建设效果,需要结合建筑工程结构特点以及无线网络特点来确定管理要点,避免各类因素对网络设计的影响。第一,以智能楼宇本身结构类型为依据来选择相应的网络类型,尤其是对于应用对象为移动状态时,为避免电缆线传输对位置的影响,应选择用无线网络。第二,在选择无线网络技术建立通信网络时,应配置相应的基础性网络保护措施,采取有效的措施来做好无线网络密码的修改与保护,并且为避免通信网络在应用过程中出现故障,应建立专责管理小组,随时进行检测调整。第三,结合建筑内部结构特点确定设计方案的合理性,避免无线信号的流失。
4无线网路技术在智能楼宇中应用措施分析
4.1无线局域网技术应用
第一,IP地址规划。如果为AC的IP地址应选择用静态手工配置,如果为AP的IP地址分配如果选择用静态分配方式,因为AP数量比较多,配置工作量大,在设计与应用过程中容易发生冲突,因此应尽量选择用DHCP动态分配。第二,SSID/VLAN规划。在智能楼宇建设中,业务VLAN主要来区分不同业务类型以及用户群体,SSID在WLAN中也可以起到相同的作用。因此在进行设计时,在业务VLAN规划中需要综合考虑将VLAN与SSID的映射关系,WLAN管理VLAN与业务将VLAN分离,并且业务VLAN根据实际需求与SSID实现1:1、1:N/N:1/N:N多种匹配映射,AC终结VLAN部署。第三,射频管理规划。无线局域网信道比较少,为提高其应用效果,需要做好对信号的分配,并且通过对信道的调整,确保每个AP都能够分配到最优的信道,避免不同信道之间的相互干扰,提高网络信息传输的可靠性。
4.2现场执行层无线网络技术应用
在智能楼宇系统中,为了满足其应用特性以及信息准确快速的传输,以及尽可能的与智能楼宇网络系统相结合,故Infrastructure组网模式在智能楼宇中的应用非常高,智能楼宇中存在很多的数据信息需要交换和传递,并按照某种通信协议来完成。BACnet作为智能楼宇中应为最为广泛的通信协议,其定义了整个智能楼宇实现设备相互操作、抽象的数据共享的对象模型以及信息服务原语。BAC-net通信协议可以通过网络映射方式将不同底层协议映射成BAC-net子网实现不同网络的传输,并支持了多种链路层以及物理层的通信模式。故现场执行层中选取BACnet为基站无线传感器网模式。
5结束语
我国电力通信已逐步进入数字通信时代,主推移动通信、注重通信软件的发展,由于光纤传输的优势而逐渐替代传统的同轴电缆组成的电力通信网的结构,同时,电网的程控模式使电力通信控制更加便捷。智能电网的开展使发电厂、电力部门和变电所等组成部分之间的通信更加方便。电网结构不断优化、通信技术的加速发展,推进了电力通信网的发展。随着改革开放进程的不断加深,电网在我国已实现了全面覆盖,全国水利发电、火力发电、风力发电及新能源发电等总发电量已基本能满足所有用户的用电需求,电网规模庞大,但是很多地方的电网质量还有待提高。随着电网的大力发展,电力通信技术也随之发展,通信机构不断增多,国家科研投入增加,逐渐形成较为完善的管理模式和技术标准,都有利于电网通信的智能化发展。
2电力通信技术在智能电网中的应用
为了实现智能电网的全面建设,稳健的电力通信技术是基础。智能电网对改善公众用电需求,用电质量和电网安全维护等方面有着重要意义。电力系统质量的好坏直接关系着国家安全,当然智能电网的建设也给电力通信提出了新的要求。首先,要求电力通信平台朝多功能化发展,为智能电网提供通信信道。同时,要求更加开放的电力通信平台,使网络通信趋于标准化,各设备间的通信便捷化。电力通信系统已经遍及变电站、发电站和输电站等电网的末端,全面保护电网信息的获取与保护。电力通信具备高可靠性,较强的抗攻击性和保密性,确保电力网络的安全运行。智能电网的生产运营中,需电力通信系统的自动调度、网络经营、现代化管理等支持以使其安全运行。电力通信主要分为发电、输电、配电、调度和用电等6个部分。智能电网的建设主要包括以下几个部分:
(1)应加大资金投放,使配电网综合化发展。
(2)妥善处理好通讯、电力通道和环境保护间的关系,寻求可持续发展。
(3)增加电力通讯与国外先进通讯的合作力度,加强与国外通讯公司的文化交流,便于技术交流。电网的管理技术也是智能电网成功的关键,可以充分分析用户的用电数据,以更好的实现电网调度、电网构建,并提升管理的自动化水平。智能电网的建设目的是实现电能信息的智能化采集、统计、查询和线路分析,实现双向通信、传输速度快、带宽高的通信网络。智能电网的构建需要完善的通信系统的支持,高效实时、集成性高的特点是大型电网实现实时信息动态交换的基础。对提高我国电网系统运行的安全、经济特性有着积极的影响。今年来无线通信技术、嵌入式技术的发展也未网络传输的智能化发展提供了便利,是数据监控和数据传输更加高效。
3电力通信技术中存在的问题
电网覆盖面和构建规模都不断增大,作为电网信息通道的电力通信系统,是组成智能电网的重要部分。智能电网的建设,应借鉴过往电网建设存在许多企业级标准的经验教训,应制定统一的电网运行标准,进行统一规划。尽管目前电力通信平台开放性不断增强,通信模式的标准化程度不断提高,设备间的通信畅通,网络覆盖面广,并实现各电网末端的全覆盖。这也便利了智能电网在数据采集和数据保护。但仍然存在许多不足之处需要改进,如实时、双工通信和大容量的接入网的缺乏等。首先,在智能电网对调度、决策、控制自动化技术要求不断增加的同时,对技术创新的要求性也增加,也是智能电网能够在未来更好造福于民的前提。同时,在倡导低碳环保、绿色节能、循环利用的今天,对电力系统本身的能源浪费和利用的要求提高不少,对电力发展与周围环境的发展应该引起重视,确保遵循可持续发展的科学发展观。其次,人力资源特别是高端通信人才的缺乏。电力通信持续发展,同时学校教育中知识较为陈旧,且缺少实际应用和实习,因此存在脱节现象。人才的贫乏制约着电力通信的发展,因此,注重通信人才的培养,鼓励学习高端通信技术,加强通信人才的培训对电力事业的发展影响重大。
4结论
人工智能技术是人类科学技术不断发展进步的必然结果,也是工业发展过程中,促进工业自动化科学化发展的重要推动力量。在人工智能技术的发展中,科技的发展和工业技术的进步会促进人工智能技术的发展;反之,人工智能技术的进步,可以完成那些人类自身无法办到、技术条件效果不好的生产技术操作。当前的人工智能主要是计算机技术的发展结果,随着计算机技术的飞速发展,通过对计算机信息特点和操作性能的了解和设计,使计算机操作系统具有更多更先进的人工化反应,并在实际的信息技术处理过程中,通过其系统内部的人工化、智能化识别和处理系统,对电气自动化控制和其他工业技术领域在运行中的问题进行自主解决。如今,人工智能技术已经取得了较大的进步,其研究发展项目也越来越多,越来越先进,实用性越来越强。人工智能技术已经广泛运用与工业自动化、过程控制和电子信息处理等先进的技术领域。人工智能技术通过模糊理论算法、遗传算法和模糊神经算法等方式,可以在电气自动化控制中,采取更灵活多变的控制方式,对电气自动化设备运行中的不稳定因素和动态变化进行自主的调整,从而保障其运行的准确和高效,减少出错率。人工智能技术的运用,可以大大减少在电气自动化控制等领域的人力成本,并且能够解决一些工作人员无法有效监控和解决的问题,做到及时有效。
2人工智能技术在电气自动化控制中的应用
2.1人工智能控制实现了数据的采集及处理功能
在电气设备的运行过程中,数据的采集和处理是了解电气设备自动化控制情况,发现运行过程中的问题和提出解决办法的重要依据。在传统的自动化控制中,由于技术水平和实际运行中的动态变化,数据的采集和传输无法做到准确和稳定,保存数据容易出现丢失的情况。人工智能技术的使用,可以保障电气自动化运行过程中对动态信息的及时收集和稳定传输,对相关数据的保存工作也更安全,这就提高了电气自动化的控制水平,充分保障了电气运行中的安全性和稳定性。
2.2人工智能控制实现了系统运行监视机报警功能
电气自动化控制是用电气的可编程控制器,控制继电器,带动执行机构,完成预期设计动作的过程。在此过程中,系统内部各部分之间的运行都要严格按照设计模型和函数计算的基础上进行,如果系统中的一点出现问题,就会造成整个自动控制系统的故障。在以往的自动化控制系统运行中,对系统内部各部分之间的运行数据和运行状态进行实时监测,对运行中的特殊情况进行及时的报警处理,帮助自动化系统及时处理可能出现的故障,提醒电气管理人员加强对电气系统的管理。
2.3人工智能控制实现了操作控制功能
电气自动化控制的主要特征之一就是通过计算机的一键操作,就可以实现对电气系统的整体控制,保障电气自动化运行符合现实的需要。传统的自动化系统的操作,需要靠人工对系统各个环节进行人工操作,从而促进自动化系统内部的协调和配合,这种方式既降低了自动化运行的效率,也增加了自动化系统的故障发生频率。人工智能技术对电气自动化系统的控制,是通过各种先进的算法,按照电气自动化的需求,对自动化系统进行自动化和智能化设计,从而实现对电气自动化控制系统的同时操作,大大提高了自动化控制的效率,减少了单独指令操作中容易出现的不协调情况的发生。
3人工智能技术在电气自动化控制中的控制方式
3.1模糊控制
模糊控制以模糊推理和模糊语言变量等为理论基础,并以专家经验作为模糊控制的规则。模糊控制就是在被控制的对象的模糊模型的基础之上,运用模糊控制器,实现对电气控制系统的控制。在实际控制设计过程中,通过对计算机控制系统的使用,使电气自动化系统形成具有反馈通道的闭环结构的数字控制系统,从而达到对电气自动化系统的科学控制。
3.2专家控制
专家控制是指在进行电气自动化控制过程中,利用相关的系统控制理论和控制技术的结合,通过对以往控制经验的模拟和学习,实现电气自动化控制中智能控制技术的实施。这种控制方式具有很强的灵活性,在实际运行中,面对控制要求和系统运行情况,专家控制可以自觉选取控制率,并通过自我调整,强化对工作环境的适应。
3.3网络神经控制
网络神经控制的原理就是基于对人脑神经元的活动模拟,以逼近原理为依据的网络建模。神经控制是有学习能力的,属于学习控制,对电气自动化控制中出现的新问题可以及时提出有效的解决办法,并通过对相关技术问题的分析解决,提高自身的人工智能水平。
4结语
随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理;在网络化基础上,CAD/CAM与数控系统集成为一体,机床联网,实现了中央集中控制的群控加工。
长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,已不适应日益复杂的制造过程,因此,对数控技术实行变革势在必行。
2数控技术发展趋势
2.1性能发展方向
(1)高速高精高效化速度、精度和效率是机械制造技术的关键性能指标。由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
(2)柔性化包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
(3)工艺复合性和多轴化以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。数控技术轴,西门子880系统控制轴数可达24轴。
(4)实时智能化早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能则试图用计算模型实现人类的各种智能行为。科学技术发展到今天,实时系统和人工智能相互结合,人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如在数控系统中配备编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统,在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能,在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。
2.2功能发展方向
(1)用户界面图形化用户界面是数控系统与使用者之间的对话接口。由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
(2)科学计算可视化科学计算可视化可用于高效处理数据和解释数据,使信息交流不再局限于用文字和语言表达,而可以直接使用图形、图像、动画等可视信息。可视化技术与虚拟环境技术相结合,进一步拓宽了应用领域,如无图纸设计、虚拟样机技术等,这对缩短产品设计周期、提高产品质量、降低产品成本具有重要意义。在数控技术领域,可视化技术可用于CAD/CAM,如自动编程设计、参数自动设定、刀具补偿和刀具管理数据的动态处理和显示以及加工过程的可视化仿真演示等。
(3)插补和补偿方式多样化多种插补方式如直线插补、圆弧插补、圆柱插补、空间椭圆曲面插补、螺纹插补、极坐标插补、2D+2螺旋插补、NANO插补、NURBS插补(非均匀有理B样条插补)、样条插补(A、B、C样条)、多项式插补等。多种补偿功能如间隙补偿、垂直度补偿、象限误差补偿、螺距和测量系统误差补偿、与速度相关的前馈补偿、温度补偿、带平滑接近和退出以及相反点计算的刀具半径补偿等。
(4)内装高性能PLC数控系统内装高性能PLC控制模块,可直接用梯形图或高级语言编程,具有直观的在线调试和在线帮助功能。编程工具中包含用于车床铣床的标准PLC用户程序实例,用户可在标准PLC用户程序基础上进行编辑修改,从而方便地建立自己的应用程序。
(5)多媒体技术应用多媒体技术集计算机、声像和通信技术于一体,使计算机具有综合处理声音、文字、图像和视频信息的能力。在数控技术领域,应用多媒体技术可以做到信息处理综合化、智能化,在实时监控系统和生产现场设备的故障诊断、生产过程参数监测等方面有着重大的应用价值。
2.3体系结构的发展
(1)集成化采用高度集成化CPU、RISC芯片和大规模可编程集成电路FPGA、EPLD、CPLD以及专用集成电路ASIC芯片,可提高数控系统的集成度和软硬件运行速度。应用FPD平板显示技术,可提高显示器性能。平板显示器具有科技含量高、重量轻、体积小、功耗低、便于携带等优点,可实现超大尺寸显示,成为和CRT抗衡的新兴显示技术,是21世纪显示技术的主流。应用先进封装和互连技术,将半导体和表面安装技术融为一体。通过提高集成电路密度、减少互连长度和数量来降低产品价格,改进性能,减小组件尺寸,提高系统的可靠性。
(2)模块化硬件模块化易于实现数控系统的集成化和标准化。根据不同的功能需求,将基本模块,如CPU、存储器、位置伺服、PLC、输入输出接口、通讯等模块,作成标准的系列化产品,通过积木方式进行功能裁剪和模块数量的增减,构成不同档次的数控系统。
(3)网络化机床联网可进行远程控制和无人化操作。通过机床联网,可在任何一台机床上对其它机床进行编程、设定、操作、运行,不同机床的画面可同时显示在每一台机床的屏幕上。
(4)通用型开放式闭环控制模式采用通用计算机组成总线式、模块化、开放式、嵌入式体系结构,便于裁剪、扩展和升级,可组成不同档次、不同类型、不同集成程度的数控系统。闭环控制模式是针对传统的数控系统仅有的专用型单机封闭式开环控制模式提出的。由于制造过程是一个具有多变量控制和加工工艺综合作用的复杂过程,包含诸如加工尺寸、形状、振动、噪声、温度和热变形等各种变化因素,因此,要实现加工过程的多目标优化,必须采用多变量的闭环控制,在实时加工过程中动态调整加工过程变量。加工过程中采用开放式通用型实时动态全闭环控制模式,易于将计算机实时智能技术、网络技术、多媒体技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系,从而实现集成化、智能化、网络化。
3智能化新一代PCNC数控系统
智能变电站电量计量的原理。在智能变电站运行中,电量计量是通过数据单元来完成的,该单元包含较多组成部分,如数据采集装置、数据处理装置、采样计数器等。由于传统电表的传感器具有数据映射功能,所以,可以将电子式传感器中的额定电压及额定电流进行转化,形成新的计量类型。
2智能化变电站的电能计量技术的应用
2.1电子式传感器在电能计量中的应用
随着供电量不断增加,配送电设备不断更新,配送电新技术不断推广,传统的传感器已经无法满足现阶段智能变电站计量系统技术需求了,需要改进。电子传感器能够应用通讯信号,将电子信号转化成数字信号,从而提高了供电效率。此外,它还具有电压及电流传感器,能够准确的接受用电信息,并且结构简单,覆盖范围广泛,在智能变电站中发挥着重要作用。另外,电子式传感器很够抵抗其它信号干扰,对采集到的信息通过光纤材料传输,能有效降低电流或电压信号在传输中出现误差,从而提高了供电稳定性。电子式传感器由于具有这些优点,在供电规模不断扩大的情况下,被广泛应用到智能变电站供电运行中。
2.2智能电能表在电能计量中的应用
和传统电能计量表不同之处在于,智能电能表能够支持两种信号,如IEC61850-9-1和IEC61850-9-2,在二者的基础上,再结合变电站运行方式,对电量计信息做及时调整,从而达到高效率供电目的。智能电表所采用的信息传输材料是光纤,极大提高了信息传输的准确性,这也是智能电表优于普通电表的指标之一。另外,智能变电站中之所以安装智能电表,在很大程度上出于其优越的性能,如它能够对各种类型的电能准确计算,如,分时正反向电能、四象限无功电能、功率、电网频率等组合运行参数。还能够对流失的电量自动记录,并储存在相应设备上。此外,该设备在接入端使用了数字接口,使搜集到的信息自动转换,并通过光纤传输,避免了用电信息在传输过程中受到屏蔽,进而影响供电稳定性。另外,智能电能表的优越之处还在于能够充分利用其它一些外在装置,如数据处理装置、数据分析装置等,所以应用范围相当广泛。但需要指出的是,在这些外在装置安装时,需要按照相关规定,使智能计量表按照规范化流程运行,才能实现智能变电站的计量系统稳定运行。
2.3合并单元在电能计量中的应用
在智能变电站中,除了智能电表和电子式传感器,还有合并单元,这三者缺一不可,在智能变电站中发挥着非常重要的作用。智能变电站之所以使用合并单元,是由于在该单元是变电站不可缺少的组成部分,能够对电气量进行有效合并,并对其中的数字信息进行初步处理,同时采用一定格式,传送给电量计量设备。该设备对接受到的信息作进一步细处理,再给予保存,该处理结果的准确与否,直接关系到变电站供电运行稳定性及安全性。合并单元采集用电信息的主要方式有两种,其一,利用IEC60044-8通讯技术,同时应用内插法及同步法将不同单元给予合并,再实施用电信息采集,从而得到需要的电流或者电压信息。其二,利用IEC61850-9-1通讯技术,该技术能够采用同步法,获取用电信息,进行一定处理,传送给智能表。由此可知,合并单元在用电信息采集中,对所需要的用电信息进行获取,不仅提高了供电效率,也提高了供电稳定性,对于满足变配电设备安全、平稳运行具有重要意义。
3智能化变电站的电能计量纠错设计
首先,电子式传感器的纠错设计。由于电子式传感器是智能变电站的重要组成部分,所以应加大监测力度,提高计量准确性。目前,对该装置的纠错方式为,将测量数据和绝对值相比较,得到检测误差,从而实现纠错效果。具体方式为,以传统的传感器作为标准器具,供电数据在二次传输中实现自动转换,形成标准通道,并和合并单元处理的数据相比较,得到电子式传感器的运行误差,从而实现了纠错效果。在实际操作中,标准传感器发送信号,由校验仪器接受,再传送给合并单元,合并单元安装在电子式传感器中,之后再通过光纤传输,将信号分析处理,从而完成误差检查。其次,智能电表纠错。智能电表通过光纤和电子式传感器连接,并在物理层面上连接到以太网上。所以,智能电表在检测时,通常和标准电表连接在一起,连接材料为光纤,当电量数据同时传输给这两个装置之后,分别计算,然后将智能电表中的信号和标准电表的相比较,从而完成误差检测,实现了智能表校验目的。
4结语