前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数控加工主题范文,仅供参考,欢迎阅读并收藏。
关键词 精加工;数控技术;译码
中图分类号TG659 文献标识码A 文章编号 1674-6708(2014)113-0201-02
1 数控车床精加工程序的分析
数控机床的所有工作程序和工作内容全部是由其内部程序控制的,工件最终加工成什么标准也是有这些程序来决定的,即数控加工程序是数控机床的控制大脑。实际上数控机床加工产品水平,一部分是由机床本身精密系数决定,另一部分就是由其内部加工程序来控制的。数控车削加工操作要求输入程序尽可能简化,并一次输入程序、调试程序和对刀,确保加工过程中不需要对程序进行修改;数控车床加工操作程序通常情况下是根据零件轮廓来编写的,这种程序实际上就属于精加工程序,将其结合系统循环模块之后,即可完成多余余量的切除操作。数控加工特点决定着每一个数控加工程序中都包含有切削参数、刀锯运动类型、主轴转速和机床状态等相关信息,而且不同信息在程序中都有不同代码和格式相对应。在实际工业生产过程中,不同厂家生产出来的数控机床规格性能和结构等参数也不同,所以相应的输入其系统数控加工程序也不同。
数控加工程序可以看做是由多个程序段组成的,而每一个程序段就是整个程序的单位连续字节,由多个代码组成。每一个程序段所包含的内容不同,在数控加工过程中所承担的任务也不同。所谓程序段的格式,就是由哪些字母、数字或者符号,通过什么样的形式连接在一起。我们可以根据数控机床的型号以及所需要完成的任务来进行程序段的编写,并按照规定格式将单位程序段连接在一起。字地址程序段主要由语句号字、代码字以及程序段结束字符所组成,其中语句号字是数控系统识别成都段标号的重要标志,通常情况下程序段的起始符为N。
2 译码模块的处理过程
每一个数控加工任务确定之后,首先要进行的就是数控加工程序的编写,之后就是非常关键的插补运算处理。插补预处理的主要内容有译码、刀补计算以及加减速控制这三大块。译码模块在整个系统中的主要作用就是对数控加工程序进行插补变化,从而代码转换为系统可识别的数据及控制信息。
1)译码准则
译码模块的程序段译码和数据处理要按照一定的规定进行,且整个预处理过程必须遵循系统程序格式。
刀具上一段的终点即是下一段的起始点:数控加工过程是一个连续运动过程,刀具的运动轨迹是连续的,不能出现跳跃情况。因此在进行数控加工程序编写时,完全可以直接将刀具运动的终点作为接下来操作的起始点。
选择刀尖中心为控制对象:数控机床加工刀尖是CNC控制软件主要的控制对象,它被视为加工过程中的一个动点,任何几何形状的物体都需要经过刀尖的运动得以完成。因此数据加工程序就是控制这一点运动轨迹的程序。
按机床坐标系译码与计算:坐标系是数控机床加工工具的运动范围,每个机床自其制造完成之后,坐标系就已经固定了,因此数控加工程序的编写要遵循数控机床坐标系的规定和位置。
2)译码方法
编译方法:所谓编译方法即数控系统加工程序的预编译,根据不同加工任务编译出相对应的加工程序,实际加工时通过插补模块从系统中提取,用来控制加工工具的运动轨迹,从而实施加工操作。这种数控加工方法最大的优势就在于不需要在进行程序代码之间的转换,大大提高了数控加工效率。但其不足之处是需要占用系统较大的存储空间,而且对于加工零件较复杂的情况下,很容易影响系统的操作性能。
解释方法:该方法采用的是逐行译码、预处理和插补技术,在进行下一步加工程序之前,首先由解释程序对加工代码进行预处理后,再用来控制加工工具。这种数控加工方法使用起来较为简单,而且不需要系统提供较大的存储空间。但由于不同模块之间数据处理时顺序串行的,所以对解释程序的运行速度要求较高,必须要满足在不同程序段之间的来回转换。
3)数控加工程序的检错
数控加工程序的检错是译码过程的第一步,检错效果的好坏将直接影响着数控机床加工程序是否能够有效控制加工工具。检错就是对程序结构、词法以及语法进行检查,只有正确合法的程序段才能够进入系统。
(1)程序结构错误检查
数个程序段按照一定顺序连接后就组成了一个完整的数控程序,但单位程序段也可以看作是一个小型完整程序,其基本构造也是起止符、程序号、程序主体等。所以程序机构错误的检查,实质上就是对每一个程序段以及程序段之间联系进行检查。
(2)词法错误检查
词法也可以简单理解为语法,即数控程序语句的编写规则。数控加工程序词法检查主要设计不同功能代码字以及数字类型等,不同代码所对应的数据类型也不同。而且每一个数控加工程度中都不能出现未定义代码。
(3)出错处理
数控加工程序的编写难免会出现一些错误,正常情况下如果数控加工程序中有错误信息,系统会向用户进行提示,并将具体错误信息的出错原因和位置告知操作人员,以方便进行下一步的编辑修改。基本每一个数控系统都会预留一定空间存储区,用于保存错误信息。这里我们给出错误信息的结构定义:
#define ERROP_DATA_SIZE 50
Struct ERROR_DATA
{ Uint ErrorNo;
Uint Block_Num;
Char ErrorInfo[20];
Int ErrorType;
Char code[5];
}Error_Table[ERROR_DATA_SIZE];
(4)数据的整理和存放
数控加工程序整理过程可以简述为:首先从待加工程序中选择提取出需要加工的程序段,并对程序段进行编码,以明确其初始位置。按照字符串的形式将这些程序段存放至响应存储区,同时按照标准进行格式和词义检错。如经检查没有发现错误,即可将程序段进行分割,以字符串的形式将这些程序段存入指定存储区。
精加工数控技术是未来机械工业发展的重头戏,其涉及到很多学科领域。笔者目前的主要工作内容就是精加工数控技术的研究,虽然积累了一定的工作经验,但在理论基础上还有待提高。在今后的工作中,笔者将致力于精加工数控技术领域,以期能够在该领域做出一定成果。
参考文献
[1]关桂齐,杨松山,刘国良,陈士朋.我国数控技术发展的分析与研究[J].机械制造,2013,6:88-91.
[2]王燕.解析数控技术专业校内生产性实训基地建设实践[J].成功(教育),2013,24:88.
[3]陈雅娟.机械数控技术的应用现状和发展趋势[J].科技与企业,2013,24:174.
关键词: 数控加工 加工参数 优化方法
制造业的发展,是国家综合实力的体现。制造业的主流技术是数控加工技术。因为它会为我们的社会带来更大经济收益,也是我们缩短和其他数控加工强国距离的最佳方法。
影响数控加工参数的优化选择的因数主要是机床的主轴转速、功率、切削力的大小、转矩,刀具的磨损、寿命及机床的机械振动等方面。
目前数控加工参数的优化,总体划分为在线参数优化和离线参数优化两大方面。
在线数控加工参数优化方法,也叫自适应控制,它是自适应控制理论在数控加工领域的应用。即在加工过程中,通过各种传感器采集一系列变量,转换为需要的信息,到数控中的信息的处理中心,通过各种方案的比较,选择最佳方案,根据最佳方案的切削参数,获得需要的加工工艺进行加工,达到预期的目的。目前还没有最佳的方法大量运用于数控加工业。
数控加工参数优化方法一是根据传感器获得的信息,建立数学公式,确定目标函数及约束条件,选取合适的参数作为设计变量;二是选取优化算法,对目标函数进行求解;三是对求解结果进行判断和分析,获得优化设计的最优方案。
一、数学公式的建立
1.如何选择优化设计数控铣的参数
优化设计参数在设计过程中一般很多,要学会抓主要舍次要。以主轴转速、吃刀量、切削速度、进给量为变量随着路段的不同而不同,把整个加
二、优化算法
在线数控加工参数优化算法,主要有神经网络算法、遗传算法、蚁群算法、模拟退火算法等各种现代优化方法,选取其中一种或者几种混合。
三、结果判断
以工时为主要目标优化参数时刀具磨损大,成本大;以加工成本为主要目标时,刀具磨损小成本低,生产率低;以最大利润为主要目标,刀具磨损大、生产率高,工人劳动强度大;以工时、成本及利润同时为主要目标进行多目标时缩短工时、刀具磨损一般、成本降低,利润可观,优化结果高于单目标的优化结果。
总之,为实现数控加工切削参数的优化,获得最佳经济效益,宜建立多目标的数学模型。
参考文献:
[1]数控加工切削参数优化的研究[J].沈阳工业大学赵绪平硕士论文.
关键词:几何精度;精度补偿;误差分析
数控机床是当前一种加工设备,代表着一个国家和地区的生产能力与水平。衡量机床质量的标准是其对金进行属切削加工时的精度是否达标。一个国家和地区拥有数控机床总量百分比能够有效衡量这个国家地区经济发展层次和工业制造整体水平,所以说,数控车床是先进生产力的代表,只有全面保证数控机床质量,才能提升产品质量,保证区域竞争力,赢得市场主动权。现代化,智能化的数控机床一直是世界各国非常重视的生产加工类设备,近年来,也随着科技的进步与发展而不断创新,形成了快速发展的良好态势。
1 数控机床精度分析
数控机床精度有多方面的体现,主要通过几何精度、位置精度以及加工精度来展现,任何一项不达标,则表明机床精度不符合要求。影响精度的因素也比较多,如果数控机床材质不合格,刚度不到位或者工作时间过长导致温度提升,均能对机床精度产生影响。
(1)数控车床几何精度。主轴几何精度和直线运动精度也对机床精度有着重要的影响。数控机床加工运作时,其工作过程主要是主动轴与回转轴之间的运行,二者需要在相对位置保持固定,可是,在实际生产过程中与设计情况有出入,两轴之间相对空间位置也并非固定不变,如果控制不好,构成主轴轴承零部件在制造环节中就会呈现一定的误差,这就直接造成了工作过程中受温度、工作强度、等条件影响,使主动轴轴承精度、主轴箱装配质量产生影响,导致主轴和回转部件出现严重的不平衡问题。主动轴支承轴颈生产加工时,圆度误差也是较大的问题,前后同轴度误差也难以控制,存在一定程度偏差,而加工生产过程中,主轴运转会出现热效应变形,任何一点控制不到,都会导致数控机床主轴几何精度不准。(2)位置精度问题。数控机床除主动轴产生几何精度问题外,还会出现惯量匹配的问题,摩擦力及机床所用伺服电机在生产加工时,都会有惯量匹配问题,这种现象对机床位置精度产生影响。因为数控机床中各个部位的组件如油缸油泵、电动机、液压机等在长期运转过程中,会通过相互摩擦产生一定的热能,如果热能不能转化,则会在长时间连续工作后造成摩擦热量,使内部一些主要部件发生受热膨胀,出现严重的形变问题,这也就直接形成了实际尺寸与设计尺寸存在误差情况,如果各个零件结构内部热应作用下不对称,也会使构件出现微小的形变,而这种数控机床运转部件受热形变问题,最容易造成机床位置精度不准。(3)加工精度问题。数控机床加工精度有其特殊性,和几何精度,位置精度存在本质上的区别,加工精度受综合因素影响大,是整台机床在操作过程中各种因素综合影响的结果,同时,也与机床几何精度和位置精度是密不可分的,在加工生a过程中,其加工的精度主要受到传动系统误差、检查校正系统误差、零件固定部件误差、刀具位置的误差等的影响大一些。另外,数控机床编程问题、生产工艺问题都能形成一定的加工精度影响,所以说,在生产过程中,需要不断提高加工精度,才能确保几何精度和位置精度准确,实现高质量加工作业。
2 检测数控机床精度
数控机床也存在老化的问题,特别是在使用一段时间后,与所有电气、机械设备一样,都有电子元件老化、零部件生锈、机械部件磨损等问题,只有全面做好数控机床铺检测,才能及时发现问题,通过定期的保养,确保设备运转良好,保养是否科学合理,对机床精度有着最直接的影响,能够对数控机床精度做进一步的补偿。
2.1 检测几何精度
几何精度对机床的影响较多,需要在运行过程中不断进行检测,确保运转良好。对机床几何精度检测工作中,需要对直线运动轴直线度进行检测,一般会用到平尺和千分表来检测,通过对部件在作业中的情况,科学测算垂直运动轴其他两个坐标轴线性偏差是否精准。对于普通立式数控加工设备而言,几何精度检测需要做到精细认真,一般检测项目有对机床工作台面平面度做检测,确保平整光滑;运动轴空间坐标不同方向移动产生角度是否保证垂直;主轴中心孔径,回转轴轴心线与机床工作台面是否保持垂直;机床运动轴X、Y坐标方向移动作业的时候台面平行度;X坐标方向移动台面T形槽侧面平行度;主轴箱延Z轴坐标移动直线度等,通过对各项目的检测,进一步确认机床铺几何精度是否达标,满足加工生产需求。
2.2 检测位置精度
数控机床位置精度受多方面因素影响,主要是定位精度、反向偏差精度和重复定位精度,不同的精度对机床造成的影响不同。定位精度就是数控机床工作台面或机床其他运动部件在实际运转过程中,是否在设定的运动位置,和编程指令有没有出入,是否达到位置一致。机床不同加工操作系统中,伺服系统、检测系统、进给系统出现问题,均会造成一定的误差,运动部件导轨几何误差容易产生位置精度不好的现象,定位出现误差就会加工生产出不符合设计的部件,零件尺寸就会不准确。
3 提高机床精度的措施
3.1 提高设计水平
从实际生产中看,目前我国使用的数控机床均是国产设备,一般机床加工生产企业都有研发能力,在自主研发,设计、制造、改进等方面有一定的水平,但是,还有一些部件是不能自主生产的,需要依靠进口,这就直接影响了整机质量。要想有效保证机床精准度,则需要在设计研发上下功夫。
机床主动轴是关键部件,在长期使用过程中,需要保证具备耐磨性和耐高温性,所以,在设计时,需要严格设计,保证满足对温度的适应性,对机床做好性能优化,确保机床加工精度。主轴系统设计需要对影响机床加工精度的构件安装到一个与主动轴中心相交的位置,与机床底座垂直安装,保持主轴箱两侧对称装配其余构件,只有这样,才能从理论上解决机床因受热对加工精度的直接影响。
3.2 提高机床几何精度
数控机床的几何精度对产品加工有一定的影响,如果控制不好,则会产生误差。几何精度对机床的生产精度起到决定性作用,只有全面做好几何精度控制,才能保证生产加工的精度。机床对零件加工生产时,主轴轴颈与轴承出现一定程度的摩擦,往往造成温度快速升高,与主轴箱箱体孔空间位置出现误差,则会导致轴承滚动,使轴承旋转变缓,影响设备的精度,只有全面控制好主轴轴承选配间隙,才能保证几何精度准确。
3.3 综合提高加工精度
数控机床使用是一个复杂的程序,需要严格把握各个环节,确保设计、制造、装配形成一个统一整体,实现机床的使用价值,加工精度合理控制,能够保证产品质量,需要综合性考虑,不能依靠改造一个部件来解决。需要充分考虑制造工艺中对机床精度影响的主要因素,通过对数控机床数控系统补偿值的重新设定,能够全面提升机床加工精度,保证机床良好运转。
4 结束语
采用数控机床加工大大提高了生产效率,但是,控制不力,也会造成生产加工的损失,只有全面做好数控机床检测与保养,才能确保机床生产质量,保持更高的加工精度,满足各方面生产工艺要求。
关键词:工艺分析;G73指令;数控加工
1工艺品“葫芦”加工发展现状
“葫芦”制品具有极大的发展空间和潜力,代表中国民间传统文化销往世界各国,为传播中国文化起到了重要作用。“葫芦”从原始的一种盛器开始到现代的民间工艺品,对其加工的工艺在不断的创新和发展。当前国内外研究“葫芦”工艺理论的专业人员稀缺,每年发表的专业论文篇数少,至今正式出版的相关著作国内也仅有几部而已。绝大多数“葫芦”工艺品的从业者是以按部就班的传统方式从事工艺品制作,对经验的总结很难形成文字性的支持。高校、科研机构申请国家社会科学研究的立项中,关于“葫芦”手工艺制作的相关研究也没有展开。诸多的原因导致葫芦工艺方面的理论知识呈现出发展“单薄”的局面。传统方式制作存在的问题有:(1)样式是由制作师傅的技术及经验决定;(2)加工方法是以手工为主,完全取决于制作者的技术水平及经验积累;(3)效率低,制约了该工艺品的创新及发展。而创新、总结是“葫芦”制品发展的重心。本文以现代计算机辅助设计技术,数控加工技术为技术支撑,从外形设计、加工设备、加工刀具及加工工艺方法等方面优化处理,巧妙利用外形轮廓G73指令编写加工程序录入到机床系统里,进行对刀、程序校验、首件试切加工等作了详细阐述,对加工难点的突破提出了具体的方案。
2工艺品“葫芦”设计
针对传统加工方法存在的问题,从工人师傅自己的经验为主,到采用计算机辅助设计,突破了经验为主,该部分以突出现代设计理念,代替传统的工人经验,使结构更合理、美观、便携,如上、下的比例及各圆弧的半径连接需过渡流畅,葫底大小与葫腹的比例,中颈的大小与葫腹的比例,视觉比例等进行优化处理。
3工艺品“葫芦”的加工工艺分析及方法
分析图纸,加工对象的特点为:(1)直径大小相差很大,采用图形尺寸进行循环切削,空运行次数多,切削时间长,效率低;(2)刀具切削时,刀刃左右交替参与切削,传统的左偏刀、右偏刀无法满足连续切削,因此本相应预处理。
3.1分析零件图
结合加工表面的特点和数控设备的功能对零件进行数控加工工艺分析,为了减少装夹次数、换刀次数,提高生产效率,毛坯总长定为130mm,直径40mm。选用三爪卡盘夹紧工件,选定工件右端面中心为编程原点,通过程序校验,减少空刀运行时间,选择X41,Z105作为循环起始点,以确保加工效率。
3.2确定数控加工刀具及加工路线
为了减少刀具数量和装夹的次数,防止加工时刀具干涉影响切削面,针对要加工的材料是铝棒、木头等,这里用R1.5的专用圆弧车刀,可实现单把刀具完成全部加工及切断工作,不需要反身装夹和换刀,解决了传统加工因为刀具选择不合理,出现刀具干涉工件和换刀次数过多、反身装夹影响加工效率的现象.
4工艺方案及编程
4.1工艺方案
(1)粗加工分段切削,减少空刀行程,加工出近似形状。(2)连续切削粗加工,切出曲线形状。(3)精加工,加工出圆弧曲线。(4)抛光,用砂纸进行打磨。
4.2车削工艺编程
刀具选择,粗加工时可用割刀或者圆弧刃刀,精加工时用圆弧刃刀,抛光时要用砂纸打磨。按粗加工、精加工过程依次利用G73粗加工轮廓指令、G70精加工轮廓指令编写程序.
5加工难点及解决方案
(1)利用G73指令加工时,在程序中增加了一条单独的退刀程序,解决了G73自动退刀时,刀具对工件的干涉现象。编写加工程序,还要注意循环起始点的问题,如果起始点定不准,会出现刀具空运行,浪费时间,生产效率就会受影响,通过试验,循环起始点应该定在大于毛坯0.5~2mm之间。(2)对于既有递增又有递减的曲面图形,用轮廓循环指令G73编制数控加工程序,关键点是这里利用R1.5圆弧车刀,与刀具半径补偿指令G42的完美搭配,解决了加工中刀具干涉工件产生的过切现象。而且只用一把刀具可以加工全部曲面,不需要调头,不需要换刀,减少了换刀的次数,提高效率,解决了多次换刀、多次调头带来的尺寸精度、位置精度误差等问题。(3)由于加工越小的葫芦需要的路径要求也越高,走刀的总步数也要越多,参数U值的计算就尤为重要,走刀路径太多,浪费时间,降低生产效率。走刀路径太少,背吃刀量又太大,容易断刀。为了解决这一问题,提高精度和效率,通过多次试验总结,合理选择参数。(4)由于毛坯材料在最后需要增加一道抛光工序,这道工序,主轴转速2000r/min以上,用微细的纱布在工件上进行打磨抛光,必须要小心、谨慎,这也是整个工序中最费时、费工、最困难的问题,也是今后改进、创新的地方。
6首件试切
在零件加工中,由数控仿真软件进行加工。数控仿真软件程序验证通过后,就可以实际加工。数控车床是采用FANUC-Oi数控系统,把程序作部分更改,输入到机床存储中。使用刀具补正设置坐标系,利用试切法对刀,进行机床模拟仿真加工,没有错误就可以实现如图3所示的加工。通过上述设计、编程、加工后,完成零件加工全过程。
7结语
综上所述,“葫芦”制品是传统和现代民间美术中最活跃的艺术形式之一。本文的创新之处是突出了现代设计理念,比传统的加工效率高、结构更合理、外形更美观。国内的各种文化节和“葫芦”艺术研讨会后,形成文字性的文章也多是行业内部资料,数量少、质量低且对外不公开。中国“葫芦”工艺的理论研究和加工要本着总结实践,才能有更好的发展和提高。本文对工艺品“葫芦”的制作加工做了详细的阐述,对参数设置也做了相应的说明。但还存在一些不足之处,比如缺乏“葫芦”的后期美化、雕刻、漆艺、彩绘等工艺制作理论的研究,这是需要进一步研究的地方。
作者:马丽 单位:九州职业技术学院
参考文献:
[1]梁艳,钱媛园,张芸芸.当代葫芦工艺发展现状[J].兰州交通大学学报,2013,32(2):110-112.
1.1“3+2”轴加工模式“3+2”加工是五轴加工的常用模式,它指的是在五轴加工过程中,在两个旋转轴(ABC中的两个)的矢量方向确定后,3个直线轴(XYZ)做三轴联合运动完成零件加工的方式。这种加工模式能够提高生产效率,减少装夹次数,避免零件的安装误差。这种加工模式在加工箱体、模具零件的底部或侧壁时,可使用短刀具加工提高加工刚性。在进行“3+2”五轴加工模式时,先要建立定位坐标系,然后确定机床的旋转轴后在进行零件的定位加工,在斜面上加工孔时,采用这种加工模式,体现出很高的效率。“3+2”模式的五轴加工编程相对简单,对五轴机床的磨损小(旋转轴的使用寿命比直线的使用寿命低)。“3+2”模式的五轴加工不足是:加工时两个向量之间存在加工界限,在精度不高的五轴机床上加工时会产生“台阶”,而五轴联动加工则可以避免。
1.2“4+1”轴加工模式“4+1”轴加工指的是:在进行五轴加工时,一个旋转轴(ABC轴中的一个)角度确定,剩下的三个直线轴加一个旋转运动轴可同时做联合运动完成零件的加工。这种五轴加工模式适合加工近似回转体类的零件。在保证刀具不干涉的情况下使用采用“4+1”轴加工可以减少零件装夹次数,提高生产效率,提高零件的加工精度。
1.3五轴联动加工五轴联动加工指五个运动轴(包括XYZ三个直线轴和ABC中的两个旋转轴)同时运动对零件进行加工的一种模式。在进行五轴联动加工时,可对加工过程中的刀具轴线方向进行优化,改变刀轴的矢量方向,保证在整个刀具路径上都可保持最高效的切削模式,具有连续性,没有加工的接刀痕迹,表面粗糙度好等优点。五轴联动加工不仅能控制加工误差,而且能提高零件表面质量,同时可根据工艺要求,均匀地切除复杂曲面材料,这样就能有效控制工件的应力和热变化。例如在加工螺旋桨、航空发动机的整体叶轮时都需用到五轴联动加工保证产品的质量和精度。以上三种加工模式如图1所示:图1五轴加工模式
2五轴加工的关键技术
要加工出高质量的五轴零件需要有先进的五轴设备、高效的五轴编程软件和合理的五轴加工工艺,三者缺一不可。具体操作流程为:根据加工条件,用CAD/CAM软件完成零件的三维造型及刀路设置,根据机床性能后置处理生成数控程序;然后应用仿真软件进行欠切、过切、碰撞检测以及试切削;最后操作五轴机床完成零件的加工。
2.1五轴机床五轴数控机床相对于三轴数控机床来说,不仅仅是增加两个旋转轴的问题,它在算法、控制技术上有着很大的提升,其关键技术包括主轴速度、驱动技术和控制技术,这些参数影响了五轴数控机床的加工范围和加工精度。
2.1.1主轴速度。五轴数控机床在复杂异形件时,经常需要用到小直径刀具来提高零件表面质量,为此需要主轴具有较高的转速。如今五轴机床的主轴大多都采用电主轴(主轴速度基本保持在20000~50000r/min)来提高效率,减少能量损耗。在细微铣削(铣刀直径一般采用0.1~2mm)加工过程中,需要机床具备更高的主轴转速。
2.1.2驱动技术。在进行复杂曲面加工时,经常需要对五轴机床的主轴转速和角度进行制动和变速以适应各种型面的加工。为达到在较高的进给速度或在短距离的走刀路径上,平稳地加工零件的轮廓,这就要求设备具有很高的主轴加速度。因此,在五轴加工过程中,主轴的加速度将控制着零件的加工精度和刀具的寿命。目前,普通的加工中心基本都是采用伺服电机和滚珠丝杠来驱动直线轴运动,但对于高端数控设备现已开始采用直线电机,如德国DMU公司的DMC75VLinear高速五轴加工中心。直线电机的优点包括:可简化机床结构,减去机床中将回转运动转换为直线运动的机械传动部件,减少能量损耗,从而有效提高零件加工精度,保证各轴的动态性能及移动线速度的稳定性。如今,大部分的五轴联动加工中心基本都采用转矩电机来控制主轴头和回转工作台的运动和摆动。转矩电机是一种同步电机,属于直接驱动装置机构,它在转子上固定有需要驱动的零部件,这样就能尽量减少机械传动零部件。转矩电机的伺服响应灵敏,输出扭矩大、无传动间隙、无零件间的接触传动(避免磨耗)等特点,其角速度是传统蜗轮蜗杆机构的6倍以上,在驱动主轴头摆动的加速度可达3g以上。采用转矩电机替代传统的机械传动结构可以将设备简化,减少零部件数量,提高传动效率,同时提高整个机构运行的稳定性,从而提高零件的加工质量和效率。
2.1.3控制技术。五轴联动加工就是要实现5个运动轴的同时运动,完成零件的加工。由于旋转运动轴的存在,导致坐标系是运动变化的,使得编程算法比三轴机床的算法复杂很多,各种插补运算量庞大,同时细微的旋转坐标轴误差将导致很大的加工误差。为此,要求五轴联动加工中心数控系统具备强大的控制和伺服能力以及高效的运算速度和控制精度,同时还要求系统具备良好的刀轴中心点控制管理能力,实现刀具长度补偿和刀具半径补偿,从而实现圆柱面和倾斜工作面的高效加工。目前在五轴联动加工中,常用的数控系统有:德国Siemens公司的Siemens840D和Heidenhain公司的iTNC530,它们广泛应用于各种高端的数控设备中。
2.2五轴加工工艺
五轴数控加工工艺的划分模式有:按粗、精加工分,依据零件的形状、尺寸及精度等因素,将粗精加工分开的原则进行工艺划分;按刀具集中分,按选择的刀具进行工艺的划分,可以减少换刀次数,缩短加工时间,提高加工精度及效率;按加工部位分,遵循的原则有先近后远、先简后繁、先平面后孔。五轴联动精加工时,五轴设备的刚性、切削能力以及被切削材料的硬度都是应该考虑的因素。根据机械加工工艺规程,在五轴精加工时一般预留0.5~0.8mm的余量精加工。过大的切削量是不允许的,它将对五轴机床的主轴造成损坏,因此工艺人员在制定工艺方案时,应着重考虑五轴联动加工时的切削参数,并书面告知操作人员注意事项。同时在进行五轴联动加工前应进行仿真验证,避免碰撞及过切现象的产生。
23五轴加工关键技术
2.3.1刀轴控制。五轴联动加工过程中的刀具轨迹非常复杂和抽象,为了加工出复杂异型零部件的曲面及空间,经常需要进行多次坐标系和刀轴的变化来完成零件的加工,同时还要考虑各运动轴的协调性,避免干涉、碰撞现象的产生,因此在执行程序前需要用CAD/CAM软件对刀轴进行验证。
2.3.2试切加工。在五轴联动加工过程中,为提高多轴加工的效率及保证加工系统的刚性,实际的切削参数往往要比NC程序中设定的值低(尽量先将倍率调到较低值,然后慢慢提高,直至找到一个最佳方案);另外,当五轴设备的五个运动坐标轴都在运动时,其刚性比三轴设备要低,如果处理不好,将直接影响设备的性能和产品的加工精度。
2.3.3CAD/CAM软件。要实现复杂曲面的五轴加工,关键需要五轴CAD/CAM软件来实现加工工艺。如今能进行五轴编程的软件有UG、hyperMILL、cimatron、powermill、caxa制造工程师等,其中由于powermill软件具有功能强大,操作简便等特点,在国内市场的占有率正在逐年提高。现在越来越多的学校、工厂正在用powermill软件编制五轴加工刀路,完成复杂异形零件的加工。powermill软件中的五轴加工策略很多,其中“曲面投影精加工”策略的加工范围广、生成的刀具路径质量高效,特别适用于复杂曲面的加工,越来越受到机械制造工艺师的青睐。为此,研究“曲面投影精加工”的原理、相关参数的含义以及使用方法,对用好该五轴加工策略意义重大。
2.3.4刀路优化。在编制NC程序时,要避免刀轴不必要的、过度的摆动,防止因机床主轴或工作台过于频繁的摆动,造成机床的损坏。在进行刀路优化时,着重要注意连接刀路的设置,生成多轴刀路后,还需根据机床性能、零件特征,调整连接刀路参数,优化刀具路径。
2.3.5仿真验证。由于五轴设备贵重,加工程序量大,需要考虑的干涉、碰撞问题较多,所以实际加工前一定要先进行模拟加工。如今的CAM软件基本只能进行程序的验证,很难仿真实际的工艺工装等实际加工情境,所以在进行实际的五轴联动加工前,建议编程人员使用专业的多轴数控仿真软件(VERICUT)进行仿真加工,来验证工艺及程序的安全性、可靠性,同时增强操作者和机床的安全保障。
3结语
五轴加工中的直线轴是确定的,即坐标轴XYZ,但是旋转轴有三个(ABC),一般在加工时只选择其中两个即可。生产前将加工刀具安装到特定位置后,仔细校验以确保安装的规范性,使五轴能充分发挥其作用,对多个曲面进行同时加工。在实际生产中,根据生产需要采用不同的加工模式。
1.1“3+2”轴加工模式。在机床加工中,旋转轴的损耗远远大于直线轴,所以如何解决旋转轴的损耗问题是生产工作中的重点。“3+2”模式的编程相对简单,而且对旋转轴的磨损较小,延长了机床使用寿命,所以是五轴加工中普遍使用的模式。在加工中先要建立坐标系,确定两个旋转轴的方向,之后3个直线轴联动对零件加工。进行零件的斜面或者是底部打孔时可以使用短刀,以提高零件的加工效率。但这种模式仍然存在不足之处:由于加工时两个旋转轴的限制,不能进行360度的全面加工,导致加工界面不是光滑平整的,存在细小的瑕疵,不能实现对零件的精确加工。
1.2“4+1”轴加工模式。在加工类似回转体的零件时,常采用“4+1”加工模式,即确定一个旋转轴的角度,其他四个轴联动进行加工。这种加工模式的局限性较大,不适用于所有的零件加工,但能够避免零件经常被安装,在一定程度上提高了生产效率,所以一直沿用至今。
1.3五轴联动加工。五轴联动加工是加工中最为精确的一种加工模式,将三个直线轴和两个旋转轴同时运动,并且在加工中能够进行方向的调整,保证加工连续性和高效性,五轴联动能很好的解决加工界面的层次问题,减少加工误差,将界面打磨光滑、平整。在进行精准加工时经常采用这种模式以提高零件的质量,保证零件的精准度。
2五轴加工的关键技术
在五轴加工中不仅要有先进的五轴机床设备,还要有配套的编程软件及完善的加工工艺。根据加工零件的具体需要,首先用CAD/CAM软件对刀具的角度和加工方向进行设置,编译相应的加工程序。然后进行程序调试,在计算机上进行仿真加工,检验刀具加工路径是否符合实际加工要求,及时对程序进行修改,确保其科学、可靠。最后在机床设备上进行五轴加工。
2.1五轴机床。在三轴数控机床中只有三个旋转轴,加工的零件较为简单,精度不高。五轴机床不仅增加了两个旋转轴,且加强了对零件的精度控制。在加工前的软件编译中对算法进行反复推敲,在加工中能够修正刀具的方向控制加工速度,加工后能对生产的零件进行质量控制。
2.1.1主轴速度。五轴机床的主轴转速在20000r/min~50000r/min,既可以满足零件的加工需要又能节约电力,减少设备损耗。对于精密度较高的零件,机床的主轴应具备更高的转速,以控制较小刀具对零件的细微加工。
2.1.2驱动技术。五轴加工不仅实现了技术改革,而且能够在加工中及时修改设备相关参数,改变主轴转速和刀具行进方向,实施紧急制动,避免零件报废产生经济损失。在进行复杂曲面加工时需要不断改变主轴的转速和角度,使界面保持平整,对转速进行精确控制能延长刀具的使用寿命。目前,国内外都在研究新型的电机以精简机床设备内部结构,减少实际加工中能量的损耗,从而提高设备的稳定性,使其保持高效率的生产。
2.1.3控制技术。在进行实际加工中,要对运动中的5个轴进行严格控制,保证其在应有的轨迹上进行运动。加工程序要具备高效的运算速度和控制精度,及时发现生产中的错误,改变刀具行进方向,及时弥补刀具的不足。
2.2五轴加工工艺。根据加工情况不同五轴加工采用不同的工艺。按照生产零件精密度划分,分成粗、精加工;按照刀具规格划分,以减少换刀次数;按照加工部位划分,进行先近后远、先简后繁、先平面后孔的加工。无论采用哪种加工工艺,加工前都要进行模拟实验,检验所编译的程序是否存在漏洞,避免实际加工中造成刀具损伤。
2.3五轴加工关键技术
2.3.1刀轴控制。在五轴加工中,需要对刀轴进行严格控制,经常改变轴的方向和加工速度,避免生产中造成刀具的碰撞,发生事故。
2.3.2试切加工。为了提高五轴机床的使用寿命,程序预先设计的参数比较小,之后反复调整,慢慢提高,逐步接近最大效率值,以运用到实际加工中。
2.3.3CAD/CAM软件。要实现复杂曲面的五轴加工关键需要五轴CAD/CAM软件来实现加工工艺。由于powermill软件具有功能强大操作简便等特点,在国内市场占有率正在逐年提高。软件中的五轴加工策略很多,其中“曲面投影精加工”策略的加工范围广、生成的刀具路径质量高效,特别适用于复杂曲面的加工,因此受到机械制造工艺师的青睐。
2.3.4刀路优化。在编制NC程序时,要避免刀轴不必要的、过度的摆动,防止因机床主轴或工作台过于频繁摆动造成机床损坏。在进行刀路优化时着重注意连接刀路的设置,生成多轴刀路后,需根据机床性能、零件特征,调整连接刀路参数,优化刀具路径。
2.3.5仿真验证。由于五轴设备贵重,加工程序量大,需要考虑的干涉、碰撞问题较多,所以实际加工前一定要先进行模拟加工。如今的CAM软件基本只能进行程序验证,很难仿真实际的工艺工装等实际加工情境,所以在进行实际的五轴联动加工前,建议编程人员使用专业的多轴数控仿真软件(VERICUT)进行仿真加工,来验证工艺及程序的安全性、可靠性,同时增强操作者和机床的安全保障。
3结语
关键词: 数控车 对刀
对刀是数控车削加工中的主要操作和重要技能。数控加工程序编制完成后,正式加工之前首先要进行对刀,确定刀具与工件的相对位置,一旦对刀完毕,加工过程就将自动完成,所以,在一定条件下,对刀的精度直接决定着零件的加工精度,同时,对刀的熟练程度还直接影响数控加工效率。
对刀时仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件等,这样才能在数控加工中熟练、合理地运用各种对刀方法,保证工件质量,提高加工效率。
一、 理解对刀的概念。
一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程时根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。
数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。
在图1中,O是程序原点,O’是机床回零后以刀尖位置为参照的机床原点。编程时按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此实现刀尖的运动轨迹。
所谓对刀,其实质就是测量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。
二、 确定对刀点。
确定对刀点,是数控加工工艺分析的重要内容之一。“对刀点”是数控加工时工具相对零件运动的起点,又称“起刀点”,也就是程序运行的起点。对刀点选定后,即确定了机床坐标系和零件坐标系之间的相互位置关系。
刀具在机床上的位置是由“刀位点”的位置来表示的。不同的刀具,刀位点不同。对平头立铣刀、端铣刀类刀具、刀位点为它们的底面中心;对钻头,刀位点为钻尖;对球头铣刀,则为球心;对车刀、镗刀类刀具,刀位为其刀尖。对刀点找正的准确度直接影响加工精度,对刀时,应使“刀位点”与“对刀点”一致。
对刀点的选择原则,主要是考虑对刀点在机床上对刀方便、便于观察和检测,编程时便于教学处理和有利于简化编程。对刀点可选在零件或夹具上。为提高零件的加工精度,减少对刀误差,对刀点应量选在零件的设计基准或工艺基准上。如以孔定位的零件,应将孔的中心作为对刀点。对车削加工,则通常将对刀点设在工件外端面的中心上。
对数控车床、镗铣床、加工中心等多刀面加工数控机床,在加工过程中需要进行换刀,故编程时应考虑不同工序之间的换刀位置(即换刀点)。为避免换刀时刀具与工件及夹具发生干涉,换刀点应设在工件的外部。
三、 试切对刀原理
对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准对刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。
以图2对例,试切对刀步骤如下:
(1) 在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。
(2) 将刀具沿+Z方向退回到工件端面余量处一点(假定为a点)切削端面,记录此时显示屏中的Z坐标值,记为Za。
(3) 测量试切后的工件外圆直径,记为。
如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为
Xo = Xa ―
Zo = Za
注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。
四、 多刀对刀
1、 绝对对刀:所谓绝对对刀即是用每把刀在加工余量范围内进行试切对刀,将得到的偏移量设置在相应刀号的偏置补偿中,这种方式思路清晰,操作简单,各个偏移值不互相关联。因而调整起来也相对简单,所以在实际加工中得到广泛应用。
2、 相对对刀:所谓相对对刀即选定一把基准刀,用基准刀试切对刀,将基准刀的偏移用G50来设置,将基准刀的刀偏补偿设为零,而将其它刀具相对于基准刀的偏移值设置在各自的刀偏补偿中。
五、 精确对刀
从理论上说,上述通过试切、测量、计算得到的对刀数据应是准确的,但实际上由于机床的定位精度、重复精度、操作方式等多种因素的影响,使得手动试切对刀的对刀精度是有限的。因此还必须精确对刀。
所谓精确对刀,就是在零件加工余量范围内设计简单的自动试切程序,通过“自动试切――测量――误差补偿”的思路,反复修调偏移量、或基准刀的程序起点位置和非基准刀的刀偏量,使程序加工指令值与实际测量值的误差达到精度要求。由于保证基准刀程序起点精确是得到准确的非基准刀刀偏置的前提,因此一般修正了前者后再修正后者。
对刀是数控加工的重要环节,对刀方法很多,只有在加工实践中不断摸索和总结,才能较好掌握对刀的技术,为提高产品质量和生产效率打好基础。
参考文献:
1.王爱玲,张吉堂,吴雁。现代数控原理及控制系统[M]。北京:国防工业出版社,2002。
关键词:传统机加工工艺 数控加工工艺 特点 比较
中图分类号:TG659 文献标识码:A 文章编号:1672-3791(2013)01(c)-0092-01
较之传统的加工工艺,数控加工方式作为当今的主流加工方式,在加工工艺方面产生了极大的变革,本文认为需要不断了解这些区别,才能更好的使用数控加工工艺,从而保证数控加工的整个过程都顺利进行。
1 工艺复杂性
数控加工工艺一般需要考虑加工零件的定位基准、工艺性、工艺路线制定、刀具选择、装夹方式、工艺参数以及切削方法等,而在传统加工方式中,这些注意事项均被简化处理了。所以,数控加工工艺要比普通加工工艺影响因素更多一些,也更复杂一些,因此对数控加工工艺的整个过程要进行全面分析,采用合理的加工工艺,并从整体上对加工方案进行完善。在完成数控加工任务中,一样的任务有多种不同的方案,可以从加工刀具的角度来选择加工工艺,也可以从加工部位的角度出发选择加工工艺。数控加工工艺的复杂、多变是其最为显著的特征,也是与传统加工方式的主要区别所在。
2 刀具选择
我们应该根据不同的加工方法和加工工艺来选择不同的刀具。特别是对与传统速度切削加工机理迥异的高速切削来说,此种切削方式可以有效地提高加工质量与加工效率、大大地缩短加工周期以及减少切削变形的显著优势,由于在制造业中的应用不断增加致使高速切削刀具的需求也不断增加。此外,还有一种干切削方式,干切削顾名思义就是在切削时加极少的切削液甚至不加切削液,因其这一特性就对刀具提出了更高的耐热要求,相比普通机床,它对刀具的性能要求更高。目前刀具制造商的角色也与原先相比发生了重要的转变,现在的刀具制造商不仅仅单纯的从事刀具生产、供应,也将精力很多地投入到开发新切削工艺及相应的配套技术、产品。他们合作关系中地位,也从单纯的甲方、乙方提升到了制造企业在控制产品成本,提升产品质量方面的生要合作伙伴,同时他们也积极地为用户提供更为全面的技术与服务支持。
3 夹具选择
由于数控加工自身特点,对使用的夹具有着基本要求。第一,机床坐标方向较之夹具的坐标方向来说,应保持固定不变。第二,对于零件和机床坐标系之间的尺寸关系应协调好,这一点是与普通机床加工的重要区别。为了要确保机床坐标系与零件工作坐标系固定的尺寸关系,数控加工中心夹具本身应该以工作台的基准孔或基准槽进行定位并安装。装夹分别有定位与夹紧两个非常重要的步骤,与传统加工需要多次装夹相比,数控机床可以一次装夹并加工不同的面,极大地减少了因装夹频繁带来的误差。为了定位与夹紧更为方便与迅速,生产商也在不断设计和使用专用夹具,但是此夹具的生产成本较高,在产量不大的情况下分摊在每个产品上的夹具费也更高,这是个不能忽视的问题,需要慎重选择。如果采用仪表调试方法进行定位,选用普通的压紧元件去夹紧,可以在一定程度上降低成本。
4 热变形
一般在切削过程中不可避免的都会出现一定程度的热变形,而精加工时热变形会影响最终产品加工的精确度,在传统加工方式中,区分各加工阶段十分容易,因每道工序间的间隔时间较长,故可待前一个加工产生的升温变为正常时再进行下步的精细加工,如果精细加工可以分为多个步骤,那么可以通过增加每个步骤之间的时间来进一步降低热变形带来的不利影响。
数控加工中的热变形则是个较为突出的问题,由于数控加工是同时对多个面进行加工,这样导致切削中产生的热量无法及时消散,但如果像传统加工那样空出停留时间则又会影响了加工效率。如果能够发现热变形的规律并通过编辑生产程序作以适当补偿是解决这一问题的方法,但可惜的是目前还未找到发现变形规律的可靠方法,所以在生产精密度较高的零件时也只能采用普通机床加工先冷却后再进行精加工这一方式。
5 加工方式
由于数控加工的自身特点,对于传统机床来说并不适用的加工方式,在数控加工中的可行性却很高,利用尾座导向支撑镗和传递的悬臂镗,都已经被固定循环方式和调头镗所取代。传统孔位加工工艺中的修整法、充填法、空刀法都已经被背镗法、数控修整法和圆弧插补所替换。新的加工工艺硬切削,在降低加工成本、减少设备资金投入、提高加工效率方面效果显著,对传统加工方式造成一定冲击,用切削取代磨削是未来的主要发展趋势。作为绿色加工工艺的干切削,较之湿切削具有很多优势,然而,也有切削变形加剧、切削力增大、工件加工质量不易保证、刀具耐用度降低等劣势,通过分析干切削的影响因素和各种条件,为了弥补切削的缺点,需要寻求相应的解决方案及技术措施,上述缺点对于干切削来说瑕不掩瑜,干切削将是未来的主流加工方式。对于数控加工来说,高速加工受到广泛的认可,以模具加工为例,主要具备以下优点:传统加工工艺大致可以分为:粗-半精-精-磨削等流程,而在高速加工时代,这些工序可并为一到两个流程中,并且由于其在加工精度方面的保障性,可以将磨削加工工序省去。高速加工的切削速度较之普通加工来说有五到十倍的优势,可以大幅节省加工时间,为直径较小的刀具使用带来便利,而且可以加工壁厚较小、强度和硬度都较高的脆性材料,可替代某些工艺,经济效益得到明显提升,其一道工序的加工质量和精度,要普通加工经过多道工序方可达到,大大提升了生产效率。
6 柔性化程度
传统通用机床的特点是拥有较好的柔性,但效率较低;传统专用机床的特点是有较高的效率,其适应性较差,柔性差,刚性大,适应市场激烈竞争的能力较低。这就需要我们转变程序,通过数控的方式进行加工,在实现自动化的同时,柔性和效率都能有所提升,可见,数控加工对于当前市场来说,具有很好的适应性。
7 结论
综上所述,传统加工是数控加工的基础,数控加工是集传统加工、CAE、CAM于一体的加工方式,本文通过对传统机床加工工艺与数控加工工艺的对比,归纳总结出各自的优点与缺点,以期为数控加工的发展提供一些参考,进而更好的编制出科学合理的文件。
参考文献
[1] 郭英杰.浅谈数控加工切槽与切断[J].张家口职业技术学院学报,2010(1):51-53.
[2] 高素琴.数控车床螺纹加工指令的分析与应用[J].南通职业大学学报,2011(1):77-79.
关键词:高速切削刀具;数控加工;应用
一、高速切削技术和高速切削刀具
目前,切削加工仍是机械制造行业应用广泛的一种加工方法。其中,集高效、高精度和低成本于一身的高速切削加工技术已经成为机械制造领域的新秀和主要加工手段。
“高速切削”的概念首先是由德国的C.S~omom博士提出的,并于1931年4月发表了著名的切削速度与切削温度的理论。该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。此后,高速切削技术的发展经历了以下4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削成熟阶段(20世纪90年代至今)。高速切削加工与常规的切削加工相比具有以下优点:第一,生产效率提高3~1O倍。第二,切削力降低30%以上,尤其是径向切削分力大幅度减少,特别有利于提高薄壁件、细长件等刚性差的零件的加工精度。第三,切削热95%被切屑带走,特别适合加工容易热变形的零件。第四,高速切削时,机床的激振频率远离工艺系统的固有频率,工作平稳,振动较小,适合加工精密零件。
高速切削刀具是实现高速加工技术的关键。刀具技术是实现高速切削加工的关键技术之一,不合适的刀具会使复杂、昂贵的机床或加工系统形同虚设,完全不起作用。由于高速切削的切削速度快,而高速加工线速度主要受刀具限制,因为在目前机床所能达到的高速范围内,速度越高,刀具的磨损越快。因此,高速切削对刀具材料提出了更高的要求,除了具备普通刀具材料的一些基本性能之外,还应突出要求高速切削刀具具备高的耐热性、抗热冲击性、良好的高温力学性能及高的可靠性。高速切削技术的发展在很大程度上得益于超硬刀具材料的出现及发展。目前常用的高速切削刀具材料有:聚晶金刚石(PCD)、立方氮化硼(CBN)、陶瓷、Ti(C,N)基金属陶瓷、涂层刀具fCVD)~超细晶粒硬质合金等刀具材料。
二、高速切削刀具的发展情况
金刚石刀具材料。金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。金刚石刀具分为天然金刚石和人造金刚石刀具。然而,由于天然金刚石价格昂贵,加工焊接非常困难,除少数特殊用途外,很少作为切削工具应用在工业中。近年来开发了多种化学机理研磨金刚石刀具的方法和保护气钎焊金刚石技术,使天然金刚石刀具的制造过程变得比较简单,因此在超精密镜面切削的高技术应用领域,天然金刚石起到了重要作用。
立方氮化硼刀具材料。立方氮化硼(CBN)是纯人工合成的材料,是20世纪50年代末用制造金刚石相似的方法合成的第二种超材料——CBN微粉。立方氮化硼(CBN)是硬度仅次于金刚石的超硬材料。虽然CBN的硬度低于金刚石,但其氧化温度高达1360℃,且与铁磁类材料具有较低的亲和性。因此,虽然目前CBN还是以烧结体形式进行制备,但仍是适合钢类材料切削,具有高耐磨性的优良刀具材料。CBN具有高硬度、高热稳定性、高化学稳定性等优异性能,因此特别适合加工高硬度、高韧性的难加工金属材料。PCBN刀具是能够满足先进切削要求的主要刀具材料,也是国内外公认的用于硬态切削,高速切削以及干式切削加工的理想刀具材料。PCBN刀具主要用于加工淬硬钢、铸铁、高温合金以及表面喷涂材料等。国外的汽车制造业大量使用PCBN刀具切削铸铁材料。PCBN刀具已为国外主要汽车制造厂家各条生产线上使用的新一代刀具。
陶瓷刀具。与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷刀具材料的强度低、韧性差,制约了它的应用推广,而超微粉技术的发展和纳米复合材料的研究为其发展增添了新的活力。陶瓷刀具是最有发展潜力的高速切削刀具,在生产中有美好的应用前景,目前已引起世界各国的重视。在德国约70%加工铸件的工序是用陶瓷刀具完成的,而日本陶瓷刀具的年消耗量已占刀具总量的8%~l0%。
涂层刀具。涂层材料的发展,已由最初的单一TiN涂层、TiC涂层,经历了TiC-112o3-TiN复合涂层和TiCN、TiA1N等多元复合涂层的发展阶段,现在最新发展了TiN/NbN、TiN/CN,等多元复合薄膜材料,使刀具涂层的性能有了很大提高。硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。(氮)化钛基硬质合金(金属陶瓷)金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、Mo等构成。金属陶瓷的硬度和红硬性高于硬质合金而低于陶瓷材料,横向断裂强度大于陶瓷材料而小于硬质合金,化学稳定性和抗氧化性好,耐剥离磨损,耐氧化和扩散,具有较低的粘结倾向和较高的刀刃强度。
三、高速切削刀具的具体应用情况
理想的刀具材料应具有较高的硬度和耐磨性,与工件有较小的化学亲和力,高的热传导系数,良好的机械性能和热稳定性能。理想的刀具使得高速硬切削能够作为代替磨削的最后成型工艺,达到工件表面粗糙度、表面完整性和工件精度的加工要求。硬质合金刀具具有良好的抗拉强度和断裂韧性,但由于较低的硬度和较差的高温稳定性,使其在高速硬切削中的应用受到一定限制。但细晶粒和超细晶粒的硬质合金由于晶粒细化后,硬质相尺寸变小,粘结相更均匀地分布在硬质相的周围,提高了硬质合金的硬度与耐磨性,在硬切削中获得较广泛应用。
陶瓷刀具和CBN刀具是在高速硬车削和端面铣削中最常用的刀具。它们所具有的高硬度和良好的高温稳定性,使其能够承受在硬切削过程中高的机械应力和热应力负荷。与陶瓷刀具相比,CBN刀具拥有更高的断裂韧性,因此更适合断续切削加工。为保证工件较高的尺寸精度和形状精度,高的热传导率和低的热膨胀系数也应是刀具材料所应具有的重要性质。因此,具有优良综合性能的CBN刀具是最适合用于高速硬切削的刀具。聚晶金刚石刀具的硬度虽然超过立方氮化硼刀具,但即使在低温下,其对黑色金属中铁的亲和力也很强,易引起化学反应,因此不能用于钢的硬切削。:
一般而言,PCD刀具适合于对铝、镁、铜等有色金属材料及其合金和非金属材料的高速加工;而CBN、陶瓷刀具、涂层硬质合金刀具适合于钢铁等黑色金属的高速加工。故在模具加工中,特别是针对淬硬性模具钢等高硬度钢材的加工,CBN刀具性能最好,其次为陶瓷刀具和涂层硬质合金。
结论
高速切削技术的问世改变了人对传统切削加工的思维和方式,极大提高了加工效率和加工质量。而高速切削与模具加工的结合,改变了传统模具加工的工序流程。高速切削刀具作为高速切削技术的关键,随着技术的不断完善,将为模具制造带来一次全新的技术革新。
参考文献
[1]韩福庆高速切削刀具材料的开发与选择[J]化学工程与装备2008
[2]周纯江叶红朝高速切削刀具相关关键技术的研究[J]机械制造2008
[3]范炳良林朝平基于高速切削刀具锥柄系统的分析与研究[J]机械设计与制造2008
[4]马向阳李长河高速切削刀具材料[J]现代零部件2008