前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的测量技术主题范文,仅供参考,欢迎阅读并收藏。
地籍测量必须准确定位每一项土地接线,绘制精准的地籍图。一般地籍测量中要求数据单位为厘米,通过GPS-RTK测量技术测绘地籍信息,然后保存到GPS内,用于构成精准的地籍信息图[2]。GPS-RTK测量技术在多项工具的支持下,实现细化测绘。所以,主要在基准站、测绘作业以及内业处理三方面,分析GPS-RTK在地籍测绘中的应用。
1.1选定基准站
基准站是GPS-RTK测量技术的核心,支撑测量技术的顺利进行。准确选定基准站的位置,有利于GPS-RTK发挥测量优势,因此,针对基准站的选择,提出三点要求:(1)确保基准站的高度,基准站发射信号时,需借助天线电台,为避免传输受阻,尽量保障足够高的选址;(2)避开反射作业区,部分水域、建筑对传输系统造成影响,导致GPS-RTK的测量信息无法顺利传输,丢失诸多信息数据,基准站在安置时,必须在无反射物的环境中;(3)基准站安置在无线电通信稳定地区,如果选定地区存在信号干扰,需根据地籍测量的需求,重新选定基准站的位置,用于控制基准站的测量环境,避免产生电波干扰。
1.2基于GPS-RTK的测绘作业
GPS-RTK测量技术在地籍中的测绘作业,也称为外业测量,分配测绘人员。一般测绘由两名测绘人员构成,一人留守在基准站处,另一人实行定点测绘,即:记录每一个测绘点的数据,便于绘制测量图。规划GPS-RTK在测绘作业中的具体应用流程如下。第一,确定GPS-RTK所使用的坐标系,可以根据地籍测绘的需求设定,也可直接采用国家标准级坐标系,再规划投影参数,如:GPS-RTK确定地籍测量的已知点,规定中央子午线,如果子午线为已知,直接选定,如为未知,则需选择合适的子午线,以地籍测绘的当地环境为主。第二,关闭GPS-RTK测量装置的参数,设置基准站。基准站同样分为已知、未知两种,两种布设方式主要取决于基准站的设置点:(1)已知点处基准站进入测量状态时,需要经过人工操作,通过Tab功能存储基准点并命名,所有待测点的目标值输入完成后,提取存取的基准点,规划GPS-RTK的测量时间,完成基准站的布设;(2)未知点与已知点存在明显差异,其在定位基准站坐标时,需以高程为主,尽量拉近高程值,由此才可确定基准站的布设效果。第三,实质操作,促使GPS-RTK测量技术进入工作状态,测量人员根据操作项目,执行地籍测量。基准点中包含GPS-RTK的测量结果,根据对应按键,测量人员准确获取测量结果,必要时可实行转换参数,如果测量点的数据存在较大误差,GPS-RTK还需执行重测,控制误差在标准范围内。
1.3内业处理
测绘作业中得出的测量参数组成GPS-RTK的数据库,无法直接应用在地籍绘图上,所以还需转化数据格式,转化的数据格式需要与所用的绘制软件保持一致,促使测量人员迅速完成地籍绘制[3]。比较常用的绘制软件为CASS5.0,GPS-RTK数据转化时,可以该软件为主,保障地籍测量的真实性。由此,提高测量数据的应用能力,确保各项数据的可用程度,不会出现无用数据,发挥GPS-RTK数据存储的优势。
2GPS-RTK在地籍测量中的质量控制
GPS-RTK在地籍测量中的应用,有效提高测量数据的质量和精准度,成为地籍测量中不可缺少的技术。GPS-RTK在应用的过程中,必须依靠科学的质量控制措施,才能完善地籍测量。
2.1构建控制网约束测量数据
控制网是GPS-RTK在地籍测量中的基础,由传统GPS测量技术获取相关数据,用于检测地籍测量中的各项数据。控制网在检测数据的同时,控制GPS-RTK测量技术的准确度,重点检测转换、输入中的测量数据,以免干预数据的准确度。控制网可以控制GPS-RTK测量技术在任何情况下的测量质量,基本不会出现测量误差,完善GPS-RTK在地籍测量中的各个数据链。
2.2排除干扰控制测量误差
虽然控制基准站的位置,但是难免会出现不同情况的误差干扰,通过质量控制的方式,主动解决地籍测量中的误差,排除干扰。GPS-RTK在地籍测量中的实际应用,基本会产生误差,证实质量控制的重要性,测量人员在排除误差时,以手簿为主,通过核实、观测的方式,判断测量数据的真实价值,还可在测量点上实行重复测量,分析多次测量的结构,得出最准确的测量数据[4]。GPS-RTK在地籍测量中的质量控制,有利于稳定测绘结果,体现数据准确的价值,规避地籍测量中的误差。防止由于测量误差引发地籍纠纷,保障地籍测量的质量。
3结束语
关键词:激光;振动测量;技术
中图分类号:TN256文献标识码:A文章编号:1009-3044(2010)02-462-02
Analysis of Laser Vibration Measurement Technology
HAO Feng, WANG Wei-hui
(The Second Artillery Engineering College, Xi'an 710025, China)
Abstract: With the progression of society, laser vibration measurement plays an important part in society development. Various of methods, advantage and disadvantage in laser vibration measurement are introduced in this paper. The future prospect of laser vibration measurement are pointed out in the paper.
Key words: laser; vibration measurement; technology
关于物体的微小振动和微小位移精确测量的相关研究是随着精细加工工艺和微机械技术的飞速发展及大量应用而得到人们的广泛重视的。光学测量技术所具有的优点是结构简单、精度高、耐高压、耐腐蚀、能在易燃易爆的环境下可靠运行、抗电磁干扰、动态范围大,并且光学测量技术是一种重要的非接触式无损测量技术,基于其上述优点,光学测量技术占据了计量测试技术领域的主导地位。
目前振动测量在材料探伤、机械系统的故障诊断、噪声消除、结构件的动态特性分析及振动的有限元计算结果验证等方面都得到了广泛的应用,所以激光振动测量技术有着广阔的应用与发展前景。
1 激光振动测量技术的测量原理及现状
目前,常用的激光振动测量方法有激光三角法、散斑法、全息法、激光多普勒效应法、光纤与微机电(MEMS)法和干涉法等。由于这些技术的使用,使得激光振动测量的分辨率或精度在很大程度上得到了提高。下面分别介绍几种常用的光学振动测量方法:
1.1 激光三角测振法
激光三角法[1-2]是利用几何光学成像原理,将激光器发出的光经发射透镜汇聚于被测物体表面形成入射光点,该光点通过接收透镜汇聚于光电探测器上,形成像点,使用对位置敏感的传感器就可接收到这一信息。当入射光点与该光学结构产生相对入射光轴方向的振动或位移时,引起像光点在感光面上发生位移,从而引起光电探测器输出电信号的变化,根据电信号的变化量可求出像点唯一的变化量,通过信号处理可得到被测目标位移或振动信号。
该方法对于振动的测量是非接触形式的。激光三角测振法具有结构简单,发展比较成熟等优点,适用于工业现场安装使用。但是该方法的不利之处一方面是光电探测器的灵敏度和尺寸限制了该方法的分辨率和测量范围,另一方面是发射透镜的焦距限制了该方法的工作距离,不适于远距离处的微小振动测量。
1.2 光强测振法
光强测振法[1-2]是利用被测目标相对投射光束,或反射光束相对探测光路的位置变化导致探测光强的变化来探测振动。
该方法对于振动的测量既可以是接触式的,也可以是非接触式的。光强测振法具有信号处理方便、结构简单、成本较低等优点,可以广泛应用于各种场合。而且光强法与光纤的紧密结合,使得光强测振法的应用领域得到进一步拓展。该方法的不利之处在于光强易受外界环境和光源干扰的影响,使得测量结果精度不高,所以一般采用多波长、多光束等方法来改进光强测振法的不利之处,提高光强测振法的抗干扰能力。
1.3 全息测振法
全息法[1-2]是将相干光束的一部分作为参考光波,其余部分投射到物体上并被其反射作为物光波,两光波相遇产生干涉,所形成的干涉场反映了被测物体的振动情况,该干涉场由照相底片记录经过适当显影形成全息图。全息干涉测振可以对整个振动面上的点位置进行测量,通过比较不同时刻的全息干涉图,就能够描绘出被测振动面上各点的振动情况。
该方法对于振动的测量是非接触形式的全场同时测量。全息测振法具有可以进行面测量,同时获得多点数据的优点。该方法的不利之处在于须用银盐干板作记录介质,全息图需要进行照相及冲洗等处理,操作过程复杂,处理条纹图极其费时,无法实现实时测量,实际应用较困难。
1.4 激光多普勒效应测振法
多普勒测量[4-7]中的多普勒信号通常都是从被测物体的散射光中获得的,信噪比低,且包含有运动速度、光源、接收器之间的角度因素,由于这些因素会引入较大的测量误差。对振动特性的计算方法为信号中的每一个差拍波对应一个位移当量值,被测振幅的获得是经过对相邻两个翻转点之间的差拍波的个数进行计数而得到的。
该方法的测量不需要干涉仪组件,可精密装配。激光多普勒效应测振法具有被测速度矢量与多普勒频移呈线性关系,对于任何复杂的物体运动都适合研究的优点。因此,激光多普勒技术是一种高精度动态测量方法。该方法的不利之处在于得不到小于当量值的位移,测量分辨率很低。激光光栅多普勒效应的微振动测量系统的提出改变了以上不足。
1.5 光纤与MEMS测振法
光纤与MEMS技术相结合的振动传感器[1-2,8]在振动传感领域中一军突起。在微光机电传感器中,光纤可作为传光介质,为传感器提供光连接,传感器内部的电信号经由发光二极管转变为光信号,再输送到外部设备,这样可以使测量结果大大免受外界电磁干扰。光纤也可用来构造光路,成为集成传感器的一部分,作为悬臂梁感受外界振动,通过测量经过光纤的光强变化来实现振动传感。
光纤与MEMS技术相结合的振动传感器的优点是可免疫外界电磁干扰,可应用于避免使用电信号的场合,结构布置灵活,适合应用于复杂结构环境和复杂结构空间下的振动传感测量,适用于微型化和集成化产品。
1.6 干涉测振法
干涉测振法是将光束正入射于物体表面,其反射回来的检测光与参考光相遇形成干涉场,此后再对干涉场进行处理便得到所要测量的振动信息。
该方法对于振动的测量是非接触精密测量。干涉测振法具有应用范围广、重复性极高、可以对微小振动进行高精度测量的优点。但是该方法的不利之处一方面是由于干涉测振法具有高灵敏性,环境扰动对其影响非常突出,当光程质量不理想时,测量将无法进行。另一方面是在实际应用中很难保证入射光垂直于被测物体表面,以及目标物体表面的不平整性,使得由目标物返回的检测光与参考光将不能很好的重合,尤其当两束光偏差太大就不能形成干涉,这将使测量无法进行。因此,人们先后发明了光波频率调制补偿法、机械式位相调制补偿法以及将机械补偿和光调制相结合的方法来解决这一问题。
1.7 激光散斑测振法
激光散斑振动测量技术[1-3]是利用激光的高相干性,当激光照射到物体粗糙光学表面时将产生散斑场,该散斑场是被测物体表面信息的载体,记录下该散斑场并利用数字图像处理技术,就能以干涉条纹的形式得出被测信息的等高线,通过条纹判断便能得出振动物体的位移。
该方法一般采用多帧干涉图取平均的方法来减少环境扰动的影响,但并不能从根本上解决扰动问题。散斑干涉法适用于对频率已知的振动信号进行测量,从而实现对物体振动特性的分析,该方法的不利之处是精度和测量应用范围有限。
2 激光振动测量的展望
激光振动测量技术发展前景非常广阔,对于激光振动测量技术的研究工作也是研究人员为之做出不懈努力的工作方向。关于激光振动测量的展望有如下几个方面:
2.1 改善测量环境
随着我国科技水平的不断发展与提高,人类对于振动测量精度的需求已经达到了纳米量级。目前的分辨率已经不能实现人们对于某些研究领域项目的精度要求,对于纳米精度目标的实现是人类在科研领域的新突破。环境是影响系统实现纳米精度的一方面问题,像空气温湿度的变化、环境的振动和声学扰动等都会影响测量精度。因此,可以采用隔离措施和建立确保稳定环境温度的恒温室的方法来实现纳米测量精度。
2.2 结合多技术于测量
现代的激光振动测量系统广泛采用的是光、机、电与计算机技术相结合的方式来进行高精度、实时动态测量,大系统的概念、模糊理论、人机工程学的概念、自适应原则、调频技术、调制技术、反馈原理这一系列相关理论都广泛的应用在现代测量仪器的设计中,促使测量与控制技术成为一个完整的有机整体。鉴于以上广博知识,更需要多知识、高技术人才团结、协作完成由知识理论到仪器设计的实现。
2.3 进行科研创新
新的测量原理和方法是指导创新研究成果的理论依据,传统的振动测量方法已经不适用于纳米级振动测量的研究,要解决纳米级振动测量需要寻求新的测量原理和方法。将微观物理和量子物理的最新研究成果应用于测量系统中以及对现有技术进行创新性应用是可行的。
2.4 多领域应用
随着科技的发展以及性价比高、质量优良的激光振动测量仪问世,激光振动测量技术不仅可以应用于机械制造的检测中,还可以应用于生物医学、材料检测、航空航天等领域。
3 结束语
当今社会激光振动测量技术与人类的生产、生活是息息相关的,此项技术促使人类的生产、生活质量向着更好、更完善的方向发展。随着激光振动测量方法的成熟与完善,高精度、高效率、低成本的测量方案必将实现并走向成熟。
参考文献:
[1] 张书练,张毅.光电振动传感技术新进展[J].激光技术,2001,25(3):161-165.
[2] 王小芳.四波耦合微振动光学测量的研究[D].南京:南京师范大学,2006:1-4.
[3] Tan Yushan,Jia shuhai,Le Kaiduan.The development of ESPI for vibration measurement[J]. Appl.Opt,1999,120(14):41-45.
[4] 李淑清,杜振辉,蒋诚志.激光光栅多普勒效应微小振动测量[J].光学学报,2004,24(6):835-837.
[5] Emilia G D.Evaluation of measurement characteristics of a laser Doppler vibrometer with fiber optic components[C].Proc.SPIE,1994,2358:240-247.
【关键词】工程测绘;技术;数字化绘图;遥感技术.
近年来, 我国测绘科学技术飞速发展,为工程建设提供了强大技术支撑, 如铁路公路中心线的标定。水坝、桥梁及建筑物的空间位置的确定等,都需依据测量控制点和工程测量技术予以实现. 以保证施工顺利地进行。为检验工程质量和监视工程设施安全营运提供重要技术手段,主要有施工验线、工程验收测量以及工程建(构) 筑物变形观测等。在社会管理方面,一个国家、一个地区或一个城市的现代化管理往往需要运用现代科学手段建立一系列的管理系统以实现高效、实时地管理,城市交通的科学管理离不开现代化的智能交通系统,它既需要集成大量、广泛的空间基础信息资料. 这些部必须运用测绘科技手段来完成。以下就工程测绘测量技术作以简要阐述
1、GP S地理信息系统技术
G PS是利用现代计算机图形和数据库技术来处理地理空间及其相关数据的计算机系统,是融地理学、 测量学:几何学、计算机科学和应用对象为一体的综合性高新技术。其最大的特点就在于:它能把地球表面空间事物的地理位置及其特征有机地结合在一起.并通过计算机屏幕形象、直观地显示出来 GPS具有以下的基本特点主要有以下几个方面:一是公共的地理定位基础;二是多维结构;三是标准化和数字化;四是具有丰富的信息。地理信息系统对空间地理信息进行处理, 准确采集有关的数据.并对地理空间数据和信息进行处理、管理、更新和分析,是采用数据库计算机图形学、多媒体等最新技术的技术系统.对现代测绘技术 自动化技术的起重要支撑作用
2、RS遥感技术
遥感技术起源于20世纪60年代.不直接接触被研究的目标.感测目标的特征信息(一般是电磁波的反射、辐射和发射辐射)。经过传输、处理,从中提取人们感兴趣的信息。遥感包括摄影、陆地、卫星、航空、航天摄影测量等技术。 遥感技术依其波谱性质,可分为电磁波遥感技术、声学遥感技术、物理场遥感技术 遥感信息技术已从可见光发展到红外、微波:从单波段发展到多波段、多角度、多时相、多极化;从空间维扩展到时空维:从静态分析发 展到动态监测。R S为GPS提供信息源,GPS为RS提供空间数据管理 和分析的技术手段( 图像处理)。GPS作为GIS有力的补测、补绘手段。实现了GPS原始地图数据的实时更新。Rs的综合应用是一种充分利 用各 自的技术特点.快速准确而又经济地为人们提供所需的有关信息 的新技术,三者的紧密结合.为地形测量提供了精确的图形和数据。
3、数字化绘图
大比例尺地形图和工程图的测绘是传统工程测量的重要内容,数字化绘图克服了手工绘图存在的许多弊端,如工作量大作业艰苦,作业程序复杂,烦琐的内业数据处理和绘图工作.成图周期长,产品单一 等缺点,符合现代飞速发展的工程需要 在采集数据时,数据采集人员要准确应用地物代码,以免在内业成 图时出现错误;在观测开始时, 相关工作人员需严格按照要求应对测站 点进行检查,跑尺人员应严格按照自动成图的要求作业.确保能完整地 描述地形地貌的特征点,必须通过绘制草图来表明各个地物碎部点的属性及相互关系,测量坎子时。要量取坎子比高.坎下也要进行地形点采集。当一个测区完成后,如果有必要可把数据备份。目前, 数字化成图技术主要有内外业一体化和电子平板两种模 式。内外业一体化是一种外业数据采集方法, 主要设备是全站仪、 电子 手簿等,其特点是精度高、内外业分工明确 、便于人员分配,从而具有较 高的成图效率。具有以下的特点
3 .1 一测多用
如在一些综合性较强的工程中需要对同一地形图绘制不同比例尺的地形图, 过去的平板测图方法则需要重复工作.而数字化测图则可以同时根据完成的地形图绘制不同比例尺的多个地形图- 因为往往小 比例尺包含了大比例尺地形图测图范围。仅需先测大比例尺图范围.再补充小比例尺测图范围即可满足各不同专业人员对不同比例尺的 地形图的需要
3 .2 精度高
数字化成图系统在外业采集数据时,利用全站仪现场 自动采集地 形地物点的三维坐标, 并 自动存储,在内业数据处理时。完全保持了外业测量的精度, 消除了人为的错误及误差来源。 而且外业工作省略了读 数、计算、展点绘图等外业工序,减少了作业人员, 外业工效大大提高,时间缩短, 直接生产成本大幅度下降。
3 .3 劳动强度小
数字化成图的过程,减轻了作业人员的劳动强度,使生产周期大大缩短能及时满足用户的要求。
3 .4 便于保存管理及更新方便
数字化产品既可以存储在软盘上,也可以通过绘图仪绘在所需的图纸上,线条、线划粗细均匀,注记、字体工整,图面整齐、美观。且便于 修改,能更好地保证图形的现势性和不变形性。避免重复测绘造成的浪 费,增加地形图的实用性和用户的广泛性
4、工程测量中的数字摄影测量技术
数字摄影测量是基于数字影像与摄影测量的基本原理-应用计算 机技术、 数字影像处理、影像匹配、模式识别等多学科的理论与方法。就摄影测量本身而言,从测绘的角度上来看数字摄影测量还是利用影像来进行测绘的科学与技术:而从信息科学和计算机视觉科学的角度 来看,它是利用影像来重建三维表面模型的科学与技术。也就是在“室内”重建地形的三维表面模型然后在模型上进行测绘从本质上来说。它与原来的摄影测量没有区别。因而,在数字摄影测量系统中,整个的 生产流程与作业方式,和传统的摄影测量差别似乎不大, 但是它给传统 的摄影测量带来了重大的变革.
目前通过在空中利用数字摄影机所获得的数字影像.内业使用专 门的航测软件处理,进行的航空摄影测量是大面积、大比例尺地形测图、地籍测量的重要手段与方法, 在计算机上对数字影像进行像对匹配,建立地面的数字模型。 再通过专用的软件来获得数字地图该方法的特点是可将大量的外业测量工作移到室内完成。它具有成图速度快、精度高而均匀、成本低,不受气候及季节的限制等优点。特别适合 于城市密集地区的大面积成图。但是该方法的初期投入较大.如果一 个测区较小,它的成本就显得较高。但可以说是今后数字测图的一个 重要发展方向,未来社会要求的是可以提供数字的、影像的、线划的等多种形式的地图产品。并且随着全数字摄影工作站的出现。加上GPS技术在摄影测量中的应用 使得摄影测量向自动化、数字化方向迈进。
5、结语
综上,随着科学技术的进步.在工程测绘领域也必然会带来新的 突破, 现代工程测量必将朝着测量数字化方向迈进。实践中还有一些 问题亟待不断去的探讨研究,鉴于作者水平有限,文中论述不到之处 望行业同仁多多指正,今后亦会加强相关理论知识的学习。争取为工程测绘测量技术研究面建言献策 。
参考文献:
[关键词]三坐标;测量机;自动测量技术
三坐标测量机的操作及测量软件的使用。实践证明,利用三坐标测量机开设测量实验课程有利于学生巩固测量技术的理论知识,掌握最先进的测量技术,有效地提高了学生的工程实践能力。并对人工测量和自动测量的结果进行了比较。
1.自动测量时的测头走向
像图1所示,如果测头停留在初始位置A处,为了探测工作的表面点C,一般先快速驱使测头到点C表面法线上方很近的一点B,再沿法线方问慢速探测点C,之后快速到达点D,慢速探测点E……如此反复,逐点测量。测量完成后,测头停留在空旷的H处。这样快速运动的目的是为了提高测量的效率,而慢速探测是为了保证测量精度。把点B、D、F称之为避障点,把点C、E和G称之为探测点,把BC、DE和FG称之为“探测方向矢量”。实际上,测头在C、E、G等点以低速沿法向前进与工件表面接触后,先后退一小段距离,以保护测头免受损害。这一距离通常很小,只有零点几毫米到2mm(图1未表示),再走向避障点D、F、H。如果测量已知的几何要素,这些“避障点”、“探测点”和“方向矢量”都可通过程序自动生成。如果测量未知要素,就需要通过人工测量并用自学习程序记录它们。
2.自动测量
自动测量要比人工测量同比节约很大的工时,测量精确度更高,测量后的结果更稳定。当测量一批喷油嘴压紧块零件的尺寸时,首先对某一个零件进行人工来测量,计算机把人工操作整个过程及相关信息记下来,同时保存下来,重复测量时,按照人工测量的方式装夹工件,建立坐标系。然后,利用人工测量的一些相关信息并加入必要的避障点编写自动测量的程序。最后,将手动方式改为自动方式进行自动测量。
2.1装夹工件
CMM对被测产品在测量空间的安装基准无特别要求,但要方便工件坐标系的建立。由于CMM的实际测量过程是在获取测量点的数据后,以数学计算的方法还原出被测几何元素及它们之间的位置关系,因此测量时应尽量采用一次装夹来完成所需数据的采集,以确保工件的测量精度,减少因多次装夹而造成的测量换算误差。一般选择工件的端面或覆盖面大的表面作为测量基准,若已知被测件的加工基准面,则应以其作为测量基准。
2.2建立坐标系
在测量零件之前,必须建立精确的工件坐标系,便于零件测量及后续的数据处理。测量较为简单的几何尺寸(包括相对位置)使用机器坐标系就可以了。而在测量一些较为复杂的工件需要在某个基准面上投影或要多次进行基准变换时,工件坐标系的建立在测量过程中就显得尤为重要了。工件坐标系的建立方式取决于零件类型及零件所拥有的基本几何元素情况。其中最常用的通过面、线、点特征来建立工件坐标系包含3个步骤,并且有其严格的顺序。具体是:(1)确定空间平面,即选择基准面。通过测量零件上的一个平面来找正被测零件,保证z轴垂直于该基准面:(2)确定平面轴线,即选择X或Y轴。确定其中一轴线方向后,根据右手定则即可确定另一轴线的方向:(3)设置坐标原点。设定测量的基准面为z=0,X轴为Y=0,Y轴为X=0的点为坐标原点。在PC-DIMS软件的坐标系功能模块中输入所测量或构造的面、线、点元素自动建立工件坐标系。基于CAD数模的检测要根据CAD数模上的坐标系选择需测量的基本元素。如图2所示,先测量工件的上表面——一平面1,将其定义为基准面,建立z轴的正方向。测量直线1将其定义为X轴,根据右手定则可确定Y轴的正方向。用基准面约束原点z值,用X轴约束原点的Y值,再测量直线2约束原点的X值,得到坐标系的原点,建立工作坐标系。这种常用的工件坐标系的建立方法,也称为3-2-1法。若同时需要几个测量坐标系,可以将其命名并存储,再以同样的方法建立第二个、第三个测量坐标系,测量时灵活调用即可。
2.3件特征元素的测量
【关键词】测绘新技术;矿山测量;应用
随着社会的发展,矿山生产对于测量技术的要求也越来的越高。测量的准确度直接关系着矿山生产的安全度。因此,受到的广泛的重视。矿山生产中的如何能够提高测量的精确度成为技术人员不断努力的目标。通过技术人员不断的研究,促使一些先进的测量技术广泛的应用到了矿山生产中,从而提高了测量的精确度,为矿山生产提供了有力的安全保证。所谓的数字测量技术包括很多的先进的技术。例如:全站仪、GPS定位技术、RTK技术、三维数字软件技术等等。通过应用先进的测量技术,大大降低了测量的劳动量,提高了测量的效率,并且数字测量技术的最大的一个优势就是精确度非常高,因此,矿山企业应广泛的应用数字化技术,从而提高测量的效率和生产的安全性,推动矿山产业的良好发展。
1、矿山测量中数字化测量技术优势分析
第一,在矿山测量中采用数字化测量技术,可以通过计算机模拟仿真技术,直接将矿山的地形地貌以及地籍要素在计算机上反映出来,有利于直接使用测量成果指导矿山开采工作的进行。
第二,采用数字化测量效率较高,测量成果在短时间内可以获取,因此有助于在矿山生产过程中对各项内容进行动态的测量监测,可以实现快速出图,指导矿山安全生产工作开展,同时为生产决策以及预警提供准确的决策依据。
第三,数字化测量技术可以按照生产的实际需要,对测量成果中的各种要素进行数据提取处理,能够获取用途更为广泛的图纸或者数据资料,数字化测量成果的使用范围进一步扩大。
第四,数字化测量范围较广,而且测量精度较高。数字化测量技术涵盖了空间信息技术、内外业一体化测量技术、三维可视化技术、数字摄影测量技术、数字化地形图测绘以及变形监测技术等内容,因此涵盖范围非常广,不仅可以降低矿山测量的工作量,同时也能够保证测量的精度与准确度。
2、矿山测量中的数字化测量应用技术
2.1 三维可视化技术
矿山测量中三维可视化技术主要是描述与理解地面以及地下众多地质现象特征的手段,也是各种数据体的一种表征形式。在矿山测量过程中采用三维可视化技术,可以对矿山的空间信息、空间位置关系进行全面的理解,为矿山测量工作人员开展空间分析工作提供全面的数据支持。三维可视化技术的实施步骤主要有以下几方面:
2.1.1数据采集
数据采集主要是通过使用三维激光扫描技术等措施对矿山的地形进行扫描,以便于获取矿山开采现状点、云影响、等高线以及边坡变化情况等重要的信息资料。
2.1.2数据处理
数据处理主要是在完成数据采集之后,通过去除噪点、数据拼接以及三维建模对采集数据进行的系统的处理工作。现阶段对于数据处理一般采用专业的处理软件,例如对于点云数据处理可以使用专业的点云处理软件,完成数据过滤以及多站数据的拟合工作,通过数据处理之后,完成真实精准的矿山三维模型。
2.1.3管理平台建设
通过建设三位系统平台,可以使得矿山测量以及生产管理人员在不同地点以及环境下,通过计算机网络对矿山生产区域的空间位置、设备属性等相识的信息进行查询预览,并进行生产的调度管理。
2.2 空间信息技术
空间信息技术主要是指3S技术,主要是由GPS\RS以及GIS技术组成,在矿山测量中采用空间信息技术具有较好的先进性与时效性。
2.2.1 GP技术
GPS技术主要是是由用户部分、地面监控部分以及空间部分三部分组成,作为由卫星导航技术发展衍生而来的测量技术,GPS技术与传统的矿山测量技术相比,具有测量精度高、测量灵活性好以及全天候的特点,无需考虑测量中测量点的通视问题,也不会产生测量误差的积累,因此在矿山测量中得到了广泛的应用。
2.2.2 RS技术
RS技术即遥感技术,通过对信息进行扫描、摄影、传输以及处理,对地表地物信息进行距离控测与识别,主要是由传感器技术、信息传输技术、信息处理技术以及目标信息特征分析测量技术组成。采用遥感技术进行矿山测量,不仅可以高效准确的完成对矿山地形图的测绘,同时还可以完成矿山环境的监测,对于实现矿山大面积监测非常有益。
2.2.3 GIS技术
GIS技术即地理信息系统技术,主要是以地理空间作为基础,并按照地理模型分析防范,提供多种空间以及动态的地理信息数据资料。地理信息系统技术应用于矿山测量主要是采用矿区地理信息系统,通过将矿山资源环境信息作为平台,将测量数据采集、数据处理以及输出使用形成数字化的技术体系,可以满足矿山生产对于数据资料的基本需要。
2.3 数字化绘图技术
对于矿山生产而言,地表以及地下的地质条件或者是矿山开采通道这些内容都是客观的,但是会随着矿山生产的推进出现一系列的变化,例如矿山生产过程中矿质变化以及采层厚度等内容。因此将矿山地表以及地下情况反映到图纸上,为矿山生产提供准确的资料也是矿山测量工作的重要内容。这就对于图纸的时效性以及准确性提出了较高的要求。在矿山测量绘图上采用数字化的软件绘图,不仅可以实现智能化、信息化绘图,同时可以借助于计算机的管理分析,能够准确的对矿山实际情况进行准确的掌握。此外数字化绘图还可以避免受到图纸尺寸的影响,利于修改储存与使用,并能够与GIS数据系统相结合,对矿山的开发规划与运输路线进行调整优化。
3、数字化测量技术在矿山测量中的具体应用研究
(1)对矿山的地形以及采掘剥离现状进行测量分析。通过数字化测量技术可以一次性完成对于矿山的测量,尤其是对于矿山地形虽不得测量,并且能够得到准确的三位地形坐标。同时数字化的测量技术还能够生成三维可视化的图像,为矿山采掘区、剥离区的测量提供准确的三位坐标数据。
(2)为矿山工程作业中钻孔、征地以及边界划分进行定位。通过采用数字化的测量技术,能够实现对矿山某一区域进行定位测量与规划,尤其是对矿山的开采、施工测量中进行具置的定位和边界的确定,不仅可以远距离测量,而且不受气候影响。
(3)为矿山安全生产提供测量数据。通过数字化测量系统,能够形成矿山开采管理数据库系统,并可以减少数据传递与处理环节,测量精度、速度得到了大幅度的提高。
(4)对测量成果进行检验符合。数字化测量技术还可以迅速准确的对矿山测量成果进行检验符合,能够为矿山生产提供准确的测量数据,并及时对测量结果进行纠正。
4、结语
全面推动数字测量技术在矿山生产中应用基于数字测量技术测量的高效性和精确性,矿山生产应大力推广数字测量技术。从而矿山以自动化、信息化和智能化带动整个矿山产业的发展。通过科学的发展数字测量技术,促进整个矿山行业的优化升级。推动数字测量技术有助于矿业企业的新兴路线实施。有助于引进高技术的测量人才和先进的测量设备,促进矿山产业的发展。在矿山生产中通过应用数字测量技术能够促进矿产资源的综合开发,为矿山生产提供安全性的保障。因此,基于数字测量的种种优势,矿产企业需要全面的推动数字测量技术在矿山生产中的应用,提高整个产业的核心竞争力,促进矿山产业的长远发展。
参考文献:
关键词:测量工程;测量技术;发展
中图分类号:TB22文献标识码: A
前言:近年来,测量技术取得了快速发展,并逐步朝着科学化、数字化和自动化的方向迈进。其测量标准日益规范,数据管理也越来越科学。全球卫星定位技术(GPS)、遥感技术(RS)、数字化摄影测量技术、地理信息系统技术(GIS)被广泛应用于现代工程测量过程中中,为提高我国工程测量水平发挥了巨大作用。
一、工程测量技术简介
工程测量技术,顾名思义就是在工程的建设中,运用各种测量仪器进行工程测量。工程测量技术的应用大大提高了测量的精准度,为工程的发展起到相应的促进作用。其中,测量仪器在测量工作中起到的作用不可小觑。在传统的工程测量工作中,对地形、道路以及施工等进行测量,但是,现如今的测量工作主要运用光电测距仪、激光扫平仪等较为先进的设备和工具。其测量水准逐渐增强。这些先进的仪器不仅避免了传统测量仪器的局限,同时也为工程测量的现代化以及自动化创造了有利的条件。
(一)地理信息系统(GIS):GIS测量技术具有以下特点:第一,操作平台是计算机编程;第二,数据的使用和存储采用数据库技术;第三,奠定了公共地理定位的基础;第四,本质是全球空间分析即时技术。由此可见,GIS不仅是测量技术也是信息系统,它能够有效实现空间对象的管理。随着科学技术的不断发展与进步,GIS正朝着网络平台化、应用社会化、系统集成化、数据规范化、系统智能化的方向快速迈进。
(二)全球卫星定位系统(GPS):近年来,GPS技术被广泛应运用现代测量中。它具有以下显著特点:第一,操作简单;第二,测量时间短,节省时间;第三,抗干扰性能强;第四,超强的保密性;第五,功能齐全,效率高。凭借以上独特优点,GPS的应用领域正不断扩大,卫星和通讯技术的发展无疑使GPS技术提升空间大大加大,同时其应用前景也越来越广阔,势必成为许多行业耐以生存和发展的重要技术。实时动态测量技术(RTK)正是在GPS技术上发展而来的新兴技术,使用RTK进行测量时,只用在规定的基准控制点(可以省去布设控制点的环节),就可以一次形成电子地图。因此,RTK在一定程度上节省了人力物力。同时,RTK可以根据数据和成果进行快速放样,因而可以有效应用于工程测量或者数字化测图中。
(三)遥感技术RS:遥感技术(RS)的工作原理是利用物体对波普产生的不同相应,来识别和判断地面上的物体。它主要通过遥感器探测物体性质。目前,遥感技术(RS)作为目前最为先进的空间探测技术之一,已经广泛用于水文、地理、气象、资源环境等不同领域,并发挥着不可替代的作用。航空遥感是当前进
行地形图测量最为重要手段,其成效也相当显著。
(四)集成的3S技术:3S技术把遥感技术(RS)、地理信息系统(GIS)、全球卫星定位(GPS)有效结合,从而达到及时地收集、处理、更新各种环境信息和空间信息的目的。该技术的开发和应用为相关工作者收集各种空间信息和环境信息提供了便利,是获得精确图形和数据的有力保障。
(五)数字化摄影测量技术:目前,数字化摄影测量技术被广泛应用于现代工程测量中。特别是高精度测量仪器和摄影机配合全球卫星定位GPS技术,可以在不与被测物体相接触的情况下,提供全面、系统、实时的三维空间信息。与此同时,它还具有以下特征:第一,降低测量工作量;第二,测量效率高;第三,测量精准度高。因而,它在大比例尺绘图、地籍测量、建筑变形监测等方面成功取代传统测量手段,发挥着不可替代的作用。航空摄影测量是目前大型工程勘察测量、城市大比例尺地图、地籍图测量的重要途径,它可以生各种形式与类型的地图,比如数字地图、线划地图、影像地图等。比例尺最大可以为1:500。航空摄影测量的成图方法在高精度解析测图成图和模拟测图仪成图的基础上,新增了立体坐标测图收集相关数据,然后自动进行绘图。近年来,随着全球卫星定位GPS技术在数字化摄影测量中的应用,航空摄影测量能够大大减少连测野外控制点的工作,从而提高摄影测量的效率与质量,为摄影测量的数字化、科学化和自动化做贡献。
二、现代工程测量中数字化测量技术的运用
(一)地籍测量:改革开放以来,我国社会经济不断发展,城市化脚步日益加快,地籍测量工作在全国范围内全面进行。随着小城镇城市化速度不断加快,全国各地对地籍图的需求量也日益增长。在全国建立起有效土地信息管理系统,弄清城镇土地的具体面积、相关属性和经济价值是地籍测量的最终目的。
(二)水利工程领域:数字化测量技术在水利工程中的应用也极其广泛,并未水利工程建设作出了不可磨灭的贡献。
1、对江河、湖泊的实时监控可采用RS遥感技术。
2、RS、GIS技术可以有效对洪水、干旱等灾情进行预报,并未控制灾情提供精确信息和相关技术支持。
3、另外,在水库择址的时候,可以有效利用GPS技术进行引水渠设计和水库容量计算等。从而使我国水资源的开发用利用更加科学、合理,为水资源的保护工作提供强有力的技术支持。
(三)工程建设以及地质工程勘探方面
1、利用数字化测量技术可以按照不同的工程性质和工程施工现场地形特征,建立不同的控制网,采取各不相同的测量放样法,把设计图准确转化为实物。同时,需要定期对建筑物、构筑物进行实地测量,并把测量数据制作成表格,从而及时发现与了解建筑物位稳、沉陷、摆动以及倾斜情况,确保建筑工程的安全可靠性。
2、现代测量技术在地质工程勘探方面也发挥了巨大作用。比如:矿产资源勘察过程中,相关工作者可利用测量技术获得准确的地形图,对矿区环境进行动态监测,全面发挥现代测量技术的独特优势,实现矿区的合理开发与健康发展。
3、全球卫星定位技术的运用
这就是人们通常所说的GPS技术,具有较为悠久的历史,其代表国家是美国。全球卫星定位系统可以在陆海空等多种领域中得以应用,通过对接收机的改进,对载波相位差分技术的发展,GPS技术的外延不断增大。近年来,一些科研人员在全球卫星定位技术的基础上,又研制出了一种较为先进的技术方法,即RTK。由空间的二维性过度到三维,实现对流动站的结果进行监测,而且其精准程度较高,是对GPS技术的发展。在具体的工作过程中,主要是将GPS接收机在已知的定点上进行安装,实现对工程的测量。对采集到的数据以载波的形式进行输出,通过电台进行发射。这些信号最终都由流动站进行接收。
4、数据库技术与GIS 技术的应用
GIS是集计算机科学、空间科学、信息科学、测量遥感科学、环境科学和管理科学等学科为一体的新兴学科。已成为多学科集成并应用于各领域的基础平台和地学空间信息显示的基本手段与工具。其技术优势不仅在于它的集地理数据采集存储、管理、分析、三维可视化显示与成果输出于一体的数据流程,还在于它的空间提示、预测预报和辅助决策功能。
三、结束语:
综上所述,测量技术被广泛应用与现代工程测量的各个方面,对工程建设起止至关重要的作用。优良的测量技术有利于保证工程进度,提高工程质量,确保工程顺利竣工。因此,相关工作者应该不断学习新的测量技术知识和理论,并在具体实践中进行反复论证,不断优化现有技术,发展新技术,促进测量技术更快、
更好的发展。
参考文献:
[1]鲁凡. 浅析测量工程中测量技术的发展[J]. 科技创新与应用,2014,16.
[2]姜甘霖. 工程测量技术的发展方向探究[J]. 科技创新与应用,2014,23.
关键词:工程测量;应用;3S
中图分类号:P2 文献标识码: A
随着传统测绘技术向数字化测绘技术转化,当前工程测量的发展可以概括为“六化”和“十六字”,所谓“六化”是:测量内外业作业的一体化,数据获取及其处理的自动化,测量过程控制和系统行为的智能化,测量成果和产品的数字化,测量信息管理的可视化,信息共享和传播的网络化。 “十六字”是:连续、动态、遥测、实时、精确、可靠、快速、简便。
1.先进的地面测量仪器在工程测量中的应用
20世纪80年代以来,常规的光学仪器逐渐被电子仪器所替代。光电测距仪﹑精密测距仪﹑电子经纬仪﹑全站仪﹑电子水准仪﹑激光准直仪等各种地面测量仪器的迅速发展,成倍地提高了工程测量外业工作的效率和精度。传统的三角网已被三边网﹑边角网﹑测距导线网所替代;具有自动跟踪和连续显示功能的测距仪用于施工放样测量;免棱镜的全站仪解决了难以攀登和无法到达的测量点的测量工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量。
全站仪的应用,是地面测量技术进步的重要标志之一。全站仪,即全站型电子速测仪(Electronic Total Station),是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统,全站仪测量可以利用电子手簿把野外测量数据自动记录下来,通过接口设备传输到计算机,利用“人机交互”方式进行测量数据的自动处理和图形编辑,还可以在全站仪基础上集成步进马达、CCD影像传感器构成的视频成像系统,并配置智能化的控制及应用软件,形成所谓的“测量机器人”,它能对一系列目标自动测量,为测图和工程放样向数字化方向发展开辟了道路。
2.3S技术在工程测量中的应用
“3S”技术是遥感技术(RS)、地理信息系统(GIS)、全球定位系统(GPS)这三种技术的统称。
GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,于1994年全面建成。近年来,随着GPS定位技术的不断完善,GPS接收机已逐渐成为一种通用的定位仪器,在工程测量中取得广泛的应用。
RTK(Real - time kinematic)实时动态差分法是一种新的常用的GPS测量方法, RTK能够在野外实时得到厘米级定位精度,它采用载波相位动态实时差分方法,是GPS应用的重大里程碑。它的出现极大地提高了工程测量外业作业效率。随着科学技术的不断发展,RTK技术已由传统的1+1或1+2发展到了广域差分系统WADGPS,有些城市建立起CORS系统,大大提高了RTK的测量范围;在数据传输方面也有了长足的进展,由原先的电台传输发展到现在的GPRS和GSM网络传输,大大提高了数据的传输效率和范围;在仪器方面,现在的仪器不仅精度高而且更简洁、容易操作。
遥感是以航空摄影技术为基础,在上世纪60年代初发展起来的一门新兴技术。最初为航空遥感,自1972年美国发射了第一颗陆地卫星后,标志着航天遥感时代的开始。经过几十年的发展,目前遥感技术已广泛应用于各个领域,成为一门实用的,先进的空间探测技术,多光谱航空摄影和高分辨率的遥感卫星是对地观测获取基础地理信息的重要手段。各种比例尺地形图都可以利用遥感影像来获取,为工程测量领域的城市基本地形图、地籍图以及各种大、中、小比例地形图的快速更新提供了十分便利的方法和手段。
地理信息系统今天已经逐渐成为一门相当成熟的技术,并且得到了极广泛的应用。尤其是近些年,GIS更以其强大的地理信息空间分析功能,在GPS及路径优化中发挥着越来越重要的作用。 GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理与决策等所需信息的技术系统。 GIS与工程测量有着密切的关系,工程测量为GIS中的空间实体提供各种不同比例尺和精度的定位数据;电子速测仪,GPS全球定位技术,解析或数字摄影测量工作站,遥感图像处理系统等现代测绘技术的使用,可直接、快速和自动地获取空间目标的数字信息产品,为GIS提供丰富和更为实时的信息源,并促使GIS向更高层次发展。
3S技术的结合,取长补短,是一个自然的发展趋势,三者之间的相互作用形成了“一个大脑,两只眼睛”的框架,GPS为RS和GIS提供区域信息及空间定位信息,而GIS进行相应的空间分析以便从GPS和RS提供的海量数据中提取有用的信息并进行综合集成,使之成为科学的决策依据。
3.数字化测绘技术在工程测量中的应用
数字化测绘技术在测绘工程领域得以广泛应用,使大比例尺测图技术向数字化、信息化发展。大比例尺地形图和工程图的测绘是工程测量的重要内容和任务,GEOMAP系统的出现,把野外数据采集的先进设备与微机及数控绘图仪三者结合起来,形成一个从野外或室内数据采集、数据处理、图形编辑和绘图的自动测图系统,系统的开发研究主要是面向城市大比例尺基本图、工程地形图、带状地形图、纵横断面图、地籍图、地下管线图等各类图件的自动绘制。系统可直接提供纸图,也可提供软盘,为专业设计自动化,建立专业数据库和基础地理信息系统打下基础。
数字摄影测量是基于数字影像和摄影测量的基本原理,应用计算机技术、数字影像处理、影像匹配、模式识别等多学科的理论与方法,提取所摄对象以数字方式表达的几何与物理信息的学科。航空摄影测量是大面积、大比例尺地形测图、地籍测量的重要手段和方法,可以提供数字的、影像的、线划的等多种形式的地图产品。全数字摄影工作站的出现,加上GPS技术在摄影测量中的应用,使得摄影测量向自动化、数字化方向迈进。随着全数字摄影测量系统的应用,摄影测量产品已经从影像图向4D产品转化,为建立各类专业的信息系统和基础地理信息平台提供了可靠的数据保证。
4.展望
伴随着测绘新技术的不断进步,工程测量将在以下方面将得到显著发展:
(1)测量机器人将作为多传感器集成系统在人工智能方面得到进一步发展,其应用范围将进一步扩大,影像、图形和数据处理方面的能力进一步增强。
(2)在变形观测数据处理和大型工程建设中,将发展基于知识的信息系统,并进一步与大地测量、地球物理、工程与水文地质以及土木建筑等学科相结合,解决工程建设中以及运行期间的安全监测、灾害防治和环境保护的各种问题。
(3)大型复杂结构建筑、设备的三维测量、几何重构及质量控制以及由于现代工业生产对自动化流程生产过程的控制,对产品质量查验与监控的数据与定位要求越来越高,将促使三维工业测量技术的进一步发展。
(4)工程测量将从土木工程测量、三维工业测量扩展到人体科学测量。
(5)多传感器的混合测量系统将得到迅速发展和广泛应用。如GPS接收机与电子全站仪或测量机器人集成,可在大区域乃至国家范围内进行无控制网的各种测量工作,GPS、GIS技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。
参考文献:
关键词:工程测量;GPS测量技术;应用;探讨
中图分类号:P228.4 文献标识码:A文章编号:
一、GPS测量技术原理及特点
1、原理
GPS是Global Poaitioning System的简称——即全球定位系统,20世纪70年代,由美国开始研究开发,历时20年,耗资200亿美元,终于在1994年全面建成,该系统可以对海陆空进行全方位的实时三维导航与定位,是新型卫星导航与定位系统。全球定位系统拥有的优势特点是:全天候、精度高、操作简便、高效益,因此受到了众多测绘工作者的信赖。GPS系统是一种采用距离交会法的卫星导航定位系统。在需要的位置点架设GPS接收机,在某一时刻同时接收了三颗以上的GPS卫星所发出的导航电文,通过一系列数据处理和计算可求得该时刻GPS接收机至GPS卫星的距离,同样通过接收卫星星历可获得该时刻这些卫星在空间的位置(三维坐标)。
2、 特点
2.1、 测站之间无需通视。GPS工程测量对各个测站间的要求很简单,相互之间不需要通视,仅要注意测站的上部空间需开阔,以保障GPS系统在接收卫星的信号时不扰。也正是由于这个特点为测量工程节省了大量的造标费用。因为各个测站无需通视,点位的选择就很灵活、方便,可以根据具体工程的需要来选择位置,省去了大地网测量中的过渡点、传算点的测量工作;
2.2 、定位精度高。一般的双频GPS接收机基线解精度为5mm+1ppm,红外仪的精度则为5mm+5ppm,GPS测量出的精度相当于红外仪的精度,但距离越长,GPS测量的精度优势就越明显。在各种应用实践中证明,GPS相对定位精度在50km以内时,可以达到10-6,GPS相对定位精度在100km~500km时,可以达到10-7,GPS相对定位精度在1 000km时,可以达到10-9。而在300 m~1 500m的工程精密定位测量过程中,1小时以上观测的解,其平面位置误差小于1mm,与ME-5000电磁波测距仪测定的边长比较,其边长较差最大为0.5mm,校差中误差为0.3mm;
2.3、 观测时间短。在布设GPS控制网时,各个测站的观测时间大概是30min~40min,如果应用快速静态定位方法,其观测的时间会更短。若是应用实时动态差分法(RTK-Real-time kinematic)能在5s内求得测点坐标;
2.4 、提供三维坐标。GPS测量在精确测定观测站平面位置的同时,可以精确测定观测站的大地高程;
2.5、 操作简便。GPS测量系统接收机也在不断的改进、完善,其自动化的程度也在逐步提高:接收机的体积越来越小,重量越来越轻,这在很大程度上减轻了外业测量人员的工作紧张程度和劳动强度。而今GPS接收机已趋向于小型化和操作简便化,测量工作人员只需将天线对中、整平,量取天线高、打开电源即可进行自动观测,对获取的数据,利用各种数据处理软件进行处理即求得测点三维坐标。另外,GPS观测工作在一天之中的任一时间都可以进行,各种恶劣天气、气候情况对它的影响不是很大。
二、GPS 在工程测量中的应用
1、 常规静态测量
这种模式采用两台(或两台以上)GPS 接收机,分别安置在一条或数条基线的两端,同步观测4 颗以上卫星,每时段根据基线长度和测量等级观测45 分钟以上的时间。这种模式一般可以达到5mm+1ppm的相对定位精度。常规静态测量常用于建立全球性或国家级大地控制网,建立地壳运动监测网、建立长距离检校基线、进行岛屿与大陆联测、钻井定位及精密工程控制网建立等。
2 、快速静态测量
这种模式是在一个已知测站上安置一台GPS 接收机作为基准站,连续跟踪所有可见卫星。移动站接收机依次到各待测测站,每测站观测数分钟。这种模式常用于控制网的建立及其加密、工程测量、地籍测量等。需要注意的是这种方法要求在观测时段内确保有5 颗以上卫星可供观测;流动点与基准点相距应不超过20km。
3、 准动态测量
这种模式是在一个已知测站上安置一台GPS 接收机作为基准站,连续跟踪所有可见卫星。移动站接收机在进行初始化后依次到各待测测站,每测站观测几个历元数据。这种方法不同于快速静态,除了观测时间不一样外,它要求移动站在搬站过程中不能失锁,并且需要先在已知点或用其它方式进行初始化。这种模式可用于开阔地区的加密控制测量、工程定位及碎部测量、剖面测量及线路测量等。需要注意的是这种方法要求在观测时段内确保有5 颗以上卫星可供观测;流动点与基准点相距应不超过20km。另外,有一种连续动态测量,也属于这种模式。这种测量是在一个基准点安置接收机连续跟踪所有可见卫星。流动接收机在初始化后开始连续运动,并按指定的时间间隔自动记录数据。这种方法常用于精密测定运动目标的轨迹、测定道路的中心线、剖面测量、航道测量等。
4、 实时动态测量
实时动态测量则是实时得到高精度的测量结果。这种模式具体方法是:在一个已知测站上架设GPS 基准站接收机和数据链,连续跟踪所有可见卫星,并通过数据链向移动站发送数据。移动站接收机通过移动站数据链接收基准站发射来的数据,并在机进行处理,从而实时得到移动站的高精度位置。DGPS 通常叫做实时差分测量,精度为亚米级到米级,这种方式是基准站将基准站上测量得到的RTCM 数据通过数据链传输到移动站,移动站接收到RTCM 数据后,自动进行解算,得到经差分改正以后的坐标。RTK 则是以载波相位观测量为根据的实时差分GPS 测量,它是GPS 测量技术发展中的一个新突破。它的工作思路与DGPS 相似,只不过是基准站将观测数据发送到移动站(而不是发射RTCM 数据), 移动站接收机再采用更先进的在机处理方法进行处理,从而得到精度比DGPS 高得多的实时测量结果。这种方法的精度一般为2 厘米左右。
三、GPS测量技术在工程测量中的应用方法
1 、GPS测量的外业实施
1.1、 选点。点位应选择在易于安置接收设备、视野开阔的位置。选点时应着重考虑:(1)每点最好与某一点通视,方便在后续的测量工作中继续使用;(2)视野周围高度角15°以上不应有障碍物,以免信号被遮挡或吸收;(3)点位附近不应有大功率无线电发射源(如电视台、微波站等),距离不应小于200m,距离高压电线不得小于50m等,避免电磁场对信号的干扰,减弱多路径效应的影响;(4)点位应选在交通便利、地面基础稳定、易于保存、有利于其他观测手段扩展与联系的地方,以便观测和日后使用;(5)选点结束后,按要求埋设标石,标石要求必须坚固、稳定,并填写点之记。
1.2 、观测。外业观测主要包括以下内容:天线安置、开机观测、气象参数测定、观测记录。并及时将数据转移至存储设备上,观测者填写观测手簿。
2 、GPS测量的数据处理
GPS数据处理主要流程如下:
将GPS接收机记录的观测数据传输到存储设备之后,就需要对数据进行分流,即从原始记录中,通过解码将各种数据分类整理,剔除无效观测值和冗余信息,形成各种数据文件,如星历文件、观测文件和测站信息文件等。统一数据文件格式,将不同类型接收机的数据记录格式、项目和采样密度和观测值数据单位统一为标准化的文件格式,以便统一处理。采用多项式拟合法,平滑GPS卫星每小时发送的轨道参数,使观测时段的卫星轨道标准化。探测周跳、修复载波相位观测值。对观测值进行必要修改,在GPS观测值中加入对流层改正,单频接收的观测值中加入电离层改正。预处理的主要目的是净化观测值,提高观测值的精度。一般的数据处理软件都采用站星双差观测值。
参考文献:
[1] 全球定位系统城市测量技术规程[S].北京:中国建筑工业出版社,2008.
(1)GPS-RTK测量应用范围,首先用在控制测量,一般用在四等以下测量与工程测量。其次用在地形测量,用GPS-RTK测量时辅以测图软件,可测绘各种地形图,如:带状地形图与数字地形图等。最后用在放样测量。用GPS-RTK测量有效把放样工作与设计方案结合,提高工作效率。(2)GPS-RTK系统土地测量优点。PTK动态测量是继GPS定位技术后,测量领域的技术变革。有以下优点:①观测点无需通视。精度高,有效距离远,可减少测量时间和经费,使地形点位选择更灵活。②操作简便与自动化高。PTK测量所需人员少与时间短,效率高,且测量成果为独立观测值,不像常规测量积累误差。③观测时间短。通常使用PTK测量中已达到几秒就可测定一点位。能对坐标实时计算,因此可提高效率。(3)RTK技术。实时测量技术以载波观测量为依据的差分GPS技术。GPS测量模式有多种,如静态、准动态与动态定位等。但用这些模式,如不和传输系统结合,定位结果需通过测后处理获得,无法实时得出定位结果,无法实时审核基准站与用户站数据质量,长致使重测。动态测量思想是,安置一GPS接收机于基准站,对可见GPS卫星连续观测,将观测数据用无线电设备,实时发送用户观测站。在该站上,GPS接收机接收卫星信号时,通过接收设备,接收基准站观测数据,再根据定位原理,实时计算与显示用户站坐标与其精度。
2GPS-RTK测量控制要点
(1)控制点确定。设计测量控制点收集,根据需要,收集高级控制点参心坐标、高程成果与坐标转换参数等。其次确定平面控制点,把平面控制点划分等级成:一级、二级与三级。其三确定高程控制点,按精度可分成五等。最后布设平面控制点,用逐级布设与越级布设结合方式,争取控制点保证一个以上等级点和其通视。(2)测量方法。GPS-RTK测量用参考站RTK与网络RTK两种方法。通信困难时,可用后处理测量模式测量。(3)平面控制点测量。用GPS-RTK测平面控制点,先应该用流动站采集观测数据,用数据链接收参考站数据,系统中组成差分值实时处理,用坐标转换将观测地心坐标转为坐标系平面坐标。其次获取坐标转换参数时,直接用已知参数。最后,GPS-RTK测量起算点应均匀,且能控制测区。转换时根据测区与具体情况,检验起算点,采用数学模型,进行点组合式分别计算与优选。
3GPS-RTK测量土地测量中应用
(1)技术路线。土地开发所要求绘图比例为1∶10000或1∶2000,这对一定范围精度达到厘米的GPS-RTK测量将完全达到要求。准备工作。测量前检查仪器能否正常;精度检验;项目地基处理与行政界线等资料收集,为保证精度,在控制网中选取已知点求转换参数,校正应选4个以上校正点,且待测点位于校正点范围内。(2)数据采集。测量要素与综合取舍可能和普通测量不同,具体需参照指导书。外业采集时徐绘制草图。每天外业完成后要及时把观测数据输到计算机。一般主要有两种采集,即连续测量与非连续测量。(3)GPS数据处理阶段。开展传输时把电脑与测控设备放一起,就能把当天信息与内容融汇,以表格展示出来,非常便利。(4)图形编辑。用AutoCAD编辑图形,参照外业草图或外业点记录编号把测量区地物按实际连接与形成矢量图,等高线生成与地类符号等作业。(5)图幅整饰与面积统计。依据规范与指导书要求,将绘制土地现状图图号、坐标系、制图单位与其他说明上图。(6)界址点放样与埋设界桩。界址点放样测量方法,用接收机在放站为固定站,用RTK移动站放样和定位时。按这几个步骤:①建立项目与坐标管理。选择参考椭球与参数输入,选择和输入投影带等。②移动站频率选择。根据无线电频率。选一理想频率,移动站与基准站要使用一个频率。③坐标输入。将界址坐标及控制点坐标输入建立项目作为放样与检查使用。(7)测量菜单选择RTK形式,并初始化,完成后启动RTK,然后进行测量。(8)定位放样。从手薄中调出项目放样点坐标,手簿屏幕上放样点距移动站方位与距离,背着接收机,它会提醒走到放样点位置,迅速与方便。移动站正对放样点时,手簿有提示声,表明该点定位成功。然后挖坑和埋设界桩,埋设时不断纠正界桩位置到达到误差要求。良好条件下,PTK初始化需时间几十秒;不良条件下,先进PTK需几分钟或十几分钟。
4总结