前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学研究论文主题范文,仅供参考,欢迎阅读并收藏。
一、“弃重求轻”,培养兴趣
女生数学能力的下降,环境因素及心理因素不容忽视.目前社会、家庭、学校对学生的期望值普遍过高.而女生性格较为文静、内向,心理承受能力较差,加上数学学科难度大,因此导致她们的数学学习兴趣淡化,能力下降.因此,教师要多关心女生的思想和学习,经常同她们平等交谈,了解其思想上、学习上存在的问题,帮助其分析原因,制定学习计划,清除紧张心理,鼓励她们“敢问”、“会问”,激发其学习兴趣.同时,要求家长能以积极态度对待女生的数学学习,要多鼓励少指责,帮助她们弃掉沉重的思想包袱,轻松愉快地投入到数学学习中;还可以结合女性成才的事例和现实生活中的实例,帮助她们树立学好数学的信心.事实上,女生的情感平稳度比较高,只要她们感兴趣,就会克服困难,努力达到提高数学能力的目的.
二、“开门造车”,注重方法
在学习方法方面,女生比较注重基础,学习较扎实,喜欢做基础题,但解综合题的能力较差,更不愿解难题;女生上课记笔记,复习时喜欢看课本和笔记,但忽视上课听讲和能力训练;女生注重条理化和规范化,按部就班,但适应性和创新意识较差.因此,教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导听课,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人成功的经验,改进学习方法,逐步提高能力.
三、“笨鸟先飞”,强化预习
女生受生理、心理等因素影响,对知识的理解、应用能力相对要差一些,对问题的反应速度也慢一些.因此,要提高课堂学习过程中的数学能力,课前的预习至关重要.教学中,要有针对性地指导女生课前的预习,可以编制预习提纲,对抽象的概念、逻辑性较强的推理、空间想象能力及数形结合能力要求较高的内容,要求通过预习有一定的了解,便于听课时有的放矢,易于突破难点.认真预习,还可以改变心理状态,变被动学习为主动参与.因此,要求女生强化课前预习,“笨鸟先飞”.
四、“固本扶元”,落实“双基”
女生数学能力差,主要表现在对基本技能的理解、掌握和应用上.只有在巩固基础知识和掌握基本技能的前提下,才能提高女生的综合能力.因此,教师要加强对旧知识的复习和基本技能的训练,结合讲授新课组织复习;也可以通过基础知识的训练,使学生对已学的知识进行巩固和提高,使他们具备学习新知识所必需的基本能力,从而对新知识的学习和掌握起到促进作用.
五、“扬长补短”,增加自信
在数学学习过程中,女生在运算能力方面,规范性强,准确率高,但运算速度偏慢、技巧性不强;在逻辑思维能力方面,善于直接推理、条理性强,但间接推理欠缺、思维方式单一;在空间想象能力方面,直觉思维敏捷、表达准确,但线面关系含混、作图能力差;在应用能力方面,“解模”能力较强,但“建模”能力偏差.因此,教学中要注意发挥女生的长处,增加其自信心,使其有正视挫折的勇气和战胜困难的决心.特别要针对女生的弱点进行教学,多讲通解通法和常用技巧,注意速度训练,分析问题既要“由因导果”,也要“执果索因”,暴露过程,激活思维;注重数形结合,适当增加直观教学,训练作图能力,培养想象力;揭示实际问题的空间形式和数量关系,培养“建模”能力.
一、试卷讲评的特点
讲评除遵循一般的教学规律和原则外,还具有自身的教学特点。
1.突出针对性教师要准确分析学生在知识和思维方面的薄弱环节,找出复习中出现的具有共性的典型问题,针对导致错误的根本原因及解决问题的方法进行评讲,另外对内涵丰富、有一定背景的试题,即使这个题目解答无多大错误,也应以它为例并对它丰富的内涵和背景进行针对性讲评,以发挥试题的更大作用以及拓展学生的知识视野。2.强调层次性讲评是全体师生的双边活动,但不同学生存在的问题不尽相同,因而要调动各层次学生都积极参与讲评活动,使每一位学生都有所收获。这就要求教师从整体上把握讲评内容的层次性,使内容层次与学生层次相吻合。
3.注意新颖性讲评课涉及的内容都是学生已学过的知识,但评讲内容决不应是原有形式的简单重复,必须有所变化和创新。在设计讲评方案时,对于同一知识点应多层次、多方位加以解剖分析,同时注意对所学过的知识进行归纳总结、提炼升华,以崭新的面貌展示给学生,在掌握常规思路和解法的基础上,启发新思路,探索巧解、速解和一题多解,让学生感到内容新颖,学有所思,思有所得。通过讲评训练学生由正向思维向逆向思维、发散思维过渡,提高分析、综合和灵活运用能力。
4.讲究激励性小学生的情感,经常表现出强烈的两极性,一场考试后常会引出一些意想不到的结果。因而试卷讲评时,不可忽视各类学生的心理状态,要用好激励手段。对各种优点的表扬要因人而异,让受表扬者既有动力又有压力,对存在的问题提出善意批评的同时,应包含殷切的期望,使学生都能面对现实,找到自己努力的目标,振作精神,积极地投入到下一阶段复习中去。
二、试卷讲评的方式
讲评的方式是由试题的内涵和外延所决定的,一般说来,主要有以下几种。
1.设疑引导的诊断性讲评
这种讲评主要针对考试中出现的有共性的典型错误,通过评讲查“病情”,找“病源”,从而达到提高学生辨析能力的目的。
在讲评方法上强调学生的积极参与,教师通过提问、设疑,帮助学生弄清楚错误根源。例如:甲、乙、丙、丁四人合买一艘游艇,甲付的钱数是其余三人所付总钱数的1/2,乙付的钱数是其余三人所付总钱数的1/3,丙付的钱数是其余三人所付总钱数的1/4,丁付了1300元。这艘游艇值多少钱?
这是一道较难的分数应用题。从表面上看,甲、乙、丙、丁四人所付的钱各是“其余三人所付的1/2、1/3或1/4,但“其余三人”不是同一的三人,也就是说1/2、1/3、1/4不是同一个数量的1/2、1/3、1/4。讲评时为了对症下药,疏通障碍,我出示“甲班人数是乙班的51/2”,要求学生进行如下变换叙述:
(1)以甲班人数作为单位1,那么乙班人数是甲班的()
(2)以两班人数和作为单位1,那么甲班人数占两班人数和的()
(3)以两班人数差作为单位1,那么甲班人数是两班人数差的()
这样铺垫、引导,调动了各层次学生都积极参与讲评,有效地理顺了学生对题意理解的复杂头绪,使难题迎刃而解。
2.典型解剖的发散性讲评
发散性讲评针对试卷中具有较大灵活性和剖析余地的典型试题作进一步“借题发挥”,引起学生思维的发散,开拓思考的视野,发散性讲评倡导一题多解,倡导从多角度思考分析问题。同时重视介绍解题者运用了哪些技巧和方法,进行了怎样的分析才完成了知识的迁移。例如:某乡政府拉一车精白粉和标准粉救济困难户,每到一户从车上卸下2袋精白粉、5袋标准粉,最后恰好把精白粉卸完,还剩下11袋标准粉。
这时他们才想起原来的标准粉比精白粉多2倍,问车上原有精白粉和标准粉各多少袋?
马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。
二、数学:科学的语言有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔(N.H.D.Bohr)就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克(P.A.M.Dirac)也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦(A.Einstein)则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。)
一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。
数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J.C.Maxwell)的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann)几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W.K.Heisenberg)和狄拉克引起的物理学革命奠定了基础。
随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。
三、数学:思维的工具数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。
其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。
第三,数学也是辩证的辅助工具和表现方式。这是恩格斯(F.Engels)对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿
(I.Newton)—莱布尼兹(G.W.Leibniz)公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力。
四、数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。
任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第行星——海王星的发现,就是由亚当斯(J.C.Adams)和勒维烈(U.J.Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A.N.Whitehead)认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E.Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。
五、数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。
数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。
艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。
艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3)简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4)象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。
艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。
在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材(注:黄秦安《论艺术与数学的普遍意义及基本关系》,《陕西师大学报》(哲学社会科学版),1994年第
2期。)。
六、数学:充满理性精神数学犹如一棵正在成长着的大树,它是不断发展和丰富着的理论知识体系。数学充满着理性精神,它不断为人们提供新概念、新方法。有的数学家说:“数学在人类历史中的地位绝不亚于语言、艺术和宗教,今天数学正对科学和社会产生着翻天覆地的影响。”(注:〔美〕L.A.斯蒂恩主编《今日数学》第26页,上海科技出版社1982年版。)
数学对于人类理性精神发展有着特殊的意义,这也清楚地说明数学作为整个人类文化的一个有机组成成分的重要性。正如克莱因(M.Kline)指出的:“在最广泛的意义上说,数学是一种精神,一种理性的精神。正是这种精神,试图决定性地影响人类的物质、道德和社会生产;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。”(注:M.Kline.MathematicsinWesternCulture.PenguinBooks,1953.Preface,121~132.)
小学数学教师应具备怎样的教学语言素质呢?
小学数学教师的教学语言素质包括以下两方面的内容:一是具备较高的文化知识素质,它包括对数学知识掌握的深度,要想给学生一碗水,教师就要有一桶水。没有广博的知识,就不可能有科学的教学语言,就不可能吸引学生的学习注意力。前苏联教育家苏霍姆林斯基在《给教师的建议》一书中,在谈教师的教育素养时写道:“只有当教师的知识视野比学校教学大纲宽广得无可比拟的时候,教师才能成为教育过程真正的能手、艺术家和诗人。”
二是教师本身的素质,一名教师只有文化知识还远远不够,教师是一个综合能力比较强的职业。教师本身的素质包括:1.表达能力;2.教态;3.说好普通话的能力;还有最为重要的就是:必须热爱教师这个职业,必须热爱学生。
一、小学数学教学语言应科学、严密
数学是科学性和逻辑性很强的一门学科。小学数学是学好中学数、理、化的基础,也是今后学好科学文化知识的基础;因此,小学数学的教学语言应该是科学和严密的。
有的教师教学语言不够科学,也不够严密。例如:在教学“三角形的初步认识”这节课时,当教师对三角形下定义时,说:“由三条边组成的图形是三角形。”这是不严密的,因为三条边组成的图形可能是三条不相交的直线。这样说才是正确的:“由三条边围成的图形是三角形。”
有的教师在教学“长方形、正方形和平行四边形的认识”这节课中,在比较长方形和正方形的异同点时,学生说,“相同点是长方形和正方形的四个角也都是直角;不同点是长方形的对边相等,而正方形的四条边都相等。”比较异同点的目的是什么呢?教师不清楚,学生也就不清楚了。接下来教师一定要问:“长方形和正方形有什么关系呢?”可是教师没有问,学生也不知道。正方形是特殊的长方形,也就是正方形包含在长方形中。接下来学平行四边形,比较平行四边形和长方形的异同点,相同点是对边相等,不同点是平行四边形的四个角不是直角,而长方形的四个角都是直角。最重要的是平行四边形和长方形有什么关系?长方形、正方形和平行四边形有什么关系?教师没有问。为什么把长方形、正方形和平行四边形放在一起认识,而不把长方形、三角形和圆放在一起认识呢?因为长方形、正方形和平行四边形有包含关系,正方形是特殊的长方形,长方形是特殊的平行四边形,它们又都是特殊的四边形,还可以画一个示意图。而这节课教师只讲了这三种图形都是四边形,它们各自的特点,它们之间的异同点,它们之间的关系也是最重要的,教师没有问,也没有讲。教师只有把旧知识和新知识联系起来,教给学生一个完整的知识体系,这样才能使学生头脑中的知识形成一个完善的知识结构,这样的知识才是完整的、科学的和严密的。
二、小学数学教学语言应准确、精炼
有些教师不注意自己的教学语言,随意性很大,例如,在教学“长方形、正方形和平行四边形的认识”这节课中,复习一道判断四个角是不是直角的题,教师出示的题目是“判断出直角”,这话很不规范、很不准确。应该说,“判断下面每个角,哪个是直角?”
有些教师就比较注意自己的教学语言,在课堂上语言比较精炼,没有多余的话。在教学“三角形的认识”这节课中,教师问完好以后,接着说:“先拿三根小棒,围一个图形,谁愿意到前面来做?”单刀直入,开门见山,直入课题,没有浪费学生宝贵的时间。有的教师话就比较多,语言不够精炼。问完好以后,她说:“今天,我们要在这里上一节数学课。大家看一下,教室里来了很多领导和老师,还有校长,希望同学们就象在自己班级上课一样不要害怕,积极思考,主动发言,让领导和老师们看一看,好不好?”没用的话,与这堂课的知识内容没有关系的话,请不要说,不要浪费大家的时间,上课的时间多么宝贵,就40分钟啊!
三、小学数学教学语言应形象生动、有启发性
教师形象生动的语言,带有启发性的语言,能激发学生的学习兴趣,进而能调动学生学习数学的积极性,让学生主动学习。例如:长春市第二实验小学鞠孟贤老师,在讲“两步计算应用题”时,她把两步计算应用题中的间接条件,用一个非常形象的字“藏”来代替,她说:“这里还有一个条件,藏起来了,谁能把它找出来?”学生的学习兴趣被这一生动的字调动起来了,他们都想自己找出来。
再如教师在讲“小数的性质”这节课中,教师上课的第一句话就说:“你们去过商店买过学习用品吗?”一句话就把学生的学习兴趣调动起来了,因为买学习用品和他们的生活太贴近了。教师接着说:“文具盒5元,圆珠笔1元6角,你们会不会写?”让学生动笔写,这样有两种不同的写法:5元,5.00元;1.6元,1.60元。教师又接着说:“同样的钱为什么用不同的形式表示?你们想不想知道?”这诱人的加之亲切的语言,激发了学生的求知欲,全班学生都盯着教师想知道为什么。
我们听过不少这样的课,课堂气氛沉闷,教师说的话很多,而且重复的话很多,多数学生没有发言的机会,只有个别几个“好”学生才有发言的机会,全班学生没有动起来,所以课堂气氛沉闷。我们要求教师在课堂上,要充分发挥教师的主导地位,让学生主动的学习,主动的获得知识。教师在课堂上,应提出一些启发性的问题,尤其是在新旧知识的连接点上,让学生积极思考,如果大多数学生没有想出来,那么可以让学生前后桌讨论一下,让全体学生都有发表自己意见的机会,这样课堂气氛绝不会沉闷了。
四、小学数学教学语言应鼓励学生学习的积极性
教师在课堂上,应该经常用一些鼓励性的语言,使学生能够自觉主动的学习。例如,在讲“一位数除三位数”的教学中,教师出示题:428÷2,教师说:“根据这道题的特点和一位数除两位数的计算方法,你有勇气独立完成这道题吗?”当全班学生都做对时,教师又说:“你们真聪明!”这样的语言对学生的学习积极性是很大的鼓舞和推动,而且师生的情感得到发展。“老师对我们真好,我可喜欢学数学了。”“我非常愿意学数学。”
有很多教师愿意把学生分为好学生、中等学生和差学生,这是从学习成绩来分的。但是,我们最好不要这样分,这样会伤他们自尊心的。我们不妨这样分:对学习有兴趣的,积极主动学习的学生;对学习兴趣不大,但比较听话,老师让我学,我就学,被动学习的学生;再就是对学习一点兴趣也没有,或学习有困难的学生。学习有困难的学生,对学习不感兴趣的学生和被动学习的学生,有时会对学习采取冷漠的态度,教师就要以满腔的热情去温暖这些冷漠的心,让他们逐渐解冻,恢复活力。
在课堂上,经常会看到这样的情景:当一名学生正确的回答了教师提出的问题或一名平时不爱发言的学生把问题回答正确,教师会说:“同学们,鼓励他!”全班同学会热烈的、带有节奏的鼓掌;有的老师还会用亲切的语调说:“回答得非常好!”“李聪,今天表现得真好!”我想:就这样一句话,会使这名同学全天都能愉快地学习,甚至,从此以后,他就非常喜欢数学了。
教育家赫洛克作了一个有名的实验,他把学生分成四个组,学习同一难度的内容,第一组为受表扬组,经常受到表扬,成绩扶摇直上。第二组为受谴责组,责备经常不断,这些责备,开始起点作用,后来就“疲”了,成绩就持续下降。第三组为被忽视组,只是在一旁静听前两组所受到的表扬与谴责,自己既得不到直接的表扬,也不遭受直接的谴责,学习成绩比前两组都差。第四组为控制组,既不给予任何表扬与谴责,也不让他们听到对前两组的表扬与谴责,学习成绩最差。由此赫洛克得出结论说:“奖惩都是必要的,不给予奖惩会引起学习下降,而奖励比惩罚对学习的促进作用更大。
教师要善于表扬学生,尤其是对学习没有兴趣的学生和学习有困难的学生。有的老师会说,这样的学生没有优点,怎么表扬他呢?做一个细心的教师,只要发现学生有一点点进步,那怕是微不足道的,你也应该及时的表扬他,鼓励他,使他感到我也有优点,我也能进步。如上课时,当你提出比较简单的问题时,让他回答,及时表扬他、鼓励他,“他回答得非常正确,进步很大。”还有的学生上课举手发言,即使他回答错了,你也要鼓励他,“看他能大胆发言了,虽然问题回答得不完全正确,但是他已有了很大的进步,我相信下一次他一定能把问题回答正确。”对于学习有困难的学生或不爱发言的学生来说,老师能表扬他、鼓励他,他当然非常高兴,甚至非常自豪,由此他会对学习产生兴趣,会认真的听课,积极的发言,这样他的学习成绩会很快地提高。
五、教学语言要用标准的普通话,克服方言
有的教师一定要问:又不是语文课,数学课为什么还要用标准的普通话呢?我省有的地区普遍有地方口语,就是平翘舌分不清。如:14,他们发“十市”。我国很早以前就提倡说普通话,这里说的普通话是标准的普通话。我们到南方一些省市听课,老师和学生们说的都是普通话,而且都很标准。我省有几个地区有地方口语,要改变家乡的面貌,首先从教师做起。教师说的不是标准的普通话,这样会影响学生的学习质量。
教师发音是否准确,也标志着教师的业务水平。发音不够准确的教师,可以查字典,请教发音准确的教师,师生之间可以及时纠正;学生发言时,如果发音不准,老师和学生都可以及时纠正。
六、教师自然得体的教态是无声的教学语言
教师的教态一般是指,教师的外表、说话的表情以及说话的语调等等。
教师的教态非常重要,我们一般要求教师表情亲切,语调适中。教师笑盈盈地面庞,亲切的目光,使学生感到老师可敬可亲。这样老师和学生之间的距离拉近了,学生就会主动、自觉地学习。辽源第一实验小学吴敏老师的教态就是非常自然的,她的声音也非常美,听她讲课就是一种享受。而且她和学生的感情也很好,课堂气氛很活跃,学生敢想敢说,他们不害怕老师,说错了,老师也不会批评他们,经常这样训练,学生的语言表达能力和思维能力都能得到提高。
还有吉林市第一实验小学陈晓梅老师,她的教态也非常自然得体。
我们也听过一些这样的课,教师板着面孔,说什么话,都是一种语调。语言没有错误,复习、新课、练习,一步是一步,课堂气氛死气沉沉,好象学生都在听讲,其实学生的思维已不知飞向何方了。
一、“四大难关”的成因
立足于帮助学生顺利度过“四大难关”,教材研究的首要任务是应该搞清各个“难关”的成因。对此作宏观分析,我们容易概括出下面三个方面的成因:
(1)抽象层次的提高
教学内容的抽象性是众所周知的,但作为数学教材的数学内容,则着意体现由直观到抽象的渐变过程,以适应学生认识的发展,在这种变化过程中,起伏程度有所不同,各大难关所表现的正是抽象程度的骤变过程,抽象层次骤然提高,这种变化若学生不能立即适应,就成为学习数学的巨大障碍,就成为“难关”了。
如从算术到代数的过渡,其重要标志就是用字母表示数,特别是字母代替的数既是确定的,又是任意的,这种两重性与小学阶段的数学内容相比,抽象程度显著提高,可以说表现为一次飞跃;从代数到几何的过渡,其抽象程度的飞跃则表现在由以前的单纯的以计算为主到对数学问题的推理论证、大量抽象符号和数学语言的运用过渡;由常量数学到变量数学的过渡,以函数概念的引入为标志,宣布了数学问题的研究由处理相对稳定的数学问题进入处理运动、变化的量与量关系的数学问题的领域,标志着抽象层次的又一次大的迈进;而由有限到无限的过渡,是以极限概念的引入为标志的,其推理方式由对有限问题的处理进入对无限问题的处理,抽象程度又一次发生了质的改变。由此可见,抽象层次的提高,是“难关”的成因之一。
(2)研究对象的转变
恩格斯在《反杜林论》中曾指出:“……纯数学是以现实世界的空间形式和数量关系--这是非常现实的材料--为对象的”这给数学尤其是初等数学的本质作出了很科学的概括。围绕“数”和“形”这两个方面讨论而展开的。而在教材内容的发展过程中,由以数为主要研究对象的内容转变到以形为主要研究对象的内容时,其角度、特点以及抽象程度都有显著的变化,这一转变过程中,学生不能很快适应,就会形成由代数到几何的过渡--初二平面几何入门的一大难关。由数到形,又到数形结合,研究量与量之间运动、变化过程中表现出的关系,则又是一类研究对象,这就是函数概念的引进--因研究对象与研究方法的转变而导致的不适应,就出现了由常量数学到变量数学过渡的这一难关。而其它几大难关也不同程度的涉及到研究对象的改变。由此可知,数学内容研究对象的转变也是“难关”的成因之一。
(3)思维方式的转变
每一次“难关”的出现,都相应地出现思维方式上大的转变,都是对前面习惯思维的扬弃。当教学思维从特殊转入对一般情况的研究时,就是相应的第一大难关的来临,此时可以说思维进入归纳思维的范围;而当平面几何以全新的研究对象出现时,演绎推理--从一般到特殊的思维方式占了主导地位,这种改变又导致了第二大难关的产生,而对辩证思维要求的提高,是导致后两大难关的重要因素,因为这要经受由相对稳定--运动变化--无限领域的一系列重大变革,数学中的静与动、有限与无限等矛盾在运动中被一一揭示出来,在思想方向上使中学生经受一次又一次的重大洗礼。由此可见,思维方式的转变是“难关”的重要成因。
二、对策
(1)广泛联系、挖掘量变因素
前面已经指出,“难关”的出现其实质是一个质变过程,它需要量变的积累,如果量变有了充分准备,质变就显得自然,“难关”也就容易克服。因此,就需要深刻挖掘量变因素,将教材抽象程度加工到使学生通过努力能够接受的水平上来。在代数关系的研究中,积极注意挖掘与几何结合较紧密的内容,广泛联系,缩小接触新内容时的陌生度,避免因研究对象的变化而产生的心理障碍。
(2)重点深入,合理设置问题
要将“难关”分散到普通教材中来,就需要注意对普通教材由微观到宏观的透彻研究与重点深入。首先,明确局部内容在整体数学教材体系中的地位和作用;其次,运用前文所述的教材研究方法,合理设置问题,使问题的步子与学生的思维水平同步前进,以局部知识的掌握为整体服务,例如,针对某一概念,可围绕下面几个角度设置问题:概念的构成;概念所涉及的子概念;概念的外延;概念的内涵;概念的确定与否定;概念之间的关系;概念的应用以及由概念而设计的一些构造性问题等等。当然有些问题可设置一些启发性的提问以使学生独立获得知识。问题与问题之间要有一定的梯度,以利于教学时启发学生思维。
所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。
小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
二、小学数学教学中应渗透哪些数学思想方法
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1.化归思想
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。
例1狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳41/2米,黄鼠狼每次可向前跳23/4米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔123/8米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?
这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离41/2(或23/4)米的整倍数,又是陷阱间隔123/8米的整倍数,也就是41/2和123/8的“最小公倍数”(或23/4和123/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。
2.数形结合思想
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。
例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?
附图{图}
此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。
3.变换思想
变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的命题等价变换,几何形体中的等积变换,理解数学问题中的逆向变换等等。
例3求1/2+1/6+1/12+1/20+……+1/380的和。
仔细观察这些分母,不难发现:2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考虑和式中的一般项
a[,n]=1/n×(n+1)=1/n-1/n+1
于是,问题转换为如下求和形式:
原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)
=1-1/20
=19/20
4.组合思想
组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。
例4在下面的乘法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式。
从小爱数学
×4
──────
学数爱小从
分析:由于五位数乘以4的积还是五位数,所以被乘数的首位数字“从”只能是1或2,但如果“从”=1,“学”×4的积的个位应是1,“学”无解。所以“从”=2。
在个位上,“学”×4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于8,所以“学”=8。
在千位上,由于“小”×4不能再向万位进位,所以“小”=1或0。若“小”=0,则十位上“数”×4+3(进位)的个位是0,这不可能,所以“小”=1。
在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。
在百位上,“爱”×4+3(进位)的个位还是“爱”,且百位必须向千位进3,所以“爱”=9。
故欲求乘法算式为
21978
×4
──────
87912
上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。
此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。
三、小学数学教学应如何加强数学思想方法的渗透
1.提高渗透的自觉性
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。
2.把握渗透的可行性
数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。
全面推进数学素质教育,使学生成为积极的探索者、思考者,必须重视学生“学”的过程,抓好学生数学学习中的“读、听、讲、写、用”。
1.学习中的“读”
现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。“会学”的基础当是会“读”,包括:
1.1读教材是学生学习数学的主要材料,它是数学课程教材编制专家在充分考虑学生生理心理特征、教育教学质量、数学学科特点等众多因素的基础上精心编写而成的,具有极高的阅读价值。读教材包括课前、课堂、课后三个环节。课前读教材属于了解教材内容,发现疑难问题;课堂读教材则能更深刻地理解教材内容,掌握有关知识点;课后读教材是对前面两个环节的深化和拓展,达到对教材内容的全面、系统的理解和掌握。
1.2读书刊除读教材外,学生应广泛阅读课外读物,如上海教育出版社出版的“初、高中学生数学课外阅读系列”丛书、《中学生数学》杂志等。即如读报也不仅能使学生关心国内外大事,也能使学生关注我们日常生活中的数学,捕捉身边的数学信息,体会数学的价值,了解数学研究的动态。然而,与各种各样的复习资料、习题集相比,渗透现代科技的高质量的数学课外读物实在太少了。
数学学习中的“读”,不同于读小说书,常需纸笔演算推理来“架桥铺路”,还需大脑建起灵活的语言转化机制。
2.数学学习中的“听”
数学学习中的“听”,主要指听课,它是学生获取知识的重要环节,也是学
生系统学习知识的基本方法。听课不仅指听老师上课,而且包括听同学的发言。
教师在教学中要善于联系教材与学生的实际,设置生动有趣的教学情景,提出富有启发性的问题,激起学生的好奇心,激发创造思维的火花。
课堂实录一:正数与负数
授课时间:2002年9月16日
师:时间:2001年冬天的一个早晨
地点:哈尔滨的一个村落
事件:小张戴着帽子、围巾,穿着厚厚的羽绒服,正在雪地里艰难地行走,大片大片的雪花不时地落在他身上。
(停留数秒,让学生感受此时创设的情境)
师:如果你是天气预报员,请问,此时此刻的温度是多少?
生1:零度以下10摄氏度
生2:零下15摄氏度
……
虽然“天气预报员”的误差较大,但在同学的模仿中,用了“零度以下”或“零下”的字眼,这就比较自然地引出负数的概念。如此引入,给学生以新、奇之感,以“趣”引路,以“情”导航,把僵化的课堂教学变成充满活力的学习乐园,让学生展开想象的翅膀,吸引学生的参与,变“苦学”为“乐学”。
二、学生活动,建构新知
活动是个人体验的源泉,在数学活动中学习数学,建构新的知识、新的信息,因势利导,帮助提高学生的思维能力。
课堂实录二:初一代数同类项
授课时间:2002年10月22日
教师拿出一小袋硬币。
师:哪位同学能帮我数一下这一共有多少钱?
(学生争先恐后,非常积极)
(生1)把硬币一个一个从口袋拿出来,边拿边数。5角,1.5元,2元,……
三分钟后。
生1:一共8.3元
(还有学生在举手)
(生2)把1角的硬币10个10个地拿出来,把5角的硬币2个2个地拿出来。
二分钟后。
生2:一共8.3元
(生3)把桌上的硬币分堆。一堆全是1元的,一堆全是5角的,一堆全是1角的。然后分别数出每一堆的数量。
一分二十秒。
生3:8.3元。
师:请问,如果这满满的一罐,你会怎样数,选择哪位同学的数法?
下面很多声音在说会选择第三位同学的数法。
师:为什么?
又有声音在说是因为分类。
师:很好。在数学中,对整式也有一种类似的分类。这就是——同类项。
……
课后,有同学说:原来合并同类项和数钱是一个道理。
不错,数学就是从实际生活中来的,并不是凭空捏造出来的。“数学教育,源于现实,富于现实,应用于现实”。作为数学教育工作者,我们理应让学生意识、体会到这一点,让学生对数学有“源头”意识。
三、联系实际,灵活运用
生活中处处有数学的存在。培养学生数学的应用意识,教会学生去观察生活,领悟生活中的数学因素,要注意课堂中实际生活的渗透,巧妙设置情境。
课堂实录三:初一代数有理数的加法
授课时间:2002年9月25日
出示投影:“(-3)+(+2)=?能否根据自己已有的经验探索结果?”
(学生讨论)
生1:(-3)+(+2)=-1。如:以正东为正。向西走3米,记作-3,再向东走2米,记作+2米。整个过程向西走了1米,记作-1。因此,(-3)+(+2)=-1。
生2:我欠小王3元钱,记作-3。第二天,小王向我借了2元钱,记作+2。结果我还欠小王1元钱,记作-1。因此,(-3)+(+2)=-1。
师:刚才两位同学根据自己的实际经验探索出(-3)+(+2)=-1。同理,我们也可以探索其它有理数的加法运算的结果。
由此枯燥的法则引出课题,一则学生有兴趣,二则让学生觉得数学公式也是有来历的,三则让学生自信,因为自己也可以推导法则,过一把探索、创新的瘾。
四、设障导入,引起重视
教师在导入教学过程中,还可以设置障碍的方式,激发学生的求知欲望,引起学生的好奇心。
课堂实录四:初一代数代数初步知识的活动课
授课时间:2002年9月12日
师:我们初一(5)班一共有30位同学。请问,如果每两位同学均相互问候,握手致意,有多少同学知道你们一共要握多少次手?
学生思索,似乎摸不着门,有同学比划一阵后,微微摇头,用渴求知识的眼睛看着老师。(由此激发学生的求知欲)
师:如果只有两位同学,握多少次手?
“1次。”大家异口同声地回答。
师:如果增加1位同学,是3个同学呢?增加几次?
“增加2次。”
师:再增加1个,是4个呢?增加几次?
“增加3次。”
师:能找出规律吗?
几乎所有的同学同时开始在作业本上兴奋地比划着。
……
由同学们的书写速度可以知道,他们逐渐接受了将一道“难题”一点一点“啃”下来的思维方式,化难为易,效果很好。这样,不仅教给了学生数学知识,而且还揭示了整个思维过程。如果仅仅用由易到难的教学模式,学生当时掌握的程度可能没有区别。但下次遇上同类的问题,设置障碍再化难为易、深入浅出会让学生回忆此时的情景,这样解答自然不在话下,思维能力由此也逐步提高。
类似地,还可由天平的平衡问题导入等式性质的教学,由对温度计构造的观察导入数轴的教学,由银行存款、借贷问题导入一元一次方程的应用等等。总之,数学教学的开场白是为了整个数学课堂教学服务的,为整个课堂教学做铺垫,是为了让学生“收心”,为了解决问题而来的。因此,导入教学不是“孤立”的,整个课堂教学应该前后呼应。
在导入教学的设计中,还应注意:1.自然合理。导入既是前面知识的继续,又是后续知识的开端,以一定的积累为基础。2.能引起学生的兴趣,使他们聚精会神地投入进来,在情感上与教师、教材贴得更近。3.使学生初步了解本节课的教学任务,无论在操作层面上,还是在思维层面上,做好迎接挑战的准备。4.教师情感的投入。只有教师全身心地投入到教学中,才能带动学生,引起学生对整个课堂的关注。
参考文献
1.[美]梅里尔<I>&#</I>8226;哈明:《教学的革命》,宇航出版社。
2.鲁彬:《注重主体性教学的一个案例》,《中学数学教学参考》,2002年1、2期。
3.杨麦秀:《数学教学中学生创新思维的培养》,《中学数学教学》,2001年第4期。
4.孙宇翔:《运用“比喻”使教学生动的一例》,《数学教学》,2001年第4期。
1.1教学内容改革
1.1.1精选部分章节详细讲解我认为应该详细讲述数理逻辑、集合论、图论三大部分,数理逻辑部分主要讲述命题逻辑推理的形式规则,学好此章节有利于培养学生的推理能力,此部分内容广泛应用于人工智能之中,早期的智能系统主要应用的是数理逻辑中的推理规则,将自然语言进行符号化,而语言的符号化就是数理逻辑部分要研究的内容。集合论中有一部分关于集合方面的知识,学生在高中的时候已经接触过,所以不用对此部分进行深入教学,但是集合论中有一部分关于二元论的知识,二元论知识是数据库知识的基础,关系数据库的逻辑结构是由行和列构成的二维表,表之间的操作需要用到离散数学中的笛卡尔积的知识。图论是数据结构的基础,如数据结构中的线性表、栈、队列等都要用到图论的知识,数据结构中的一些算法也会用到此部分的知识,如求最小生成树,最短路程,二叉树的遍历等,同时图论也可以应用到计算机网络中,如求节点间最短路径。所以我认为应在众多的内容之中,重点掌握这三部分知识,让学生在短课时深入理解这三部分内容。其余部分的内容,如果学生在以后的学习与研究中需要利用到离散数学中的知识,就可以再对其他部分的内容进行深入学习与研究。
1.2.2增加实验教学内容目前大多数院校的离散数学教学都是采用纯理论上课的形式,很少有实验部分,从而导致学生认为此门课程无关紧要。为了改变学生的这种错误认识,我认为可以在离散数学的教学中增加实验内容。计算机专业的大一学生已经开始学习C语言课程,有了一定的编程基础,可以设计一些与离散数学有关的题让学生进行编程实现。命题逻辑部分涉及公式的判定类型,可以让学生编写程序实现公式的判定算法;图论中涉及最短路径,可以让学生编写求带权最短路径算法;二元关系中关系的性质具有自反、反自反、对称、反对称、传递五种关系,可以让学生尝试通过编程实现判定关系的算法。通过实验部分增强学生的动手能力,不但可以让学生对所学的内容理解得更好,而且可以让学生将理论与实践相结合学有所用,更与我们院校朝应用型转型相符合。
1.2教学方法改革
为了达到改变学生对待离散数学的错误态度,培养出具有创新能力的学生,我认为很有必要对教学方法进行改革,引导学生自主学习,培养学生的自学能力,达到最终的教学目的。
1.2.1趣味教学教师是教学的主导者,对教学起着重要作用。由于离散数学是一门偏数学的教学,难免会有些枯燥,学生的兴趣度不是很高,因此如果教师能在教学过程中做到幽默风趣,给学生在传授知识的同时,能够把有些同生活密切相关的知识讲得生动具体形象,从而提高学生的学习热情。数理逻辑部分中的命题逻辑部分的知识就有很多和生活密切相关,在讲课的时候,可以告诉学生,我们在生活中每天都会涉及推理,我们判定他人讲的话是真是假的过程,其实就是一个推理的过程。判定一个人是否成熟、讲话是否经过深思熟虑,也可以从他讲话的严谨程度进行判断,这还是一个推理的过程。同时可以告诉学生逻辑推理在我们的公务员考试行政职业能力与测验中经常要用到,如果有对考取公务员感兴趣的同学能深入学习和理解这部分内容,对逻辑推理部分有很大的帮助,从而提高学生对此门课程的关注度。教师在教学过程中应该展现自己的个人魅力,让学生喜爱教师的讲话风格、教态等,从而提高学生的学习兴趣。
1.2.2板书与多媒体相结合目前高校教学普遍采用多媒体进行教学,利用PPT教学可以节约板书时间,更高效地进行教学,但是离散数学与其他学科相比有自己的特点,定理多、概念多、推理多,如果完全采用多媒体教学,则学生难以跟上老师的思路。建议定理和推理采用板书形式,一步一步进行演算,帮助学生理解。一些概念和定义采用多媒体教学,节约板书时间。同时对于一些难以理解的内容如图论中求最短路径可以采用动画的形式进行演示,使其更形象、具体,提高学生的学习热情。
1.3教学手段改革
鉴于离散数学课程不易理解、比较难学的特点,因此我们有必要改革教学手段,使得离散数学的教学更具体形象,让学生更易理解所讲内容,提高学生的学习热情。当今是互联网时代,大家都可以利用网络获取信息资源。建设一个离散数学学习网站,可以帮助学生利用课余时间学习。此网站可上传教师的教学视频,学生可以在课余时间根据自己的学习情况进行有针对性的学习,同时教师也可以将课后习题上传到网站上供大家练习,管理员给每个学生分配一个账号,让学生进行登录观看教学视频、做习题、建立讨论区共同学习探讨,也可以在留言板上给教师留言,等待教师就相关问题作出回答。同时在网站上把离散数学中的一些比较经典的算法和方法,鼓励学生编程实现,学生可以上传其实现的算法,供大家共同学习和探讨,提高大家的动手能力,这也是和目前院校转型为应用型本科是相符合的。通过网络这样一个平台,在课余时间增加同学、师生之间的交流和互动,带动学生学习。
2结语