前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的纳米科技论文主题范文,仅供参考,欢迎阅读并收藏。
在S系统的SIPOABS数据库中进行检索,得到1449件申请人国别为中国(CN)的纳米技术领域专利申请,转库到DWPI中后,得到673个专利族。以下分别对这些申请的年代分布、细分领域(技术主题)分布、主要申请人分布和主要申请国别进行统计和分析。
专利申请量的年度分布
笔者对上述673个专利族的最早公开年和最早优先权年分别进行统计分析,得到1991~2012年纳米技术领域中,我国申请人的国外专利申请量的年度分布状况,见图1所示。从图1可以看出,在纳米技术领域,中国申请人在国外的专利申请最早可以追溯到1991年(优先权日在1991年),但是中国申请人的相关专利申请较少,直至2000年才达到10件。2000年以后,中国申请人在国外的相关专利申请量有所增加,并在2007年前后达到一个峰值,接近100件,这一阶段为快速发展阶段。2007年至今,中国申请人在国外的相关专利申请量出现下降趋势,笔者分析,其原因可能有两点:首先,2010年以后的申请还没有全部公开,因此无法统计在内;其次,一般而言,前沿科技领域较传统领域受国际经济环境影响大,2008年爆发国际金融危机、近期的欧债危机以及目前国际经济环境低迷等是导致2008年至今中国申请人在国外的相关专利申请量减少的因素。
技术主题的分布情况
笔者分析了在纳米技术领域,中日韩三国申请人向国外申请专利的情况,统计了在八个细分领域中中日韩三国申请人的国外专利申请量,见图2所示。从图2可知,在纳米技术领域,中国申请人在国外的专利申请主要集中在“用于信息加工、存储或传输的纳米技术”和“用于材料和表面科学的纳米技术”两个细分领域中,这与韩国和日本申请人在国外的专利申请趋势相同,可见这两个细分领域是现在的热点。而在“纳米光学”领域,中国申请人在国外的专利申请量明显偏低,这与韩国和日本的情况不同。结合图1、图2可知,我国纳米技术的发展经过了初始阶段(2000年之前)、快速发展阶段(2000~2007年),现在已经逐步稳定。在纳米技术领域,我国向国外申请专利的绝对量还很少,与一些先进国家相比还存在较大差距。
主要申请人分布情况
笔者对在纳米技术领域在国外申请专利的主要中国申请人及其申请量进行了统计,在统计过程中不考虑公司之间的隶属关系,共同申请人也分别进行统计,见图3所示。的申请量占据了该领域中国申请人国外专利申请量的半壁江山,且排在前三位的申请人经常是一件专利申请的共同申请人。进一步检索可发现,清华大学的发明人主要来自一个研究机构——清华富士康纳米技术研究中心。在纳米技术领域,向国外申请专利的中国申请人很多是台湾和香港申请人,或者由台湾公司资助的研究机构,大陆地区的申请人主要是大学和科研机构,包括北京化工大学、中国科学院物理研究所、北京大学、中国科学院长春应用化学研究所等。名列前四位的申请人分别是鸿海精密工业股份有限公司、清华大学、鸿富锦精密工业(深圳)有限公司和新科实业(香港)有限公司,它们的专利申请均集中在“用于信息加工、存储或传输的纳米技术”领域,而北京化工大学则以“用于材料和表面科学的纳米技术”领域为主要申请领域。可见在纳米技术领域,中国申请人在国外申请的专利主要集中在信息加工、存储或传输,以及材料和表面科学领域。
1、各国竞相出台纳米科技发展战略和计划
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以发表和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技发表协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行发表与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。
与传统光学不同的是,由光学与微电子、微机械、纳米技术互相融合、渗透、交叉而形成的前沿学科――微纳光学,变革了传统光学与技术的发展路线。这门新兴的交叉学科在信息、能源、生命、环保、宇航、国防等领域均已产生新的重要应用。在我国,微纳光子学的发展也日益受到重视,未来发展前程似锦。
1996年,付永启博士毕业。近20年过去,付永启一直没有离开过微纳光学研究领域,在他看来,尽管微光学似乎看不见,摸不着,但从人们的生活乃至国家的高尖端科学都离不开它。这正是它的魅力所在。
“微纳光子虽小,照亮我们未来的路”
1994年,付永启在中国科学院长春光学精密机械与物理研究所攻读博士学位,“当时是跟导师一起做国家航天项目中的一个子项目――‘动态目标发生器’的研究,我主要负责曲面光刻的研究。”那是他接触到微光学并逐渐对微光学元器件的设计制作产生兴趣的开始。
在博士后研究阶段,付永启又接着在衍射光学元件的设计制作方面开展了深入研究。随后为了开阔视野、提升研究能力,付永启于1998年赴新加坡南洋理工大学精密工程与纳米技术中心作研究员,借助当地优越的软硬件条件继续深入开展微光学以及后期纳米光学领域的研究工作。
从此,一个崭新的世界――纳米光学这个交叉领域逐步在他面前展开。
正如他所说的“学得越多就会发现自己不懂的东西越多”,在学习和研究过程中,他觉得不应该囿于领域,萌生了走出国门看看的念头。1998年,他选择赴新加坡南洋理工大学精密工程与纳米技术中心做研究员。后来,又通过那里获得了在麻省理工学院作访问学者的机会。
通过与科研院所及工业界的合作,付永启开展了多个横向和纵向项目研究,接触到了微电子、微机电系统(MEMS)、微纳加工、纳米计量及生化分析等多学科领域的知识,先后完成了多项重大研究课题,并取得了许多创新性成果。
借助于国外较好的软硬件条件,付永启快速提高了独立开展科研工作的能力。东西方文化在他身上相遇,已经不再是形式的混体,而是精神层面的和平融合,使得付永启的治学态度里,囊括了中国智慧的通达以及西方思想严密的逻辑性,在这种态度的指引下,他对科研工作有了更深层次的认识,同时对科学研究也更加热爱。
2001年,付永启将目光专注到了一种新的微纳光学元件一步加工制作方法―聚焦离子束制作技术上,经过两年的反复研究、实验,终于获得成功并使该技术逐渐走向成熟。
付永启利用纳米加工技术实现了微光学元件与光电子元/器件的集成一体化,即利用聚焦离子束技术直接一步将微光学元器件甚至纳米光子元器件与光电子器件(如半导体激光器、光导纤维等)集成于一体,从而达到直接控制光束的目的。这一技术摆脱了传统的采用离散光学元件对激光束进行准直或聚焦的方法,不但减少了光学系统的元件数,而且节省了空间,更容易实现系统的轻量化和小型化,对微系统的开发具有重要意义。
同时,他还发现了两种材料,它们在聚焦离子束轰击下具有材料自组织成型特性,该特性可直接用于微光学元件的结构成型。以该技术为基础,能够制作出几种特定的微光学元件,包括微正弦光栅、微闪耀光栅等。
此外,付永启还利用聚焦离子束直接写入法和辅助沉积法成功实现了微光学元件与光电子元/器件的集成一体化;也就是说,该集成一体化既可以采用基于聚焦离子束去除材料的方法实现,也可以利用材料生长的方法来得到。从而为光学系统的小型化、微型化、平面化提供了制作技术保障。该集成一体化元/器件已经广泛应用于生命科学、生化、通信、数据存储等领域,至今仍在应用,还没有其他方法能够替代。
值得一提的是,聚焦离子束技术在微电子行业的广泛应用,大大提高了微电子工业上材料、工艺、器件分析及修补的精度和速度,目前已经成为微电子技术领域必不可少的关键技术之一。同时,由于它集材料刻蚀、沉积、注入、改性于一身,有望成为高真空环境下实现器件制造全过程的主要加工手段。
“研究要服务社会,我们要瞄准国家重大需求”
“在国外更能体会到‘国家’两字的真实内涵,真心希望自己的祖国能够早日强大。当2008年北京奥运会开幕式上播放出《我的祖国》这首歌时,激动的心情难于言表,内心百感交集。” 付永启感慨道。2007年,付永启放弃国外优越的待遇和生活,带着累累硕果和先进理念回国,先后受聘于中国科学院光电技术研究所微细加工光学技术国家重点实验室和电子科技大学物理电子学院。
“刚回国时想有一个属于自己独立的科研小组和相对宽松的科研环境,在这种环境中能静下心来实际做点科研,希望能从科研工作和培养学生方面体现出自身的价值所在。科学研究最终是要服务社会的,而具体的应用领域要瞄准国家的重大需求。”付永启是这样说的,也是这样做的。
在学校和所在团队的支持下,付永启在纳光子结构、元器件及其应用方面取得多项国家自然科学基金项目的资助。提出了两种基于纳金属结构的超分辨透镜,该透镜可方便地通过聚焦离子束技术一步制作出来,其光学表征可利用近场扫描光学显微镜实现;基于表面等离子体极化用于生化免疫分析:设计和制作了菱形纳金属颗粒,并成功地用于老年痴呆症(ADDL)以及SEB病毒素的测试;有源及无源光电子器件与衍射光学元件的集成;基于聚焦离子束技术的微光学元器件的一步制作技术的开发和拓展;基于纳光子器件微探头的纳米计量系统的概念设计:提出利用纳光子超透镜微探头并结合激光多普勒外差干涉技术实现纳米缺陷的动态在线检测,该内容已获得美国专利授权。
研究工作的创新点主要体现在微光学元件的加工制作技术上,国际上首创采用聚焦离子束技术直接一步加工和制作微小光学元件,具体包括微型衍射、折射、折衍混合、柱面、及椭球面透镜等。这一创新技术解决了一些常规微光学元件制作方法难以实现的微光学元器件集成一体化问题,为光学系统紧凑化和小型化,以及微光学系统的研究开发提供了一条新的有效途径。
如果把才华比作剑,那么勤奋就是磨刀石。付永启和课题组成员付出了超乎寻常的努力,经过多年的努力拼搏,在纳米光学、微细加工、纳米加工、衍射光学及微光学领域取得多项研究成果,在国际相关著名学术期刊和国内核心学术期刊上150余篇,其中被SCI检索收录论文120余篇,以第一作者撰写和58篇,以通讯作者100余篇,JCR分区一区刊物论文23篇,影响因子IF>3.0的论文46篇(占SCI论文总数的34%),论文累计被引次数1100余次,单篇他引最高次数83次,JCR统计h指数18。其中,代表论文之一:“Optics Express 18(4), 3438-3443 (2010)”被国际文献追综机构BioMedLib于2011年2月28日评为纳光子结构领域的“Top10”论文之一;此外,在该领域国际著名学术刊物Plasmonics(该刊物属于JCR分区一区刊物)上陆续发表系列研究论文22篇。
此外,付永启在微纳加工及纳米光学领域分别撰写五部英文专著中的各一章:即Encyclopedia of Nanoscience and Nanotechnology(2nd Edition,出版号:ISBN: 1-58883-159-0)、Lithography: Principles, Processes and Materials(出版号:I S B N: 978-1-61761-837-6) 、Plasmonics: Principles and Applications(出版号:ISBN: 979-953-307-855-6)Ion beams in Nanoscience and Technology(出版号:ISBN 978-3-642-00622-7)、和《Nanofabrication》 (出版号ISBN: 978-953-307-912-7);并独立撰写中、英文专著各一部,分别为《纳光子学及其应用》(出版号ISBN: 978-7-80248-537-2)(该书是目前国内唯一一部具有自己独立编著版权的全面系统地介绍纳米光学发展前沿的中文专著,出版后得到同行的一致好评。)、英文专著书名为《Subwavelength Optics:Theory and Technology》;并以此为基础,在国内首次开设了《亚波长光学》课程,于2009年秋在电子科技大学作为研究生专业课程讲授。自2010年电子科技大学研究生院和中国科学院长春光学精密机械与物理研究所研究生部均采用《纳光子学及其应用》一书作为研究生专业课程:《亚波长光学》及《纳米光学》的指定教材。该书作为2011年电子科技大学“十二五”规划研究生教材建设立项支持(项目编号:11211CX20401),于2012年12月末成功出版了修订版。
有关利用聚焦离子束一步制作微光学元件的内容被法国DELAWARE大学电子和计算机工程系Robert G.. Hunsperger教授写入其编著的教科书《Integrated Optics: Theory and Technology》(第五版)的一个章节中。部分研究结果还被美国网络多媒体组织NANOPOLISTM于2007年出版的《纳米技术百科全书》多媒体教程引用并收录, 并被邀请作“聚焦离子束”章节的内容评审人。
学术刊物论文中有关基于聚焦离子束直接沉积实现微型柱面透镜与边缘发射型半导体激光器集成化实现激光束的一维和二维整形的技术、以及类金刚石薄膜上一步写入微透镜技术,被国际上面向工业界的杂志Laser Focus World分别摘录并以新闻简报的形式在“光电子世界新闻”栏目中公布;并已分别获得美国发明专利和中国发明专利的授权。
鉴于他出色的科研成就,近年来相继在美国、加拿大、日本、韩国、新加坡、中国等国举办的衍射光学与微光学、微加工及纳米加工、离子束及应用、精密工程、纳米技术NanoTech 2004、亚洲光电子Photonics Asia 2004、ICAMT2005、NanoMan2008、Nanophotonics2009等专题会议及年会上作大会报告及特邀报告。
2010年,付永启被国家科技部聘请为国家重点基础研究计划(973)项目“光学自由曲面制造的基础研究”的项目专家组成员;并受邀分别担任国际学术刊物Physics Express、Quantum Matter、Journal of Electromagnetic Field Analyses and Applications的高级主编、副主编、及编委。
关键词:无机化学;若干问题;重大进展
1新时期无机化学中的若干重大进展
1.1有机体系建设中水热合成技术的突破
根据有关无机化学研究小组的设计与研发来看,无机化学在研发中出现了最新的无机化学反应,特别是在低温状态下,该反应能够实现一系列的非氧化物纳米材料,并结合水热合成技术,以及溶剂热合成原理与水热合成技术,并在一定的密封空间进行反应,最终实现有机溶剂的化学反应,该有机化学方面的技术性突破,很多学者将其给予报道,就在不久前的美国《化学与工程新闻》杂志上,针对该研究的报道就被评为“稻草变黄金”,被认为是一种“新颖的和非常有趣的合成方法,……将促进该领域更深入的工作”,又例如无机化学领域中的多元金属硫族化合物形成的纳米材料溶剂热合成技术,就是该领域的全新研发进展,充分地运用好该技术能够实现一定的产业优势。国内针对无机水热合成技术的研究,以及国际上鉴于对该领域的突破性研究都取得了不小的成就,特别是国家重点实验室的教授应邀在2001年的美国化学研讨会上就《化学研究评述》撰写综述论文,并针对该领域实现了积极的研究,希望给无机化学带来全新的突破。
1.2纳米技术和无机聚合物方面的突破
目前,学术期刊上有大量关于纳米技术和无机聚合物方面的学术论文,很多论文具有国际化高水平,很多具有创新型的技术并得到了广大学者的广泛重视,例如合成性的纳米金属分子笼(nanometer-sizedmetallomolecularcage)成功地构建了具有Oh对称的立方体金属-有机笼子[Ni6(tpst)8Cl12],该构架模式能够容纳较多的离子和溶剂分子,是对纳米技术的全新突破。另外,针对金属纳米线和金属-有机纳米板的合成领域也有着全新的突破,特别是在自组装规律、空间结构、电子结构方面具有探索性的进展,实现了物理化学性能方面的延伸。另外还在空间结构与性质和性能方面找寻关系规律,例如学者李亚栋课题组发现了一些具有准层状结构特性的金属铋,该金属铋能够形成一种新型的单晶多壁金属纳米管,这是首例国际上比较认可的由金属形成的单晶纳米管,特别是铋纳米管的发现,为无机化学研究找寻了新的突破点,针对无机纳米管的形成机理及应用研究,使得无机化学形成新的对象和研究课题。例如很多研究者还利用人工合成的有机无机层状结构,积极的合成了金属钨单晶纳米线和高质量的WS2纳米管,该技术积极地分析了层状前驱体到纳米管的层状卷曲机制,为一维纳米线和纳米管的合成展示出全新的领域。
2新时期针对无机化学研究发展的展望
纵览过去的几年,我们看出无机化学有着瞩目的成就,许多激动人心的研究,恰如其分的实现了该学科的复兴,使得无机化学改变传统的理念,逐渐走向卓越的发展阶段,回顾已经取得的成就,及通过近几年的学术研究成果来看,无机化学和物理学科能够有效地推动科技的进步,实现各领域的全面发展。由于各学科的相互渗透、生产技术的要求、实验手段的增加,以及现代结构理论的建立与发展,使无机化学在传统领域以及在化学与生物、物理、数学等边缘学科方面都获得了重大进展。就近几年的发展来看,无机化学在某种程度上取得了突破性的进展,实现了与国际化的接轨,从传统无机化学的角度,使得其在新时代背景下有着全新的突破,保持了与国际的接轨。针对最近几年生物无机化学的发展,使得该领域形成了学术化的交流,发展中促进了该领域的学术提高,研究水平逐年提高。未来在新时期新技术科技的带动下,无机化学领域更是会突飞猛进的向前发展,就目前的总体发展水平来看,生物无机化学还与国际化的发展水平有着一定的差距,需要国家给予大力的技术支持和必要的经费投入,需要国家培养出具有一定专业知识的杰出青年,为无机化学发展做出积极地贡献。
3结语
何进,北京大学教授,博士生导师。1988年获天津大学学士学位,1993,1999年先后获电子科技大学硕士、博士学位。2001~2005年在美国加州大学伯克利分校电子和计算机科学系器件研究室作访问学者和研究科学家。2005年8月归国,现任北京大学微电子学研究院教授,主持北京大学纳太器件和电路研究室工作。
近年来,在国内外重要期刊上发表SCI论文70余篇,El论文1 50多篇。2005年8月回国后,成为国际研究项目Nano-Device Modeling Initiative的研究成员,被国际期刊Recent Patents on Engineering,Open Nano Sci-ence Journal,Recent Patents on Electrical Engineering等聘为编委会成员。
2008年5月,北京大学信息科学技术学院教授何进博士接到了一份期盼已久的邀请函,它来自美国电子和信息技术联合会麾下的国际集成电路模型标准化委员会,该委员会主席邀请何进参加于6月5-6日在美国波士顿举行的关于新一代ULTRA-SOI集成电路国际标准模型选择的CMC会议,并携带北京大学自主研发的新SOI电路模型,竞争高科技IT技术一纳米SOI集成电路模型的国际标准。
ULTRA-SOI是北京大学研究的,针对SOI器件和电路的创新性纳米尺寸绝缘栅场效应晶体管模型。它使用了新的物理核心和工程模型结构来模拟纳米尺寸的SOI MOSFET行为。与国际上的同类研究相比,ULTRA-SOI具有明显的科学创新性和高技术特色,有望在国际主流的集成电路设计EDA工具中得到实际使用,此次获邀参加国际标准竞争,显示了北京大学微电子研究在该领域基础研究方面的前沿地位,以及在集成电路工程技术开发方面所发挥的先锋作用。
何进说:“这一成果得到认可,远比在知名刊物上发表几篇文章更有说服力,也更有价值。”
科学研究的意外机遇和收获
回望自己的科研之路,何进说:“不管是做研究,还是我的个人发展,都是一步一步地走出来的。人生没有坦途,奋斗终有收获。”
其实,今天在微电子学领域崭露头角的何进起初并没有对科学研究抱有太大的期许。当年,能迈进大学的门槛,何进很满足。然而,一进大学,中学时那种极度封闭、狭小的天地一下敞开了,何进才发现原来天地是如此广阔,世界是如此丰富。时间总是不够,他有太多的事情可以做:去图书馆看书,跑学术厅听演讲,忙于各种课外活动……他的脑子里开始不断地冒出思想的火花,他甚至憧憬着去当一个哲学家。
现实常常让所谓的哲学家必须低下高昂的头颅去面对脚下的小路。大学本科毕业以后,何进被分配到一个无线电厂工作。当工作像流水线作业一样越来越熟悉的时候,他发现自己无法适应这种单调、重复的生活,于是又考上了研究生。硕士上完了,何进还是忘不了自己哲学家的梦,于是他准备报考宗教学的博士。没想到,家里人的坚决反对让一心想成为哲学家的何进终于“还了俗”:“他们怕我以后毕业了连个饭碗都找不到,我就只好向现实妥协。”
何进开始很不情愿地读起了微电子学的博士。或许是因为他本科、硕士都不是学微电子专业的,所以到了博士生的科研阶段,反而使他可以从不同的角度看待自己的专业,从别人司空见惯的旧材料中不断发现新的问题。读书,在何进看来并不难,他认为难的是找到自己的人生目标。正因为这次转折,何进正式开始了自己的科研之路,他在这里找到了自己的人生归属。2001年,何进赴美国加州大学伯克利分校电子和计算机科学系器件研究室访问研究。
幸运的是,何进在求学和工作的过程中遇到了几位让他终身受益的老师。中国科学院院士、电子科技大学的陈星弼教授,中科院院士,北京大学的王阳元教授,中科院外籍院士、美国工程院院士、美国加州大学伯克利分校的胡正明教授,IEEE终身院士古默尔(H.K Gummel)博士等,都曾先后做过何进的导师和合作者。在何进看来,导师们严谨的治学态度,他们的博学、睿智都是他终身学习的榜样。
2005年9月,何进结束了在美国加州大学伯克利分校的多年研究后回国。他有幸获得了北京大学及教育部留学回国人员科研启动基金和国家自然科学基金的资助,何进不仅迅速建立了纳太器件和电路研究室,使自己的研究工作聚焦在纳米CMOS新结构,纳米MOSFET的量子传输和准弹道输运,深亚微米芯片仿真物理模型,电子材料和相关器件等,也先后参加了国家“973”、“863”、自然科学基金等研究项目。他领导的研究小组已成为国际纳米CMOS器件物理和模型研究舞台的一支重要力量,在纳米CMOS芯片仿真模型研究方面取得了一系列国际瞩目的重要进展。
2007年9月,何进小组的CMOS集成电路用纳电子器件模型成果发表在国际电气和电子工程师协会电子器件领域最权威的学术期刊IEEE Transaction on Electron Devices 9月的《纳电子器件模型和模拟专辑》上。该专辑的相关背景是:为了应对纳米集成电路发展中的挑战,反映最近一两年来纳电子器件模拟和仿真技术的快速发展,IEEE电子器件协会(EDS)在2007年初面向全球,征集该领域的顶尖研究成果,向全世界展示该方向的最新研究成果。经过激烈竞争和严格的多轮专家评审,《纳电子器件模型和模拟专辑》在全世界范围内最后仅仅录用了20篇投稿论文。何进研究小组在该专辑的上发表了关于纳米环栅CMOS器件模型基本解的研究论文。这是中国大陆、台湾和香港地区入选该专集的惟一论文。
这也是何进研究小组继2006年在该权威期刊《先进模型和45纳米模型挑战专辑》上,发表纳米CMOS器件物理基本解和MOS器件量子效应模拟两篇重要论文以来,在微纳电子和集成电路器件模型领域取得的又一新进展。
做现实的理想主义者
虽然出国前已经是北京大学的副教授,但是从伯克利回国以后,何进还是很明显地感到国内、国外的差距:“和国外比起来,我们缺的不是硬件,缺的不是勤奋,而是眼光。”
回国之后的何进把自己的研究定位在国际前沿上,他已经取得的系列成果使他成为国际微电子学术界和工程领域享有声誉的中国科学家,他是国际集成电路界工业标准CMOS模型BSIM4.3.0的主要研发者,模型手册的主要作者(BSIM4.3.0经被国际半导体工业界广泛采用,促进了国际集成电路产业的发展);BSIM5首席研究者,模型手册第一作者。他提出的BSIMDG模型成果被最近发表在IEEE T-ED上的综述文章称为“何氏模型”,是全世界4个典型代表。提出的纳米CMOS参数提取新技术,被发表在Micro-electronics Reliability上有关阈值电压的综述文章称为“何氏方法”,为近年来11种典型方法之一。
距离何进在北京大学的研究室不远处,就是微电子所的器件测试实验中心,何进和他的团队整天在实验中心和研究室之间忙碌着。采访时,测试中心的宁保俊老师笑着说:“何进可是我们这儿的宝贝,学生都乐意跟着何老师做研究生!”
何进说:“目前,国家的政策、北京大学的政策都是越来越好。但是一个学科的发展,不是一个人所能决定的,它需要一个强大的团队,需要努力勤奋的学生,更需要更多的资源。即使在北大,要想干事情,也要从社会上去争取更多的资源,也会有很多不熟悉的地方……”
当何进在为如何发展团队,如何学会争取各种资源而思考的时候,他还要面对另外一个困难的现实――自己的研究生大多在忙着准备出国。“我带的12个研究生5个在忙着准备托福、GRE考试,快成出国预备班了……以前学生要出国,我可以理解,因为我们缺少和国际前沿对接的途径,但现在不同了。看到他们把学习重心放在了学外语、出国上,我还是觉得有些痛心。”他说,“国内的学生在勤奋程度、主动学习和掌握正确的方法这三个方面都还做得不够。美国的学生到了研究生阶段非常勤奋,半夜两三点钟在实验室干活并不稀奇,很拼命。而且他们的学习主动性很强。而我们的学生常常是老师给什么,学生做什么。方法也很重要,没有正确的方法,就没有效率。”
[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。
一、纳米的发展历史
纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。
二、纳米技术在防腐中的应用
纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。
纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。
纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。
我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。
三、纳米材料在涂料中应用展前景预测
据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。
由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。
在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。
纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。
纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。
四、结语
由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。
参考文献:
[1]桥本和仁等[J].现代化工.1996(8):25~28.
“我们在发展过程中致力于紧密结合知识创新、技术创新与区域创新,与国家创新体系各单元联合合作,推进科技成果转移转化,融入经济社会创新价值链。”纳米所党委书记刘佩华说。
苏州纳米所的实践是一个缩影。近年来,我国科技发展面向世界高技术前沿,面向国家战略需求,自主创新步履铿锵,科技创新作为经济社会发展“新引擎”、“发动机”的作用进一步凸显。
过去,我国科技与经济“两张皮”问题严重,科技对经济社会发展贡献率较低。党的十明确提出实施创新驱动发展战略,指出科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。
积极推动科技与经济紧密结合,建立企业为主体的技术创新体系,大力培养引进高层次创新人才,优化有利于创新创业的大环境……在创新驱动发展号角的引领下,我国科技创新不断向前迈进。当前,我国科技发展进入重要跃升期。全社会研发资金投入2012年首次超过1万亿元,其中74%来自于企业;截至2012年,我国研发人员总量达到320万人年,稳居世界第一;SCI收录的我国科技论文数快速增长,连续四年居世界第二;发明专利授权量达21.7万件,稳居世界第三;全国技术合同交易额年均增长超过20%,达到6400亿元。
大亚湾中微子实验发现新的中微子振荡;发现量子反常霍尔效应;“神威蓝光”千万亿次计算机成功应用;量子通信与量子计算研究取得突破;北斗导航系统建成并提供服务……我国取得了一批国际领先、振奋人心的重大成果。
“经过多年积累,我国逐步从跟随者变为并行者,一些领域已有领跑能力,成为具有重要影响的科技大国和创新大国。”科技部部长万钢说。
科技支撑发展,创新引领未来。随着科技创新能力的不断增强,科技进步的贡献率越来越高,从2001年的39%提高到目前的51.7%,对国家经济社会发展的支撑作用不断凸显——
高档数控机床与基础制造装备、新一代宽带无线移动通信网、大型飞机……为了抢占未来国际科技竞争的制高点,我国实施了16个重大科技专项,加速推进了一些重大创新成果的成功应用和产业化,其中民口重大专项累计申请专利4万多项,制定标准几千项。
关键词:智能混凝土,自诊断混凝土,自调节混凝土,自修复混凝土
引言
现代材料科学的不断进步与发展,促进材料的不断创新与发展,混凝土作为最主要的建筑材料已逐渐向高强、高性能、多功能和智能化发展。然而混凝土结构在使用过程中由于受环境荷载作用、疲惫效应、腐蚀效应和材料老化等各种不利因素的影响,结构将不可避免地产生损伤积累、抗力衰减,甚至导致突发失稳破坏。为了有效地避免突发事故的发生,提高结构的性能,延长结构的使用寿命,就必须对此类结构进行实时的“健康”监测,并及时进行调节和修复。因此,研究和开发具有主动、自动地对结构进行自诊断、自调节、自修复的智能混凝土已成为混凝土发展的趋势。
1.智能混凝土的定义
智能材料就是指具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料。它能模拟生命系统,同时具有感知和激励双重功能,能对外界环境变化因素产生感知,自动作出适时的灵敏和恰当的响应,并具有自我诊断、自我调节、自我修复和预寿命等功能。论文参考。
2.智能混凝土的分类
2.1 自诊断混凝土
自诊断混凝土具有压敏性和温敏性等自感应功能。由于普通的混凝土材料本身不具有自感应功能,所以需要在混凝土基材中复合部分其它材料使得混凝土具有自感应功能。目前常用的复合材料是碳类、金属类和光纤等。
1) 碳纤维混凝土
碳纤维是有机纤维在惰性气氛中经高温碳化而成的纤维状的碳化合物,具有重量轻、高强度,抗疲劳和阻尼特性好,耐高温,耐腐蚀以及良好的导电性等优点。在水泥基材中添加少量的碳纤维,可以显著增强其力学性能,改善其电学性能。碳纤维混凝土材料的电阻变化与其内部结构变化是相对应的,利用这一原理生产的混凝土,通过阻抗和载重之间的关系可确定公路上车辆的方位、重量和速度等参数,为交通管理的智能化提供了材料基础。另外碳纤维混凝土除具有压敏性外 ,还具有温敏性,即温度变化引起电阻变化( 温阻性) 及碳纤维混凝土内部的温度差会产生电位差的热电性效应。利用纤维混凝土的这种温阻现象可以实现对大体积混凝土的温度自监控,将来有望应用于有温控和火灾预警要求的混凝土结构中。论文参考。
2)光纤维混凝土
光纤维混凝土,即在混凝土结构的关键部位埋入纤维传感器或其阵列,探测混凝土在碳化以及受载过程中内部应力、应变变化,并对由于损伤进行实时监测。当光纤维混凝土结构因受力或温度变化产生变形和裂缝时 ,埋在混凝土中的光纤就会相应的产生变形 ,从而导致通过光纤的光的光波量发生变化,通过对光纤中反射光的信息进行分析 ,可以对裂缝进行定位。光纤维混凝土已经应用到实际中,如重庆渝长高速公路上的红槽房大桥监测和芜湖长江大桥长期监测与安全评估系统等。
3)纳米混凝土
纳米混凝土是将某各纳米材料添加到普通混凝土中,从而使混凝土一种具有优异综合性能和特殊功能的智能复合材料。纳米材料比表面积大,因而容易极易团聚,有利于发挥其特殊的改性作用,但与此同时纳米混凝土中易产生薄弱区,不利于混凝土的性能。因此,纳米材料的粒径大小应适中,制备时应做好控制使得其在基体中的均匀分布。纳米混凝土具有应变感知性能,其机理可以基于隧道效应理论(由微观粒子波动性所确定的量子效应)来解释,混凝土内微小的应变就可导致较大的电阻变化。实验表明对于掺纳米微粒的从接触导电理论和碳纤维的特性对其进行智能砂浆的水化产物结构均匀、质地密实、结合紧密、没有明显的结晶体、水泥石的微观结构得到改善,故提高了混凝土的力学性能。
2.2 自调节混凝土
混凝土结构除了正常负荷外,人们还希望它在受台风、地震等自然灾害期间 ,能够调整承载能力、减缓结构振动。由于混凝土本身属于惰性材料,必须复合具有驱动功能的组件材料,才达到自调节的目的。这种材料通常具有电力效应和电热效应等性能。如形状记忆合金(SMA)和电流变体(ER)等。
1)形状记忆合金
形状记忆合金(SME)具有形状记忆效应。论文参考。形成记忆合金通常由两种以后金属合成,当合金在高温时发生定形,冷却后存有残余形变。再次加热时,残余形变消失,合金恢复到高温时所具有的形状。这就像合金记忆了高温状态的形状一样。将记忆合金埋入混凝土中, 利用形状记忆合金对温度的敏感性以及在不同温度下恢复相应形状的功能, 使得混凝土结构在受到异常荷载干扰时,混凝土结构内部应力发生重分布, 从而提高混凝土结构的承载力。
2)电流变体
电流变体(ERF) 也叫电场致流变体 。它是一种可通过外界电场作用来控制其粘性、弹性等流变性能双向变化的悬胶液。在外界电场的作用下, 电流变体可于迅速组合成链状或网状结构的固凝胶, 当外界电场撤去时,其可恢复其流变状态。在混凝土中加入电流变体, 当混凝土结构受到台风、地震袭击时,混凝土土通过自动调整其内部的流变特性, 改变结构的自振频率、阻尼特性,从而达到减缓结构振动,提高混凝土结构的稳定性和耐久性。
3.3 自修复混凝土
自修复混凝土是一种具有感知和修复性能的混凝土。自修复混凝土模仿生物机体受创伤后的再生、恢复机理,采有修胶粘剂和混凝土材料相复合的方法,对材料的损伤具自修复和再生功能。据此国内外学者们提出具有自修复行为的智能材料模型,即在材料的基体中布有许多细小纤维管道,管道中装有可流动的物质(类似血管)——修复物质(类似血液)。当材料在外界各种因素的作用下,基体发生开裂,纤维管道发生破裂,其内修复物质流至裂缝处,发生化学反应从而实现自动粘聚愈合,提高开裂部分的强度,起到抑制开裂和修复材料的作用。1997年南京航空航天大学研究出就利用形状记忆合金和液芯光纤对复合材料结构中的损伤进行自诊断、自修复。
3.研究现状及发展趋势
目前所研究的自诊断、自调节和自修复混凝土还只是智能混凝土研究的初级阶段 ,它们只具备了智能混凝土的某一基本特征,有人也它们称之为机敏混凝土。目前人们正致力于将两种以上功能进行组装的所谓智能组装混凝土材料的研究。在实际工程中仍存在着许多的问题需要解决。如对于自诊断混凝土,目前所制作的传感器初始电阻率和应变感知性能存在一定的离散性,将影响对于小应变测量的准确性。对于自修复混凝土,其结构耐久性与混凝土的断裂匹配的相容性、多次可愈合性、分布特性以及愈合的可靠性和可行性等一系列问题研究尚不完全。此外对于混凝土智能化所会带来负作用,如复合的材料对混凝土强度、耐久性等的影响。因此实际工作中,对自能混凝土的利用应综合考虑各种因素
参考文献
1.李化建 ,盖国胜等.智能混凝土.清华大学材料系粉体研究室, 2002 01
2. 刘鹏 ,贾平等.自修复混凝土研究进展.济南大学学报(自然科学版).2006 04
3. 朱钧,邢晓洁. 混凝土智能化发展方向. 科技创新导报. 2008 10
4. 刘中辉 ,方崎琦. 碳纤维智能混凝土的研究现状与展望. 浙江建筑.2008 06
[KH*3/4D][HTH]关键词 [HTSS]纳米功能化金电极; 微生物; 快速检测; 脂质过氧化; 计时电流法
[HT][HK]
[FQ(32,X,DY-W][CD15] 20110826收稿;20111219接受
本文系苏州市科技局项目(No. YJC0910) 及常熟理工学院毕业设计(论文) 团队课题项目资助
* Email: tuyf@suda.省略;wxy62@cslg.省略[HT]
1 引 言
牛奶为人类生活中价值最高的营养物质之一,但易酸败变质\[1\]。我国90%以上的奶牛由农民饲养,规模小、生产水平低、卫生设备不足,因而很多牛奶原料达不到一级标准。在牛奶的生产、运输、销售过程中,还可能受到多种细菌的污染,其中含有很多潜在的有害微生物,这些微生物不仅破坏牛奶质量,而且可能危害饮用者身体健康\[2~4\]。传统的微生物检测技术非常繁琐,需要耗费大量的人力物力,而且检测周期长。按国标GB/T 4789.2进行菌落总数检测需要48 h才能得出结果,难以满足食品安全检测的要求。聚合酶链反应(PCR)\[5\]、酶联免疫吸附实验(ELISA)\[6,7\]等几种快速检测技术通过富集、分离、形态学检测、生物化学测试来鉴别食品中致病菌,缩短了检测时间,但检测费用高、仪器昂贵。电化学阻抗技术亦可应用于细菌的检测,但在分析含菌量较少样品时,检测时间较长,且只有当微生物数目达到106~107个/mL时,这种电阻的变化才能被记录到\[8,9\]。因此,开发快速、简易的适合于牛奶样品中细菌检测的方法具有十分重要的意义。电化学分析方法在这方面具备独特优势\[10~12\],所需设备简单、操作简便易行、测定速度快、检测成本低,可望开发出实用的检测技术。
纳米材料因具有高比表面积、高催化活性等独特性质而备受关注,对许多物质有很高的电催化效应。纳米修饰技术在电化学分析方面亦得到了广泛的应用\[13~15\]。通过表面修饰或功能化获得的化学修饰电极在分析性能上较传统电极取得了长足的进步,从而为开发适合于特定目标的检测技术奠定了良好的基础。
纳米功能化电极表现出巨大的潜在应用前景,特定的纳米修饰电极可催化H2O转化成羟基自由基(・OH),・OH具有极高的反应活性,可以使微生物细胞膜发生脂质过氧化\[16\],在电极上产生氧化电流,且电流的大小与微生物的量成线性关系,通过电流检测实现对微生物的定量检验。文献\[11\]应用此原理成功地进行了水体中大肠杆菌(E. coli)的检测。本研究采用控制电位电解法,以中性的磷酸盐缓冲溶液(PBS)为电解质,一步操作实现对金电极表面的纳米功能化修饰,使其表面形成一层蓬松的纳米级粗糙层,并应用于牛奶中微生物的检测。制备方法简便,线性范围为1.1×103~2.5×107 cfu/mL,检测时间缩短至1 h以内。本方法重复性好、灵敏度高、不需要预处理,有望在牛奶及其它食品的微生物检测中得到应用。
2 实验部分
2.1 仪器、材料与试剂
CHI660C 电化学工作站(上海辰华仪器公司);金电极(Φ2 mm)为工作电极,铂电极(Φ2 mm)为对电极,饱和甘汞电极(SCE)为参比电极;Dimension Icon原子力显微镜 (美国Bruker 公司);UV3600紫外可见分光光度计(日本岛津公司);YX400Z型电热蒸汽压力消毒器(上海三申医疗器械有限公司);S・SWCJ・2F型超净工作台(上海博泰实验设备有限公司);303A3S型电热恒温干燥培养箱(上海浦东荣丰科学仪器有限公司)。
0.1 mol/L PBS溶液,pH分别为7.0和7.4。LB 培养基:牛肉膏3 g,蛋白胨10 g,NaCl 5 g,琼脂20 g,蒸馏水1000 mL。大肠杆菌、嗜热链球菌、金黄色葡萄球菌由常熟理工学院生物与食品工程学院发酵工程技术研究中心提供。牛奶样品由常熟市圣力乳业有限公司提供。实验用水均为二次蒸馏水。
2.2 纳米功能化金电极的制备及表征
金电极用0.3 和0.05
SymbolmA@ m的A12O3粉抛光,依次在HNO3(1∶1, V/V)、无水乙醇及二次蒸馏水中超声清洗5 min,红外灯下烘干。上述电极置于0.1 mol/L PBS溶液(pH 7.0)中,于2.0 V恒电位电解600 s; 在0~1.5 V范围内循环伏安扫描至电流稳定; 用水反复冲洗,并储存在水中备用。采用原子力显微镜表征纳米功能化修饰膜的表面形貌。采用亚甲基蓝检验法验证纳米功能化金电极的性能:用PBS溶液将8 mL 0.15 mmol/L亚甲基蓝溶液释至100 mL,分别以裸金电极和纳米功能化金电极为工作电极,在1.0 V恒电位电解30 min,分别测定原溶液和电解后溶液的吸收光谱曲线。
分 析 化 学第40卷
第5期汪学英等: 原位制备纳米功能化金电极快速检测牛奶中的微生物
2.3 细菌总数的测定方法
大肠杆菌(E. coli)是生物肠道内和环境中最普遍存在,且最大量的细菌,通常作为细菌研究的模式生物。牛奶中的细菌总数在很大程度上决定于环境卫生、挤奶机、牛奶贮存和运输设备的清洁程度和牛奶的冷藏温度等因素,因此大肠杆菌是最可能存在的细菌。健康奶牛的内也总存在一些细菌,但仅限于少数几种细菌,如小球菌、链球菌等,细菌数量约为102个/mL;如奶牛发生炎,则在奶中会检出大量的金黄色葡萄球菌、链球菌和化脓杆菌等致病菌。因此,本研究主要以大肠杆菌作为研究对象,并分别考察大肠杆菌、嗜热链球菌、金黄色葡萄球菌的响应,以进行比较,评估本方法对检测不同种类细菌的适用性。
2.3.1 平板计数法 参照GB 4789.22010 《食品安全国家标准 食品微生物学检验 菌落总数测定》进行。
2.3.2 计时电流法 于37 ℃恒温水浴中,用无菌移液管准确移取10 mL经高压灭菌的0.1 mol/L PBS溶液(pH 7.4)于电解池内,以纳米功能化金电极为工作电极、铂电极为对电极、饱和甘汞电极为参比电极,恒电位1.0 V进行计时电流测定,记录加入一定量样品后产生的电流响应值。
2.3.3 校正曲线与定量测定 对同一样品用标准平板计数法和计时电流法同时进行测定,得到电流响应和牛奶中细菌数量的对应关系,建立校正曲线。根据仪器测定的相应样品的电流响应,计算每毫升样品细菌数量。
2.4 电极的活化再生
由于电极表面是纳米尺度粗糙结构,具有较强的吸附性,测定中细菌氧化产物会吸附在电极上,所以测定中电流响应会逐步减小。因此,每次测定后需对电极进行活化再生处理。处理方法是用PBS液冲洗后,再在其中于2.0 V电解产生氧气,利用氧气带走细菌被氧化的中间产物,从而使电极重新活化。3 结果与讨论3.1 纳米功能化金电极的性能和作用机理
采用AFM技术对纳米功能化金电极表面形貌进行表征。从图1可见,经阳极氧化活化处理后,电极表面形成了蓬松的结构。这是由于金电极表面吸附的・OH或O与Au原子发生交换,进入电极表层所致,电极表面的吸附的・OH或O和Au原子具有较强的活性\[17\]。
[TS(][HT5”SS] 图1 金电极纳米功能化表面的原子力显微镜图(A)三维形貌,(B)2
SymbolmA@ m尺度,(C)500 nm尺度
Fig.1 Surface morphology of nanofunctionalized gold electrode (A) 3D AFM image, (B) at scale of 2
SymbolmA@ m and (C) at scale of 500 nm[HT][TS)]
图2A为所制备纳米功能化金电极在0.1 mol/L PBS溶液(pH 7.4)中的循环伏安图。在修饰电极上,除了在电位约为1.5 V处因产生氧气而使电流增大外,还出现一对很强的氧化还原峰(a),而普通金电极几乎不出峰(b)。据文献报道,电流的增加主要是因为在纳米功能层的催化下生成了・OH,且・OH被吸附于电极表面,占据着电极表面的活性位点\[17,18\],其反应如下:
Au*+H2OAu*OH(1
Symbolm@@ n)
Symbolm@@ ads+H++e
Au*+OH-Au*OH(1
Symbolm@@ m)
Symbolm@@ ads+e
[TS(][HT5”SS]图2 (A) 纳米功能化金电极(a)及裸金电极(b)在0.1 mol/L PBS溶液(pH 7.4)中的循环伏安曲线(扫速:100 mV/s),(B) 1.2×10
Symbolm@@ 5 mol/L亚甲基蓝溶液(a)及经裸金电极(b)或纳米功能化金电极(c)电解30 min后的吸收光谱
Fig.2 (A) Cyclic voltammograms of (a) nanofunctionalized gold electrode and (b) bare Au electrode in phosphate buffer (pH 7.0, scan rate:100 mV/s); (B) Absorption spectra of 1.2×10
Symbolm@@ 5 mol/L methylene blue (MB ) (a) and electrolyzed for 30 min with bare Au electrode (b) or nanofunctionalized gold electrode (c) as working electrode[HT][TS)]
图2B采用亚甲基蓝检验法进行了验证。呈蓝色的亚甲蓝溶液遇到强氧化剂时失电子形成无色的3,7双二甲氨基吩噻嗪离子,通过亚甲蓝溶液吸光度的变化可确定・OH的含量\[19\]。以裸金电极电解30 min后亚甲基蓝溶液,吸光度(b)较原溶液(a)下降并不明显; 以纳米功能化金电极电解后,亚甲基蓝溶液吸光度值较电解前明显减小(c),说明在此条件下,修饰电极上产生了・OH,使亚甲基蓝失电子形成无色的3,7双二甲氨基吩噻嗪离子。
细菌细胞膜主要由脂类和蛋白质组成的双层膜结构,其脂质分子相当稳定,但当有活泼自由基存在时,就可以导致脂质过氧化\[16\],从而在电极上产生电流。当将修饰电极置于含菌的PBS溶液中,电极表面活性位点的羟基自由基将会引起细菌细胞膜的脂质过氧化,细菌数量越多,产生的氧化电流越大。因此,可以根据氧化电流的变化与细菌数量变化的关系对牛奶中细菌总数进行快速检测。
3.2 测定条件的优化
考察了计时电流检测工作电位及pH值对测定结果的影响。结果(图3)表明,随着电压的增大,响应电流随之变大。但当电位超过1.0 V时,电流不稳定,故选择测定电位为1.0 V。在所研[TS(][HT5”SS]图3 (A)检测电位及(B)pH值对测定响应的影响
Fig.3 Effect of (A) applied potential and (B) pH value of buffer solution on detection response
25
SymbolpB@ C,在0.1 mol/L PBS溶液,含菌量约1.1×106 cfu/mL。
Temperature: 25
SymbolpB@ C, substrate solution: 0.1 mol/L phosphate buffer containing 1.1×106 cfu/mL of bacteria.[HT][TS)]究范围内,随pH值增大,氧化电流变化值增加,至pH=8时达到一个平台。但此时稳定性变差,故最佳pH值选取为7.4。
3.3 电极对细菌的响应特性
在选定的最佳工作条件下,向10 mL 0.1 mol/L PBS溶液(pH 7.4)中依次加入10
SymbolmA@ L含1.1×106 cfu/mL细菌悬浊液,修饰电极上的计时电流曲线见图4,表明修饰电极催化细菌脂质过氧化速度很快,可用于细菌的快速检测。
培养基中的共存组分的干扰情况如图5所示: NaCl、琼脂对测定无影响;10 mL PBS溶液中加入100
SymbolmA@ L的蛋白胨、牛肉膏、牛奶时,电流响应略有波动,但并不产生明显的电流响应,故亦不影响测定。分别考察了加入含550和1100 cfu/mL混合菌的牛奶,及分别加入同浓度的大肠杆菌、嗜热链球菌和金黄色葡萄球菌的牛奶悬液后的电流响应, 从图5可见,等量不同种类的细菌产生的响应值基本相同,表明本方法对各种不同的细菌产生基本相同的响应,而牛奶等基质不产生响应,因而可作为牛奶中细菌总浓度的测定方法。
[TS(][HT5”SS] 图4 修饰电极对细菌响应的计时电流曲线,插图A为电极响应对细菌总数的校正曲线
Fig.4 Chronoamperometric curve of response upon the adition of bacteria. Inset is calibration curve of current response versus concentration of bacteria[HT][TS)]
[TS(][HT5”SS] 图5 培养基成分及等浓度不同细菌的电流响应
Fig.5 Current response of culture medium constitution and different bacteria
a, b为550、1100 cfu/mL的混合菌;c, d, e 分别为1100 cfu/mL的大肠杆菌,嗜热链球菌,金黄色葡萄球菌。
a, b mixed bacteria at concentrations of 550, 1100 cfu/mL respectively; c, d, e Escherichia coli, Streptococcus thermophilus and Staphylococcus aureus respectively, at concentration of 1100 cfu/mL[HT][TS)]
3.4 电极分析性能及对实际样品中细菌总数的测定
以计时电流法进行牛奶样品中细菌总数的测定,同时用平板计数法进行对照,建立校正曲线 (图4A),其回归方程为:Δi (nA)=1.43 logC
Symbolm@@ 4.58 (C为样品中细菌的浓度,单位:cfu/mL),电流响应与细菌浓度在1.1×103~2.5×107 cfu/mL范围内呈良好的线性
[FQ(9*2。19*2,Y-WZ][HT5”SS][*4]表1 本方法与平板计数法检测大肠杆菌样品结果比较
Table 1 Comparison of analytical results obtainedfrom present method and GB (national standard) method
[HT6SS][BG(][BHDFG3,WK5,WK7。2,WK6W]样品
Sample本方法Present method国家标准方法GB Method相对误差RE(%)152060482008.0
25576859500
Symbolm@@ 6.3361180570007.341536001470004.551367501300005.2[BG)F][HT][]
关系,r=0.9959。制备5份牛奶样品,用本方法进行测定,对每个样品平行测定5次,并与GB4789平板菌落计数法相对照,结果见表1。从表1可见,用2种方法测定5个样品, 其最大相对误差为8.0%;同时采用t检验法判断 2种方法所得结果之间并无显著性差异(t=1.375<t0.05=2.776);电极经活化再生处理后重复使用所得相对标准偏差(RSD)为2.9%。
结果表明,本研究制备的纳米功能化修饰金电极的方法简便,性能稳定,电极可更新,使用寿命长。本修饰电极用于牛奶中细菌总数的测定是可行的。将此电极用于牛奶中细菌的测定相比于传统生物学方法更简单、快速和准确,大大缩短了分析时间,且检出限低,具有一定的推广应用价值。
References
1 Abdullah D A, Saby A H. Food Control, 2009, 20(10): 913~917
2 Johnson E A, Nelson J H, Johnson M. J. Food Prot., 1990, 53(5): 441~452
3 Beran G W, Shoeman H P, Anderson K F. Dairy Food Environ. Sanit.,1991, 11(4): 189~194
4 LI DongYang, RU ShiPing, WU Jian, YING YiBin. Chinese J. Anal. Chem., 2010, 38(4): 573~576
李冬阳, 茹柿平, 吴 坚, 应义斌. 分析化学, 2010, 38(4): 573~576
5 Andrea G, Annalisa M, Paola C, Rosangela M. Food Control, 2009, 20(8): 733~738
6 Rose M T,Deaker R, Potard S, Cuc K T T, Vu N T, Kennedy I R. World J. Microb. Biot., 2011, 27(7): 1649~1659
7 Reidt U, Geisberger B, Heller C, Friedberger A. JALA, 2011, 16(2): 157~164
8 Yang L J, Ruan C M, Li Y B . Biosens. Bioelectron., 2003, 19(5): 495~502
9 Tun T N, Cameron P J, Jenkins A T A. Biosens. Bioelectron., 2011, 28(1): 227~231
10 Han S B, Li X, Guo G M, Sun Y S, Yuan Z B. Anal. Chim. Acta, 2000, 405(12): 115~121
11 Tang H, Zhang W, Geng P, Wang Q J, Jin L T, Wu Z R, Lou M. Anal. Chim. Acta, 2006, 562(2): 190~196
12 Berrettoni M, Tonelli D, Conti P, Marassi R, Trevisani M. Sensors and Actuators B, 2004, 102(2): 331~335
13 Huang K J, Niu D J, Liu X, Wu Z W, Fan Y, Chang Y F, Wu Y Y. Electrochim. Acta, 2011, 56(7): 2947~2953
14 Zhang L, Zhang J, Zhang C H. Biosens. Bioelectron., 2009, 24(7): 2085~2090
15 Rong G, Zhao G H, Liu M C, Li M F. Biomaterials, 2008, 29(18): 2794~2801
16 SUN ChunPu, ZHANG JianZhong, DUAN ShaoJin. Introduction to Free Radical Biology. Hefei: Press of University of Science and Technology of China, 1999: 48~50
孙存普, 张建中, 段绍瑾. 自由基生物学导论. 合肥: 中国科技大学出版社, 1999: 48~50
17 Conway O B E. Prog. Surf. Sci., 1995, 49(4): 331~452
18 Zhao W, Xu J J, Shi C G, Chen H Y. Electrochem. Commun., 2006, 8 (5): 773~778
19 WANG JinGang, WANG XiKui, GUO WeiLin, GUO PeiQuan, GU ZhongMao. Physical Testing and Chemical Analysis Part B, 2007, 43(6): 495~497
王金刚, 王西奎, 国伟林, 郭培全, 顾忠茂. 理化检验化学分册, 2007, 43(6): 495~497
Rapid Detection of Microorganisms in Milk Using an Insitu
Prepared Nanofunctionalized Gold Electrode
WANG XueYing*1, GU Feng1, YIN Fan1, TU YiFeng*2
1(Department of Chemistry, Changshu Institute of Technology, Changshu 215500, China)
2(Institute of Analytical Chemistry, Soochow University, Suzhou 215123, China)
Abstract An insitu, facile and rapid method was developed to prepare a nanofunctionalized gold electrode. By the electrolysis under applied potential of +2 V in PBS of pH 7.0 for 10 min, a rough nanoporous film formed on the surface of a polished gold plate electrode. This novel nanofunctionalized gold electrode could be applied for rapid detection of bacteria quantity in milk. The detection was based on the catalysis of lipid peroxidation on cell membrane of bacteria by the nanoporous Au film. The response of the current in chronoamperometry would linearly respond the bacterial content in milk which was calibrated by the national standard method (Standard plate count method). Therefore the accurate quantity of bacteria was attained from the current response on prepared electrode. The results showed that the target bacteria could be detected at a content range from 1.1×103 cfu/mL to 2.5×107 cfu/mL. The whole process of the detection could be completed within 1 h.
Keywords Nanofunctionalized gold electrode; Bacteria; Rapid detection; Lipid peroxidation; Chronoamperometry
(Received 26 August 2011; accepted 19 December 2011)
中国化学会第十一届全国分析化学年会
(第二轮通知)
由中国化学会、青岛科技大学承办的第十一届全国分析化学年会,定于2012年10月26~29日在青岛召开,10月26日报到。会议将就我国自上届学术会议以来分析化学学科的新成就、新进展进行学术交流和讨论,会议邀请国内外从事分析化学研究的著名科学家、中青年学者、技术人员和仪器生产厂商参加,热忱欢迎踊跃投稿并到会交流。
一、征文要求
征文范围详见第一轮通知(可访问会议网站ac.qust.省略/)。投稿论文要求主题明确、数据可靠、逻辑严密、文字精炼。文稿必须包括题名、作者姓名和单位、中文摘要和关键词 (3~6个)、中图分类号、正文、参考文献、英文题名和作者姓名及单位。请严格按照论文模板投稿。模板见会议网站(ac.qust.省略/)。
在首页页脚处写明第一作者简介(出生年、性别、职称、学位)以及基金资助情况(标出项目批准号)。请同时提供稿件联系人的电话、传真、详细通讯地址和 Email。论文用Word文件,通过会议网站网上投稿系统提交会议论文。
本次会议将增设青年论坛及仪器专场报告会。
二、会议注册和回执
1、注册费标准、要求和汇款方式可登录本会议网站ac.qust.省略/查询。中国化学会会员和学生注册后需提交有效证件以享受注册费优惠。
2、2012年6月在会议网站上公布宾馆住宿标准及预订事项。请拟参加会议的代表请在线填写会议回执。
三、其它事项
会议相关事宜请与青岛科技大学化学与分子工程学院张书圣教授、丁彩凤教授联系。筹备组联系电话:0532-84022750 (张书圣),053284022946 (丁彩凤),传真:0532-84022750。
论文相关事宜请与接桂芬老师联系,电话: 15166038289