前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的统计与概率主题范文,仅供参考,欢迎阅读并收藏。
1.1概率统计和信息科学整合的概述我们可以从三个方面来了解概率统计和信息科学的整合:第一方面,在信息化的背景下,可以利用网络和多媒体进行概率统计的详解;第二方面,将概率统计的内容进行信息化的处理,使其成为对学生非常有用的学习资源;第三方面,利用信息技术改变学生学习的方式,让学生从被动式的学习状态转变为主动式的学习状态,从书桌上的学习转变为实践性、体验性的学习。概率统计和信息科学的整合是一种双向性的整合,也就是说,概率统计和信息科学在整合中各取所需,概率统计加以信息技术既创新了教学模式,又开发并促进了科学技术的发展。
1.2概率统计和信息科学整合的必要性
概率统计和信息科学整合是当前不可抗拒的一股潮流,这样的整合势在必行。信息技术与概率统计的结合更利于人们对概率统计的学习,对信息技术的掌握。在概率统计学科中加入信息科学,更有助于学生采取个性化的学习形式,从而最大限度的体现并满足学生们的学习愿望。将信息科学技术融入到概率统计中,是一种新型的学习方式,这既是一种教学改革,又发展了学生的创新精神,提高了学生的实践能力。
1.3概率统计与信息科学的注意事项
将概率统计与信息科学有机整合起来,学生们不单单要了解概率统计的相关知识,还要学会使用计算机,熟练的应用相关的计算机软件。只有这样,学生们才能真正的学以致用,将概率统计应用到实际的问题当中去。在实际教学中,应把重点放在概率统计方法的阐述和计算机的应用上,就是既要结合数据和实例讲解概率统计的概念、特点和应用场合;又要讲解计算机的使用方法。例如,可以利用软件演示方差分析、回归分析的计算过程。计算机软件SPSS在概率统计方面,被应用的频率是非常高的,因为它的统计功能较为强大。
1.4概率统计与信息科学整合的策略
首先要在思想与方法的层面上,将概率统计与信息科学整合。这种深层次的整合可以使教师的教学能力获得快速的进展,并且取得更好的教学效果。概率统计与信息科学的整合不单单局限于解决教学问题,整合的真正目地是使学生们掌握学习方法,让学生养成一种自主、探究的学习精神,让学生们在信息科学的支持下,用所学的知识与思想,去解决实际中的问题,也就是人们常说的学以致用。若想将概率统计与信息科学真正的有效结合起来,老师的想法是非常重要的。教师不单单要了解信息科学,还要从心底认同这种将概率统计与信息科学整合的教学模式。这样,教师才能了解概率统计与信息科学整合的真正意义所在,从而将信息科学技术掌握的更加熟练,将概率统计理解的更加透彻,将概率统计与信息科学的结合点看的更加清晰,使自己的教学方法和教学思想更加完善。其次,是根据不同的内容选择不同的信息科学媒体。将概率统计与信息科学结合,是为了使教学过程更加优化,使教学效果更加理想。选择哪种信息科学媒体更加合理,利用哪种信息媒体能最大限度的激发学生们的学习兴趣,所有的这些,都要以概率统计的内容作为选择教学媒体的出发点,并根据学生的需要来确定最终使用的信息科学媒体。如果所选择的媒体,与教学内容不搭,不单不能够提升教学质量,还会使教学过程变得更加繁琐冗杂。当教学内容属于静态类的时候,可以选择视频来丰富教学内容;当教学内容拥有较强的连续性时,在教学的过程中可以穿插几段录像;当教学内容较为复杂、抽象、并且变化性很强的时候,可以选择多媒体课件来展示教学内容;当学生进行研究性的学习时,可以选择网络作为自己的学习助手
2.结语
为了了解某区初一年级9 000名学生的视力情况,从中抽查了200名学生的视力,就这个问题来说,下列说法中正确的是( )
A. 9000名学生是总体
B. 每个学生是个体
C. 200名学生是抽取的一个样本
D. 样本容量是200
A.
本题做错的原因往往是因为不理解总体、个体、样本、样本容量四个概念.本题中7 000名学生的视力情况为总体;个体是每个学生的视力情况;样本是200名学生的视力情况;样本容量是200.
D.
计算方法或公式应用错误
在一次科技知识竞赛中,一组学生的成绩统计如下:
求这组学生成绩的中位数和众数.
把分数按从小到大的顺序排列为50,60,70,80,90,100. 处在中间的两个数是70和80,平均值为75,所以这组学生成绩的中位数是75分. 因为90分的学生人数是14,是最多的,所以众数是14.
这组数据一共有50个,重复出现的数据有几个算几个数据,所以我们应该分析的是这50个数据的中位数,而上述解法中只分析了出现过的6个数据. 众数一定是所给的数据中的某个数,而不是出现的次数.
这组学生成绩的中位数是80分;因为90分的学生人数是14,最多,因此这组学生成绩的众数是90分.
动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,那么现年20岁的这种动物活到25岁的概率是多少?
现年20岁的这种动物活到25岁的概率是0.8-0.5=0.3.
不能简单地将本题看成概率的累加(减),应计算这种动物从20岁活到25岁的数量与活到20岁的数量的比.
设出生时动物数量为a,则活到20岁的数量约为0.8a,活到25岁的数量约为0.5a,所以现年20岁的这种动物活到25岁的概率是=.
图象获取信息错误
为了了解高中学生的体能情况,抽取了100名学生进行引体向上次数测试,将所得数据整理后,画出频率分布直方图(如图1). 图中从左到右依次为第1、2、3、4、5组.
(1)第1组的频率为_______,频数为______.
(2)若次数在5次(含5次)以上为达标,则达标率为_______%.
(3)这100个数据的众数一定落在第3组吗?
(1)0.05,5;(2)32.5;(3)对,一定落在第3组.
(1)(2)两问中产生错误的原因是:以为此直方图中各长方形的高就是相应小组的频率,事实上它们表示的是各小组对应的“频率/组距”. 各小组的频率应该等于图中各个小长方形的面积. 所以第1组的频率为:0.05×2=0.1;频数为:0.1×100=10;达标率=(0.175+0.125+0.025)×2=65%.
一、考查样本特征数的计数方法和概率的计算方法
预测题1. 汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对CO2排放量超过130 g/km的MI型新车进行惩罚(视为排放量超标).某检测单位对甲、乙两类MI型品牌车各抽取5辆进行CO2排放量检测,记录如下(单位:g/km):
经测算发现,乙品牌车CO2排放量的平均值为x乙=120 g/km.
(1)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆CO2排放量超标的概率是多少?
(2)若90
命题意图:概率与统计内容丰富,但高考要求不高.本题将统计与概率“无缝对接”.命制本题,旨在考查考生的综合能力和对统计与概率知识的实际应用能力.
解题思路:
(1)从被检测的5辆甲类品牌车中任取2辆,其CO2排放量共有10种不同的结果:80,110;80,120;80,140;80,150;110,120;110,140;110,150;120,140;120,150;140,150.
设“至少有一辆CO2排放量超标”为事件A,则事件A包含以下7种不同的结果:80,140;80,150;110,140;110,150;120,140;120,150;140,150.
所求事件的概率P(A)==0.7.
(2)由题可知,x甲=x乙=120,x+y=220.
5s2甲=(80-120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)2=3 000,
5s2乙=(100-120)2+(120-120)2+(x-120)2+(y-120)2+(160-120)2=2 000+(x-120)2+(y-120)2.
x+y=220,5s2乙=2 000+(x-120)2+(x-100)2.
令x-120=t,90
5s2乙=2 000+t2+(t+20)2,
5s2乙-5s2甲=2t2+40t-600=2(t+30)(t-10)
s2乙
试题评价:本题虽然比较常规,但紧扣环保,寓意深刻,体现了数学与生活的关系,符合新课标理念.
二、考查茎叶图的意义和独立性检验思想的理解
预测题2. 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图1表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)
(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;
(2)根据以上数据完成下列2×2的列联表:
(3)在犯错误的概率不超过1%的前提下,你能否认为其亲属的饮食习惯与年龄有关,并写出简要分析.
附:K2=.
命题意图:将新课标两个新增内容茎叶图和独立性检验命制在同一题中,以达到“一题两考”的目的,同时也考查了考生的综合应用能力.
解题思路:
(1)由茎叶图确定甲、乙两类中饮食类型的人数,从而作出判定:由茎叶图知,50岁以下的12人中饮食指数低于70的有4人,饮食指数高于70的有8人.50岁以上的18人中,饮食指数低于70的有16人,高于70的只有2人.在30位亲属中,50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主.
(2)运用独立性检验进行分析.
2×2的列联表如下:
(3)因为K2===10>6.635,
又P(K2≥6.635)=0.010.
在犯错误的概率不超过1%的前提下,认为亲属的饮食习惯与年龄有关.
试题评价:本题将茎叶图与独立性检验交汇,背景新颖,求解的关键是理解茎叶图提供数据特征.本题求解中常见的错误:(1)不理解茎叶图反映的数据信息;(2)对独立性检验思想理解不深刻,作出错误判定.本题难度虽然不大,却值得大家一练.
三、考查对茎叶图和频率直方图的认识与应用,求随机事件概率的一般方法
预测题3. 某校高三某班的一次数学测验成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图2所示,据此解答如下问题:
(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
命题意图:通过设置“损坏的”统计图表,灵活考查考生对茎叶图和频率直方图的认识.
解题思路:
(1)分数在[50,60)的频率为0.008×10=0.08,
由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为=25.
(2)分数在[80,90)之间的频数为25-2-7-10-2=4;
频率分布直方图中[80,90)间的矩形的高为÷10=0.016.
(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个.
其中,至少有一份在[90,100]之间的基本事件有9个.
故至少有一份分数在[90,100]之间的概率是=0.6.
试题评价:本题“一题两图”,难度虽然不大,综合性却很强,体现了当下高考对统计与概率的要求,值得细细品味.
四、考查总体特征值的估计、离散型随机变量的分布列和数学期望
预测题4.(理科)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市公安局交通管理部门于2014年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q
(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数的分布列和期望.
命题意图:将必修模块3的统计内容与选修2-3的离散型随机变量“融为一体”,着力考查考生的实际应用能力和分析问题解决问题的能力.
解题思路:
(1)(0.0032+0.0043+0.0050)×20=0.25,0.25×60=15,所以此次拦查中醉酒驾车的人数为15人
(2)易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x的所有可能取值为0,1,2;
P(x=0)==,P(X=1)==,P(x=2)==.
X的分布列为:
E(X)=0×+1×+2×=.
命题评价:本题以当今社会的热点问题“酒后驾车”和“醉酒驾车”为切入口,虽然难度不大,却富有深刻的社会意义,值得一练.
五、综合考查对茎叶图的理解和应用,随机概率的计算和离散型随机变量的分布列和数学期望
预测题5.(理科)空气质量指数PM2.5 (单位:g/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,X的分布列及数学期望.
命题意图:将多个考点交汇在一题中,以达到“一题多考”与“综合考查”的目的.
解题思路:
(Ⅰ)依据茎叶图中的数据分布,估计甲城市空气质量总体较好.
(Ⅱ)甲城市在15天内空气质量类别为优或良的共有10天,任取1天,空气质量类别为优或良的概率为=;乙城市在15天内空气质量类别为优或良的共有5天,任取1天,空气质量类别为优或良的概率为=;在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率为×=.
(Ⅲ)X的取值为0,1 ,2,P(X=0)==,P(X=1)==,
P(X=0)==.X分布列为:
数学期望EX=0×+1×+2×=.
试题评价:本题关注社会热点,突出试题的社会价值,同时将概率与统计多个知识点综合,突出数学的应用价值,是一道内涵丰富的好试题.
六、借助频率分布直方图,综合考查样本估计总体的应用,以及随机概率的计算和离散型随机变量的分布列和数学期望
预测题6.(理科)在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.
(I)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(II)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分.
(i)求该考场考生“数学与逻辑”科目的平均分;
(ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10人中随机抽取两人,求两人成绩之和的分布列和数学期望.
命题意图:将必修模块3的统计内容与选修2-3的离散型随机变量“融为一体”,着力考查考生的实际应用能力和分析问题解决问题的能力.
解题思路:
(I)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人.
所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:40×(1-0.375-0.375-0.15-0.025)=40×0.075=3.
(II) 求该考场考生“数学与逻辑”科目的平均分为:
.
=2.9.
(Ⅲ)设两人成绩之和为,则的值可以为16,17,18,19,20 ,
P(=16)== ,P(=17)==,P(=18)=+=,P(=19)==,P(=20)==.
所以E的分布列为:
所以E=16×+17×+18×+19×+20×=,
所以的数学期望为.
试题评价:本题背景新颖,将自主招生与概率统计结合在一起,体现试题的时代性与概率统计知识的实用性,本题难度中等,无论从试题的思想性,还是难易程度,都符合新课标高考的要求.
Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.
关键词: 概率论与数理统计;改革;实践
Key words: probability and mathematical statistics; reform; practice
0 引言
概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。
1 概率论与数理统计课程教学改革的必要性与重要性
教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。
现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。
信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。
但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。
从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。
《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。
2 概率论与数理统计课程教学改革的思路与原则
通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。
因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。
在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。
3 概率论与数理统计课程教学改革的内容与措施
首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。
为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。
为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。
为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。
为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。
为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。
为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。
由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。
为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。
4 概率论与数理统计课程教学改革与实践的效果
通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。
随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。
此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。
参考文献
[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).
1. 简单的统计图有( )统计图、( )统计图和( )统计图。
2. 扇形统计图的优点是可以很清楚地表示出( )与( )。
3. ( )统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出
( )。
4. 为了表示某地区一年内月平均气温变化的情况,可以把月平均气温制成( )统计图。
5. 4、 7.7、 8.4、 6.3、 7.0、 6.4、 7.0、 8.6、 9.1这组数据的众数是( ),中位数是( ),平均数是( )。
6.在一组数据中,( )只有一个,有时( )不止一个,也可能没有( )。(填众数或中位数)
二、下面记录的是六(1)班第一组学生期中考试成绩(单位:分)。
83、 89、 81、 55、 62、 70、 78、 94、 84、 97、 86、 100、 66、 75
请根据上面的记录的分数填写下表,并回答问题。
(1)该小组的平均成绩是( )分。
(2)优秀率(按超过80分以上计算)是( )%。(保留两位小数)
(3)及格率是( )%。(保留两位小数)
(4)优秀学生比其他学生多( )人,多( )%。(保留两位小数)
(1)这个组男生体重的平均数和中位数分别是多少?女生呢?
五、应用题。
1. 育英小学六(1)班第一小组在一次数学测验中,有3人得100分,4人得96分,其余5人共得348分。第一小组这次数学测验的平均成绩是多少分?
2. 六(2)班第一组有6名男同学,他们的身高分别是148厘米、139厘米、146厘米、153厘米、156厘米、149厘米。这组男同学的平均身高是多少厘米?
3. 一段上坡路,往返路程共120千米,小林骑车上坡每小时行10千米,下坡每小时行15千米,求自行车的平均速度。
4. 15个学生给树苗浇水,平均每人要浇7棵,这时又来了几个同学,大家重新分配任务,平均每人浇5棵,又来了几个同学?
5. 5个裁判员给一名体操运动员评分,去掉一个最高分和一个最低分,平均得分9.58分。如果只去掉一个最高分,平均得分为9.46分;如果只去掉一个最低分,平均得分9.66分。最高分和最低分各是多少分?
六、根据统计图回答下列问题。
1.小明家这4个月平均水费是多少元?
1. 掌握平均数、中位数、众数等概念;会根据所给的样本数据绘制频数分布直方图;会用样本方差、标准方差估计总体的方差、标准差.
2. 了解概率的意义,了解计算一类事件发生的可能性的方法,并能进行简单计算.
3. 理解线段、射线、直线的含义、表示方法和性质;会计算角度的和与差.
4. 会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物的原型.
概率与统计
1. (2011江苏南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是( )
A. 随机抽取一个班级的学生
B. 随机抽取一个年级的学生
C. 随机抽取一部分男生
D. 分别从初一、初二、初三年级中各班随机抽取10%的学生
2. (2011浙江金华)学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图1所示的频数分布直方图,则参加绘画兴趣小组的频率是( )
A. 0.1 B. 0.15
C. 0.25 D. 0.3
3. (2011江苏连云港)已知抛一枚均匀硬币正面朝上的概率为,下列说法不正确的是( )
A. 连续抛一枚均匀硬币2次,必有1次正面朝上
B. 连续抛一枚均匀硬币10次,都可能正面朝上
C. 大量反复抛一枚均匀硬币100次,可能出现正面朝上50次
D. 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的
4. (2011江苏宿迁)如图2,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( )
A. 1 B. C. D.
5. (2011山东滨州)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案. 现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )
A. B. C. D. 1
6. (2011江苏淮安)某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24,这组数据的中位数是( )
A. 29 B. 28 C. 24 D. 9
7. 下表为72人参加某商店举办的单手抓糖果活动的统计结果. 若抓到糖果数的中位数为a,众数为b,则a+b之值为( )
A. 20 B. 21 C. 22 D. 23
8. (2011内蒙古呼和浩特)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转. 若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )
A. B. C. D.
9. (2011黑龙江牡丹江)某校甲、乙、丙、丁四名同学在运动会上参加4×100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是( )
A. B. C. D.
10. (2011四川雅安)随意掷一枚正方体骰子,均落在图中的小方格内(每个方格除颜色外完全相同),那么这枚骰子落在阴影小方格中的概率为_______.
11. (2011四川内江)“Welcome to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字母O出现的频率是_______.
12. (2011新疆乌鲁木齐)某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调了10户居民家庭月使用塑料袋的数量,结果如下(单位:只)
65 70 85 74 86 78 74 92 82 94
根据统计情况,估计该小区这100户家庭平均使用塑料袋为______只.
13. (2010重庆)在参加“森林重庆”的植树活动中,某班6个绿化小组植树的棵树分别是10,9,9,10,11,9,则这组数据的众数是_______.
14. (2011广东株洲)如图4,第(1)个图有1个黑球;第(2)个图为3个同样大小的球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小的球叠成的图形,最下一层的3个球为黑色,其余为白色;…;则从第n个图中随机取出一个球,它是黑球的概率为_______.
图形的认识与全等
1. (2011四川雅安)已知线段AB=10 cm,点C是线段AB的黄金分割点(AC>BC),则AC的长为( )
A. (5-10)cm
B. (15-5)cm
C. (5-5)cm
D. (10-2)cm
2. (2011梧州)如图5,直线EOCD,垂足为点O,AB平分∠EOD,则∠BOD的度数为( )
A. 120° B. 130°
C. 135° D. 140°
3. 如图6所示的几何体的主视图是( )
4. (2011株洲)图7是一个由7个同样的立方体叠成的几何体. 请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是( )
5. (2011江苏无锡)已知圆柱的底面半径为2 cm,高为5 cm,则圆柱的侧面积是( )
A. 20cm2 B. 20πcm2
C. 10πcm2 D. 5πcm2
6. (2011黑龙江大庆)若一个圆锥的侧面积是10,则下列图象中表示这个圆锥母线l与底面半径r之间的函数关系的是( )
7. (2011重庆)在ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=________.
8. (2011山东菏泽)如图8是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是_____.
9. (2011黑龙江大庆)由几个相同小正方体搭成的几何体的主视图与左视图如图9所示,则该几何体最少由________个小正方体搭成.
10. (2011广东茂名)画图题:
(1)如图14,将ABC绕点O顺时针旋转180°后得到A1B1C1;
(2)请你画出下面“蒙古包”的左视图.
重点练习
1. 会用扇形统计图表示数据;会计算极差和方差;会画频数分布直方图和频数折线图;能用样本的平均数、方差来估计总体的平均数和方差.
2. 会运用列表法、画树状图法计算简单事件发生的概率.
3. 掌握两个三角形全等的判定方法,并能解决实际问题.
4. 能熟练地应用尺规作出基本的几何图形.
概率与统计
1. (2011临沂)如图1,A,B是数轴上两点,在线段AB上任取一点C,则点C到表示-1的点的距离不大于2的概率是( )
A. B. C. D.
2. (2011福建三明)如图2,有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案. 将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为( )
A. B. C. D.
3. (2011浙江绍兴)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同. 若从中随机摸出一个球,它是白球的概率为,则黄球的个数为( )
A. 2 B. 4 C. 12 D. 16
4. (2011江苏盐城)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32. 对这组数据,下列说法正确的是( )
A. 平均数为30 B. 众数为29
C. 中位数为31 D. 极差为5
5. (2011山东日照)两个正四面体骰子的各面上分别标有数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )
A. B. C. D.
6. (2011福建福州)从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )
A. 0 B. C. D. 1
7. (2011广西来宾)某校八年级共240名学生参加某次数学测试,教师从中随机抽取了40名学生的成绩进行统计,共有12名学生成绩达到优秀等级,根据上述数据估算该校八年级学生在这次数学测试中达到优秀的人数大约有_______人.
8. (2011湖北潜江)张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图3排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是_______.
9. (2011山东菏泽)从-2,-1,0,1,2这五个数中任取一个数,作为关于x的一元二次方程x2-x+k=0中的k值,则所得的方程中有两个不相等的实数根的概率是_______.
10. (2011山东烟台)如图4,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.
11. (2011湖南益阳)在-1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线y=,该双曲线位于第一、三象限的概率是_______.
12. (2011黑龙江牡丹江)一组数据1,2,a的平均数为2,另一组数据-1,a,1,2,b的唯一众数为-1,则数据-1,a,1,2,b的中位数为_______.
13. (2011新疆建设兵团)甲、乙两县参加由地区教育局举办的“双语口语”大赛,两县参赛人数相等. 比赛结束后,学生成绩分别为7分、8分、9分、10分(满分10分). 甲、乙两县不完整成绩统计表如下表所示. 经计算,乙县的平均分是8.25,中位数是8分.
(1)请写出扇形图中“8分”所在扇形的圆心角度数;求出甲县的平均分、中位数;根据以上信息分析哪个县的成绩较好.
(2)若地区教育局要组织一个由8人的代表队参加自治区组织的团体赛,为了便于管理,决定从这两个县的一个县中挑选参赛选手. 请你分析该从哪个县选取.
图形的认识与全等
1. (2011浙江绍兴)如图5,在ABC中,分别以点A和点B为圆心,大于AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连结AD.若ADC的周长为10,AB=7,则ABC的周长为( )
A. 7 B. 14 C. 17 D. 20
2. (2011广东肇庆)如图6,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF等于( )
A. 7 B. 7.5 C. 8 D. 8.5
3. (2011莱芜)图7是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是( )
A. 3 B. 4 C. 5 D. 6
4. (2011四川广安)如图8示,圆柱的底面周长为6 cm,AC是底面圆的直径,高BC=6 cm,点P是母线BC上一点且PC=BC. 一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是( )
A. 4+ cm B. 5 cm
C. 3 cm D. 7 cm
5. (2011山东威海)在ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F在BC边上,连结DE,DF,EF,则添加下列哪一个条件后,仍无法判定BFD与EDF全等( )
A. EF∥AB B. BF=CF
C. ∠A=∠DFE D. ∠B=∠DEF
6. (2011安徽芜湖)如图9,在ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )
A. 2 B. 4
C. 3 D. 4
7. 如图10,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PEAB于点E.若PE=2,则两平行线AD与BC间的距离为________.
8. (2011江苏宿迁)把一个半径为12 cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是________cm.
9. (2011江苏南京)如图11,将?荀ABCD的边DC延长到点E,使CE=DC,连结AE,交BC于点F.
(1)求证:ABF≌ECF.
(2)若∠AFC=2∠D,连结AC,BE,求证:四边形ABEC是矩形.
难点练习
1. 综合运用统计与概率的知识解决一些简单的实际问题,并能评估是否合理.
2. 结合一元一次方程、二元一次方程(组)和函数解决有关概率的问题.
3. 灵活运用平行线的判定和特征进行推理和计算.
4. 掌握三角形、四边形和圆的综合运用.
概率与统计
1. (如2011甘肃兰州)一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是( )
A. m=3,n=5 B. m=n=4
C. m+n=4 D. m+n=8
2. (2011湖北十堰)如图1所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个. 下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材料损耗速度与流经其表面水的数量成正比,则更换最慢一个三角形材料使用的时间约为更换一个三角形材料使用时间的8倍,其中正确的判断有( )
A. 1个 B. 2个
C. 3个 D. 4个
3. (2011广东深圳)图2是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( )
A. B. C. D.
4. (2011江苏无锡)100名学生进行20秒钟跳绳测试,测试成绩统计如下表:
则这次测试成绩的中位数m满足( )
A. 40<m≤50 B. 50<m≤60
C. 60<m≤70 D. m>70
5. 下表为某班成绩的次数分配表. 已知全班共有38人,且众数为50分,中位数为60分,求x2-2y之值为( )
A. 33 B. 50 C. 69 D. 90
6. (2011四川雅安)已知一次函数y=kx+b,k从2,-3中随机取一个值,b从1,-1,-2中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为( )
A. B. C. D.
7. (2011四川凉山)如图3,有三个同心圆,由里向外的半径依次是2 cm,4 cm,6 cm,将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是______.
8. (2010重庆)有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余相同. 现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分式方程+2=有正整数解的概率为______.
9. (2011江苏宿迁)在一个不透明的布袋中装有相同的三个小球,其上面分别标有数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.
(1)写出点M坐标的所有可能的结果.
(2)求点M在直线y=x上的概率.
(3)求点M的横坐标与纵坐标之和是偶数的概率.
图形的认识与全等
1. (2011江苏扬州)图4是由几个小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是( )
2. (2011江苏连云港)如图5是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( )
A. 1 B. 2 C. 3 D. 4
3. (2011山东青岛)如图6,在正方形铁皮上剪下一个扇形和一个半径为1 cm的圆形,使之恰好围成如图7所示的一个圆锥,则圆锥的高为( )
A. cm B. 4 cm
C. cm D. cm
4. 如图8,AD是ABC的角平分线,DFAB,垂足为F,DE=DG,ADG和AED的面积分别为50和39,则EDF的面积为( )
A. 11 B. 5.5 C. 7 D. 3.5
5. (2011四川遂宁)在同一平面内有n条直线,任何两条不平行,任何三条不共点. 当n=1时,如图9,一条直线将一个平面分成两个部分;当n=2时,如图10,两条直线将一个平面分成四个部分;则当n=3时,三条直线将一个平面分成______部分;当n=4时,四条直线将一个平面分成______部分;若n条直线将一个平面分成an个部分,n+1条直线将一个平面分成an+1个部分,an,an+1,n之间的关系为______.
6. (2011江西南昌)如图11所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°. 有以下四个结论:①AFBC;②ADG≌ACF;③O为BC的中点;④AG:DE=:4,其中正确结论的序号是______.
7. (2011湖北潜江)两个大小相同且含30°角的三角板ABC和DEC如图12摆放,使直角顶点重合. 将图12中DEC绕点C逆时针旋转30°得到图13,点F,G分别是CD,DE与AB的交点,点H是DE与AC的交点.
(1)不添加辅助线,写出图13中所有与BCF全等的三角形.
1选例贴近生活,将生活中的问题模型化
让学生对生活中的现象进行观察,以获取感性认识,以这一认识为背景,由问题出发引入新的概念、定理、公式。这样教师能很好地利用学生已有的知识或者较易理解的知识进行新的知识教学,同时学生也能较容易地通过已有的知识去理解并掌握新的知识。俗话说,兴趣是学习最好的老师,学生对课程学习兴趣的养成,是学生主动学习和老师有效开展教学活动的保证。这一过程不仅让学生掌握了新的知识,同时通过生活中的实例激发了学生学习的兴趣,培养了学生的应用意识。譬如,可以从以下的“摸彩问题”引出“全概率公式”。例:设在n张彩票中仅有一张奖券,约定每位彩民只能从中抽取一张彩票,试求第二位彩民摸到奖券的概率。在该例中通过对第一人与第二人中奖概率的大小的讨论,寻求第二人中奖概率的计算方法,从而由该问题的解决办法引出全概率公式。又如,可以从历史上著名的“分赌注问题”引出“数学期望”,用“赤壁之战”引出“小概率事件”等等。
2启发式授课
启发式授课要求教师在教学过程中根据教学任务和学习的客观规律,从学生的实际出发,采用多种方式,以启发学生的思维为核心,调动学生的学习主动性和积极性,促使他们生动活泼地学习。教师要充分发挥主导作用,根据每章节学生需要掌握的知识,特别是可能存在的难点和疑点,有线索、有重点地进行启发式的授课,使学生不仅能在课堂上接收到生动的知识教育,又能得到启发举一反三,进行后续的自学和知识的应用。譬如在讲到古典概率模型的时候,不放回抽样问题既可以用排列的计算方式来计算其中的概率,也可以使用组合的计算方式来计算,而放回抽样中只能用排列的计算方式来计算,可让学生思考排列、组合与抽取样本的具体操作过程之间有什么联系?对于二维连续型随机变量的联合概率密度和边缘概率密度,学生感觉其中的变量范围的划分很难,这时可以有意识地引导学生探索解决该问题的方法。比如给出下面的例题:设二维连续型随机变量的联合概率密度函数为f(x,y)=6x0荞x荞y荞10其荞他,求边缘概率密度函数fX(x),fY(y)。在讲解的过程中提醒学生利用公式fX(x)=+∞+∞乙f(x,y)dy,fY(y)=+∞+∞乙f(x,y)dx计算得到的函数的定义域为R,而被积函数的非零值由x,y的取值共同决定。同时这个是一种积分,相当于沿着一条平行于Y轴或者X轴的直线积分,当这条直线处在不同的位置时,直线上点对应的f(x,y)的取值也不同,或者为零,或者非零,而积分只考虑被积函数非零的区间。学生通过积极的思考和教师的引导最终掌握此类题型的解决办法。又如,在讲到数理统计内容的时候,样本方差的定义为s2=1n-1ni=1Σ(xi-x)2,此时可以启发学生考虑用1nni=1Σ(xi-x)2或者1n-1ni=1Σxi-x軃作为样本方差的定义,让学生思考为什么最后选择了用s2=1n-1ni=1Σ(xi-x)2作为样本方差的定义。要启发学生认识到这些问题,不能僵化地照本宣科,教师要发挥在启发式授课中的主导作用,从学生的知识水平、能力水平的实际出发,风趣讲解,设疑引思,将学生现实的疑惑和原有的见闻、知识、体验、认识沟通起来,最后水到渠成地解决,使每一位学生在原有的知识上得到应有的进步和提高。
3引导下的自学与讨论
对概率论课程中的很多典型问题如抽签问题、生日问题等等,学生往往自己分析不清楚,会犯各种各样的错误,因此学生在掌握了各个章节的基本知识后还应结合有关参考书进行有的放矢的自学,这是学生依靠自己的思维来获得知识和更新知识的过程。自学采用集中形式进行,以提高学习效果和便于教师辅导。在此过程中教师还可以举例并通过对实例的讨论纠正学生的一些错误思想,形成正确的思想方法,同时了解学生的难点和疑点,作为以后进行该课程教学工作的参考。此外,在教学的过程中向学生提出问题,引导学生课后积极翻阅资料积极思考,比如,在讲解大数定理和中心极限定理时,向学生提出问题:三个大数定理之间有什么样的联系和区别?两个中心极限定理之间的区别和联系是什么?学生通过课后积极地思考,从外在形式的不同和内在的统一找到答案。通过这种方式可以有效地培养学生发现问题和解决问题的能力。
4拓展性的课外作业
在初中阶段如何处理统计与概率的内容?怎样发挥统计与概率在提高学生数学素养方面的功能?下面就这些问题,谈几点粗浅的看法。
一、统计与概率改革的意义
统计与概率内容的改革,对促进初中数学教学内容的现代化、结构的合理化,推动教育技术手段的现代化,改进教师的教学方式和学生的学习方式等都有积极的作用。
1.使初中数学内容结构更加合理
现行初中数学教学内容主要包括代数、几何,统计含在代数之中。初中三年总课时大约500左右,代数约占258课时,统计约占14课时,几何约 占228课时。从课时分配上可以看出,代数和几何占有相当的份量,约占总课时的95%,统计仅占4%。代数、几何属于“确定性” 数学,学习时主要依赖逻辑思维和演绎的方法,它们在培养学生的计算能力、逻辑思维能力和空间观念方面发挥着重要作用。而统计与概率属于“不确定性”数学,要寻找随机性中的规律性,学习时主要依靠辨证思维和归纳的方法,它在培养学生的实践能力和合作精神等方面更直接、更有效。统计、概率与现实生活密切联系,学生可以通过实践活动来学习数据处理的方法。
2.有效地改变教师的教学方式和学生的学习方式
转变方式是学习统计与概率的内在要求。由于统计与概率中存在着大量的活动,学生需要通过亲自参与活动来学习统计与概率的内容,掌握数据处理的方法。这些活动以有效地导致教师与学生地位的根本改变,促进教师教学方法的改进和学生学习方式的改变。教师由知识的传授者成为活动的组织者、引导者、合作者,学生由被动接受知识的容器转变为活动学习的设计者、主持者、参与者;传统的传授式教学已不能满足教学的需要,学生的学习方式由被动接受变为主动探究。
二、处理统计与概率的基本原则
1.突出过程,以统计过程为线索处理统计与概率的内容统计学的主要任务是,研究如何以有效的方式收集和处理受随机性影响的数据,通过分析数据对所考察的问题作出推断和预测,从而为决策和行动提供依据和建议。统计是一个包括数据的收集、整理、描述和分析(包括概率)的完整过程。根据统计的这个特点,初中阶段的统计内容应该反映这个完整的过程,以过程为线索设计整个初中的统计内容。首先是数据的收集,然后是对收集到的数据进行整理和描述,最后对数据进行分析。在具体内容的处理上也应突出统计的基本过程,让学生经历收集数据,整理数据、描述数据和分析数据得出结论,利用结论进行合理预测和判断的统计过程。
2.强调活动,通过活动体验统计的思想,建立统计的观念
统计与生活实际是密切联系的,在收集数据、处理数据以及利用数据进行预测、推断和决策的过程中包含着大量的活动,完成这些活动需要正确的统计思想观念的指导。统计的学习要强调让学生从事简单的数据收集、整理、描述、分析,以及根据统计结果进行判断和预测等活动,以便渗透统计的思想,建立统计的观念。
3.循序渐进、螺旋上升式安排内容
统计是一个包括数据的收集、整理、描述和分析的完整过程,这个过程中的每一步都包含着多种方法。例如,收集数据可以利用抽样调查,也可以进行全面调查;在描述数据中,可以用象形图、条形图、扇形图、直方图、折线图等各种统计图描述数据。对统计过程中的任意一步,教材不可能在一个统计过程中全面介绍,因此教材可以采用循序渐进、螺旋上升的方式处理内容,在重复统计活动的过程中,逐步安排收集数据和处理数据内容。这样安排内容不仅符合统计的特点,也符合学生的认知规律。学生对统计的过程是陌生的,这样螺旋上升式安排内容,可以使学生在重复统计活动的过程中,不断完善对统计的认识,逐步掌握统计分析的各种方法。
三、处理统计与概率时值得注意的几个问题
1.统计与概率宜分别相对集中安排
概率是刻画事件发生可能性大小的量,统计是通过处理数据,利用分析数据的结果进行预测或决策的过程。从统计学内在的知识体系看,概率是统计学的有机组成部分,在数据的分析阶段,可以利用概率进行统计分析,从数据中得出结论,根据结论进行预测或判断。因此,在初中阶段,可以把概率看成是统计过程的一个阶段。
2.使用信息技术,突出统计量的统计意义
信息技术的发展,使收集数据和处理数据变得更方便、更快捷。我们可以通过计算机网络收集数据,利用计算机软件制作统计表,绘制各种统计图以及进行概率实验,这是统计与概率在各行各业得到广泛应用的一个重要原因。在教材编写和实际教学中,应当提供使用计算机处理一些内容的方案,作为弹性处理,供有条件使用计算机的学校或学生选用。
3.淡化处理概念
虽然概率与统计的概念不多,但有些概念给出定义是困难的,教材不必追求严格定义,应将重点放在理解概念的意义上来。例如概率的概念,在中学阶段给出严格的定义是不可能的,也是没有必要的,因此在编写时,可以通过大量的例子来说明,让学生感受到概率是对随机现象中规律性的一种刻画,是对事情发生可能性大小的一种估计就可以了。
4.选材广泛,文字叙述通俗、简洁
统计(包括概率)的现实生活素材是非常丰富的,编写教材时应当充分挖掘,尽量从学生的生活实际出发来引出和呈现内容,通过丰富的素材处理内容。选材可以是学生感兴趣的生活实际问题、社会问题或人与自然的问题 等,突出现实性与时代感。
统计与概率的内容虽然有大量的图表,但也需要一定的文字语言解释说明。为不影响学生的阅读兴趣、分散学生的注意力,要避免大段的文字叙述。
概率论与数理统计这门课是研究随机现象的统计规律性的数学课程,推理严谨,有其自身的特点,应突出概率论与数理统计中的随机方法和统计方法,使学生们建立统计思想。在概率论与数理统计的开始阶段,应先介绍一下它的起源、发展及现状,讲述这一方向的数学大家的奇闻趣事,并结合身边的实例来激发学生学习的兴趣。例如可以介绍下面的例子:某大型超市开展促销活动宣传某个品牌的洗发水,活动的规则为一个小箱中装有大小相同的黑白两种颜色各10个围棋子,一个白色棋子代表10分,一个黑色棋子代表5分,从中摸出10个棋子,计算这10个棋子所代表的分数之和即为中奖的分数,中奖规则如下:一等奖:100分,价值5000元的液晶电视一台;二等奖:50分,价值3000元的冰箱一台;三等奖:95分,所宣传的某品牌的价值98元的特级洗发水一瓶;四等奖:55分,所宣传的某品牌的价值78元的一级洗发水一瓶;五等奖:60分,所宣传的某品牌的价值58元的二级洗发水一瓶;六等奖:65分,所宣传的某品牌的价值38元的护发素一瓶;七等奖:70分,价值18元的牙具一套;八等奖:85分,价值5元的香皂一块;九等奖:75分与80分为优惠奖,收成本费18元的所宣传的某品牌的去屑洗发水一瓶。这个促销活动从表面上看一等奖到八等奖是免费的,九等奖是收费的,那这样做商家不会赔本吗?给学生们一些思考时间,从第一章中的古典概率的角度来分析这个问题。实际上商家这样做不会亏本,先来看看这些奖项的中奖概率。一等奖就意味着所抽出的棋子全是白色,其中奖概率为;二等奖就意味着所抽出的棋子全是黑色,其中奖概率为,依次类推获奖概率随着等级递增而递增。前面的大奖都是小概率事件,基本上是不可能发生的,而后面几个奖项发生的概率是较大的,这样做就使得商家既做了品牌推广又不至于赔本。在解决这个问题的整个过程中,不仅可以使学生们去思考求解的方法,又可以使他们体会到概率论与数理统计与实际生活的贴近关系,从而消除他们对这门课程的畏惧感,激发他们的学习兴趣,提高解决实际问题的能力。
二、培养统计思维能力
在学习概率论与数理统计课程的过程中,要使学生们建立统计思维,努力培养他们的统计思维能力。学生们之前学习的课程,如数学分析等主要运用的是传统的形象思维和逻辑思维,而统计思维有别于这两种思维方式。那什么是统计思维呢?统计思维的定义是人们自觉地用数字对客观事物的数量特征和发展规律进行描述、分析、判断和推理的思维方式。它是较形象思维和逻辑思维更为复杂的一种思维方式,属于创造性思维。统计思维应具有三个本质特点:第一,数量性。统计与数字密不可分,要想掌握统计思维,就要有数量的概念,会用数字来分析和揭示社会经济现象的本质,而形象思维中的数字仅仅起到表征的作用,逻辑思维中的数字只是用于计算。第二,容错性。概率论与数理统计是一门容错的学科,其理论依据、方法手段、思维形式在许多情况下不是为了需求不变的或准确无误的结论,而是要从数字中抽象出社会现象的本质特点。社会现象又是在不断变化的,许多社会规律也不具有可复制性,带有容错的统计思维能够解释和分析形象思维和逻辑思维所不能解释的社会现象,允许现实结果与预期目标存在适度的偏离。第三,逆向性。从问题的反面深入地进行探索这就是逆向思维的特性,统计思维就具有这一特性。这是由于当收集的数据不完备,或分析模型的理论假设不合理,或进行统计推断后拒绝了原假设,都要回查导致问题出现的原因是什么,这也是统计思维的核心所在。正是由于统计思维所具有的逆向性,就使得统计思维树立新思想,创立新形象。统计思维能力不是与生俱来的,只有具备一定的专业基础知识,经过一段时间的专门思维训练才可以得到。如何培养统计思维能力呢?一般而言应从培养以下三种能力着手:第一,培养观察力。所谓的“观察”是指在不进行任何人为干预的条件下,将所发生的社会现象及其过程客观地记录下来。统计思维过程是从发现问题开始的,观察力的强弱是统计思维的关键。多次观测法也是统计中一种常见的重要的观察法,就是为了把握某一确定现象的特性而对该现象进行多次观测的方法。应有意识有目的地培养学生在多次观测中发现问题的能力,例如看国家统计局官方网站的统计数据或证券交易数据等,让课堂的教学与实际的社会现实加以结合,增强学生们的观察力。第二,培养抽象能力。抽象能力是认识复杂现象过程的一种思维能力,由于社会现象大多是随机概率过程,传统的逻辑思维中的抽象已经不再适用于带随机性的社会现象。而统计思维中的抽象是以数字为工具,通过比较、分类等方法,可以从数据的特征、数量的规律中揭示社会现象的随机本质,所以培养学生们的统计思维的抽象能力是很重要的。第三,培养融通能力。统计是一种获取信息的手段和工具,其目的是解决社会的一些实际问题。而在概率论与数理统计课程的教学重点是灌输统计的基本知识和推导常见的公式模型,对于统计的数据的利用也只是停留在计算简单的指标上,这就导致了学生们知识面窄,融通能力差,综合分析问题的能力低下。要培养学生们的融通能力,就要改变这种狭义的统计观,强化统计的寄生性,扩大学生的知识面,采用案例分析等方法增加相关领域的相关知识的传授。
三、改革教学方法和手段