前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的机械加工论文主题范文,仅供参考,欢迎阅读并收藏。
[论文摘要]分析机械加工存在误差的主要原因,然后提出提高机械加工精度的措施。
加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。在机械加工中,误差是不可避免的,但误差必须在允许的范围内。通过误差分析,掌握其变化的基本规律,从而采取相应的措施减少加工误差,提高加工精度。
一、机械加工产生误差主要原因
(一)主轴回转误差。主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。适当提高主轴及箱体的制造精度,选用高精度的轴承,提高主轴部件的装配精度,对高速主轴部件进行平衡,对滚动轴承进行预紧等,均可提高机床主轴的回转精度。
(二)导轨误差。导轨是机床上确定各机床部件相对位置关系的基准,也是机床运动的基准。车床导轨的精度要求主要有以下三个方面:在水平面内的直线度;在垂直面内的直线度;前后导轨的平行度(扭曲)。除了导轨本身的制造误差外,导轨的不均匀磨损和安装质量,也是造成导轨误差的重要因素。
(三)传动链误差。传动链的传动误差是指内联系的传动链中首末两端传动元件之间相对运动的误差。传动误差是由传动链中各组成环节的制造和装配误差,以及使用过程中的磨损所引起。
(四)刀具的几何误差。任何刀具在切削过程中,都不可避免要产生磨损,并由此引起工件尺寸和形状地改变。正确地选用刀具材料和选用新型耐磨的刀具材料,合理地选用刀具几何参数和切削用量,正确地采用冷却液等,均能最大限度地减少刀具的尺寸磨损。必要时还可采用补偿装置对刀具尺寸磨损进行自动补偿。
(五)定位误差。一是基准不重合误差。在零件图上用来确定某一表面尺寸、位置所依据的基准称为设计基准。在工序图上用来确定本工序被加工表面加工后的尺寸、位置所依据的基准称为工序基准。在机床上对工件进行加工时,须选择工件上若干几何要素作为加工时的定位基准,如果所选用的定位基准与设计基准不重合,就会产生基准不重合误差。二是定位副制造不准确误差。夹具上的定位元件不可能按基本尺寸制造得绝对准确,它们的实际尺寸(或位置)都允许在分别规定的公差范围内变动。工件定位面与夹具定位元件共同构成定位副,由于定位副制造得不准确和定位副间的配合间隙引起的工件最大位置变动量,称为定位副制造不准确误差。
(六)工艺系统受力变形产生的误差。一是工件刚度。工艺系统中如果工件刚度相对于机床、刀具、夹具来说比较低,在切削力的作用下,工件由于刚度不足而引起的变形对加工精度的影响就比较大。
二是刀具刚度。外圆车刀在加工表面法线(y)方向上的刚度很大,其变形可以忽略不计。镗直径较小的内孔,刀杆刚度很差,刀杆受力变形对孔加工精度就有很大影响。
三是机床部件刚度。机床部件由许多零件组成,机床部件刚度迄今尚无合适的简易计算方法,目前主要还是用实验方法来测定机床部件刚度。变形与载荷不成线性关系,加载曲线和卸载曲线不重合,卸载曲线滞后于加载曲线。两曲线线间所包容的面积就是载加载和卸载循环中所损耗的能量,它消耗于摩擦力所做的功和接触变形功;第一次卸载后,变形恢复不到第一次加载的起点,这说明有残余变形存在,经多次加载卸载后,加载曲线起点才和卸载曲线终点重合,残余变形才逐渐减小到零。
(七)工艺系统受热变形引起的误差。工艺系统热变形对加工精度的影响比较大,特别是在精密加工和大件加工中,由热变形所引起的加工误差有时可占工件总误差的50%。机床、刀具和工件受到各种热源的作用,温度会逐渐升高,同时它们也通过各种传热方式向周围的物质和空间散发热量。八)调整误差。在机械加工的每一工序中,总要对工艺系统进行这样或那样的调整工作。由于调整不可能绝对地准确,因而产生调整误差。在工艺系统中,工件、刀具在机床上的互相位置精度,是通过调整机床、刀具、夹具或工件等来保证的。当机床、刀具、夹具和工件毛坯等的原始精度都达到工艺要求而又不考虑动态因素时,调整误差的影响,对加工精度起到决定性的作用。
(九)测量误差。零件在加工时或加工后进行测量时,由于测量方法、量具精度以及工件和主客观因素都直接影响测量精度。
二、提高机械加工精度的措施
(一)减少原始误差。提高零件加工所使用机床的几何精度,提高夹具、量具及工具本身精度,控制工艺系统受力、受热变形、刀具磨损、内应力引起的变形、测量误差等均属于直接减少原始误差。为了提高机械加工精度,需对产生加工误差的各项原始误差进行分析,根据不同情况对造成加工误差的主要原始误差采取不同的措施解决。对于精密零件的加工应尽可能提高所使用精密机床的几何精度、刚度和控制加工热变形;对具有成形表面的零件加工,则主要是如何减少成形刀具形状误差和刀具的安装误差。
(二)误差补偿法。对工艺系统的一些原始误差,可采取误差补偿的方法以控制其对零件加工误差的影响。
①误差补偿法:此法是人为地造出一种新的原始误差,从而补偿或抵消原来工艺系统中固有的原始误差,达到减少加工误差,提高加工精度的目的。
②误差抵消法:利用原有的一种原始误差去部分或全部地抵消原有原始误差或另一种原始误差。
(三)分化或均化原始误差。为了提高一批零件的加工精度,可采取分化某些原始误差的方法。对加工精度要求高的零件表面,还可以采取在不断试切加工过程中,逐步均化原始误差的方法。
①分化原始误差(分组)法:根据误差反映规律,将毛坯或上道工序的工件尺寸经测量按大小分为n组,每组工件的尺寸范围就缩减为原来的1/n。然后按各组的误差范围分别调整刀具相对工件的准确位置,使各组工件的尺寸分散范围中心基本一致,以使整批工件的尺寸分散范围大大缩小。
②均化原始误差:此法过程为通过加工使被加工表面原有误差不断缩小和平均化的过程。均化的原理就是通过有密切联系的工件或工具表面的相互比较和检查,从中找出它们之间的差异,然后再进行相互修正加工或基准加工。
(四)转移原始误差。这种方法的实质就是将原始误差从误差敏感方向转移到误差非敏感方向上去。转移原始误差至非敏感方向。各种原始误差反映到零件加工误差上的程度与其是否在误差敏感方向上有直接关系。若在加工过程中设法使其转移到加工误差的非敏感方向,则可大大提高加工精度。转移原始误差至其他对加工精度无影响的方面。
三、结束语
在机械加工中,误差是不可避免的,只有对误差产生的原因进行详细的分析,才能采取相应的预防措施减少加工误差,提高机械加工精度。
参考文献:
[1]李玉平,机械加工误差的分析[J].新余高专学报,2005(4).
(1)数控技术的概念
数控技术是在传统机械加工技术的基础上,采用数字控制技术来进一步提高机械加工的质量,并且结合传统机械制造技术、计算机技术与网络通信技术等进行机械加工运动。较传统机械加工技术来说,其不但具有高准度与高效率,同时还具备柔性自动化等优点,国内现在对数控技术的应用主要是预先编制好程序,再通过控制程序来控制设备,一般采用计算机进行控制。
(2)数控加工技术的主要特点
数控加工技术可以简便的改变相关工艺参数,因此在进行换批加工与研制新产品时非常方便。另外,像普通机床很难完成的加工复杂零件与零件曲面形状等,利用数控加工技术都可以高质量量完成。数控加工技术采用模块化标准工具,在换刀与安装方面都节省了很多时间,同时对工具的标准化程度与管理水平都有较大的提高。
2数控技术在机械加工技术中的应用意义
(1)数控技术在机械加工技术中的应用
提高了机床的控制力近年来数控技术在机械加工技术中的应用,对机床控制力有了很大程度上的提高,进一步提高了机械加工的工作效率。采用数控技术来控制机床设备,充分发挥了机床设备的功能,同时使机床设备的操作更加简单,通过在数控器上预先编制好机械加工的流程与操作方法,并由控制器依据相关数字信息来控制机床运行,不但保证了机械加工的质量,同时也使机床设备更具高效化。
(2)数控技术在机械加工技术中的应用
推动了汽车制造业的发展数控技术对进一步发展汽车制造业有很大的帮助,通过将数控技术应用到机械加工技术中以提高机械加工技术的有效,为进一步发展汽车制造业提供了技术保障,在汽车零件的加工中运用数控技术可有效提高生产率,同时强化了汽车进行机械加工的效果,使原本复杂的操作更加简单,提高汽车零件加工生产的效率同时促使汽车制造业实现最大化收益。
3有效提高数控技术在机械加工技术中的应用效果
(1)重视对数控技术的应用
近些年来,数控技术虽已被广泛应用到机械加工技术中,但是仍然有一部分企业内部对数控技术的应用缺乏足够的重视。因此,要想进一步将数控技术融入到机械加工技术当中,首先就必须要让企业的经营管理者充分认识到数控技术在机械加工技术中的重要意义,给予充分的重视。同时,积极组织数控技术相关知识的培训,提高工作人员数控技术水平,结合数控技术的实际操作与理论知识,以便更好的发挥数控技术的优势,提高机械加工的质量与效率。
(2)在机械加工过程中实现自动编程
一般在机械加工的过程中都是采用人工手动进行对生产制造图样与编写零件加工程序单以及工艺过程进行确定,这样不仅效率低且容易出现人为计算失误。因此,应注重对数控技术有效性的应用,尽快实现自动编程,使用计算机来替代人工操作,不但可保证加工质量,同时提高机械加工制造的效率,实现人力与物力的合理化配置,为加工企业节约制造成本,进一步推动机械制造业的发展。
(3)合理改进并更新机械加工中的原有设备
在全球经济发展的推动下,我国工业大力发展,数控技术被越来越普遍的应用到了机械加工技术中,而时代新形势对机械加工的要求越来越高,因此,应当积极创新数控技术,大力倡导经济型数控机床的发展,以保证数控机床的稳定性与高效性。同时,对机械加工中的原有设备应当进行合理改进,提升机械加工的技术水平,完善数控技术的应用,提高我国机械制造业的生产水平。
(4)实现数控技术的智能化与网络化发展
数控技术的应用,使得机械加工脱离了传统以人工控制为主的加工时代,对生产力的提高具有重要作用。数控技术的应用对机械加工的变革性意义主要表现在以下几方面:1)生产效率大幅提高。应用数控技术后,机械加工脱离人为控制,生产周期大大缩短,生产效率大幅提高,废料率大幅降低;2)生产速度更快。数控技术对机械加工时间的控制非常精确,完全不受人为主观控制,在机械加工速度上去除了人为干扰,加工速度得到迅速提高;3)产品外观更美观。机械加工的产品,外观要求精美,数控技术将外观要求输入后,电子自动控制,外观与模型几乎无异;4)产品外形实现多样化。通过制图工具制作模型,产品形状随心所欲,经过数控技术加工都能成为现实;5)产品精度更标准。传统人为控制的机械加工,产品在精度方面控制不够精细。而数控技术的应用,精确控制完全自动化,可以完全避免人为误差。产品加工精度更符合设计标准;6)生产控制自动化。这也是最直观的表现。数控技术的最直接目的就是自动控制,是机械加工摆脱人力因素的唯一选择。数控技术运用自身的数字化功能,可以有效控制机械加工的设备和过程,并采用数控设备、数控编控等技术使机械加工更加系统化。
2机械加工中数控技术的应用
2.1数控技术在机床加工中的应用
机械加工中,机床的应用比例很大。各种各样的模具生产都是由机床来完成的。传统的机床生产,模具的精度控制很难实现自动化,因此,生产出的模具合格率较低,材料利用率低。而数控化技术在机床上应用后,实现了机床全自动化机电一体制,这种机电一体化加工生产技术能保证产品的质量。
2.2数控技术在煤矿机械加工中的应用
煤矿机械具有特殊性,是专用的机械设备,由于其工作环境复杂多变,对安全系统要求较高,煤矿机械加工过程要求精细化程度高。而传统机械加工很难实现其精度的要求。而且,煤矿机械更新换代较快,应用领域单一,所以生产加工量小,下料难。数控技术得到应用后,设备下料切割采用数控技术,改变了过去的工作模式,切割效率得到成倍提高,切割质量高,提高了材料的利用率,降低了设备的生产成本。同时,数控气割机装有自动可调的切缝补偿装置,它允许对构件的实际轮廓进行程序控制,好比数控机床上对铣刀的半径补偿一样。这样可以通过调切切缝的补偿值来精确控制毛还件的加工余量。
2.3数控技术在工业生产中的应用
工业生产过程中,难免会有恶劣的工作环境存在,如高温、高压、操作空间狭小,操作高度过高等。这些危险的工作环境极大地增加了工作人员的工作危险性。而数控技术的应用后,工业生产上类似的恶劣环境完全编入数控程序,使工业生产危险性得到极大改善。在实际的生产过程当中,应用数控技术之后,生产过程可以由计算机系统全程控制。只要预先输入各种生产程序和产品参数,则计算机系统便能够依照指令实现真正意义上的无人自动化生产。即便是在生产过程当中出现了故障或者问题,系统会根据错误的等级来决定是否继续进行生产,同时采用有关的保护性护理措施,并向管理者报警。除此之外,机械加式中数控技术的应用还有很多,如航空设备的生产、机器人系统的生产、汽车工业的生产、石油机械的生产、国家武器装备的生产以及建筑机械、农业机械等领域,应用数控技术后,无一不推动了行业的快速良性发展。
3机械加工中数控技术的应用趋势
随着新的智能化技术的发展,机械加工中数控技术的发展同样朝向智能化方向发展。主要表现在加工过程的自适应控制和工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算等;操作方面的智能化,如智能化的自动编程、智能化的人机界面等。另外,随着数字技术的不断进步,机械加工也面临着新的市场需求,特别是人们对精细化的要求也越来越高,于是高速度、高精加工技术成为必然的趋势。
4结语
一、影响机械加工精度的主要因素
(一)原始误差
1、刀具、夹具的误差。刀具和夹具的制造误差对于工件的加工精度有很大的影响。尽管,在一定范围内的误差是允许存在的,但是刀具在使用过程中会随着切削产生磨损,因此会对工件的形状和尺寸产生影响,进而降低机械加工的精度;而夹具则对于加工精度中的位置精度起着重要作用,它决定着刀具和机床之间的位置,刀具和夹具的误差都属于影响机械加工精度的原始误差。
2、受力变形产生的误差。受切削力的作用,若工件刚度相对低于刀具、夹具、机床等,就会对机械加工的精度产生较大的影响,加之一旦夹紧力的方向和施力点的选择出现偏颇,就会引起工件变形,导致加工误差的产生,进而降低加工工件的精度。其次,我们知道,外圆车刀的变形较为微小,而若内孔镗直径过小,则刀杆刚度也会较差,刚度不足引起变形就会对加工精度产生影响,可以说这都与机械加工的精度密切相关。
3、测量误差。测量精度受测量方法、工件、量具精度等主客观因素的影响,在对零件进行测量时往往会产生一定的误差,因此对于工件精度也会产生一定的影响。
4、调整误差。机械加工作为一个复杂的过程具有繁多的工序,而在每一道加工工序中都会进行适时的调整,因而也就出现了调整误差。在工艺系统中,绝对正确的调整是无法保证的,调整误差对机械加工的精度具有至关重要的作用,忽略加工的动态因素,甚至可以说调整误差对于机械加工的精度起着决定作用。
5、受热变形产生的误差。根据调查,工艺系统中由于受热变形引起的加工误差甚至可以达到总误差的一半左右,这一数据充分显示了受热变形引起的误差对于加些加工的重要影响。受各种热源的作用,机床、工件、刀具等温度会随之升高,当传入的热量和它们自身散发的热量在单位时间内达到同等水平时,就会出现“热平衡”。
(二)其他误差
1、导轨误差。机床部件的相对位置关系是以导轨为基准的,因此,导轨误差将会直接影响机床运动,一般来说,导轨误差主要是由其安装质量的好坏和其不均匀的磨损程度造成的,导轨误差的存在也是促使机械加工精度下降的原因之一。
2、传动链误差。传动链误差主要是依靠末端元件的转角误差来衡量的,传动链中装配的误差和各构成部分的制造是导致传动误差的主要原因。
3、主轴回转误差。众所周知,轴承本身就存在误差,轴承之间还存在同轴度的误差,另外,主轴几段轴颈同样存在同轴度的误差,此外还包括主轴挠度等,这都是导致主轴颈项回转误差的原因,而主轴误差会对机械加工工件的精度产生直接影响。
4、定位误差。定位误差包括基准不重合误差和定位副制造不准确误差。我们在对工件进行加工时,需要根据各种因素确定加工的定位基准,而基准不重合误差正是由于定位基准和设计基准的不重合造成的,但基准不重合误差只存在于调整法加工。定位副制造不准确误差和基准不重合误差的矢量和既定位差。
二、提高机械加工精度的措施
(一)分析加工误差,降低原始误差。为了提高机械加工的精度,确保产品质量,需要对导致加工误差的原因进行全面的分析,具体情况具体分析,采用不同的措施和手段,最大限度的降低原始误差。具体来说可以从以下几个方面入手,首先要做的是提高夹具、量具等工具的自身精度以及机床的几何精度和刚度等,从根源上解决问题,确保后续过程的实施,其次要减少测量误差,调整误差等原始误差,控制加工热变形,逐步提高精密零件的加工质量。
(二)加大科技投入,确保研发资金到位。随着人们对于产品质量要求的提高,机械加工精度的要求也随之提高,在分析了各种影响加工精度的因素的基础上,应该进一步的加大科技投入,确保充足的研发资金,针对加工过程的各个环节采取不同的措施,降低误差,最终达到提高机械加工的精度的目的。
(三)运用补偿控制技术,减少加工误差。补偿控制技术对传动精度要求高的机床具有直接有效的作用,运用此种方法可以在加工过程中采集误差数据,不仅装置简单,且装置的安全性较高,但和软件补偿相比,补偿控制技术校正尺的调整较为复杂,这就导致其调试具有一定的难度。
(四)创造条件,进行误差转移。减少加工误差要学会运用逆向思维,例如,在机床精度不达标时,不仅可以从提高机床的精度入手,还可以从工艺或夹具上采取措施,通过条件的创造,转移工艺系统中的受力变形,受热变形和几何误差等,例如在对磨削主轴锥孔进行加工时,就依靠夹具来保证精度,通过工件和机床主轴之间的浮动联接转移掉原始误差,一样能达到降低误差,提高机械加工精度的目的。
(五)通过自身加工修配,解决精度问题。在机械加工的过程中,有的精度问题十分复杂,如果仅仅从提高零件自身精度入手,往往很难解决问题,此时就可以采用自身加工修配法来解决问题,采取此种方法可以有效确保零件加工的精度,解决一些难度较大的精度问题。
(六)通过误差均化,加工精密基准件。不同的加工零件需要运用不同的解决措施来提高精度,对于平板等精密基准件来说误差均化是加工的最佳方法,在加工时通过对比和检验,发现差异然后再进行修正,从而达到均化、缩小工件表面误差的目标,在生产中提高加工的精度。
(七)分组调整,均分原始误差。有时,在加工过程中,由于上道工序或者基础原料上的误差存在,或者工件材料性能的改变等因素导致原始误差的扩大,此时采取分组进行调整,均分误差的方法就可以解决这个问题,均分原始误差的本质其实就是将原始误差均分到各个加工环节中,实现误差的缩小,减少由于误差所带来的精度、质量的下降。
结语
所谓精基准,是指在最初几道工序中就加工出来,为后面的工序做好定位、装夹的准备,在后续的加工中,以它为基准对别的部位进行加工。该零件形状复杂,没有规则的面供我们选取,相比较而言,A、B两孔比C、D两孔更适合用精基准,主要是考虑到以下两个方面。(1)A、B两孔是装配孔(设计基准),这样能使工艺与设计基准重合,符合“基准重合”原则,可以减少尺寸换算,避免因基准不重合而引起的误差。(2)A、B两孔相对坐标系关系简单,而C、D两孔是空间孔,不易定位、装夹。
2.粗基准的选择与加工
粗基准是用来加工精基准时所用的定位面,它应能保证在以后的加工中各加工面的加工余量均匀,以及在后续加工中定位、夹紧牢固可靠等要求。该零件形状复杂,供加工中装夹压紧的部位几乎没有,另外C、D两孔较长,加工过程中如果没有可靠的刚性支撑,会发生振刀,影响孔的加工精度,所以在确定零件毛坯状态时必须考虑周全,为以后加工做好准备,达到事半功倍的效果。图2所示是最后确定的毛坯状态,主要做了以下两处改动。(1)增加了两处带凸台的E、F面,这样在加工中能够方便压紧零件。(2)增加了四处圆柱凸台F,一是起到扩大定位面的作用,二是辅助压紧时起到支撑的作用。实际加工中,第一步按一定的尺寸把E、F面加工出来,将其作为粗基准,为后续加工做好基准。
3.精基准的加工
完成了粗基准的加工后,第二步是对精基准的加工。加工中以第一步加工的面定位,辅以图3所示的零件中心线和A、B两孔中心平分线,对A、B、C、D四孔进行粗加工。这一步加工极为重要,稍有不慎零件的加工将以失败而告终。为了验证所找的基准线是否准确,加工中应注意观察零件的余量分配是否合理。在毛坯试加工时,如果发现不合适时,可以通过调整尺寸对零件进行拯救性加工。后续加工按以下步骤进行:(1)图3中的A、B、C、D四孔粗加工完成后,零件翻面,以A、B两孔定位将图2中凸台E面上的两孔精加工。(2)以图2中凸台E面上精加工的两孔定位,对零件所有的加工部位进行精加工。(3)最后零件翻面将图2中的E、F共6处凸台去除。
4.结语
机械加工是一个复杂的机械制造过程主要通过去除零件材料实现机械产品性能,在机械加工去除材料时必然会产生大量的能源消耗,因此为构建和谐的生态环境需要加强对机械加工工艺过程对能源和环境的负面影响。
1机械加工中的资源能源消耗
具体到机械加工过程中,资源能源消耗主要包括:物料消耗和能源消耗。在机械加工中由于原材料在生产资源中占据很大的比例,因此加强物料的消耗研究是提高资源利用率的关键,在生产过程中经过一定的加工后,原材料的重量会降低很多,而流失的重量就属于原料消耗,比如在进行机械产品的切割、镗孔时所产生的料头、刨花等都是不可避免的,但是通过工艺改良可以降低这些物料的消耗。
2机械加工中的环境影响分析
机械加工中对环境的影响主要体现在以下两个方面:一是废弃物对环境的影响。废弃物对环境的影响主要有:固体废弃物对当地环境的影响,机械加工过程中会产生大量的边角余料,而这些边角余料的摆放等有可能会破坏当地土壤的成分,造成土壤重金属超标;废液对生态环境的影响。在机械加工中所产生的废液如果处理不善不仅会给环境造成影响,还会对人体的健康形成威胁。二是噪音对环境的影响。机械加工过程中会产生大量的噪音,如果不能很好地控制噪音就会对人体产生严重的危害:干扰人们的正常生活、损害人的听觉系统等。在机械加工过程中噪音主要来源于机床设备的噪音。机床在加工工艺时因为传动齿轮、传动皮带以及轴承的不断工作而产生各种噪音,噪音的产生是机械加工过程中显著的特性;机械加工过程中也会产生噪音。机械加工过程中也会因为对原材料的切割、钻孔等工序而产生噪音,这种噪音大小与机械加工材料有直接的关系。
二绿色制造技术的优化
基于机械加工过程中对能源消耗和环境的影响,应该大力发展绿色制造技术,通过绿色制造技术改善机械加工过程中所出现的各种问题:
1优化绿色制造技术工艺参数
工艺参数优化是绿色制造工艺过程规划的关键技术,通过对零件加工工艺参数的优化,可以实现物料消耗最低化的目的,基于在机械加工中工艺参数对机械加工产品的质量、消耗以及噪音等方面的影响,绿色制造技术选择的工艺参数要综合考虑这些因素,并且要通过对多种参数方案进行对比、评价,选出最优化的加工工艺参数,实现机械加工的低物料消耗。
2绿色制造工艺路线的优化
工艺路线是机械加工环节中的重要步骤,合理的工艺路线不仅能够大大提高机械产品的生产效率,提高产品质量,还可以实现绿色生产的要求,通过优化工艺路线可以降低一些不必要的机械加工,有效地降低了能源的消耗和对环境的污染。比如在机械加工中采取少无切削生产工艺的精锻、精冲等近似成型的工艺不仅能够提高原材料的使用效益,还能降低污染物的排放,并且通过简化生产流程,降低了设备与能源的消耗。
3采取多工件多机床节能型调度优化技术
机械加工实现绿色制造,从根本角度讲需要改善零件加工过程的机床设备:一是要改进机床加工技术,提高机床加工设备与环境的相适应程度,满足机床加工与环境和谐发展的要求;二是要优化配置机床设备,通过采取合理的组合方式降低无功率生产,实现加工过程的绿色性目的。比如在生产过程中,有的机床加工过程会产生大量的无功率作业,造成机械设备的消耗。因此通过采取多工件多机床节能型调度优化技术,通过对工件和机床的合理调度实现总体能量消耗的降低。
4加强机械加工绿色制造的评价。机械加工绿色制造的关键就是实现经济效益与生态效益的最大化,而评价绿色制造技术效果的标准就是根据机械加工绿色制造评价指标体系,重点对加工时间、加工质量、加工成本、资源利用率以及环境影响进行分析与评价。
三结束语
机械加工企业加工的产品必须能够满足客户的要求,必须是安全优质的。同时,从企业经济利益考虑,企业在进行机械信息化加工过程中,必须采取一定的措施降低原材料和人工消耗,减少成本投入,维护生产环境和谐发展。因此,机械加工工艺的过程必须按照工艺学的原理进行,同时要采用合理的方法。机械加工采用哪种加工工艺,必须根据企业的生产条件和设计要求而确定,并制定相应的工艺文件资料,不能凭借经验盲目确定。在进行机械加工之前,对工艺信息化规划的表现形式主要有两种,一种是工艺过程中建立记录卡片,另一种是工序卡片。在机械加工信息化建设过程中的工艺规程是指在进行某项零件或产品的加工过程中,对采取的操作方式和加工制造所采用的工艺过程所记录的工艺文件。机械加工中采用的工艺规程指的是进行机械产品加工中的操作方法,以及在工艺生产过程中形成的工艺文件。工艺规程是机械加工工人在生产过程中进行生产的依据,并且是新产品在进行加工制造前,所实施的各种准备工作的依据。制定工艺信息化规划的内容主要包括两个方面,既对工艺路线具体的操作步骤和设定机械加工过程中的各个不同工序。因此,机械加工工艺信息化规划技术的重要意义,就是为实现科学的机械加工生产提供依据。
2对面向机械加工工艺信息化规划与建设的研究
2.1绿色制造的技术构建
绿色制造的技术构建,对机械加工产品的生命周期产生重要影响。机械加工成品的生命周期所涵盖的范围非常广泛,其中最为主要的是加工材料的选择,制造加工的过程,产品的设计包装、产品的装配和使用,还包括机械加工产品的回收、拆卸、再造等。在机械加工中实现绿色制造可以更好的实现产品的重用、再造、减量化、再生循环几个方面的信息化规划。面向机械加工工艺信息化规划制造的整个技术构架中,主要包括三项非常具体的信息化规划内容,集成了两个层面的过程控制,实现绿色制造的2个目标。工艺信息化规划建设技术为企业进行机械加工提供了研究目标,并提供了绿色制造的模型和视图。绿色技术的构建为实现企业自身的经济效益和社会效益提供了协调发展的前提条件,能够最大化的实现对资源的优化配置,提高资源的利用率,最大量的建设对环境的影响。
2.2机械加工中的工艺信息化规划技术的研究对象
和传统的机械制造系统相比,工艺信息化规划制造技术所研究的范围更加广泛,其研究对象主要有三类:控制有害物质使用的技术、预防污染的技术以及针对环境设计所采取的技术。以各种制造活动为研究对象,可以对以上所述的三种技术进行分类,最终可以划分为3类:第一类以产品的生命周期为基础;第二类以产品的加工技术为基础;第三类以产品的生产过程采用的技术为基础,。以上几点所构成的技术构架为开展绿色制造的实施提供了参考框架。
3优化机械加工工艺信息化规划技术
3.1优化机械加工工艺信息化规划制造技术的工艺参数
在机械加工工艺信息化规划制造过程中,对参数进行优化是实现信息化规划技术的关键。利用参数优化,可以达到降低资源消耗的目的。在机械加工过程中采用不同的加工工艺,就要优化相对应的工艺参数。经过优化的工艺参数,可以提高产品的加工质量,降低能源消耗,减少刀具的磨损,降低环境污染,提高企业的经济和社会效益。
3.2对制造工艺措施的优化
选择科学合理的工艺设计,是工艺信息化规划中最关键的环节,其对实现工艺信息化规划技术的意义非常重要。企业确定工艺措施的具体做法,通常情况下是根据企业的生产效率和产品的加工成本为前提条件的,很少考虑采取有效措施更好的利用资源以及实现保护环境的目标,导致在机械加工过程中不仅对环境造成了污染,而且对资源造成严重浪费。
3.3优化多机床的节能型调度技术
要实现机械加工工艺信息化规划就要对企业的机床设备进行优化配置。在机械加工生产中,一般实施的是多机床同时进行多工件的加工方式,其特点是不同的机床可以采用同一种加工工艺,而不同机床在型号和规格上有很大差别,导致机床在加工工件的过程中,消耗资源量和对环境的影响结果不尽相同。因此,要对机械加工工艺进行信息化规划就要进行科学的调度,才能从根本上实现降低加工系统的能源消耗量。
4构建机械加工工艺信息化规划技术的评价体系
一般情况下企业的评价体系主要包括三个方面,即实现最低的生产投入、最高的获利、最高的企业生产效率。但是,现在的企业在追求经济效益的同时,还要注重实现最佳的环境效益和社会效益。因此,在构建机械加工工艺信息化规划技术的评价体系时,要综合考虑各种影响因素,制定科学合理的评价指标。面向机械加工的评价体系应当包括五个主要方面:产品质量、生产时间、生产成品、资源利用效率、环境影响。
5结语
要实现机械加工精度的提高,减少不利因素的影响,就要对机械加工下苦功夫。了解机械加工的内容,掌握机械加工的目标,才能有的放矢,有效提升机械加工的精度。用通俗的话语深入浅出的解释,机械加工常常是生产和改造一些在实际生活中或者生产中需要使用工件。采用的方法是改变工件的物理属性(通常情况下包括大小、形状、位置等属性)。在加工之前,我们需要有一个设计目标,也就是我们想要得到的工件的一些属性指标。机械加工涉及多个工作生产领域,金属的粘结、离子切割、焊接方向、激光切割方向,如此等等不一而足。
2机械加工的精度
机械加工中提到的精度,是指我们实际加工出的产品或者零部件与我们预先的设计之间存在的差异。差异越大精度越低,差异越小精度就越高。由于在实际的机械加工过程中,一些影响因素是不可避免的,比如加工工具的精度、加工中的温度湿度对零件的影响等。所以误差是不能够避免的,但失误却是可以避免的,误差是可以尽量减小的。减少误差,提升精度是我们工作中要达到的目标。
3影响精度的原因分析
3.1工作人员的技术水平分析
机械加工人员的技术水平也起到一定作用,尤其是工作人员的责任心。对工作的淡漠与不负责,会造成生产过程中的较大误差的发生,降低生产精度,甚至会产生错误生产,造成企业的经济损失。比如零件和产品加工中,需要测量工序时,测量方法使用不准确、量度工具精度不匹配等问题,都会直接影响部件的生产精度。再比如,每次生产过程中都需要工作人员对机床的一些部件进行位置的调整。从而实现精度的控制范围达到标准。经验丰富的工作人员的合理调整可以让精度整体得到提高。反之,就可能出现大量部件的加工出现较大的误差。
3.2刀具产生误差分析
刀具在生产中执行的主要是切削操作。在操作执行过程中,产生大量摩擦,刀具的形状与大小等物理属性都会产生变化。这样在反复工作中就会因变形而产生误差。
3.3主轴、导轨、传动链产生误差分析
这三部分,都是机床上的基本部件。起到的主要是控制部件机械加工过程中,进行回转、滑动位置控制、形成加工过程中的相对运动的作用。这些部件需要长期工作。在自身工作和相互配合中,都会因为工作的变化,产生物理属性的变化,从而影响精度。
3.4热度变化产生误差分析
(一)数控技术应用于机床
当下,数控技术在机床生产上的应用已经相当普遍。机床设备为机械生产提供数量庞当、种类繁多零部件,进行零件加工时,由于不同批次、不同厂家的需求不同,零件的规格也存在细微差异,此时就需要通过手工调整编程数据,实现相关参数的规范化。数控技术可以对生产环节中的不同工序进行整体性或局部性的调整和监控,还能针对实际情况对工序中的参数进行修改,从而完成即时性的跟踪控制。简而言之,数控技术就是以计算机的精密指挥取代操作人员的经验性指导,实现控制装置的自动化操作,并有效提高机床设备的控制与执行能力。通过将零件规格与操作误差数据化,合理调节相关设备的启闭时间与运转周期,实现机床加工精度的提升,进而满足机械生产工艺复杂化的具体要求。
(二)数控技术应用于汽车
汽车操纵灵敏性、机械动力性及速度、安全等方面的要求都要靠精密的内部零件来实现。在汽车购买量不断增大的今天,数控技术在提高生产线效率,保证零件生产速度与质量方面依然发挥着重要作用。除复杂零件的生产环节,在进行底盘装配和发动机安装时,自动化生产线同样可以节约大量安装人力,并有效提供操作的精准性,避免误差和瑕疵的产生。此外,数控系统通过整合大量模拟数据,还可以实现对不同款型、功能汽车的柔性控制与柔性生产线归纳。柔性生产线能根据市场需求完成对高、中、低档车型的不同调试,并进行新品的开发工作,以此减小品牌更新换代过快对生产线造成的压力。与此同时,柔性生产线还可通过控制系统与不同操作系统、监控反馈系统的不同组合实现产品的更新,并通过汽车生产线与柔性生产的有机结合,实现生产质量与效能的提高与品牌的创新。
(三)数控技术应用于煤炭开采
煤炭的发掘和开采工作存在较大危险性,对施工质量、施工设备、施工人员也有较高要求,是以在进行相关操作前,必须探明具体矿藏情况、地质环境、气候环境及相关内容。数控技术能实现套料选择方案的最优,在扩大开采规模、提高工作效率的同时完成对挖掘的深度、角度、方向等进行精确控制,从最大程度上保证施工人员的安全,避免坍塌事故的发生。
(四)数控技术应用于工业生产以造纸业为例
在完成原木的采购工序后,需要对木材进行去皮、正圆、切割、粉碎、熬浆、造纸、晒干等一系列环节的处理。然而,流程中产生的废气、机械操纵的失误都可能对施工人员带来安全隐患。此时,数控技术先通过限制正圆环节中的程序参数实现原木规格的统一化,降低后续环节的操作难度,再通过数控切割等技术实现后续环节的相对封闭化,减少相应环节中的人力投入,从而在确保人员安全的基础上实现生产效能的提升。数控技术在食品生产领域也有着广泛应用。通过无菌自动化生产线,可以完成对食品造型、材料配比、加工时间等各项指标的数据化规定。此外,还可通电子监控系统与自动报警装置及时发现、纠正制作流程中存在的问题,并进行针对性调整。值得注意的是,工资在劳动力导向型为主的工业生产的生产开支中占了很大比重,这造成了利益空间的压缩,不利于生产扩大化和高速化,而数控技术的应用则是通过机械生产取代手工操作的方式,完成了人力的节约化与生产的高质高效化。
二小结