前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的轨道交通论文主题范文,仅供参考,欢迎阅读并收藏。
在城市轨道交通信息通讯系统中,传输系统是其核心和骨干系统,各种信息都是通过传输系统来完成传递的。当前在我国城市轨道系统中比较常见的传输技术主要有三种,以下将简单介绍分析这三种技术。
1开放式传输网络技术
开放式传输网络技术的性能比较稳定,具备非常多的接口类型还有数据,是一项专门为城市轨道交通进行服务的技术。然而,由于该技术缺乏统一的国际标准,造成其本身的封闭性,不利于进行系统的升级和优化。另外,我国在城市轨道交通方面的业务量越来越大,在宽带不断改进的环境下,开放式传输网络技术已经适应不了宽带的需求。
2同步数字传输技术
同步作数字传输技术,作为电信骨干网中非常重要的一部分,比开放式传输网络技术显得更加成熟和优秀。该技术具备统一的国际标准,为系统的更新换代提供了可能性,另外还有自愈以及网管的功能。但是,该技术还有一些欠缺,例如,语音业务是同步数字传输技术主要服务项目,因此在数据和图像业务方面还存在着不足。
3异步转移模式技术
异步转移模式技术的优势在于,一是业务服务对象比较多样,可以给各种业务提供服务,特别是在视频的相关业务中,其效果非常明显;二是能够有效地提高宽带的使用效率,这是因为该技术属于面向连接的技术,使用统计复用功能就能实现宽带利用率的提高。然而,由于异步转移模式技术系统的复杂性,导致该技术不够准确可靠,此外该技术的成本比较高,这也对该技术的发展产生了不利的影响。另外值得一提的是,随着各种新型通讯新技术的开发和涌现,轨道交通的业务有了相当程度的发展,新型的业务不断成熟,对宽带的需求也有所上升。在未来城市轨道交通信息通讯系统中,将会采用千兆以太网技术和粗波分复用技术。其中,千兆以太网技术,能够和以太网及快速以太网兼容,并且具有直接、快速的特点,设备比较便宜,传输距离长,在一定程度上能够让城市轨道交通信息通讯系统组网的要求得到满足,而且也解决了以太网存在的缺陷;粗波分复用技术,已成为大容量电信骨干网的首选,它具有操作简单、价格便宜以及容量大等优点,未来城市轨道交通信息通讯系统中可以充分利用粗波分复用技术,值得推广。
二城市轨道交通信息通讯系统的其他子系统
1公务电话系统
公务电话系统作为轨道交通运营控制的重要通讯工具,主要是用于轨道交通线内部的一般公务通信,并且连接了市话网和一些相关的轨道交通线的公务电话网。在轨道交通线内部,可以直接通过拨号进行通话;如果与公用电话网的用户通话,那么是由全自动或是半自动的出入局来完成呼叫。另外,该系统应该要有其他普通程控交换系统所不具备的功能,例如,和时钟系统的时间达到一致。
2专用电话系统
专用电话系统是轨道系统所专用的,是为轨道交通行车指挥、系统能够正常运行所专门设置的通信设备,主要负责的是控制中心和各车站的列车、电力、防灾及公安等方面的调度,并且还提供了紧急电话、调度电话以及站间电话业务。在轨道交通中使用专用电话系统,有利于工作人员指挥列车的运行,以及进行设备的操作,同时也为行车调度提供了有力的支持。在应对突发状况时,为了快速解决事件,可以把系统内部的每台电话都设置成热线电话,进而保障行车安全。
3闭路电视监控系统
闭路电子监控系统通过图像通讯,能够跟踪、监控和记录实时的动态图像。该系统还具有指挥和管理的功能,有利于实现城市轨道交通自动化调度和管理。另外,电视监控系统的传输具有不对称的特点,导致车站到中心需要比较大的宽带,而中心到车站运用低速的数据业务即可。就目前来看,ATM技术仍是电视监控系统中最佳的传输机制,该系统可以利用ATM技术按需求连接、分配带宽的特点,保证图像的质量,同时也节省了所占的宽带。
4广播系统、时钟系统、无线系统、电源系统
广播系统由控制中心广播系统、停车场广播系统组成。首先广播系统采用的是模块化的设计,因而结构很简单,便于操作和安装;其次该系统具备很好的兼容性以及一致性,采取的是进口数字音频信号处理设备,可以根据需要进行自由组合。时钟系统主要有设在控制中心的GPS接收设备、主控母钟、各站铺助母钟、子钟以及传输设备等组成,其作用在于为乘客与工作人员提供标准时间,并且为其他系统提供统一的时间信号,从而实现全县统一的时间标准。无线通信系统包括列车无线通信、公安无线通信以及消防无线通信。是为列车运营、电力供应、日常维修、防灾救护提供指挥手段的专用通信系统。电源系统由配电设备、整流设备和蓄电池组成。电源系统是为通信设备中各系统正常运行提供电源保障。所以,电源系统一定要具有安全性和可靠性,可以满足不间断的运行。
三结束语
分析紧急疏散的影响因素是评估地铁站紧急疏散能力的基础。本文从客流特征、疏散设施、疏散组织与管理三个方面对影响地铁站紧急疏散的关键因素进行了分析。
1.1客流特征
根调查,年轻人与中年人在地铁乘客中占很大比例。18岁到4岁之间的乘客占到地铁乘客的65%,40岁到65岁的乘客占29%。由于性别、年龄、运动能力的差异,疏散人员对紧急情况有不同的响应时间和疏散速度。
1.2疏散设施
地铁车站主要由平台层、站厅层、走廊连接平台与车站大厅组成。关键疏散设施主要指楼梯、通道、自动扶梯以及可以用于紧急疏散的出口,这些设施的设计如果不合理,将会成为疏散的瓶颈。对轨道交通车站紧急疏散造成影响的关键疏散设施分析如下。
1.2.1疏散通道
疏散通道包括通道、楼梯和自动扶梯。在紧急情况下,大量乘客涌入疏散通道,将会造成拥堵和队列。因此通道的处理客流能力将决定地铁车站的疏散能力。疏散通道的宽度和数量必须满足紧急疏散的需求,一方面,疏散通道的疏散能力是由通道的物理属性决定的,如宽度、长度;另一方面,它也受到恐慌程度、平均疏散速度和疏散密度的影响。
1.2.2转门
在正常操作情况下,自动查票十字转门可以提高地铁车站对客流进行处理的能力。然而,由于旋转栅门的数量和宽度的限制,在紧急疏散过程中其通过的客流大大降低,很容易形成队列拥堵。因此旋转门很可能成为疏散瓶颈。
1.2.3出口地铁站的应急疏散能力
由疏散出口的数量和宽度决定。出口指示灯应该明显地设置在地铁的疏散路径上,从而避免疏散时出现人员拥堵状况。此外,城市轨道交通的应急疏散能力还受到疏散设施以及疏散路径的匹配程度等因素的影响。
2地铁站的应急疏散模型
地铁站的紧急疏散能力被定义为规定时间内疏散瓶颈部分通过的最大客流,下面对疏散通道、楼梯、旋转门、出口三方面进行应急疏散模型讨论。
2.1通道的疏散能力
通道疏散能力的定义是在给定时间内能通过的最大客流,其受通道的物理特性和紧急情况下客流特征影响。为了简化计算,通道的疏散能力的计算公式中只给出通道的宽度、疏散速度和人流密度。Clp=vk(Blp-blp)(1)公式(1)中,Clp为通道的疏散能力,人/秒;v为紧急情况下行人的疏散速度,m/s;k为紧急情况下通道的行人密度,p/m2;Blp为疏散通道的总宽度,m;blp为疏散通道中墙与障碍物的宽度,m。
2.2旋转门的疏散能力
地铁站厅被转门分为等候区和非等候区两个部分。正常情况下,行人在刷卡之后才能通过转门,但在紧急情况下乘客在没有刷卡的情况下也可以进入。转门的疏散能力计算公式如下。Cts=50%nF(2)公式(2)中,Cts为转门的疏散能力,人/秒;N为旋转门的数量;F-每秒通过旋转门行人的数量,人/秒。根据现有的研究,在正常情况下行人通过转门的比率为0.58人/秒。但在紧急情况下,由于进出不需要刷卡,这一数据为1.38人/秒。
2.3出口的疏散能力地
铁站的出口紧急疏散能力被定义为规定时间内疏散瓶颈部分通过的最大客流,本文根据出口宽度、疏散速度、客流密度来建立出口的疏散模型。Cex=vk(Bex-bex)(3)公式(3)中,Cex为出口的疏散能力,人/秒;v为紧急情况下人员的疏散速度,m/s;k为紧急情况下出口的客流密度,人/平方米;Bex为出口宽度,m;bex为出口的边界宽度,0.15m。
3结语
1轨道制服创新应用设计的主要内容轨道
制服应用设计创新从风格定位、色彩搭配、材料类型、款式造型、配件装饰等要素展开,服装风格的定位是区别于其他服装的重要依据。服装风格,一方面是指由造型、结构、工艺、面料、色彩等服装的表现方式所综合反映出的审美特征与审美认知;另一方面,是在一定时代社会文化背景下,外观效果与内在形制的统一体现,具有一定的可辨认的差别。概括地讲,“服装风格是任何已知时期或文化中服装的主导式样”。根据服装风格的分类进行轨道制服的风格量化,确定鲜明的时代特色。郑州市轨道交通制服的风格定位不仅仅是根据时代潮流、行业标识,更重要的是要结合中原文化的特色,以此体现中原形象;色彩的运用在轨道制服中有一定的局限性,但对色彩的设计又存在着一定的发挥空间。遵循基本的轨道制服色彩要求,协调主色调、副色调、点缀色之间的比例关系及构成分布。根据不同色彩带给人的视觉感受(温暖、愉悦、色彩明快)进行轨道制服的色彩设计;不同材料带给穿着者的舒适性和服装的挺括性不同,但通过辅料的调和作用,可设计出不同季节不同作业环境的设计方案;款式造型有一定的局限性,但可根据细节进行变化设计;配饰设计样式繁多,可协调服装风格、材料类型进行适当调整。
2轨道制服应用设计要求
2.1结构特征的合理性轨道制服的结构特征
由大量的人体数据分析而来。人体数据的采集与分析对轨道制服的结构设计、款式特点等提供重要依据。根据轨道制服人员的工作环境、工作特点以及现有制服的设计特点进行样本数据的采集,样本对象针对轨道制服各工种人员,根据轨道工作人员静态时测得胸围、腰围、领围、臀围、臂围、衣长、袖长、肩宽等部位数据,根据动态下工作情景测得手臂的活动尺度、头部的活动范围及部分肢体动作的活动范围等动态控制部位数据。根据动、静态下所得数据进行数据分析,由数据初步采集的横向和纵向对比,动态取值范围幅度,确定轨道制服的应用设计特征,其中样本数据部分主要是分析数据采集过程,数据分析中动、静态取值范围是用来分析轨道工作人员活动幅度的覆盖情况,数据分析是确定轨道制服应用设计特征的依据。
2.2轨道制服款式特征的适用性
基于人体工效学的理论依据,分析轨道工作人员在不同的工作环境下的特征,根据季节变化、工种类别、性别、工作动态对功能性及舒适性的要求,以此确定轨道制服的款式特征要求。轨道制服作为功能性服装一部分应该是大量人体研究的结果,是人体数据的归纳,通过对人体数据的分析,以科学、合理的结构方法进行构建才能确保轨道制服人群的适用性款式特征主要包括人体数据分析、特殊环境、功能性要求、图案设计和配饰设计五大方面的内容。人体数据分析部分主要提供轨道工作人员执勤时的静、动态参数,功能性要求主要根据人体工效学的舒适性等方面展开,为更合理的轨道交通制服提供功能性的保障。特殊环境部分主要解决地下和地上环境变化对轨道制服的特殊要求,图案及配饰设计部分主要结合轨道制服与乘客之间的和谐关系来设计。如何运用服装各视觉要素进行轨道交通工作人员的制服设计并使其反映出地域特色同时提升该系统的整体服务形象,这就要求设计人员要运用服饰审美学、色彩心理学等相关理论,并充分结合客观调研的结果,坚决避免设计的自由化倾向,以服务的心态,更加理性地向大众审美靠拢,自始至终地贯彻具有中原地区特点的设计思路。
二结论
1.1基于矢量图形拓扑结构的信息数据模型结合图论和拓扑结构理论,本文采用的信息数据模型是根据地铁站场平面特性,将地理信息系统(GIS—GeographicInformationSystem)数据模型进行平面化处理,构建地铁信号设备系统的信息数据模型。本文根据车站站场图将各个常量模块联结来就形成了站场形数据结构图。本文测试站段线路数据结构图如图3所示。图3中的数据模块为节点,节点与节点之间的联结为链接。以K(n)作为节点的代号,其中是相应监控对象的名称。之后添加的信号设备对象都会依附在这些节点上,再增加一个位置偏移量来区别相对位置和关系,这样形成一个完整的信息系统。因此,构建的线路数据拓扑结构主要包括:轨道区段信息、道岔区段信息和它们的连接关系。其中,轨道区段信息和道岔区段信息是用节点来表示的,它们的连接关系是用线来表示的,线路信息数据结构本质上是节点的链接表,如图4所示。根据节点链接图就可以生成站场形数据结构。每个节点所占区域划分成数据场df和指针场pf两部分。数据场存放该节点的常量,指针场存放相邻节点首地址。指针场定义了两个指针sp和xp,sp表示上行方向上该节点的后辈节点首地址,xp表示下行方向上该节点的后辈节点首地址,当没有邻节点时即没有后辈节点的节点,则在相应的指针场中记入“0”。对于道岔节点来说,有3个指针场:(1)岔前指针场,用来存放岔前邻节点的首地址;(2)岔后直股指针场,用来存放岔后直股邻节点的首地址;(3)岔后弯股指针场,用来存放岔后弯股邻节点的首地址。
1.2基于拓扑图论搜索的设备布置模型根据拓扑图论的思想,将信号设备数据结构与线路拓扑数据关联。将信号设备数据放到线路拓扑数据结构中,在节点数据中包含道岔,在边数据结构中包含信号机、计轴、应答器等。基于拓扑图论搜索的设备布置模型是城市轨道交通信号设备应用模型的核心,模型结构图如图5所示。
1.2.1基于矢量拓扑结构的遍历搜索根据信号设备布置模型的要求,需查找到布置设备约束条件中的特定信号设备。为了解决这个问题,在图论的算法中选择了图的搜索算法。在一个图G中搜索算法的基本思路:从一个顶点v1开始,给它一个“标记”,N(v1)。然后给v1的邻点标记,再给它的邻点的邻点标记,如此等等。最典型的搜索方法有3种,即深度优先搜索(DFS)、广度优先搜索(BFS)和启发式搜索(HS)。根据之前建立的信息数据拓扑结构,本文结合了广度优先搜索BFS和启发式搜索HS来设计搜索算法,基本思想是:从v0开始,依次访问v0的所有邻点v1,v2,…,vl,然后依次访问与v1邻接的所有顶点,已经访问过的顶点不再访问,依次继续搜索,直到所有的顶点都被访问为止[1];当搜索到某个节点时,进行条件布置判断,若成立,则搜索周围的设备,再进一步进行条件判断。当T中得到访问点时,再进行启发式搜索(HS)判断是否满足信号设备布置原则,若满足则插入新设备对象到信息数据库中。
1.2.2信号设备布置原理分析信号设备布置原理分析是模型的重要部分,也是工作量最大的部分。在此部分将对需要布置的全部信号设备逐个进行条件分析,然后确定是否满足布置的要求。以信号机为例简要说明布置原理分析。信号机的布置与停车点、计轴、道岔、车挡和防护门等因素相关联。实际应用时信号机的布置需遵循设备数量最少化原则。信号机布置规则简表如表1所示。
1.3基于图搜索的进路生成模型在矢量拓扑理论的基础上可以拓展更多的应用,如完成更多设备的自动布置功能、联锁进路表的生成功能、仿真实现功能等。以进路表的生成为例说明拓展应用的开发和研究的方便性。此模型的核心是进路搜索模块,进路搜索算法流程图如图6所示。进路搜索模块的其任务是根据进路表名称从站场形数据结构中选出与该进路有关的节点及确定进路中各道岔应处的位置,然后将各节点的数据及道岔位置信息构成该进路的“暂态进路(数据)表”,作为后续联锁程序使用。
2模型仿真与验证
案例采用某实际地铁站的信息,在Visual2010仿真平台上,对以上所建的城市轨道交通信号设备应用模型进行仿真和验证。软件实现过程中,编程完成的主要工作如表2所示。案例中,根据拓扑图论的理论思想,为了反映对象之间的关系,首先对地铁站所涉及的研究对象进行图元化处理,实现了轨道区段、道岔、信号机、计轴等研究对象的定义,并完善了这些对象的操作功能。在基于拓扑结构的信息数据模型的基础上,就可以按照规定的形式建立和完善地铁站线路基本信息。信息输入的方法可以分为2种:(1)根据界面的图元快捷工具,绘制线路基础数据信息;(2)按照规定的形式将线路基础数据信息写成txt文件,系统将根据文件信息自动绘制线路基础站场信息。
2.1基于拓扑图论搜索的信号设备布置案例中要完成主要信号设备布置,首先需按照设定的格式输入一些必要信息,如根据属性框提示输入道岔属性信息如图7所示。根据信息数据模型相关处理后,完成基于拓扑图论搜索的设备布置,其仿真结果图如图8所示。分析仿真结果可知,通过此模型有效的实现了主要信号设备如信号机、计轴、应答器等的自动布置。布置结果和工程中手动设计的布置图误差很小,且通过系统可以手动来调整这些特殊情况下的设备布置。由此可见,采用图论和拓扑结构处理数据后,可以在较短的时间内,较容易的实现复杂的信号设备布置关系。
2.2进路信息Excel表生成将城市轨道交通信息数据通过图元化处理,以模块的形式进行操作,再将各个模块之间的关系采用拓扑结构组织,建立信息模型后,便于进行多种功能的扩展,如进路表。生成进路信息Excel表时,需要完善信号机的属性,如图9所示。完善各个信号机的属性后,经过基于图搜索的进路生成模型,自动生成进路信息Excel表的进路信息Excel表列举了所有进路,并明确的反映了每一条进路所对应的设备的具体状态。查看进路信息Excel表可知,由于城市轨道交通和大铁站点的区别,使得进路信息Excel表与以往大铁联锁表的表示方法具有很大区别。模型生成的进路信息Excel表更能明确的反映地铁中重要的联锁逻辑关系。
3结束语
(一)确立培养目标和办学定位
从调研各高校尤其是长三角地区高校本专业办学的经验及其目前就业实际形势,确立了培养目标:为轨道交通建设和发展培养优秀人才,培养掌握自动化专业基础理论,掌握轨道交通系统理论和轨道交通信号工程领域的专业知识、方法和技能,能从事轨道交通信号与控制方面工作的应用型人才。从苏州大学、上海工程技术大学的毕业生就业情况看,30—50%的学生进入轨道交通产业,其他出国、考研及其从事通信、自动化控制类岗位占多数。将办学定位为“在宽基础之上重视轨道交通信号控制”,即以城市轨道交通工程技术为主线,培养通信工程、控制工程、信息工程、电子信息工程等专业领域工作的复合型人才。
(二)课程体系建设
应用型人才培养的终极目标是培养各种能力,而能力的获得必须有相应完善的课程体系来支撑。课程体系建设是根据专业培养目标与办学特色自主设置,本着为轨道交通行业服务的宗旨,突出轨道交通行业的特色,明确人才培养的目标。从应用型人才培养的办学实践出发,改变学科导向为专业导向,先从培养专业能力入手,分析所需的专业知识从而确定专业课,由专业课导向专业基础课,再根据专业课和专业基础课来确定基础课程的内容。1.专业课程的确定。轨道类专业课程的设置是在企业和行业专家参与下,根据自动化学科大类与专业内涵对创新型人才培养目标的要求,从加强核心专业基础教育,强调综合性和完整性出发,整合出9门轨道交通信号与控制课程。确定列车运行控制技术、车站信号自动控制、城市轨道交通设备检测、城市轨道交通综合监控4门课程作为专业课程,列车运行监控系统原理及应用作为专业选修课,城市轨道交通概论和城市轨道交通运营管理基础作为专业基础必修课程,城市轨道通信系统和系统可靠性原理作为专业基础选修课。2.专业支撑课程的设置。配合轨道专业课程,设置了信号与系统、数字信号处理、通信原理、自动控制原理、运动控制系统、电机学、单片机原理及应用和嵌入式系统设计等电子信息、通信、自动化和计算机类基础课程,以扩展学生知识面,更好地适应就业形势。
二、实践平台搭建
培养方案的有效实施以及教学目标的最终实现需要依托实践教学平台的建设,良好的实践教学平台保障了实践教学活动的系统性和完整性。好的实践平台要贴近工程实际和科技前沿。
(一)专业能力进阶的校内实验室建设
依据专业基本能力培养、专业能力提高和职业能力提升的要求,按照专业基础实训、专项技能实训、专业综合实训三个层次,搭建轨道交通信号基础设备、城市轨道交通信号控制和微机连锁实验室,为学生提供了校内的城轨课程课内实验及实训场所。信号基础设备实验室包括轨旁信号控制设备及城轨动车转向架模型等基础设备。城市轨道信号控制实验室分为城市轨道综合监控模块、城市轨道通信模块、城轨信号及列车监控沙盘模块等。城市轨道综合监控模块实时地模拟地铁车站控制、运行,包括车控室IBP一体化工作台及车站级ISCS综合监控工作站二部分。
(二)建立校外实习及实践教育基地
工程应用型人才的培养关键是通过实践教学将专业理论知识要素与工程应用能力培养要素进行有机结合,提高学生的动手能力和创新能力。教师应该主动到企业进行广泛调研,了解城市轨道交通的最新发展技术,进一步与苏州地铁公司、上海申通地铁公司等企业建立实习及“工程实践教育基地”。通过校企合作建立稳定的校外联合培养基地,共同制定实习培养方案,学生进入企业实习或毕业设计,参与真正的轨道信号的检测、诊断与维修等具体的工作。由企业高级工程师担任学生在企业实习的指导教师,为学生开设专业课程及现场学习指导等。通过校企合作,提升了学生的工程意识、协作精神以及综合应用所学知识解决实际问题的能力,确保学生的培养质量。
(三)高校教授、企业专家技术讲座
学院聘请了西南交通大学、苏州大学、上海工程技术大学、中国南车长江车辆有限公司、四方车辆研究所等轨道交通领域专家教授、企业家担任客座教授,定期为学生开展技术讲座,学生通过现场与专家教授的交流,把握城市轨道交通技术前沿,拓宽其知识视野,激发了学生的创新思维和工程应用能力。
三、多学科交融的团队指导模式
轨道交通信号与控制是一个多学科交叉、行业相关性很强的专业,涉及到自动化、通信、电子信息、计算机等学科,培养工程应用和创新能力强的学生,开展课堂教学、实践指导和城市轨道的实际工程项目研究需要具有学科交融的教学团队的群策群力。
(一)成立教学指导委员会监督教学
由西南交通大学教授、中国南车车辆、学校教学校长等校内外专家组成教学指导委员会委员,对培养方案、实验室建设方案、日常教学等进行指导和监督。
(二)跨学科、校内外指导团队的形成本专业教师全部来自原通信工程系,具有企业或相关工程实践经验的教师占80%。有较强的理论功底和一定的实践生产能力。但由于信控专业具有起点高、发展快、技术更新快的特点,因此,专业教师都需要到地铁公司参加培训,参与企业正常的生产和运营;需要经常性地去企业现场调研,通过调研展开课题研究;吸纳其他相关专业教师,并聘请企业技术骨干担任校内实训课兼职教师,自有实验教师负责助课,共同构成教学指导团队,指导学生校内实践及毕业设计,实现学生培养过程中的知识交叉和融合。
(三)课堂项目教学激发学生创新潜质
作为实践教育创新的主体,教师需将学科前沿的最新成果和自身科研成果渗透到教学过程中,采用项目教学,即在相关课程授课过程中,结合研究项目进行案例教学,有意识地启发学生思考相关问题,例如对于“列车运行控制技术”课程,教师可以采用列车自动驾驶系统ATO的设计和速度控制器的设计、有轨电车车载控制器的设计、轨旁区域控制器ZC的设计等案例,启发学生思考,让学生课后通过查阅文献设计相关系统方案。在专业课教学中,尤其要注重让学生掌握仿真工具及软硬件设计方法。以“单片机原理及应用”课程为例,学生应熟练掌握KeilVision软件模拟仿真和Proteus对电路交互式仿真,课后每位学生要动手焊接并调试出一个具有实际功能的作品。在EDA技术课程后,学生应该能够用VHDL语言设计一些基本的通信信号。
(四)将提升工程应用能力和创新能力贯穿本科教学
目前城市轨道交通智能建筑检测的标准一是对一些通用性的检测项目引用公共建筑中的相关标准规范,包括:1)《智能建筑工程质量验收规范》(GB50339-2013)。2)《智能建筑工程检测规程》(CECS182:2005)。3)《安全防范系统验收规则》(GA308-2001)。4)《安全防范工程技术规范》(GB50348-2004)。5)《视频安防监控系统工程设计规范》(GB50395-2007)。6)《民用闭路监视电视系统工程技术规范》(GB50198-2011)。7)《综合布线系统工程验收规范》(GB50312-2007)。二是针对一些在城市轨道交通中独有的系统的验收规范,包括:1)《城市轨道交通通信工程质量验收规范》(GB50382-2006)。2)《城市轨道交通信号工程质量验收规范》(GB50578—2010)等。
2检测项目
按照专业划分,轨道交通内的智能化系统用于管理车站安全和环境的车站设备系统,主要包括门禁控制系统、环境与设备监控系统和综合监控系统3部分。所开展的检测项目如表1所示。
3检测内容
3.1门禁控制系统
3.1.1读卡器功能防破坏功能,对卡的识别功能,识别速度,有效读卡距离。
3.1.2门禁控制器功能控制器防破坏功能,独立工作功能、工作准确性,响应时间,开、关锁功能,后备电源自动投入功能。
3.1.3系统管理功能实时监控功能,对控制器的控制功能,完好率/接入率,非法入侵报警,非法破坏报警,与控制器通信故障报警。
3.2环境与设备监控系统
3.2.1车站环境温湿度及区间环境系统该系统主要是监测车站站厅、站台及设备区环境温湿度,主要检测现场的温湿度数据采集精度。
3.2.2通风空调系统该系统用于组合式空调机组、柜式空调器、风机和电动风阀、冷水机组、冷冻、冷却水泵、冷却塔和电动蝶阀等设备的监测与控制。
3.2.3照明导向系统该系统用于检测照明回路、导向灯箱照明回路、屏蔽门光带的监控功能。
3.2.4应急照明电源系统功能1)工作状态监测功能。2)电池旁路故障、电池低电压、逆变器故障、输出过载等故障报警功能。
3.2.5给排水系统该系统用于潜污泵、给水碟阀等设备的监测与控制。
3.2.6电梯与扶梯系统检测运行状态、上下行方向监测、左右扶手带故障、电扶梯故障等功能。
3.3综合监控系统
3.3.1接口检测检测子系统与主控系统之间的硬件连接、串行通信连接、专用网关(路由器)接口连接等。网络服务器、网卡、通用路由器和交换机应能正常连通。
3.3.2软件检测检测系统的数据集成、被集成系统的数据界面、被集成系统的数据响应时间、准确性和误码率。被集各系统的数据应在集成主机统一界面下显示;界面应汉化和图形化;检测数据的准确性及误码率等。
3.3.3系统功能及性能检测1)系统集成的整体协调控制检测。2)系统集成综合管理和冗余功能检测。3)系统集成的可维护性和安全性检测。
4结束语
自1863年世界第1条城市轨道交通在伦敦建成通车以来,城市轨道交通便因其占用土地和空间少、运输能力大、运行速度快、环境污染小等优势而成为备受推崇的理想交通方式。我国内地城市轨道交通的建设历史并不长,但发展势头十分迅猛。我国内地第一条城市轨道交通于1969年在北京投入运营,1997年我国仅有4座城市拥有城市轨道交通,线路总里程100km.截止到2013年5月,我国内地已有北京、上海、广州、天津、深圳、南京、重庆、长春、武汉、大连、沈阳、成都、佛山、西安、苏州、杭州和昆明17个城市开通了64条城市轨道交通线路,总里程达到2022km(不含磁悬浮)。北京(456km)和上海(434km)的城市轨道交通里程已经居世界城市前两位(第3位为伦敦402km)。最近5年,我国以每年新建270km的速度建设城市轨道交通线路。
2环境影响评价存在的典型问题
我国第1条开展环评工作的城市轨道交通线路是北京地铁复八线(1988年)。城市轨道交通项目建设数量短时间内急剧上升,在改善城市交通状况的同时也给环境管理造成了很大的压力。规模庞大、复杂、综合的城市轨道交通工程,在建设和运营过程中产生的诸如振动、噪声、电磁、地下水、景观等环境影响接踵而至,环境影响评价存在许多亟待解决的问题。
2.1报告书良莠不齐,质量有待提高
2.1.1对于项目建设内容与规划环评不符的部分,不进行环境影响比选,只做定性分析城市轨道交通项目的立项依据是国家发改委批复的《城市轨道交通近期建设规划》,但到具体项目环评时,大多都会出现如线位偏摆、车站(和停车场、变电站)等位置移动、敷设方式变化(高架改地下、地下改高架)等与规划不相符的情况。目前,大多数项目环评均以提供地方规划部门同意变化的意见为依据,而不是从线位变化产生的环境影响角度确定选线选址的可行性。
2.1.2对主要环境影响问题不进行环境方案比选,而是服从建设单位的要求对于以高架形式穿越城市人口密集区的项目,声环境现状已经不能满足环境功能要求,且治理难度大,而许多城市在轨道交通项目评价中,认为只要控制了工程自身产生的环境影响即可,不考虑环境功能现状的情况很普遍,报告书不针对主要的环境问题进行线路选线或敷设方式的比选。
2.1.3减振降噪环保措施的科学性、合理性不足
1)减振措施存在的问题。每一种轨道减振措施在不同频率范围和不同测试位置,会有不同的减振效果。无论何种轨道减振措施,均为高频减振效果优于低频减振效果。在各种轨道减振措施中,厂家标称的减振效果,因未注明适用的评价量、频率范围、计权网络、测量方法、测点位置等与减振效果直接相关的条件,导致引用时存在诸多问题。一般情况下,厂家标称的减振效果均优于实际应用效果。另外,同一种减振措施也有很多设计因素对减振效果有重要影响,报告书中未提出相关要求,只是泛泛地提出减振措施的名称。
2)降噪措施存在的问题。目前,报告书对采取降噪措施只按高度给出降噪效果,未分析采用不同材料和结构形式对降噪效果的影响程度,可能会出现实际效果与环评要求不符的问题。
2.1.4公众参与内容针对性不够目前,在评价单位公示的报告书简本中,对评价范围内的环境影响敏感目标没有明确显示,很多调查是在网上公示报告书简本的同时或更早时间开展,在公众未充分了解工程产生环境影响的情况下,公众参与的可信度不高。在公众参与样本分析中,对直接利益相关、间接利益相关和非利益关系的数量和比例不进行统计分析,无法判断代表性。对于可能存在振动敏感设备的大学、科研机构、计量机构、电子和光学设备生产商、医院等单位,应在规划环评中调查其单位意见。
2.2环评导则不够细化,相关技术支撑尚待完善《环境影响评价技术导则:城市轨道交通》(以下简称《导则》)于2009年4月1日实施,它是开展城市轨道交通环评的主要技术依据,对规范环评工作起到了很好的作用,但在4年多的运用过程中也发现了许多急需解决的问题。
2.2.1噪声和振动预测中存在的问题
1)噪声和振动源强。噪声及振动源强是声、振动环境影响评价中非常重要的基础数据,《导则》未给出典型线路、车型的噪声和振动源强参考值。目前,对噪声和振动源强的选择随意性较大,评价单位不重视类比监测,大多数报告书采用的源强未给出充分、合理的依据。在实际的评估过程中,发现噪声和振动源强的取值,部分项目偏于保守,部分项目认为随着车辆和轨道结构的不断更新,源强取值偏小,同类项目源强的取值差甚至高达8dB,直接影响了噪声和振动的预测结果及措施应用的合理性。
2)环境振动距离衰减问题。环境振动的衰减与距离、地质条件、频率等有关,《导则》仅给出了一个对数关系的回归公式。一方面公式的表达形式与环境振动衰减的经典理论有一定差别(如环境振动近场和远场的衰减差异、振源频率特性的影响等);另一方面《导则》未给出典型地质条件的回归常数参考值,这可以采取类比监测确定,但是由于评价单位的不重视和专业水平、仪器设备所限,大多数单位的惯用做法是基于早年的少量资料偏于保守取值。
3)振动评价中建筑物振动衰减量的问题。《导则》的建筑物振动衰减量范围过大,造成实际使用的随意性较大;建筑物的分类不够细致,且与GB50352—2005《民用建筑设计通则》的建筑物分类不一致。在对《导则》的修订过程中,建议参考该标准的建筑物分类并考虑不同建筑物(结构和基础)的振动衰减特性,提出更细致的建筑物振动修正值。
4)声屏障、振动防治措施效果问题。《导则》给出的是无限长声源和声屏障的插入损失预测公式,这与实际情况是不相符的。另外,《导则》未结合风亭特点给出消声器降噪效果的计算公式,虽然给出了部分减振措施的减振效果,但是其评价量为未计权振动加速度级,与环境振动的评价不一致,因此给许多管理人员和评价人员造成很多误解,实际人们所关心的地面环境振动的减振量低于《导则》的减振效果。
5)古建筑振动的评价问题。应充分理解《古建筑防工业振动技术规范》的内涵,其适用对象只是文物保护单位和世界文化遗产,与外国相关标准相比,极其严格,不应扩大其适用范围。对于优秀历史建筑、风貌建筑、近代建筑等非文物古建筑应按照新近颁布的GB50868—2013《建筑工程容许振动标准》评价。
6)与地方相关技术规范衔接的问题。2012年4月1日,北京市开始实施地方标准《地铁噪声与振动控制规范》,其预测结果和控制措施原则与《导则》存在较大差异,在评估中存在尺度不一致的现象。建议《导则》在修订过程中进行对比分析。
2.2.2二次结构噪声问题相对于传统的噪声和振动问题,二次结构噪声在环评领域是一个新的分支。《导则》虽然于2009年就给出了二次结构噪声的预测模式,但是由于其不计权分频特性以及评价单位的不重视、专业水平和仪器设备所限,到目前为止,二次噪声的预测和测量一直是流于形式,未科学地按照《导则》规定的方法评价。相关的行业标准《城市轨道交通引起建筑物振动与二次辐射噪声限值及其测量方法标准》,在测量方法上描述不够清晰,并存在一定缺陷。
2.2.3地下水问题应结合城市轨道交通工程特点和新颁布的《地下水导则》要求,弱化工程建设对区域水量和地面沉降的评价,分析可能影响地下水水质的施工环节,强化施工期的防治措施、环境监理等评价内容。
3对策措施及建议
3.1加强对评价单位的培训和日常考核目前,评估的报告书行业特征很明显,相关行业的评价单位,其技术方法较好,预测水平相对较高,但对环保对策及措施的考虑上比较薄弱,环保系统的评价单位情况则相反。环评是一项多学科的综合性工作,造成这种行业色彩浓厚问题的主要原因是环评人员大多数是通用型(专业性水平不高)人才,对其进行的专业性培训欠缺。另外,环评机构资质考核应与报告书质量挂钩,建立环评单位日常工作考核制度。应建立联动机制,将评估时对报告书的打分情况反映到评价单位的考核记录中。
3.2尽快立项修订《导则》在规范性引用文件中,更新相关标准规范,评价因子根据更新的标准规范对应调整,声环境、振动环境影响评价内容、监测方法、预测评价等内容与附录的预测模式对应调整,尽快开展噪声和振动源强数据库、地面振动距离衰减回归常数数据库建设,对振动预测模式中的参数做进一步的明确或调整,规范古建筑振动评价对象和预测内容要求,优化二次结构噪声的预测模式和方法等。
3.3尽快开展验收数据库建设“十一五”期间,我国建成并开通了50条城市轨道交通线路。但目前验收的只有10多条,且大多数验收监测单位由于不熟悉城市轨道交通的特点和要求,监测数据错误很多,更谈不上监测数据的收集整理,使得本行业的各个环境影响情况还是仅停留在理论预测数据阶段。应尽快开展验收数据库建设,与环评预测数据进行对比分析,或开展其他形式的专项研究工作以验证环评预测数据的可靠性。
3.4加强与城轨行业及相关科研机构的沟通一方面及时了解行业的发展情况,另一方面尽量充分利用行业的技术手段及科技能力解决评估中难以解决的问题,使环境影响评估工作更加科学、合理。
对CBTC系统车地无线通信安全构成威胁的风险源主要分为无线干扰和恶意攻击2类。
1.1无线干扰目前,对车地无线通信造成干扰的来源主要有:乘客信息系统、商用无线网络、多径效应等[2]。
1)乘客信息系统(PassengerInformationSystem,简为PIS):是一个多媒体咨询、播控与管理的平台,可在多种显示终端上显示多种类型、多信息源、平行、分区、带优先级的信息。其中,既包括数据量小的文本信息,也包括数据量大的媒体文件信息。目前,PIS主要采用IEEE802.11a/g/n标准的WLAN进行传输,并且和信号系统的WLAN使用了相同的频段,从而可能对CBTC系统的车地无线通信造成同频干扰。
2)商用无线网络:3G网络的普及使得人们可以随时随地自组WiFi无线网络。这些无线网络的信道是可变的,并很有可能会同城市轨道交通信号系统WLAN处于同一信道而造成干扰。乘客自组的WiFi无线网络的频段如果与CBTC系统车地通信频段相同,就很容易造成无线干扰而影响信号系统的正常工作。
3)多径效应:无线信号是沿着直线传播的,但是在隧道和城市高楼林立的环境中,信号会经过建筑物的反射和衍射再到达接收端。这样,接收端收到的信号就可能包括直线传播的信号和经过若干次反射和衍射后的信号,这些信号因为传播路径的不一致而先后到达接收端,这就造成了多径效应。多径效应的存在使得信号不稳定并且可能会出现数据错误,因而对车地通信安全造成影响。
1.2安全攻击黑客、等对城市轨道交通的恶意攻击,不仅可能造成运营中断,甚至还可能通过发送错误指令等方式造成列车相撞或者远程控制列车。因此,轨道交通CBTC系统必须对网络安全攻击进行防护。网络安全攻击一般可以分为如下5种类型[1]。
1)被动攻击:包括流量分析、对无防护通信进行监视、对弱加密的通信进行解码、验证信息捕获等。被动攻击可以在用户不知情的情况下被攻击者获取信息或数据文件。
2)主动攻击:包括绕开或破坏安全防线、植入恶意代码、窃取或修改信息等。主动攻击可以导致数据文件的泄露或传播,拒绝服务或数据修改。
3)物理接入攻击:未授权人员物理上接近网络、系统或设备,目的是修改、搜集或拒绝访问信息。物理上的接近可以是秘密的,也可以是公开的。
4)内部人员攻击:可分为恶意和非恶意的攻击2种。恶意攻击是指内部人员有意地偷听、窃取或破坏信息,欺诈性地使用信息或者拒绝其他授权用户访问信息;非恶意攻击通常是由于不小心、缺乏相关知识等原因而绕开安全防护。
5)分发攻击:这是集中在软、硬件工厂或分发中对软、硬件做出恶意修改。这种攻击可能是向产品中引入恶意代码。例如,为了在以后对信息或者系统功能进行未授权访问所留的后门程序等。
2城市轨道交通安全保障的研发目标与措施
2.1安全保障研发目标针对当前城市轨道交通存在的信息安全隐患,以及城市轨道交通CBTC系统信息安全的新需求,应结合既有CBTC系统,开发适合当前城市轨道交通使用的CBTC系统数据加解密设备、专用防火墙、网络攻击检测、安全车地无线通信设备等。应搭建信息安全管控平台,通过技术和管理手段相结合,以有效避免城市轨道交通信息安全事故的发生。其核心技术的研发目标如下:
1)项目研发应具有实用性:相关技术的研究以城市轨道交通控制和调度系统应用为基础,相关技术的应用不能影响信息的正常传输。
2)保证控制与调度信息的安全性:应保证通信网络中数据不受到非法监听、截获及篡改,所研究的信息安全技术能够保证传输数据的唯一性和真实性。
3)实现通信网络的智能检测:采用CS(客户端—服务端)工作结构,全面实现对通信网络工作状态的监控和对网络攻击的定位;自动实现通信网络健壮性的检测,并提供相关报警和日志记录。
4)建立身份认证管理机制:应实施客户端身份认证管理和无线设备接入认证密钥多样化管理。
2.2安全保障措施安全保障措施包括行政措施和技术措施。行政措施包括制订信息安全和网络安全的管控措施、对网络设备的投标和使用加强审查和控制等。以下列举在实际应用中可使用的车地无线通信安全保障的技术措施。
1)数据加解密设备。车地无线通信运用的是基于SMS4密码的加解密技术。SMS4GM/T0002—2012《SM4分组密码算法》是国家密码管理局批准的。该算法是一个分组算法,分组长度为128bit,密钥长度为128bit。加密算法与密钥扩展算法都采用32轮非线性迭代结构。
2)无线接入认证管理机制。该无线接入认证方式是叠加在既有控制系统的无线通信之上,且对控制系统的无线传输性能无影响。应接入认证密钥的动态管理,采用多种密钥更新方式。采用“工作站—服务器”模式,可实现各子系统、多条线路的接入认证管理。
3)网络攻击检测和报警。针对轨道交通列车控制与调度系统的特点,采用专用的网络攻击检测和报警系统,实现控制系统传输网络边界的自动识别。
4)网络隔离系统。在保持内外网络有效隔离的基础上,实现两网间安全、受控的数据交换。主要为用户提供了一种在物理隔离的内外网之间(或高低密级网络之间)安全地将外部信息(或低密级信息)通过以太网单向导入到内部网络(或高密级网络)的解决方案。
5)主机审计系统。主要用于监控和审计计算机的数据输入/输出接口、设备以及被控端用户的敏感行为,从而加强轨道交通列车控制与调度指挥系统的管理,以达到有效地预防失密、泄密事件发生的目的。本系统为铁路机构提供了方便、准确、快捷的终端用户安全管理手段。
6)主机加固技术。主要是提供主机的安全配置等设置的检查,根据安全配置是否符合相应的安全要求,提出供主机加固的建议。
7)定义封闭系统。封闭系统是不对大家都可以访问的默认SSID(ServiceSetIdentifier,服务网络标识符)进行响应的系统,也不会向客户端广播SSID,即取消了SSID自动播放功能。封闭系统可以防止其它WLAN设备搜索无线信号,从而禁止非授权访问。
8)MAC地址过滤。MAC(MediaAccessControl,媒体访问控制)地址仅标识1台无线网络设备,不存在2块具有相同MAC地址的网卡。MAC地址过滤可以起到阻止非信任硬件访问的作用。
9)WPA2加密和动态密钥。WPA2(WiFiProtectedAccess,WiFi保护接入)中采用AES(AdvancedEncryptionStandard,高级加密标准)加密,其算法不能破解,再结合动态密钥,保证了信息传输的安全性。WPA2的PSK(Pre-sharedKey,预共享式保护访问)认证中,每台车载无线设备都需要1个密钥才能接入无线网络,且这个密钥设置很复杂,能确保信息安全。
3结语
关键词:公共产品;生产力;资源配置
轨道交通由于具有快速、环保、运能大等特点,已成为各大城市发展公共交通优先考虑的项目。据统计,我国现有20多个城市正在建设或规划建设地铁等轨道交通项目,在建线路总长度超过390公里,有1500公里线路正在规划建设中。轨道交通在给人们带来便捷舒适的同时,也面临着由于人、车辆、机电以及社会灾害等因素而导致的安全问题。
轨道交通的安全性,对城市发展有着不可低估的影响,有必要从经济学角度对轨道交通安全问题作出一些思考。
1轨道交通安全的“公共产品”特性思考
“公共产品”是指具有非竞争性和排他性的产品。非竞争性是指消费上的非竞争性,就是同一单位的公共产品可以供许多人共同消费,某些人对该产品的享用,并不影响他人的享用;排他性是指公共产品一旦提供给公众,不论何人都可以享用,任何人不得加以排斥。
安全属于社会秩序的范畴,是对人、对财产、对环境保护类的无形产品。轨道交通安全具有“公共产品特性”,表现在消费上不具有排他性,不会因一些人的“消费”而影响其他人的“消费”。但是,会因某个人或某一些人的不安全行为而导致安全这一公共产品的隐性短缺或显性短缺。例如,城市轨道交通安全,在没有形成事故以前,个人是“免费”消费着他人所制造的“安全”这一产品。但若个别人不遵守安全规程甚至违法犯罪导致安全事故的发生,将会危及无辜,不仅造成人身伤害和财产损失,同时会严重地影响了社会秩序的稳定。例如,今年7月份英国伦敦地铁爆炸;1995年3月日本东京地铁毒气;2003年2月韩国大邱地铁纵火;2004年2月莫斯科地铁爆炸、大火等案件,伤亡惨重,损失、影响巨大。
地铁公司作为企业,其力量毕竟有限,不可能无限制地承担这类公共安全的社会责任。市场取向的改革带来了发展和繁荣已被实践证明,但市场不是万能的。公共产品的特性导致市场失灵,使政府调节成为必要。关系到社会整体利益的公共交通安全问题,单个企业无力承担起全部义务,政府应当作为公共产品来供给。
公共产品可以分为广义和狭义两种。狭义的公共产品是指政府通过微观参与提供生产性基础设施。轨道交通的投资与建设可由政府部门负责,授权地铁运营公司以经营权,并将基础设施以租赁形式租赁给地铁运营公司,象征性地收取租赁费。由于轨道交通安全所具有的公共产品特性,决定了国有企业能够更好地完成相关任务。国有企业的投资主体主要是国家,国家比任何个人更有全局观念,更关注社会的均衡发展与民众的利益,能够在追求经济效益的同时充分考虑社会效益。相对而言,非国有市场主体往往更注重经济效益,不愿意为承担社会责任而承受利益损失。因此,从轨道交通安全所具有的“公共产品”特性出发,经营轨道交通产业一般仍应以国有经济为主,有条件地允许一部分非国有经济的介入。
广义的公共产品除了基础设施外,还包括立法执法、反恐防暴、公共政策、各项制度安排等。针对地铁运营中可能发生的灾害性事故,需要政府向社会提供防治这些社会性灾害的公共产品。为保证轨道交通运行的安全,越来越需要政府提供如公共政策、政府规制等广义的公共产品。公共政策是政府实施调控和管理的重要手段和工具,可以为轨道交通各经营主体提供行为规范、基本准则和行动指南,并为广大乘客制定安全乘车的行为依据。政府规制作为政府的一种治理工具,意味着政府通过制定特定规则约束企业经营者的经营行为,也就是要约束因为个人利益最大化动机的过分膨胀而导致他人与社会公众安全利益受损。
在保证轨道交通安全问题上,政府的作用应当进一步加强,要根据需要和可能不断推进政策创新,保证公共产品供给的安全性。
2轨道交通安全的生产力特性思考
安全不仅仅是一种技术物态和条件,还是一种具有经济效益的活动,是通过对投入的人力、物力和财力,进行合理组织、控制和调整,以减少事故和降低事故损失,达到人、技术、环境的最佳结合,间接促进了经济增值的一种活动。安全活动既具有自然属性,又是在一定的社会生产方式下进行的有目的的活动,它在遵循自然规律的同时,还受到社会生产关系的影响,因此,安全具有生产力的特性。
生产力是生产能满足人类需要的有用物品的能力。轨道交通安全具有生产力特性,一方面是指它体现了一定的社会关系和经济关系,具有一定的社会和经济属性,由于轨道交通安全涉及到社会的方方面面,已成为影响社会生产力发展的一个重要因素;另一方面轨道交通安全状况受生产力发展水平的制约,从一定程度上讲,轨道交通安全程度是一定生产力发展水平的标志。
生产力是由人的要素和一系列物的要素结合而成的有机体系,轨道交通安全也是受到人、车辆、机电等人的和物的因素的作用。近年来,国内外轨道交通事故分析证明,这些因素是导致轨道交通事故发生的主要原因。
从人的因素看,既有因乘客未遵守安全乘车规则所导致的事故,也有因为工作人员职责疏忽而引发的险性事故。从物的因素看,车辆、轨道、供电、信号等故障都可导致事故的发生。
生产力反映的是人类的劳动能力,生产力的发展归根结底是人类劳动能力的发展,是人类科学知识、实践经验、操作技能和社会结合能力不断累积和提高的结果,因而人是生产力中的首要因素。
统计表明,几乎每一起重大事故都与工作人员的基本素质有关,所以抓运行安全首先要抓对工作人员的教育和培训包括法制教育,技术教育,安全教育和职业道德教育,使工作人员牢记“安全第一”的运营准则,任何时候都不能心存侥幸和麻痹大意。
迅速的反应和正确的措施是处理紧急事故和灾害的关键,只有增强员工对突发性事件的应急处理能力,才能把事故与灾害造成的人员伤亡和财产损失降到最低限度。为了保证轨道交通运营安全,除了加强对员工的安全思想教育,还必须进行事故应急处理模拟演练,逐步提高各有关专业和工种工作人员的应变能力、协同配合能力和对事故的综合救援能力,达到锻炼员工队伍的目的。
为了提高轨道交通的运营安全和运输效能,提高生产力水平,还必须抓住其他车辆、轨道、供电、信号设备等一系列物的因素,因为这些因素都直接关联到列车的安全运行,必须引起建设和运营企业的高度重视,采取相应对策。
生产力的发展归根结底是人的能力的发展,而人的能力的发展又归根结底是科学技术的发展。科学通过革新生产工具和生产技术、扩展新的劳动对象、提高劳动者素质和促进管理的科学化等多种途径,被运用于生产过程,形成现实的生产力。在科学技术日新月异的现代社会,生产力的发展越来越多地取决于科学水平和技术进步,取决于科学技术在生产上的应用。
“科学技术是第一生产力”,它的作用渗透于轨道交通安全的每一个要素,离开了现代科学技术的综合应用,安全运营就不可能得到强有力的保证。首先要用科学技术促进人员素质提高,用科学的理论和正确的思想观念教育广大员工,使他们掌握科学的管理方法和工作方法,掌握岗位所需的科学知识和技能。其次要提高车辆等装备的科技含量,用新技术、新设备提高运营系统的可靠性和安全性。其中采用自动化程度高、安全性能好的系统设备,是提高运营系统安全性的重要基础。现代城市中,地铁是人流最为密集的公共场所之一,其可靠运行是地铁安全运营的前提条件。把这些机电设备纳入统一的智能化的管理,通过自动化系统对这些设备进行科学高效的监控管理,是确保地铁内安全的关键因素。
3轨道交通安全的资源配置特性思考
满足人类欲望的物品可分为“自由物品”和“经济物品”。“自由物品”是指人类无需通过努力就能取用的物品,如阳光、空气等,它的数量是无限的;“经济物品”是指人类必须付出代价方可得到的物品,即必须借助生产资源通过人类加工出来的物品。相对于人的无穷无尽的欲望而言,“经济物品”或者说生产这些物品的资源是不足的,稀缺的。从经济资源稀缺性的事实出发,就产生了资源配置的问题。
轨道交通安全属于“经济物品”,它是通过政府、企业、乘客和车辆、轨道、控制系统等一系列因素相结合而生产出来的。社会资源是有限的,社会对安全的投入受到客观经济水平的限制,它的数量不是无限的,如何在有限的安全投入下,获得最大的安全效益?这使轨道交通安全具有了资源配置的特性,即必须在现有的条件下,通过资源的合理配置,最大限度地增进轨道交通的安全,实现最优化。
安全资源配置是安全活动与安全产品生产之间的资源配置比例和安全活动各环节之间的资源配置比例问题。可以这样认为,轨道交通的设计和建设属于安全产品的生产,而轨道交通的运营则属于安全活动。
一方面,在一定时期可控资源是一定的,这些资源一部分配置在产品生产上,另一部分配置在安全活动上。产品生产与安全活动之间的资源配置比例决定着生产与安全之间能否协调统一,决定着轨道交通安全所能达到的广度和深度。所以,在安全资源配置总量一定的情况下,安全资源配置问题首先要解决多少资源配置在产品生产上、多少配置在安全活动上,安全资源配置应该以最优化作为配置效率的标准,以实现安全产品生产与安全活动的协调统一。
过去,政府或企业抓轨道交通安全基本不介入轨道交通建设项目,只是在投入运营后承担起安全监管或实施工作,将安全资源倾力投在运营中,这是不合理的配置方式。实践证明,运营环节能否正常和安全,和前期的方案论证、设备和信号的选型、以及设计和施工环节具有前因后果的关系。因此,在轨道交通建设、开通运营过程中,要充分发挥“一体化”经营的优势,在设计、建设、运营中,有效实现安全资源的合理整合,通过运营部门全过程参与新线的设计、建设和调试,将运营现场的经验与实际问题带到设计工作中,使设计充分考虑运营安全的需要,将安全的关口前移到设计、建设阶段,把对事故的事后的弥补转变为事前的主动控制,使安全资源在安全产品生产和安全活动中得到合理配置。