公务员期刊网 精选范文 隧道论文范文

隧道论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的隧道论文主题范文,仅供参考,欢迎阅读并收藏。

隧道论文

第1篇:隧道论文范文

关键词:地铁隧道水平冻结冻结壁地表变形数值模拟

冻结法由于具有高强、阻水、均匀、灵活、经济等特点,在日本及欧洲各国的城市地铁等市政工程中都有广泛应用。我国在北京、上海地铁施工中也采用过局部冻结技术,但地铁隧道的水平冻结施工在我国还没有先例。北京地铁大北窑车站区间隧道施工首次成功地采用了水平冻结技术,水平冻结长度40余米。工程地处交通枢纽,交通繁忙、建筑众多,隧道上覆多条地下市政管线。冻结施工伴有冻胀和融降现象,过量的冻胀量和融降量将使地下管线及地上的建筑物、道路等受到影响甚至破坏,因此,研究和预测城市地铁隧道水平冻结对地下管线、地表变形的影响规律十分必要。

1工程简介

北京地铁大北窑区间隧道局部水平冻结施工工程距大北窑车站东侧40m,位于建外大街与东三环的交叉处,有多条地下管线,隧道顶部有2m厚的粉细砂层,由于多条管线渗漏,致使粉细砂土饱和。隧道暗挖施工时出现流砂坍塌,为保障地面立交桥的安全畅通,隔断门向西40m隧道采用局部水平冻结法施工。地质情况为:0~-115m为杂填土层,-115~-1015m为轻亚粘土层,-1015~-1215m为粉细砂层,-1215~-1815m为圆砾石层,隧道底部-1815~-2215m为轻亚粘土层。

2FLAC软件及模型的建立

FLAC软件即连续介质快速拉格朗日分析软件,是目前世界上最优秀的岩土力学数值计算软件之一,在模拟支护体方面可提供梁、桩、锚杆、壳体等多种结构单元,非常适合于研究隧道开挖等岩土工程问题。

211施工隧道的数值分析模型

选取冻结法施工隧道的横断面作为开挖模拟的力学几何模型,以现场原型工程为研究对象。考虑问题的对称性,取一半建立模型,待开挖的隧道断面取半径为3m的圆形,上覆盖土层厚12m,隧道底板土层厚度分别取10m和23m,满足大于隧道开挖影响范围3~5倍的要求。力学模型尺寸为23m×28m,按平面应变问题求解,模型底部边界采用固定X、Y方向位移约束,左、右边界都采用固定X方向的位移约束条件。由于原型工程属于浅埋隧道,座落在其上方的东三环立交桥的桩基持力层在隧道底板埋深水平以下,故地表上方不需加载。212隧道分步开挖模型选取工程现场隧道纵断面作为隧道开挖模拟的力学几何模型,隧道纵向长40m,断面高112m,开挖步距2m,上覆土层厚12m,隧道底部范围土层深10m,平面40m×28m,网格划分为1120单元,按平面应变问题求解,模型底部边界采用固定X、Y方向位移约束,左右边界采用固定X方向约束。213模型的有关参数本模型采用摩尔—库仑准则参考有关资料确定模型材料参数如表1。

3隧道开挖过程数值计算结果处理

在修正模型中输入土体初始参数后,计算分析主应力、塑性区发展状况及拱顶和隧道上方地表的垂直位移过程,得到如下结论:

(1)作为施工隧道开挖中承受上覆地压的主要载体冻结壁的拱脚上出现应力集中,应力集中系数可达3~4之多。

(2)冻结壁拱脚冻土体可能会出现塑性屈服区,这正是现场隧道收敛测试中出现的两拱脚之间距离先减小后增大现象的根本原因。

(3)在隧道开挖造成土层损失引起地表下沉的过程中,由于抗压、抗弯强度等力学指标比周围土体大得多的冻结壁减缓了隧道中线及附近的地表下沉,从而减少了地表下沉量。

根据PECK原理作出如下地层地表沉降预测:

2

-x

S=Smax·exp

2i2式中Smax地表最大沉降量;

i沉降槽宽度系数;

x距隧道中心线距离。

取i=0141H(H为开挖深度),绘出按PECK公式计算的地面沉降曲线(见图1)。

图1地表沉降曲线图

比较表明,由模拟得到的地面沉降曲线与PECK公式的曲线相一致。从图1可知,隧道开挖后形成的地表沉降槽在垂直隧道轴线方向上的影响范围为隧道外侧约215倍洞径。将沉降槽近似看成三角形,沉降槽的平均倾斜率ΔT=SmaxΠW=0100075(W为沉降槽的半宽)。根据《建筑地基基础设计规范》(GBJ7—89)的规定,对于高度<60m的多高层建筑,基础的允许倾斜率≤01003,所以隧道水平冻结施工引起的正常地面沉降不会使地面建筑和混凝土路面遭到破坏。

改变冻结壁厚度(018m、112m、115m、118m)得到地表沉降与冻结壁关系曲线见图2。

图2地表沉降与冻结壁厚度的关系

从以上图形可得出如下结论:

(1)冻结壁的厚度参数是隧道水平冻结施工中的一个重要参数,冻结壁对控制地表沉降的作用很明显。地表沉降在冻结壁厚度S=112m时为12mm,S=018m时为16mm(增加60%),S=115m时为10mm(减少了20%)。

(2)对于原型工程,其他条件(开挖步距、台阶工作面长度及掘砌工艺等)不变时,冻结壁厚度可降为018m,此时地表沉降量为16mm,满足北京地铁施工地表沉降量最大允许值30mm的要求,取一倍安全系数,得到合理的冻结壁厚度为115m。

4隧道开挖施工动态数值模拟

采用虚拟支撑力法来模拟开挖断面的空间效应。在正台阶工作面长度为4m、开挖步距2m以及其他条件都与现场相同的情况下,在模拟程序中设置隧道的顺次开挖拱顶及地表监测点,拱顶处从点(i=4,j=17)开始,每隔2m设置一个测点,直至(i=12,j=17),前后共设5个测点;隧道中线垂直上方地表从点(i=1,j=29)开始,每隔2m设置一个测点,直至(i=33,j=29),前后共设17个测点。分析隧道中线垂直上方地表各点、拱顶各监测点的沉降数据得到如下结论:

(1)当掌子面开挖到与测点距离相差110~115倍洞径时,隧道开挖就对地表产生影响,造成一定范围的沉降。

(2)当开挖工作面推进到距离超过测点2~3倍洞径时,变形速率逐渐稳定下来,主要是地层的变形逐渐趋于平缓。

在开挖第5步时,改变开挖步距(L0=2m、3m、4m),得到拱顶测点(i=1,j=17)的位移沉降历史图(图3)。分析表明,在开挖步距L0=4m的情况下,检测点

注:菱形点、方点及三角点分别代表开挖步距为2、3、4m。

(i=1,j=17)地表下沉量约为L0=1m的117倍。在现有施工能力及组织水平的基础上,根据图示的数据比较,考虑选择开挖步距L0=3m是较为合理的。在开挖第5步时,改变台阶工作面长度(L=2m、3m、6m),得到地表测点(i=1,j=43)的沉降历史图(图4)。

注:菱形点、方点及三角点分别代表开挖步距为2、3、4m。分析表明,适当降低台阶工作面长度对地表沉陷及拱顶下沉量的影响不大,但增大台阶工作面长度却能明显地减少地表的沉陷值及隧道的收敛变形值。在北京复—八线采用水平冻结法施工时,台阶工作面的合理优化长度L=5m。

5结论

(1)通过基于原型工程的数值模拟可得到隧道水平冻结法开挖施工中应力场、位移场分布特征。

(2)通过数值计算得到的考虑地表沉降情况下的合理冻结壁厚度为115m。

第2篇:隧道论文范文

新奥法的思想和基本理论形成于上世纪的60年代,是奥地利学者在长期的隧道工程实践过程中,在岩土开挖理论的一个系统总结的基础上提出来的。新奥法的核心是将围岩不仅视为荷载,也是结构的一部分,最大限度地利用和发挥围岩的自承能力。利用这一基本思想,根据地层条件,在隧道的设计施工中最大程度地利用围岩的自稳能力,合理确定支护的时机,使支护的代价最低。新奥法的基本思路有以下几点:

1)因为围岩要参与整个结构的承载,应尽量减少对围岩的扰动,充分保护岩体。

2)为充分发挥围岩承载能力,应允许并控制岩体的变形。施工中应采用能与围岩密贴、及时筑砌又能随时加强的柔性支护结构,就能通过调整支护结构来控制岩体的变形。

3)开口不利于结构形成整体的受力结构,为此,在施工过程中应使衬砌尽早封闭成整环。

4)利用信息化施工技术,合理布置监测点,及时掌握围岩及支护结构的应力和变形,通过监测信息的反馈及时调整支护参数。

5)多采用喷锚式初衬外加现浇混凝土二衬的复合式衬砌结构。二次衬砌等初衬施工完成、围岩基本稳定之后再施作。二次衬砌可以用来承担围岩流变等引起的后续荷载。基于上述描述,新奥法的精髓可以概括为十二字方针,即“少扰动、早喷锚、勤量测、快封闭”。新奥法自创立以来,在我国的诸多软弱破碎围岩中也得到了广泛而成功的应用,目前已经发展为山岭隧道及地下工程施工的一种重要方法。金鸡岭隧道所处地层围岩稳定性差,故采用新奥法修建,在修建过程中克服多种施工中的难题,取得了较大的成功。本文将对该隧道的施工技术进行系统地分析。

2工程概况

金鸡岭隧道位于鄂州市新庙镇月陂村,为双向四车道,非独立式双连拱隧道。隧道穿越的山体的最高海拔约为98.5m,隧道最大埋深约为40.7m。隧道起讫桩号为K37+870~K38+215,全长345m。进口隧道设计标高为左洞57.493m,右洞57.483m;出口隧道设计标高分别为左洞56.757m,右洞56.747m。隧道进口、出口采用端墙式洞门。隧道地段进出口及浅埋地段上覆岩体比较薄,风化相对更强烈,围岩变形模量较小、稳定性较差。隧道地段以层次多、结构较松散的软质、较软质岩石为多,有软弱的炭质层存在,岩石强度及稳定性较差,洞壁开挖容易产生较大不良变形,产生掉块、坍塌。

3施工技术方案

根据隧道的长度、现场地质条件及工期要求等因素,本隧道采用从进口单口掘进的施工方案。

3.1洞口施工

洞口工程主要施工流程如图1所示。因洞口围岩风化强烈、稳定性差,为保证其稳定性,在洞门表土开挖施工过程中,利用挖掘机而采用不爆破或弱爆破方式挖掘洞门土石方。为增加洞口稳定性及安全,采用强支护处理。在洞口边坡及影响范围内的仰坡上打设锚杆,为增强围岩的整体性和锚杆支护效果,锚杆打入方向应垂直于岩面。锚杆打入深度为4m。同时布置25cm×25cm的钢筋挂网,钢筋直径6.5mm,在钢筋挂网上喷射混凝土,形成锚喷支护。

3.2超前管棚注浆施工

为防止岩层坍塌和地表下沉,保证掘进和后续支护工艺安全,本工程洞口设置有22m长超前管棚作为临时超前支护。管棚采用φ127×4.5mm的钢管,钢管长24m,管棚与4榀I20b做成的拱架连接在一起,并用C25混凝土浇注,形成一个模拟的洞门,在临时洞门的防护下进行洞身开挖。长管棚内注浆采用水泥单液浆。水泥浆水灰比0.9∶1,注浆初压0.5~1.0MPa,终压2.0MPa。

3.3隧道段开挖

根据不同的地质断面,选择不同的开挖和支护方式。V类和Ⅳ类围岩地段采用三导洞超短台阶式开挖,施工时采用预裂爆破,上下台阶分开,采用短进尺,弱爆破。对于Ⅲ类围岩洞身开挖,采用全断面开挖,施工时采用光面爆破,循环进尺3.0m。中导洞的断面形式为圆顶直墙,整个断面全部开挖。采用光面爆破进行全断面开挖,爆破前用凿岩机钻眼掏槽。中导坑开挖完毕之后,对整个中导坑底板进行标高复核,用低标号砂浆铺底平整,然后进行底部锚杆施工。钢筋安装好后,分为基础及墙身两部分混凝土浇筑;基础采用普通拼装模板,墙身采用8m长模衬台车、滑模施工工艺进行施工。左右导洞采用全断面法开挖,左右正洞采用上下台阶法开挖,进洞口、出洞口8m范围内掘进进尺为0.5~1.0m,其余位置掘进进尺为1m(Ⅴ级围岩)或2m(Ⅳ级围岩)。

3.4初期支护

岩体开挖后须及时进行支护,以维持围岩稳定,保障后续施工有安全的工作空间。金鸡岭隧道施工中,采用中空注浆锚杆、砂浆锚杆、钢拱架、钢筋网、喷锚支护紧跟开挖面及时施作,以减少围岩暴露时间,抑制围岩变形,防止围岩在短期内松弛。各区段采用的初期支护参数如表3所示。

3.4.1砂浆锚杆

本工程选用20MnSiφ22砂浆锚杆,利用自制凿岩台架,风动凿岩机钻孔,孔深、孔位、外插角偏差应符合设计和规范要求。锚杆采用φ25钢筋按设计长度加工而成,按不同围岩的设计间距梅花形布置。砂浆锚杆的砂浆应拌制均匀并防止石块或其它杂物混入,随拌随用,初凝前必须用完毕。

3.4.2中空注浆锚杆

1)施工方法在隧洞的顶部采用中空注浆锚杆,型号采用D25型。首先需要使用风枪进行钻孔,然后使用注浆泵完成注浆工艺。2)注浆施工要点注浆压力控制是注浆施工关键,根据工程经验可取为地下水压的2~3倍。另外,还需根据围岩自身的裂隙阻力进行调整,最大压力值理论上不宜大于0.4MPa。而注浆的范围一般根据经验类比法或者现场注浆试验来进行确定,注浆量一般通过注浆压力达到0.3MPa来进行控制,单孔注浆量一般不超过1t。

3.4.3钢拱架支护

1)设置方法

钢拱架先在洞外分段加工,在端部设置法兰。安设前由运输车运至洞内,用人工进行螺栓连接和拼装。拼装完成之后,挂网喷浆。

2)施工要点

首先,在钢拱架架设之前应认真检查钢拱架的加工质量;在架设时,先清除底脚浮渣;如果遇到超挖的情况,尚应加设垫块,而中间部位的接头板应用砂或土体埋住,防止喷射混凝土堵住接头板上已经打好的螺栓孔。然后,按照设计要求,焊接系筋和纵筋,段与段之间设置垫片并确保螺栓被拧紧,以保证钢架的受力性能。同时要校核拱架中线的标高和尺寸。而拱架和围岩面之间尚需安设鞍形的垫块,使钢拱架与岩面之间贴实、压紧。

3.4.4钢筋网

按设计要求加工钢筋网,随受喷面起伏铺设,同定位锚杆焊接或绑扎固定牢固,钢筋网与受喷面的间隙以3cm左右为宜,混凝土保护层大于2cm。

3.4.5喷射混凝土

按设计要求的厚度在挂网上喷射混凝土,为保证施工质量,喷混凝土应当分段、分块。施工顺序上先喷墙、后喷拱顶,从下往上喷。为保证喷射混凝土的密实度,混凝土喷嘴应做直径为20cm~30cm的螺旋路径移动,反复缓慢地进行喷射。控制水压、压缩空气的风压,掌握好喷射距离,避免过多的回弹。如果设计厚度大于5cm,应分两层进行喷射,第二层需在第一层终凝一个小时之后进行,同时有必要对第一层的混凝土面层进行冲洗。

3.5二次衬砌

二衬的施工一般要等围岩变形稳定之后才能进行,而围岩稳定的判断要依据监测数据进行分析,等变形数据趋于收敛时方可。在本隧道的施工中,衬砌距离开挖面约为30m~40m之间,一方面能使各工序在空间上互不冲突,同时能保证围岩在开挖后无支护暴露的时间控制在合理的范围之内。隧道边墙及拱部二次衬砌的浇筑采用移动式液压模板台车和泵送混凝土整体浇筑,以保证二次衬砌的密实,超挖部分采用同级混凝土回填。每模衬砌混凝土连续浇筑,一次完成。二次衬砌施作时先浇筑仰拱和矮边墙,再立模进行拱部混凝土浇筑。

3.6施工监测

现场施工监测和监测数据的及时分析和反馈是及时了解围岩状况和隧道安全状况的基本手段,也是现代隧道施工的重要部分,是新奥法的核心之一。根据围岩情况,合理地选择监测断面、布置监测元件,合理频率的动态监测,实时分析监测数据,判断围岩状况,分析初衬和二衬是否达到隧道设计要求,并及时地反馈,从而使工程设计人员和施工人员能够及时调整设计和施工方案。

4结论

第3篇:隧道论文范文

1.1项目管理无法实施

分包合同签订,“包工头”组建临时设施、混凝土拌合站、钢筋加工场,配备各种施工机械和设备,并按隧道工程分项施工工序进行分解,再次进行分包,将一个完整的项目经过层层分包,形成很多独立的个体。项目部各种管理制度和办法,受“包工头”的“屏蔽”与“唯利”影响,很难落实到施工现场作业层,导致项目管理与现场作业脱节,项目管理处于失控状态。

1.2工程施工不规范,质量无法保证

“包工头”为了获取更多的利润,想方设法减少投入,采取偷工减料和以劣充好的手段,开挖前不按设计要求施作超前支护、不注浆,爆破作业时减少炮眼数量、增加炸药量,导致隧道超挖或坍塌;初期支护采用不合格钢拱架、拱架间距拉大、连接筋焊接不牢固,锚杆施作长度、数量不够甚至不做、不注浆或者注浆不饱满,喷射混凝土不密实、厚度不足,制造空洞或空壳,二衬厚度不足,仰拱不按设计放置钢结构、不分层浇筑、仰拱填充层不密实等质量问题,造成无法弥补的后果,给以后营运带来安全隐患。

1.3违规操作,安全事故频发

“包工头”为节约成本,不按安全规定配备安全防护设施,在安全生产上弄虚作假、敷衍应付;分包队伍施工作业人员安全生产意识淡薄,隧道施工没有进行安全培训教育,特种作业人员无证上岗,施工现场违规操作,造成安全事故频发。

1.4拖欠民工工资,导致的发生

“包工头”将项目部结算工程款私自挪用,长期拖欠民工工资,层层分包加剧工资发放的难度,易发生民工上访等群体性恶性事件以及经济纠纷和民事诉讼。施工企业将承受巨大的经济、名誉损失。

2班组化在隧道施工中的应用

兰永五标项目部改变以往隧道施工分包管理的模式,在恐龙湾隧道施工中组建了项目部直接管理的五个专业施工班组,使质量、安全始终处于可控状态,确保了工程项目顺利完成施工任务。

2.1工程慨况

恐龙湾隧道为左、右分离式,单洞全长2351m,纵坡为2%,属中等埋深长隧道。围岩级别为Ⅳ和Ⅴ,稳定性较差。

2.2班组化的组建

兰永五标项目部根据项目实际情况,结合路桥集团公司下发的《甘肃路桥建设集团桥梁隧道工程实行班组作业模式指导意见》和《甘肃路桥建设集团桥梁隧道工程实行班组作业模式操作指南》的要求,从职工队伍中选拔具有责任心和事业心的职工为班组长,在恐龙湾隧道施工中组建了开挖班、出碴班、初期支护班、二衬班、辅助工班专业施工班组,以身体素质好、有经验的技工或劳务人员为班组成员,签订《内部承包合同》,制定了人员、材料、财务、机械、工资分配等管理制度和办法,把安全、质量、进度等责任落实到班组、落实到个人、落实到每道施工工序上,作业班组的日常生活纳入到项目部的统一管理中,进一步强化了现场施工技术规范、安全规范、操作规程的执行力度。

2.3班组化施工管理

项目部直接管理各施工班组,管理人员和技术人员现场指导、检查、监督各班组施工过程,对各工序的重点部位实施动态管理,每一道工序都经过严格的质量检查、检验和检测,及时整改不符合标准的作业方式。项目部统一组织调配施工所需机械设备、主材、耗材等,安排专人负责钢筋加工厂、拌合场、库房、材料采购,并根据隧道的结构设计和支护方式,科学安排工艺流程,合理的控制材料消耗、有效的杜绝了偷工减料现象的发生。

2.3.1做好进度计划

项目部根据工期要求,合理划分阶段性施工任务,每月各给各班组下达施工任务令,月底进行绩效考核和工程结算,按合同规定进行薪酬的发放。

2.3.2落实三级技术交底制度

项目部负责各班组技术工作,坚持安全、质量技术交底制度;各班组在进场施工前,由技术部、安全部对各工序施工工艺、质量控制、安全注意事项等进行详细交底,并留有记录;并对施工过程进行监督、检查,严格按技术交底内容组织施工。

2.3.3强化质量管理

项目部对劳务班组质量管理具有主动权。为了保证衬砌质量,每10m检测钢拱架间距、初期支护喷射混凝土钻芯和混凝土强度,对不合格段及时进行返工处理,并根据监控量测数据及时调整预留沉降量。为确保仰拱施工满足设计要求,每50m进行钻芯取样检测。从测量放样、爆破作业入手,严格控制光面爆破工艺,减少超欠挖现象的发生。通过多项质量管控措施的落实,恐龙湾隧道二衬厚度合格率100%,初期支护喷射混凝土厚度合格率100%,钢拱架间距全部符合规范要求,二衬和初期支护混凝土密实、无空洞。

2.3.4加强进度管理

劳务班组与项目部利益一致,通过绩效考核等有效的激励机制,提高了劳务班组的工作效率与积极性,在施工紧张时能全力以赴从事生产,从而解决了分包队伍与项目部讨价还价的矛盾,项目部在进度控制上有了更大的执行力。另外,在这种作业模式下,管理和技术人员齐心协力抢时间,抓工序衔接,改变了项目和施工一线脱节的现象。

2.3.5落实合同承诺

项目部按照《内部承包合同》进行绩效考核,充分调动管理人员、作业工人的生产积极性。

2.4班组化施工安全管理

建立和完善安全质量管理体系,明确责任,实行安全质量逐级负责制;定期开展施工机械设备安全隐患排查专项整治,排查隐患、落实安全长效机制。通过建立项目安全培训教育中心、班前安全讲评室等手段,加大安全培训教育工作力度。积极推行安全标准化建设,规范安全生产行为。隧道洞口实行门禁管理系统和隧道进出洞人员定位管理系统,并设置LED显示屏,能及时、准确的概述恐龙湾隧道施工工序和进洞作业人数。自开工以来兰永五标项目安全一直处于可控状态,未发生任何安全事故。

2.5班组化施工的成本管理

项目部加强项目成本管理,严格实行当月核算、考核、分析,当月结算兑现、奖励,坚持每月25号召开责任成本分析会,各部门按照对口管理原则,制定成本控制措施。

2.5.1班组化施工的材料控制

隧道施工材料费占施工总成本的70%—75%,项目部成本管理主要是控制物资,工程部核算物资计划台帐,设材部严格把关采购计划,每月定时开展剩余材料盘库,建立健全材料进、出库制度,消除了分包模式下项目部管不了材料的弊端,兰永五标通过班组化管理材料消耗得到有效的控制。

2.5.2班组化施工现场管理

隧道项目中人工费占到总成本25%—30%,现场管理涣散、窝工或安排不当,都会加大管理成本。兰永5标项目部每天晚上召开作业协调会,要求工程、机械、材料、测量等相关人员参加,安排第二天的工作顺序,明确各自的任务,确保隧道施工各工序、各班组紧张有序的开展,每月按期完成制定的施工任务。

3结束语

第4篇:隧道论文范文

岩堆体的形成条件是多样的,形成途径主要有两个,一是由千枚岩、泥质页岩以及各种板岩、片岩等软弱且易风化的岩层所组成的大坡度山坡;二是在构造带的交接部位,经多次地壳运动,因岩层遭遇强烈破坏,岩石风化剥落在山脚而形成的岩堆。岩堆的形成发展过程可分为三大阶段:①母岩崩解;②风化产物的搬运;③风化物的堆积。与此相适应,岩堆的形成过程可划分为与上述三个阶段相对应的三个区域,分别是:A-供给区;B-搬运区;C-堆积区。通过查阅云南省昭通地区高速公路沿线岩堆的踏勘和地质资料,该地区岩堆形成过程如下:①在地壳板块运动过程中,地层受构造挤压作用而隆起抬升,形成陡峭山峰;②在逆层边坡侧,岩层断裂出露,形成软弱泥岩与坚硬岩层(砂岩或灰岩)的交替结构;③由于软弱泥岩易于风化,碎裂块体沿边坡滚落逐渐在坡脚或突出坡台堆积;④悬空硬岩在外力和风化作用下断裂,沿边坡滚落与软岩风化物混合形成堆积体;⑤随上部堆积体的增加,在降雨等因素作用下,岩堆体逐渐密实,并可能形成向下的滑动趋势;⑥岩堆体趋于稳定。

2岩堆体特征

2.1外部特征

岩堆体主要分布在山岭区的陡坡上或山麓下,岩堆体深度变化很大,上部较疏松,中下部较密实,深度一般在10~45m,甚至更深。其纵断面一般呈各种形状的三角形,主要由岩堆基底傍依区和岩堆坡面所围成的三角形区域组成。1~3分别表示为岩堆基准面(基底),支承(傍依)区和岩堆坡面。受地下水影响,岩堆体底部与基岩接触面处一般有可塑状低液限黏土夹碎石软层。一般而言,上下陡中间缓型岩堆的稳定性最好,其次是单面坡型,上陡下缓型岩堆稳定性最差。岩堆体坡面形状,即平面形态。岩堆体大小和范围极不一致,其面积少则几十平方米,大则几平方公里。其平面形态主要有楔形、三角形、舌形、半圆形、梨形、梯形等类型。圆形岩堆相对最稳定,而舌形岩堆和梨形岩堆稳定性最差。

2.2内部特征

岩堆体上部覆盖层为黏土夹碎石,下部为块石土夹黏土,岩堆主要由千枚岩、泥岩、页岩、板岩和片岩的风化产物与砂岩、石灰岩和花岗岩等的岩块堆积而成。碎屑岩类岩堆由砂岩质块(碎)石和玄武岩块(碎)石组成,块石含量70%~80%。碳酸盐岩类岩堆由灰岩质、白云岩岩质块(碎)石组成,块石含量80%~90%。

3岩堆体力学参数

尽管岩堆体的力学性质研究十分困难,但是研究者依然取得了一些有价值的成果,vallejo等对砂石~黏土混合材料的孔隙度与抗剪强度进行了研究,得出混合材料的抗剪强度与砂石、土的比例有关,当砂石的重量比小于40%时,材料抗剪强度主要由黏土的抗剪强度控制;当砂石的重量比介于40%~75%之间,材料抗剪强度由砂石的摩擦阻力和黏土的抗剪强度共同控制;当砂石的重量比超过75%时,材料抗剪强度主要由砂石的摩擦阻力控制;混合体抗剪强度随含石率增加而增加。可以根据现场岩堆体的坡度来初步判断岩堆体的摩擦角。岩堆的含石率较高,岩堆表面坡度一般也较大;相反,坡度相应变小;随着岩堆的增加以及雨水的作用,将逐渐密实,因此对早期的岩堆,其稳定性高。岩堆体整体松散,其粘聚力低,岩堆体的粘聚力为大约8~20kPa。

4岩堆体对隧道施工的影响

在穿越岩堆体隧道的施工中,导致进洞困难的根本原因有两个方面:一是水患,二是围岩松散软弱。施工中的困难具体表现为:卡钻与孔塌现象,严重影响喷锚支护的施工速度,增加施工成本;锚固力不足、坍塌现象、边坡失稳、涌水现象、流砂现象。

5岩堆体隧道施工控制措施

针对以上问题,在岩堆体隧道施工过程中,采取的防治措施主要有两大原则。一是,隧道防排水设计原则:“以排为主,堵、截、防、排相结合”;二是,隧道开挖原则:“减少对围岩的扰动、先护后挖、密闭支撑、边挖边封闭”。具体措施包括:

1)对于施工过程中的成孔困难。采用锚杆钻机跟管钻进的方法、套管跟进取代管棚,此外还可采用小导管径向注浆取代中空锚杆径向注浆的方法;

2)针对锚固力不足的问题。采用管锚与注浆联合支护技术,全面调动了围岩自身承载能力,是目前解决岩堆体支护问题的最有效手段;

3)对于边仰坡失稳及围岩软弱问题。主要是进行小导管注浆、网喷支护处理边坡;

4)对洞内流沙。开挖时应准备草束或麻袋,随时堵塞缝隙,以免漏砂引起坍塌;

5)针对失稳,偏压问题。在岩堆体中隧道施工,采取大管棚注浆超前支护,短进尺,弱爆破,及时施作加强型的初期支护,锁脚锚杆,尽早成环,形成封闭结构。

6结束语

1)现有的成果主要是针对具体实际岩堆边坡的综合治理进行研究,对于岩堆的形成条件、机理、几何特征及变形规律,以及岩堆的破坏模式和破坏机理方面的研究较少,在机理分析的基础上提出标准化施工方案及其基本施工措施的研究更少,有待深入研究;

2)岩堆体作为山区的一种不良地质,必须根据其特殊性查明其固有性质,同时还须查明周围环境条件对岩堆稳定性的影响;

第5篇:隧道论文范文

首先,处理地基。在挖基坑的时候,要想防止挖掘过度就要提前做好规划,掌握好比例,要不就会发生地基下沉的问题,这些问题一旦出现就会严重的影响到后续的建设工作,使得项目的品质受到很大的干扰。在挖掘的时候要清理好基底,而且平整得当、在挖掘工作结束之后要测试其受力能力,如果达标才可以开展后续的建设工作。其次,捆扎钢筋。此项工作要按照图纸的规定来开展,要明确钢筋的类型和总数尺寸等等,还应该做好测量工作,要保证整个时期都有专门的监管者,以此来确保项目的品质不受干扰。还要选择合理的焊接措施。捆扎好之后要适当的填充,通常填充砂浆和土壤,这样做的目的是提升器稳定性。再次,控制好模板。在进行模板建设工作时,要做好模板加工工作,而且要使用定型模,使用脚手架来辅助。模块要采用截面设计的形式,钢管采用脚手架形成斜向支撑,在具体工作的时候要认真的掌控好该项内容,否则就会干扰项目的品质。最后,做好混凝土施工工作。在此时期,要在基底处和模板有效对接,为了防止渗漏通常用砂浆来围堵。同时此举还能避免场地发生塌陷。在具体的工作时,要结合材料的特点做好保护工作,避免其破损。在拆除模板之后,要进行台身的维护工作,要在其表层遮盖一层塑料薄膜,同时还要确保它的边角和表层不受撞击,确保平整。

2桥梁涵洞隧道施工技术

2.1桥梁涵洞隧道明洞施工技术

(1)材料方面的规定。通常规定泥沙以及水等材料的品质要合乎相关的规定。在气温较低的区域要做好抗冻测试工作。对于防水的材料还要测试它的防水能力。

(2)工艺方面的要求。在开展工作之前的时候要认真的测绘放样,要掌控好基槽的挖掘力度。洞1:3段及基槽开挖支护:洞口明挖可采用敞口放坡法施工。基底物探及承载力试:使用地质雷达对基底进行探测,并用重型动力触探仪对基底进行承载力试验。仰拱混凝土:基底承载力满足设计要求后应及时浇注仰拱混凝土。

2.2钢支撑施工技术

第一,材料品质方面的规定。要保证支撑使用的材料的品质良好,通常支撑是集中制造的,在场地中直接安放。而且在用之前的时候要对其调直处理,还要清理污渍。第二,工艺方面的规定。要认真的检测断面。对挖掘平面检测,假如出现过度挖掘或是挖掘力度不够的情况,就要对挖掘平面再次处理,确保挖掘平面合乎规定。在其达标之后就要尽快的喷射混凝土。同时还要明确钢架的方位。

3结束语

第6篇:隧道论文范文

本隧道施工采用暗挖喷锚构筑法施工,具体的支护结构采取为:Ⅳ级围岩采用φ42超前导管(超前支护)+φ25中空注浆锚杆和φ22早强砂浆锚杆+钢筋网+H14格栅拱架+喷砼支护;Ⅲ级围岩采用φ22药卷锚杆+钢筋网+喷砼支护。支护施工流程方案采取为,先沿开挖轮廓线施作超前导管,开挖后立即喷射混凝土3~5cm进行临时支护,然后打设锚杆、挂钢筋网、架设钢拱架,完成后复喷砼至设计厚度,进入下一循环。

1.1锚杆施工

本隧道工程的锚杆采用了φ25中空注浆锚杆和φ22药卷锚杆,锚杆的布置范围和间距根据施工情况进行确定,并根据钻孔情况作出标记。本工程采取YT28风钻钻孔进行钻孔施工,在钻孔前在钻杆上标明锚杆的长度,以便控制钻孔深度,钻孔完后采用高压风吹孔,吹尽孔内积水和岩粉。对于本工程的中空锚杆施工,要求φ25中空注浆锚杆由全螺纹中空杆等关键配件组成。

1.2钢拱架施工

采取全站仪准确测设格钢拱架位置(位于隧道法线方向),并用红油漆准确标注拱顶、拱脚和边墙等控制点位置,设置足够的定位锚杆。初喷砼后,安设钢拱架,沿预先标注点对正安设。安设纵向连接钢筋:钢架与钢架之间用直径为φ22mm的螺纹钢筋沿着纵向连接起来,环向间距为1.0米,增强钢架的整体稳定性。为保证钢拱架的稳定性,可在边墙钢拱架接头处设两根长3.0m的φ22药卷锁脚锚杆。

1.3喷射砼施工技术

为了进一步减少粉尘,全面提高喷射砼的质量,隧道采用湿喷法施工,砼在洞外拌合站拌合,砼罐车运输至洞内卸入TK-961湿喷机料斗,人工抱喷嘴湿喷。

(1)材料及配合比。水泥采用425#普通硅酸盐水泥。每立方米用量380kg,使用前做强度复查试验。砂采用人工砂,要求砂粒的平均粒径为0.35~0.5mm,细度模数大于2.5,含水率为5~7%,使用前过筛。碎石要求采用的粒径在15mm以内,含水率控制在2%,级配良好,使用前筛洗干净。施工所采用的水,要求其不含有影响水泥正常凝结与硬化的有害杂质,不得使用污水,PH值小于4的酸性水和含硫酸盐量按SO42-计超过水重1%的水,使用前进行水质分析。经试验确定,喷射第一层时可采用水泥:砂:石=1:2:(1.5~2),水灰比0.4~0.5。

(2)施工工艺。先送风,后打开速凝剂,然后开始进料。

(3)施工控制技术。喷射混凝土施工采取分段、分片由下而上顺序进行,岩面有较大凹洼时,应先喷凹处找平。喷射施工前,埋设标志或利用锚杆外露长度以控制喷射混凝土的厚度。隧道开挖后立即对岩面喷射砼,以防岩体发生松弛。后一层喷射应在前一层混凝土终凝后进行,若终凝后间隔1h以上再次喷射时,受喷面应用风、水清冼。喷嘴应与受喷面保持垂直,同时与受喷面保持一定的距离,一般取1.0~1.5m。新喷射的混凝土按规定洒水养护。

(4)喷射砼。是用喷射法施工的混凝土。喷射混凝土有"干拌"和"湿拌"两种施工法,一般采用"干拌"法。它是浆水泥、砂及最大粒径小于25毫米的石子按一定比例拌合后,装入喷射机,用压缩空气将干混合料沿管路输送至喷头处,与水混合并以40~60米/秒的高速喷射至作业面上。湿拌法则是将原材料预先加水拌和后喷射。喷射混凝土施工时,由于水泥颗粒与集料互相撞击,连续挤压,以及采用较小的水灰比,从而使混凝土具有足够的密实性、较高的强度和较好的耐久性。全部粗骨料与水泥加入搅拌机内先拌和,加入1/3含有加气剂的水,随后再加入砂和1/3含有减水剂的水,最后按坍落度要求加入另一部分水。在全部加入后持续4min即可输入湿喷机喷射。

1.4钢筋网

钢筋网可以现场绑扎,也可以预先按设计网格尺寸要求制成1×2米的钢筋网片,运至现场后将其焊接在锚杆端上,在岩面喷射一层混凝土后再进行,并在锚杆安设后进行。

2结语

第7篇:隧道论文范文

铁路隧道工程建设具有多种不确定性因素,给隧道施工带来潜在的风险。所以,各参建方、特别是施工方加强隧道施工中的风险管理、强化管理人员和施工人员的风险意识、加强风险管理体系建设,采取有效措施识别风险、预防风险、应对风险和处理风险,是保证工程项目顺利建成的关键,对实现风险管理目标和总体效益具有重要意义。

2隧道施工风险管理内容和过程

隧道施工风险管理的内容和过程大体归纳为风险识别、风险分析、风险评估和风险应对4个方面。

2.1风险识别

铁路隧道工程施工的风险识别就是在诸多的影响因素中抓住主要因素,从而辨识出可能影响隧道工程建设质量、安全、工期、费用、环境等目标的风险因素。识别内容包括在施工过程中,哪些风险应当考虑,引起这些风险的因素有哪些,这些风险的后果及其严重程度如何。识别的原则是收集和研究资料、确定分析方法、确定隧道施工风险的主要类型、分析主要风险的构成、建立风险系统及采取的应对措施等。

2.2风险分析

进行隧道施工风险分析,有助于确定不确定因素变化对施工方案的影响程度,有助于确定工程造价对某一特定因素变动的敏感性。所以要针对施工方案中存在的不确定性因素,分析其对实际环境和施工方案的敏感程度,预测并估算相关数据和采取预防措施的费用,或在不同情况下得到的收益以及不确定性因素各种机遇的概率,对此作出正确的判断等。

2.3风险评估

在识别和分析可能发生的风险事件后,要对其进行相应的风险评估。风险评估就是对发生风险的概率及其破坏性后果做出评价。隧道施工风险评估是一个非常复杂的系统,在施工前期,要针对地质等不确定性因素,通过定性的风险评估方法对影响施工的关键因素进行预测,为制定和优化施工方案提供数据基础;在施工过程中要针对地质信息、周围环境及设计目标等,选用定量的风险评估方法进行全面准确的评估。定性的评估方法有层次分析法和专家调查法等,定量的风险评估方法有敏感性分析法和风险矩阵法等,本文将采用风险矩阵法对石长铁路柞树湾隧道施工进行风险评估。

2.险应对

风险应对是指在确定了施工中可能存在的风险后,在分析出风险概率及其风险影响程度的基础上,根据风险性质、项目设计参数、项目总体目标和对风险的承受能力而制定应对措施,将存在的风险降到最低或可控制范围内。风险应对措施有风险回避、风险控制、风险分担、风险自留和风险转移等。

3石长铁路柞树湾隧道施工风险识别与分析

3.1工程概况

柞树湾隧道位于长沙市开福区新港镇,属于石门至长沙铁路增建第二线工程中的联络线隧道,用于连接京广线与石长铁路,隧道起讫里程为BXDK1+865~BXDK3+929,全长2.064km。其中明洞1.284km,暗洞780m,洞身最大埋深17m左右。柞树湾隧道下穿长沙绕城高速公路,在BXDK2+520~+540段与既有石长铁路下行线垂直相交,在BXDK2+585~+615段与京广铁路、捞霞联络线相交,在BXDK2+670~+705段与石长铁路上行线成110°夹角相交,在BXDK3+760~+840段与长沙市主干道金霞路(芙蓉北路)近似垂直相交。该隧道地理条件复杂,地质条件较差,基本为Ⅴ级围岩~Ⅵ级围岩,地面有水塘及大量民房,施工难度大,安全要求高。

3.2施工风险识别与分析

在施工准备阶段,首先收集该隧道地段的水文和地质资料、设计和技术标准、下穿铁路和公路及其他建筑物的情况,针对编制的施工方案和拟采用的工法等,对所需资料进行全面分析。根据施工图设计阶段所做的风险评估结果和相关资料以及合同中反馈的有关信息,针对现场情况和施工水平对施工中可能发生的风险进行了识别,归纳起来分为2类,施工技术风险和施工管理风险。该隧道施工管理风险包括施工进度风险、项目成本风险、施工质量风险和安全风险。施工进度风险主要指现场环境条件和施工过程中存在不确定因素会导致工期延误;项目成本风险指直接成本和间接成本控制不当会导致工程投资增加;施工环境发生变化,管理人员和施工人员责任心不强,施工机械操作不当,施工方案存在不确定因素都会引发施工质量风险;防范措施不到位,施工过程中发生塌方、涌水、触电、火灾、爆炸、机械伤害等安全事故,会引发安全风险。

4柞树湾隧道施工风险评估

采用风险矩阵法对柞树湾隧道施工进行风险评估(即采用概率理论对风险事件发生的概率和后果进行评估),先对风险评估中的威胁、脆弱性、资产3个基本要素进行识别、并赋值,从而确定风险事件中威胁出现的频率、脆弱性严重程度、资产的价值3个评估指标值;然后根据风险基本要素识别的结果和矩阵法原理,由威胁出现的频率和脆弱性严重程度计算风险发生的概率值,由脆弱性严重程度和风险事件作用的资产价值计算风险后果值;最后根据风险发生的概率值和风险后果值确定风险等级。

5结束语

第8篇:隧道论文范文

1、设计公路隧道前对交通量进行合理预测

合理预测交通量是公路隧道照明设计中的重要内容,在设计速度一样的前提条件下,设计交通量不同,最后得到公路隧道照明需求也是不一样。例如:公路隧道设计速度为90km/h,小交通量要比大交通量少用能源40%以上,公路隧道设计速度为65km/h时,小交通量要比大交通量少用能源50%以上,从上述也就不难看出,依据实际情况合理预测公路隧道交通量对公路隧道照明系统的优化设计具有积极作用。

2、依据实际情况,合理布设灯具位置

从普遍意义上来说,公路隧道基本照明方式可以分为三种:中间单排布灯、两侧对称布灯、两侧交错布灯等,不同的布设方式自然而然的所用灯具、检查维修程度也不一样,在查阅相关资料后得知:双侧布置灯具要比中间布置灯具其效率更高,而双侧交错布置要比双侧对称布置效率要更高。在布置设计过程中,要考虑到其高度问题,采用合理布灯方式又能够达到节能目的,还能够减少维修检查方面的费用,这是“低碳经济”的又一种体现。

3、在公路隧道中应用新型节能设备

纵观当前公路隧道照明设计整个领域,其大多都是采用路面亮度与长隧道取值相同的方式。倘若采用LED诱导灯,既能够节约建设成本也能够减少一些不必要的损耗。LED灯弥补了以往灯具清晰度差的缺点,站在驾驶员的角度出发能够降低驾驶员的心理压力,在保障公路隧道行车安全的基础上可以依据行车量降低LED灯的亮度,尤其是在夜间或者晴朗天气。

4、不定期对照明灯具进行维护

在实际中我们不难发现,公路隧道照明灯具开始使用时比较明亮,但是使用一段时间后衰减,造成其根本原因尘埃以及汽车油垢等多种因素降低了光的透射能力,如若长期没有对灯具进行检测维护,照明强度降低,为行车安全埋下隐患,因此不定期对照明灯具进行检测维护是非常重要的。

二、结语

第9篇:隧道论文范文

关键词:地铁防排烟隧道通风

1科学地设置防排烟设施及事故状态下进行合理的防排烟处置,对于减少人员伤亡和财产损失具有极为重要的意义。

在地铁站台、隧道设置通风排烟设施是由地铁的建筑结构决定的。与地面建筑相比,地铁工程结构复杂,环境密闭、通道狭窄,连通地面的疏散出口少,逃生路径长。发生火灾,不仅火势蔓延快,而且积聚的高温浓烟很难自然排除,并迅速在地铁隧道、车站内蔓延,给人员疏散和灭火抢险带来困难,严重威胁乘客、地铁职工和抢险救援人员的生命安全,这是造成地铁火灾人员伤亡的最大原因。经统计,北京地铁自1969年至今的34年运营历史中就曾发生过151起火灾。1969年11月11日,北京地铁客车行至万寿路东600米处时,在隧道内因车下放弧引燃车体起火,造成300多人中毒,3人死亡的重大事故。1987年11月18日英国伦敦地铁国王十字车站电梯引发火灾,造成32人死亡、100多人受伤。2003年2月18日韩国大邱市中央路地铁车站因纵火造成火灾,造成196人死亡、147人受伤。国内外地铁火灾的历史充分证明:地铁车站、客车和隧道不仅会发生火灾,而且一旦发生火灾将很难进行有效的抢险救援和火灾扑救,极易造成群死群伤的重大灾害事故。根据国内外地铁火灾资料统计,地铁发生火灾时造成的人员伤亡,绝大多数是因为烟气中毒和窒息所致。而且地铁是人员高度密集的公众聚集场所,恐怖集团、组织、对社会不满分子均有可能把地铁作为袭击的目标,人为破坏造成的火灾,其损失和影响将更为严重。因此,有地铁的国家,均对地铁的通风排烟设施极为重视,不仅将通风排烟设施做为地铁必备和最为重要的安全设施,在各自国家的规范中明确提出了很高的设计标准和设置要求,而且无一例外在地铁的站台、隧道都设置了机械通风排烟设施。由此可见,在地铁站台、隧道科学地设置防排烟设施以及事故状态下合理地进行防排烟处置,对于减少人员伤亡和财产损失具有极为重要的意义。

2目前国内地铁站台、隧道设置的通风和排烟设施的情况

因建设年代不同,北京地铁、上海地铁、广州地铁的通风和排烟系统不尽相同。总体可分为两类。

第一类是通风和排烟同为一个系统,即通风和排烟系统均由相同的风机、消音器、风口、风道和风亭组成。由风机的风叶进行正转或反转,来实现系统的送风或者排烟。隧道、站台内的烟气流动方向为沿隧道或站台水平方向流动。站台发生火灾,通风排烟方式是站台隧道入口上部的风机反向运转,将站台内的烟气由风口吸入风道,经风道尽头处的风亭排到地面;隧道内发生火灾,区间风机反转吸风,站台风机正转送风,使隧道内烟气从事故发生处流向区间风口,经风口进入风道,再从风道尽端的风亭排到地面。

另一类是通风系统和排烟系统分开设置,各自分别成为相对独立的系统。即通风系统和排烟系统是由各自独立的风机、消音器、风道、风口(排烟系统含风亭)分别组成。进烟口、通风口分别设在站台行车道上方和站台集散厅顶部,站台内的烟气流动为垂直方向流动。

因建设年代早,北京地铁的站台和隧道采用的是通风和排烟共为一个系统。上海、广州地铁的通风和排烟是将两种方式结合使用,即隧道内采用第一种方式,站台上采用第二种方式。

国内地铁设置的通风排烟设施的实际排烟能力至今没有经过重特大火灾的实践检验。站台的通风排烟设施在通风排烟的设计能力上,能够有效解决站台火灾的排烟问题。北京地铁每个站台及隧道的通风排烟系统均采用双风道、双风机,单台风机的设计排气量为每小时20万立方米,(即每分钟3333立方米,每6分钟为2万立方米),每个站台或隧道通风排烟系统的通风排烟能力为每小时40万立方米,北京地铁多数站台的体积为6000立方米至10000立方米。依靠现风机能力,仅需1~1.5分钟即可对站台内空气实现一次换气。现《地下铁道设计规范》对疏散的要求是6分钟内将一列客车及站台候车乘客疏散完毕。按此要求,在车站乘客6分钟的疏散时间内,排烟系统能够对站台实现4~6次换气。因此北京地铁站台的通风排烟设施是具备了足够的设计排烟能力。作者虽没详细了解上海、广州地铁站台通风、排烟系统设计的具体情况。但上海、广州地铁均为九十年代设计建造的,建设年代近,且通风排烟方式较北京地铁的通风排烟方式更为先进和有效。因此,上海、广州地铁站台的通风排烟系统应该具备了有效的排烟能力,能够保证人员的疏散安全。

3地铁站台、隧道的通风和排烟存在的问题

3.1地铁隧道在通风排烟方面存在严重问题

隧道内排烟的原则是沿乘客安全疏散方向相反的方向送风。这样既可以阻止烟气与人同向流动,又给疏散逃生人员送去新鲜的空气。地铁隧道内起火部位与客车的位置关系决定了乘客的疏散方式。而乘客的疏散方式又决定了隧道内的排烟方向。因此,隧道内发生火灾时,起火部位与客车的位置关系既决定了乘客的疏散方向,又决定了区间两端站台风机和区间风机的送风排烟方向。

发生火灾时,起火部位与客车大致有三种位置关系,即起火部位位于车头、车中或车尾。

当起火部位位于车头时,乘客必然向车尾即后方车站疏散,后方车站的风机送风,前方车站的风机排风,使隧道内的烟气流动方向与乘客的疏散方向相反。

当起火部位位于车尾时,乘客必然向车头方向即前方车站疏散,前方车站的风机正转送风,后方车站的风机反转排风,使隧道内的烟气流动方向与乘客的疏散方向相反。

若火灾发生在客车的中部,起火处前部车厢的乘客将向前方车站疏散;起火处后部车厢乘客将向后方车站疏散。无论客车迫停在区间隧道的任何位置,乘客自然分成两部分分别向隧道两端进行疏散。在此种情况下,用地铁隧道现有的排烟设施无论采取怎样的排烟措施,隧道内烟气流向必然与部分乘客的疏散逃生方向相同,威胁同向逃生乘客的生命安全。

由此可见,现在地铁隧道采用的通风和排烟共用一个系统的方式,势必造成烟气在排入风道前与疏散逃生人员均同处隧道内,这种通风排烟方式既不科学合理也不安全有效,无法从根本上保证隧道内避难人员的安全疏散,因此没有彻底解决地铁隧道的通风排烟问题。

3.2地铁风机的实际耐火性能以及《地下铁道设计规范》对风机耐火性能的规定要求过低

《地下铁道设计规范》规定“火灾状态下不超过150℃时连续工作1小时”。北京地铁风机的轴温继电器的正常工作温度为90℃,风机的实际火灾工作时间和工作温度均与《地下铁道设计规范》的规定相同。然而地铁的特点及地铁火灾的历史充分证明了:抢险救援力量难以在短时间内完成抢险救援工作和灭火作战任务。因此《地下铁道设计规范》对火灾时风机的150℃的最高工作温度和1小时的工作时间的规定以及北京地铁风机的实际耐火性能,均不能满足实际地铁火灾的防排烟要求。此外,风机的电源箱设在风机房内,电器线路也没有经过防火保护,火灾状态下风机的电源系统必然在短时间内被高温烟气损坏,使风机停止运行,无法进行通风和排烟。

3.3北京地铁站台防排烟设施不完善

一是没有实施防排烟分区,二是站台通向站厅的出口处也未设挡烟垂幕。

4地铁站台、隧道通风排烟问题的整改意见

总原则是实施人、烟分流。即在地铁发生火灾时,用设施将人员和火灾烟气有效分隔,使避难人员在无烟气的环境中进行避难和逃生。

4.1改变通风排烟系统的通风排烟方式

在站台、隧道顶部设置排烟管道,将通风系统和排烟

系统分开设置,用垂直方向的排烟方式取代水平方向的排烟方式。

因为自下向上是烟气本身的扩散规律,且排烟管道内气体的流动降低了烟道内部压力,使隧道和烟道形成压差,这种“吸啜效应”进一步加快了隧道内的烟气进入烟道中的速度,从而提高了排烟效率。此外通过排烟管道也使避难人员和烟气进行了有效的分隔,从而使避难人员的安全有了更好的保障。

4.2充分利用上下行隧道并行的特点,对现有隧道安全设施进行改造和完善

应在上下行隧道的联络通道处安装甲级防火门,使上下行隧道各自成为独立的防火分区,并在隧道内设置应急事故照明和蓄光型或蓄电池型疏散导流指示标志,使上下行隧道相互作为紧急事故避难通道。保证事故状态下,避难人员能够尽快由起火隧道疏散到非起火隧道。这样不仅可以使避难人员免受起火隧道中烟气的伤害,而且能够在非起火隧道中进行安全有序的逃生。

4.3完善地铁站台的防排烟设施

在站台按规范标准设置防排烟分区,在站台通向站厅的楼梯口处设置挡烟垂幕。

4.4提高地铁排烟风机及其供电设施的整体耐火性能

提高规范对地铁排烟风机耐火性能的标准,提高地铁排烟风机的实际耐火性能。将设置于风机房内的风机电源箱迁出风机房;对风机房内的电气线路进行耐火保护,提高电气线路的实际耐火性能。从而使地铁排烟风机的整体性能真正能够满足防止重特大火灾的实际需要。