公务员期刊网 精选范文 材料科学与工程专业范文

材料科学与工程专业精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的材料科学与工程专业主题范文,仅供参考,欢迎阅读并收藏。

材料科学与工程专业

第1篇:材料科学与工程专业范文

关键词:材料科学工程专业;设置;专业方向;学生就业

中图分类号:G640 文献标志码:A 文章编号:1674-9324(2015)06-0180-02

贵州省是航天航空产品生产研发基地集中地区。近年来,随着先进制造业引进涌入,对材料学科专业相关从业人员的需求量大为增加。然而,贵州大学材料科学与工程专业的设置是以传统金属材料方向为主,与高新制造业对材料压力加工、材料质量检测方面的人才需求有些错位。单一专业方向培养模式,与社会需求和行业发展分工明确细化显得不适应、脱节。学生不能根据自己的兴趣、个性、就业愿望选择专业方向,制约了学生的多样化、个性化发展及创新能力的培养[1-4]。此外,贵州师范大学、贵州理工学院等区域高校也相继开设材料类学科专业,使得本地区材料学科毕业生数猛增,就业压力增加,就业渠道必须拓展。

为了解决材料科学与工程专业人才培养模式不能完全满足市场对人才个性化、多样化的需求问题。依据贵州省材料产品制造业的发展现状和趋势,以及材料科学与工程专业学生就业市场现状。材料科学与工程专业以专业特征为基准,面向就业市场,以学生为本,灵活设计金属材料、压力加工以及材料检测及表征三个专业特色培养方向。通过构建方向课程体系,教学内容,教学方法、手段改革,加强师资队伍建设,坚持知识、能力及素质协调发展,有针对性地着重培养学生创新能力和创新精神,强化学生多样化、个性化发展,拓宽就业渠道。

一、特色专业方向课程设置

广泛进行调研,重点了解金属制造行业对人才知识、素质、能力的要求。我们按“通识公共基础+夯实大材料学科基础+明确专业专长方向”的方式实施材料科学与工程人才的培养,确定了具备相同口径的通用基础知识课程群和材料科学与工程专业核心课程群,为专业方向课程的学习奠定基础。学生根据社会需求和个性特长,自主选择专业方向,以满足学多样化、个性化发展需求。

通用基础知识课程群主要包括公共基础与人文素养等课程,重点培养学生文化素质、身体素质、思想品德素质。专业基础课是课程体系的中心组成部分,紧密围绕材料学科专业共性特征和人才培养目标设置,是三个专业方向共同开设的课程。避免课程间内容重叠,整合《固态箱变》、《金属热处理》、《热处理新技术》三门课程课程为一门核心课程――《热处理原理及工艺》,构建以《材料科学基础》、《材料力学性能》、《材料分析方法》等课程组成的专业核心课程群[5]。便于学生掌握有关材料制备合成、组织结构、性能和使用效能等四要素构成的材料学科共性基础知识规律。

专业方向课程群体与社会需求密切联系,有不同特色的专业方向实用性课程群。金属材料专业方向有《金属材料学》、《钢铁冶金概论》、《有色金属合金》、《复合材料》、《高温合金》、《航天材料》、《模具材料》等课程。压力加工方向有《材料成型工艺》、《轧制工艺学》、《挤压与拉拔》、《塑性成形数值模拟技术》、《锻压设备与工艺》、《快速成形技术》等课程。材料检测及表征方向有《材料性能测试技术》、《材料工业分析》、《无损探测》、《超声检查》、《涡流检测》、《常用检测设备与维修》等课程。

二、专业方向实践教学设置

材料科学与工程实践教学践行“理论教学与实践教学并重,更加注重实践教学,偏重专业方向”理念。改革传统实习教学模式,认识实习围绕实习基地的制备(压力加工)-检测-装配流程组织展开,学生初步掌握材料制备-组织结构-性能-使用效能为主线的科学研究方法。生产实习则各自偏重金属材料、压力加工、检测与表征专业方向,身临其境,与社会沟通,培养学生综合应用专业知识解决相应的专业方向领域中的生产实际问题。近年来,本专业实验室采购了透射电子显微镜、扫描电子显微镜、X射线衍射仪等大型精密仪器和实用设备,构建冶金制备、压力加工和测试与表征实验平台,为培养不同专业方向学生的创新意识和实践能力奠定了坚实基础。按照自编的《材料科学与工程专业实验教程》指导教材,以“课程综合性实验、专业方向综合性实验、专业综合性实验和创新创业实践应用开放性实验”分层次逐步深入展开。毕业论文环节实行导师制,采取自主挑选导师、过程互动的方式,激发学生研究创新的兴趣,理论联系实践,培养学生的实践认知和创新能力,保证高质量的毕业论文。近几年共有10余篇本专业学生毕业论文获学校优秀论文奖励。

激励学生参加著名专家和企业家讲授高水平专业讲座,让学生了解专业方向前沿发展动态,新成果、新理论、新技术、新产品和新理念,拓宽学生的专业视野。鼓励学生自由选题,

自主设计方案,申报大学生创新实验项目。在导师指导下,独立完成制备(加工)、检测、表征、分析实验过程。推荐优秀学生参加全国金相、节能技能大赛,提高学生主动学习兴趣,并充分展示学生创新意识和创新能力。近年来获国家级、省级、校级大学生创新实验项目及SRT项目10余项,国家级节能大赛获奖3项。

三、教学方法、手段改革

课堂教学中重视以学生为主体的教学原则,采用多媒体、科研成果案例、小组讨论、精品课程交流平台网络等方法,将繁杂的概念、原理,产品制备过程,微观组织结构以及性能检测过程、检测设备操作和维护过程等以形象化、动态化、具体化的形式,逐步深入,侧重向各专业方向学生讲授,利于提高学生学习的主动性和兴趣,以及培养学生创新和批判性思维能力。《材料科学导论》实行双语教学,学生阅读翻译外文文献的能力明显提高,有利于了解全球材料学科的前沿科研状态和知识。在实践教学改革中,材料科学与工程专业各方向充分发挥学院与企业的科研实践优势,拓宽就业渠道。从时间、教学内容以及管理措施上保证“以科研促进教学,更好地培养学生的创新能力和工程实践能力”[6]。我院于2011年开始与台湾义守大学合作办学,材料科学与工程专业各方向选派1~2名优秀学生到该校学习,这将进一步探索出国际国内合作办学之路,给本专业更多优秀学生优化知识结构、开阔学科视野提供跨校学习平台。

四、加强师资队伍建设

贵州大学材料科学与工业专业经过60多年的专业建设,储备了大批的材料学科专家学者和宽厚的工程学术文化底蕴。近几年,经过贵州大学品牌专业、省级示范性专业、国家一类特色专业,以及重点学科、硕士点、博士点授予专业建设,采用传帮带培养、引进、进修提高等方式,建立了一支教学、科研兼容,结构合理,爱岗敬业,勇于创新的专业方向教师队伍。目前本专业共有教师15人,其中教授6人,副教授6人;博士5人,硕士5人。35岁以下教师全部在读博士。本专业青年教师全部到省级材料结构与强度重点实验室兼职,掌握大型检测与表征仪器的操作和维护,为师生展开科研教学提供了技术便利。与贵州南方汇通、安大集团公司等校外实习基地建立了长期师资培养机制,以解决不同性质的企业生产问题为契机,与培养学生并举,为各专业方向师生提供了科学研究和工程实践的条件,目前有三位教师在这些企业攻读博士后。加强教师队伍团队合作,鼓励教师教学与科研并重。目前,本专业教师发表相关教研论文30余篇,出版教材《材料科学基础》、《金属材料学》、《材料科学》、《材料科学与工程专业实验教程》等4部教材。《材料科学基础》获评省级精品课程,《材料力学性能》获评校级精品课程,带动了本专业方向课程的建设。

五、结论

与时俱进,贵州大学材料科学与工程专业紧跟材料制造业发展趋势和用人市场需求,及时调整专业特色培养方向,不断深化构建特色培养方向课程体系,改革教学方法、手段,加强师资队伍建设等措施,逐步实现了专业“宽专业、厚基础、高素质、重实践、强能力”与培养方向专长化的有机统一,不仅弥补了现有专业培养模式的不足,而且也满足了学生多样化、个性化发展的需求,提升了学生就业市场竞争力。最近几年,材料科学与工程专业学生就业率一直名列贵州大学前茅,获得2011―2013年全校就业率一等奖,已呈现出学生就业自信、社会欢迎的良好互动局面。

参考文献:

[1]徐德龙,许启明,肖国先,等.关于材料类本科专业设置演化的思考[J].西安建筑科技大学学报:社会科学版,2003,22(1):5-8.

[2]李瑜煜.复合型材料电子技术人才知识结构及课程设置的研究与实践[J].理工高教研究,2005,24(6):105-106.

[3]张海燕,黄贵秋,石海信,等.化工专业柔性专业方向建设的探讨[J].钦州学院学报,2012,27(7):41-44.

[4]黄贞益,邓小民,李胜祗,等.材料成型及控制工程专业建设探讨[J].安徽工业大学学报:社会科学版,2005,22(1):107-108.

第2篇:材料科学与工程专业范文

[关键词]实验室;实践教学;工程实践能力;人才培养

[中图分类号]G642[文献标识码]A[文章编号]10054634(2016)05005103

0引言

“材料科学与工程”专业是一级学科专业,深刻理解专业内涵,是保证实现专业人才培养目标的关键。从培养专业人才的角度,专业教学自然包括学科理论知识与专业实践能力协调统一的两个部分。如何进行专业实践能力的培养是高校普遍关注的问题,也是目前高校教育工作者的重点研究课题[15]。伴随国家对教育的重视和大量投入,用于培养学生实践能力的基础设施得到完善。然而,这并不意味着专业实践能力培养的问题得到解决,恰恰相反,社会要求高校改革实践教学模式,培养高素质工程实践能力人才的呼声日益强烈。深刻思考高校实践教学现状,目光聚焦教学实验室,高校教学实验室的性质、作用与地位值得再审视。高校教学实验室的建设方向对高校实践教学模式改革的影响作用值得探究。

1从“材料科学与工程”的学科内涵理解专业实践教学的涵义“材料科学与工程”学科是研究有关材料成分/结构、制备/合成、性能和使用效能及其关系的科学技术与生产。对此,材料科学与工程专业的基本教育要面向学科的要素,自然科学知识与工程技术知识应该是构成知识结构的主要方面。就理论教学而言,要以系统的知识学习和综合思考能力培养为主,强调宽厚的基础、学科知识横向与纵向间的联系。理论教学的核心任务,就是培养专业理论素质。实践教学不应该仅是理论的再现和简单证明,而是强调理论在应用中的相关性和综合性,同时引导和激发学生走向科学研究和工程实践的起点。实践教学的任务和目的就是培养大学生获取科学知识的能力与工程实践的能力。基于此,确立了高校实践教学改革以及实践教学基地建设的方向。高校教学实验室是完成实践教学任务,实施学生工程实践能力培养计划的主体,高校实践教学改革以及实践教学基地建设的对象是教学实验室(以下简称实验室)。

2我国材料科学与工程专业教育的发展现状对实践教学的要求2.1重视宽口径材料类人才的培养

材料类型已经覆盖了金属材料、无机非金属以及高分子材料材料工程方面,覆盖了金属的成型与加工、无机非金属工程、高分子材料工程以及冶金工程等。材料科学与工程专业的实践教学应该与此对应,重视宽口径的科学研究和工程实践能力的培养[3]。

实际上,在专业人材培养过程中,各个学校依据自身条件和发展定位而限定“宽口径”的“度”,即办学特色。由此,也决定了“宽口径的科学研究和工程实践能力的培养”的实践教学内涵对于每个学校来讲是有一定限度的。实验室对于实现“宽口径”的科学研究和工程实践能力的培养目的具有了可行性。

2.2培养模式由“专业培养”向“学科培养”方向发展各教学环节的学科性特点日益突出:在课程设置上,普遍注重学科式课程,专业课程已从中心地位转向了载体地位;在课程内容上,围绕学科发展和技术进步,培养学生适应社会科技发展的大方向。实践教学与学科性内容的关联性日益紧密[4]。例如,大功率X射线衍射仪、透射电子显微镜等高、精、尖设备大量向本科教学开放;普遍提倡本科生低年级开始进入科研团队,参与导师的科研工作;毕业论文或设计题目普遍要求真题真做。实验室对于实现宽口径的科学研究和工程实践能力的培养的有效性日益彰显。宽口径的科学研究与工程实践能力培养的主体地位也日益凸显。

2.3实践教学方面的投入由基础转向专业

伴随国家对教育的重视和大量投入,培养学生实践能力的基础设施得到完善,学生的实际操作动手水平、分析和解决问题的能力得到了明显的提高。以天津理工大学为例,在经历“十五”、“十一五”基础实验室专项投资建设基础上,投资0.24亿元进行了“十二五”建设,以学科与专业综合建设作为重点,加强教学科研创新平台以及人才培养质量建设。实践教学方面的投入已由基础转向专业,投入的趋向突显学科性。科学研究和工程实践能力的培养越来越可以立足于实验室。

2.4材料科学与材料工程相结合的综合性人才的培养日益受到重视随着社会的发展及国际竞争日趋激烈,社会对材料研究专门人才的需求淡化了材料科学与材料工程的概念,对材料科学与材料工程相结合综合性人才的需求增加。

伴随专业教学内容学科化、综合化,实践性更强,探索性更强。以专业认识实习或企业化的现场实践为实施方式的教学模式呈现出不适应性。实验室建设作为学校教学改革的重要部分,其建设易于朝向保障实现材料科学与材料工程相结合的综合性人才培养目标发展。从高校的性质与任务、高校实验室建设的目的,以及从现实条件来看都是符合逻辑的。

3高等学校实验室实践教学现状的思考与改革措施3.1高等学校实验室实践教学现状的思考

1) 以科学实验教学涵盖实践教学。实验室的实践教学过于强调学科性:教学内容突出学科化,教学方式强调科学探索。与此对应,用于实践教学的投资趋向于科学研究设备。实验设备现代化、高精尖化以及专门化。这种实践教学现状使科学探索深度不断加大,基础实践能力逐渐淡化。虽然对教师与大学生双方的科学素质要求越来越严格,但基本技术的实际操控能力越来越弱化。如果以宽口径的科学研究与工程实践能力的培养标准来衡量高等学校实验室的实践教学,对学生工程实践能力的培养会被弱化。

从材料测试分析方法的课程教学来讲,由于侧重电子探针、原子探针等现代分析手段,材料成分分析最基础的化学分析方法被淡化,而化学分析方法是工程实际中测定钢平均成分的基本方法。大学生就业主体还在企业,仍面向工程实际。大学教育,特别是工科的大学教育,工程知识的教学偏弱,大学生就业难,社会接受度低,这些也是需要考虑在内的客观原因。

另外,先进科研手段层出不穷,先进工程技术不断发展。在先进科技面前,面对高精尖、高价值科技手段,存在看得见却摸不得的客观现实。不能上手,实践能力无从培养。

除此之外,在科技飞速发展的今天,要求大学生群体在一个相对较短的、确定的时间段内了解新的科学研究方法,培养出相适应的科学研究能力,是不可能的,也是不可行的。

2) 实验室实践教学存在明显的教学实验性。高等学校实验室的实践教学受传统的思想影响,实验教学依课程开设,且在内容上注重理论知识的验证,正所谓教学实验,而非实验教学。而且,在实验教学内容中对科学发现的历史缺乏重视。科学发现的历史,不仅在于体现知识体系的形成过程,有助于学生更好地理解、掌握知识,而且在于展现了探究科学的思想方法、在探究科学问题中所采用的技术手段以及技术手段的选择使用、改进与发展的过程,这些恰恰表现的是工程实践的核心内容。

在实验教学形式上,所谓基础性、设计性及综合性实验的划分,多是从实验内容的量、涉及知识性的面及工作难度角度,而非从实验教学的内涵上来考虑。项目之间相互独立,缺乏系统性,且实验项目在内容设置上重复现象严重;实践教学在培养学生创新意识、专业实验能力及科学研究基本能力方面的主体地位与作用上没有有效体现;学生创新意识不能得到有效激发;教学过程未能切实体现以学生为本、学为主体的教育理念。

传统的实验室教学模式不适应宽口径的科学研究与工程实践能力的培养这一实践教学的内涵,实验室教学的实质作用未有效体现。

3) 高校实验室教学的优势尚待发挥且不能与工程实践相协调。按照传统观念,实验室的实践教学注重科学理论相关的工作。在此观念下,设立的实验室多属于科学实验型实验室,而非工程实践基地。为弥补这一不足,高校多致力于建设校外工程实践基地,使本属于学校自身的实践教学体系,被分成校内的实验室实践教学与校外的工程实践教学两部分,使得科学研究和工程实践能力的培养出现脱节,不能协调统一。

校外实践基地的建设有效支撑高校实践教学。因而,许多高校大力建设校外产学研基地,实施“卓越工程师”培养计划等。在“十二五”期间,天津市投资了4.25亿元用于实施卓越人才教育培养计划,建设10个可共享的工程实践教育中心。在实践中发现,所谓工程实践基地实践教学的内容与形式偏向工程,一定程度上弱化实践教学的科学研究与工程实践能力的协调统一,对材料科学与材料工程相结合的综合性人才培养目标的实现具有一定局限性。同样,工程实践基地建设为适应科技飞速发展的现实,满足大学生群体在一个相对较短的、确定的时间段内掌握不断涌现的新的科学技术是不可能的,也是不可行的。另外,由于企业客观现实的限制,校外产学研基地的工程实践教学效果确实大打折扣。况且,在信息交流高度发展的今天,是否需要花大力气建设校外产学研基地以完成工程实践教学是一个值得商榷的问题。

3.2高等学校实验室实践教学改革措施

1) 提高对实验室工作重要性的认识。高等学校实验室是学生实践能力培养及实施工程素质教育的重要场所,保证教学质量及实现人才培养目标的重要基地。党的十八届五中全会已经明确,内涵发展、提升教育教学质量是“十三五” 高等学校改革的核心。必须树立以学生为本,实施知识传授、能力培养、素质提高协调发展的实验教学观念,提高实验教学对培养创新型人才重要性的认识,深化实验教学改革,支撑教育教学质量的提升。

2) 加强实验室建设,深化实验教学改革。首先,通过管理体制创新,实现实验室的角色转换。高等学校实验室建设,要以深化改革现有实验教学体系和管理体制为核心。通过体制创新,打通实验教学与理论教学的教师身份界限,在建立起满足实验教学需要的高素质实验教学队伍基础上,形成设备先进、资源共享与开放服务的实验教学环境,提高实验教学水平,支持实践教学质量的提升,使实验室真正成为实施实践教学任务的主要基地。

其次,通过理念创新,打通科学研究与教学实践之间的界垒,有效地实现教研相长,培养了学生的实践能力。通过理念创新,形成科学研究与教学实践协调一致、科研研究室与教学实验室协调统一的机制,实现教研相长。学术性的教学模式,打通了科研研究验室与教学实验室的管理界垒,专业教学任务由团队协调处理,应该是一个积极的探索。

第3篇:材料科学与工程专业范文

关键词:协同创新;材料科学与工程;工程实践

作者简介:张旺玺(1967-),男,河南淮阳人,中原工学院材料与化工学院院长,教授;彭竹琴(1964-),女,河南三门峡人,中原工学院材料与化工学院,副教授。(河南 郑州 450007)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)10-0181-02

一、专业发展背景及工程实践教育面临的主要问题

我国现有高等学校中有170多所大学设有材料科学与工程类本科专业330个(包括金属材料工程、无机非金属材料工程、高分子材料工程、复合材料工程、冶金工程、材料物理、材料化学等专业),各学校由于发展的历史不同形成了各自的特色,适应了社会发展对不同材料的人才需求,为国家培养了大量的材料科学与工程技术人才。[1]新材料是21世纪支柱产业或战略性新型产业之一,材料科学与工程学科不断快速发展与演化,新知识、新理论、新方法、新技术层出不穷,学科交叉日益深化。同时,随着社会经济的快速发展,高新技术产业急速发展,人民的生活质量日益提高,基础产业需要改造和不断升级,这些重大需求都对材料科学与工程专业人才培养提出了更高要求。

中原工学院是一所省属地方普通高等学校,长期具有明显的纺织机电行业特征。经过50多年的奋斗历程,现在已经发展成为以工为主、以纺织服装为特色,工、管、文、理、经、法、艺协调发展的教学型大学。为适应学校的规模发展和学科、专业建设的需要,学校于2002年设立了材料科学与工程本科专业。对于一个快速发展的省属地方高校来说,由于专业设立时间不长,资本投入不足,高层次人才匮乏,材料科学与工程专业发展面临很多问题,因此如何培养适应社会和科技发展需求的具有较强工程实践能力的高级应用型人才,成为目前最迫切需要解决的问题。[2]

教学过程中存在的影响工程实践能力提高的主要问题有:专业办学历史较短,校内实验教学条件不足;校外实习实践教学时间不充分、效果差;实践教学组织和管理不能满足工程实践能力培养目标的要求。

二、建立有区域优势特色的协同创新中心

2011年总书记在庆祝清华大学建校100周年大会上提出,要积极推动协同创新,通过机制创新和政策项目引导,鼓励高校同科研机构、企业开展深度合作,建立协同创新的战略联盟,促进资源共享。2012年教育部实施了以推进协同创新为核心内容的“高等学校创新能力提升计划”,即“2011计划”。推进协同创新成为国家全面提升高等教育质量的重要战略举措。在这一背景下,中原工学院积极联合相关科研院所和行业知名企业等单位,建立了校级“超硬材料制品工程”协同创新中心。

选择超硬材料制品工程这一方向作为材料科学与工程学科的协同创新中心是基于如下考虑:中国是世界上超硬材料生产第一大国,占全球产量95%,而河南省是超硬材料大省,产量占全国的70%以上。河南省是全国唯一的“国家火炬计划超硬材料产业基地”、全国唯一的“超硬材料特色产业链”建设基地。目前河南省超硬材料产业已形成明显的产业链,专业化特点明显。郑州是我国超硬材料及制品产业的主要发源地和行业中心,是技术和人才的辐射源,是我国超硬材料的重要生产研发基地。根据服务于中原经济区建设的要求,作为一所地方高校,选择具有突出区域特色产业优势的超硬材料制品工程建设协同创新中心,通过建立协同创新联盟,真正促进政产学研用紧密协作,是实现人才培养工程实践能力快速有效提高的新要求。

三、通过协同创新提高工程实践能力的路径和效果

1.促进校企科学研究水平提升

作为一所地方高校,教师的科研活动受到实验室条件、仪器设备、研究经费和研究人员等多方面的制约,原创性、高层次的项目难以立项。为了完成学校对科研经费任务的考核,教师们主动到企业联系横向课题。材料与化工学院也有目的的组织教师到企业进行产学研合作、培育科研团队。通过产学研合作,以企业为主体,以市场为导向,教师有了科研项目、经费,研究的课题解决了企业的实际问题,双方受益形成了良性循环,不断扩大了双方合作的空间。

协同创新中心把企业同高校、研究机构结合起来,实现了单个主体所无法实现的组织目标和结果,类似于复合材料因为基体材料和增强材料的协同作用,使得复合材料的某些性能既优于其基体材料,又优于增强材料。企业同高校、研究机构协同创新的效率远远高于企业独立创新和模仿创新的效率,[3]尤其是通过协同创新中心建设的实施,协同创新联盟各方都感受到了实实在在的受益,效果显著。协同的本质是复杂系统中各子系统相互协同和作用,以实现单个主体所无法实现的组织目标和结果。如2011年由中原工学院提出,把与郑州华晶、郑州三磨所三方合作多年的“触媒法合成高品级金刚石关键设备与成套工艺技术开发”项目,联合申报国家科技进步奖,最后该成果获得了国家科技进步二等奖,对提升学校美誉度和企业创新能力及声誉具有重要影响。

2.促进共建科学研究平台建设

作为一所地方高校,设备投入和实验室条件都很有限。中原工学院通过实施协同创新,联合郑州三磨所、郑州华晶、中南杰特、河南富耐克等国内知名研究所和企业,申报共建了高档超硬材料工具河南省工程实验室、郑州市金刚石锯切工具工程技术研究中心。另外,还联合郑州博特硬质材料有限公司共建了郑州市超硬复合材料刀具工程研究中心。协同创新思想突破了传统线性、链式创新模式,呈现出非线性、多角色、开放性的多元主体互动协同特征。通过实验室共建,共享分析仪器和实验设备资源,促进了人员交流,提高了科研效率。

3.促进教师工程实践教学水平提高

在协同创新中心,学校与研究所、企业各方可以实现有条件的互相兼职和聘任。材料与化工学院根据政策,通过“博士服务团”、“企业博士后科研工作站”、“科技特派员”等多种形式选送教师到企业挂职锻炼。如材料与化工学院一教授通过与许昌恒源公司的合作,作为带头人建设了“基于发制品用途的化学纤维绿色工艺技术研究”河南省创新型科技团队。现在材料与化工学院大部分教师都有了在企业工作或兼职科研工作的亲身经历,学生感受到教师的授课不再空洞乏味,而是非常实际和富有兴趣,对提高材料科学与工程专业学生的工程实践教育教学质量具有较大影响。

4.促进创新人才培养模式优化

“协同创新”已经成为学校人才培养活动中的重要理念,并在教育实践中形成了一系列富有成效的人才培养模式。[4,5]通过协同创新使原本各单位独立的资源变成了创新联盟内共享的资源,一些潜在的能量得到了充分释放。形成的新机制和新体制为协同创新各方激发了无限生机与活力,对人才培养模式的影响尤其深刻。协同创新实施之前,按照传统的人才培养模式,理论教学和实验教学都在学校内进行,全部由高校教师授课,教学效果不理想,学生普遍感到枯燥乏味、不感兴趣;而需要到企业进行的认识实习、生产实习和毕业实习等实践教学环节,由于资金投入不足和企业不愿意接待等诸多难题,实习质量大打折扣,学生的实习环节基本上变成了“参观”,走马观花下来,学生受益很少。协同创新实施以后,学生可以根据个人爱好加入不同的科研兴趣小组和导师制教学团队,学生到企业“出入自由”,在科研中遇到的实际问题,可以及时在企业联络员的帮助和许可下到现场获得第一手资料与信息,随着参与时间的延长,学生很容易亲自动手进行操作。在课堂教学环节,聘任了企业技术人员和高层管理人员为学校兼职教授,可以给学生进行生动的具有丰富实践经验的教学,学生的兴趣明显提高,也收到了良好的教学效果。

5.促进学生工程实践能力提高

通过协同创新工作的不断深入,科研促进教学的效果极其明显。教师联合企业进行科学研究,把获得的成果有针对性的在教学过程中传授给学生,这种知识的传授不仅可以在理论课堂上进行,也可在科研兴趣小组的科研活动中进行;而同时学生在该科研创新活动中会发现很多问题,提出的问题也可反馈给教师。这种知识传授和学习的过程是一个双向激励的过程,双方通过互相影响和碰撞,教学效果和质量在潜移默化中快速提高。

学生在协同创新中心联盟单位内共享资源,教育活动的空间和时间都被扩大,在参与科研和实习创新活动中,不仅可以使用实验室、仪器和设备等硬件资源,同时还得到了研究所和企业技术人员及一线工人的亲身教育,对社会及企业对人才的真实需求有了实在的认识和了解,对学习目的和就业导向有了明确的方向。在研究生教育和本科生毕业论文环节聘任研究所和企业技术人员为指导教师或合作导师已成为常态。

在参与科研活动时,学生能亲临企业参与生产一线的科研课题,通过解决实际问题和获得一定的薪酬,不仅提高了兴趣,感受到了成功的快乐,还能在自己实实在在的科研活动中提高工程实践能力。通过接触和工作实践,学生毕业后能快速适应工作岗位,强化的工程实践能力将会在新的工作岗位上充分显现其效果,协同创新中心联盟企业对此也非常认可。

四、结语

国家实施协同创新战略的目的是把政产学研用具有不同功能的主体联合到一起,产生综合创新能力质变提升效应。中原工学院材料与化工学院结合超硬材料在河南省的区域优势特色,联合研究所和行业内知名企业建立了超硬材料制品工程协同创新中心,通过促进共建科学研究平台、提升科学研究水平、强化教师工程实践教学水平、革新创新人才培养模式和提高人才培养质量,获得了协同创新中心联盟单位的一致认同,大大强化了材料科学与工程专业工程实践能力的教育教学效果。

参考文献:

[1]赵长生,顾宜.高分子材料与工程专业发展与现状[J].塑料工业,2008,36(1):70-71.

[2]张旺玺,潘玮,王艳芝,等.高分子材料与工程专业建设改革与实践[J].河南化工,2010,27(5):59–61.

[3]王子镐.大力加强行业特色大学协同创新能力建设[J].北京教育高教,2012,(1):14-16.

第4篇:材料科学与工程专业范文

一、金属间化合物材料的概述和应用

金属间化合物是指以金属元素或类金属元素为主组成的二元或多元系合金中出现的中间相。金属间化合物主要指金属与金属间,金属与类金属之间按一定剂量比所形成的化合物,金属间化合物有的已是或将是重要的新型功能材料和结构材料。金属间化合物的历史由来已久,金属间化合物的研究已经成为材料科学研究的热点之一。人们发现许多金属间化合物的强度并不是随温度的升高而单调地下降,相反是先升高后降低。因为这一特性,掀起了新一轮金属间化合物的研究热潮,使金属间化合物具备了成为新型高温结构材料的基础。现在已研究出许多方法和措施,用来改善和提高金属间化合物的塑性,为将金属间化合物材料开发成为有实用价值的结构材料打下基础。金属间化合物是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物强度高,抗氧化性能好和抗硫化腐蚀性能优良,优于不锈钢和钴基,镍基合金等传统的高温合金,而且具有较高的韧性,因此金属间化合物被公认为是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物材料作为近20年内才发展起来的新材料,相对于传统金属材料具有特殊的优点和规律,广泛用于制备金属间化合物基复合材料。金属间化合物相对于金属材料为脆性材料,相对于其他材料则具有一定的韧性,并且具有相当高的塑性。某些金属间化合物还具有反常的强度-温度关系,在一定的温度范围内,强度随着温度的升高而升高,这对高温结构材料的开发和应用给予很大的希望。此外许多金属间化合物材料具有良好的抗氧化性能,耐腐蚀性能和耐磨损性能,如Ni-Al金属间化合物和Fe-Al金属间化合物材料。因此采用金属间化合物和其他材料相复合制备复合材料可以提高金属间化合物材料的力学性能。

金属间化合物具有一系列的优异性能是最具有吸引力的新一代高温结构材料和表面涂层材料。金属间化合物的种类非常多,近年来国内外主要研究集中于Ni-Al金属间化合物,Ti-Al金属间化合物,Fe-Al金属间化合物等含Al金属间化合物的研究。目前金属间化合物材料已经研究和开发的较为广泛。许多金属间化合物材料已经用于铸造,锻压和高温熔炼等。金属间化合物材料具有高温强度好,高温抗蠕变性能强,抗腐蚀性能好,抗氧化性能好等优点,且在一定的温度范围内金属间化合物的屈服强度随着温度的升高而升高。但是金属间化合物材料作为使用的结构材料,还存在硬度低,断裂韧性差以及高温强度低等缺点。将金属间化合物与其他材料进行复合制备金属间化合物基复合材料,以制备出兼具有二者优点的复合材料是当前的重要研究和发展方向。金属间化合物材料具有较高的加工硬化率和较特殊的高温性能,因而被认为是下一代高温结构材料和高温耐磨损材料之一,特别是在改善金属间化合物材料的塑性后,更是受到了广泛的重视和研究。为了进一步提高金属间化合物材料的综合性能,很多研究工作者在金属间化合物材料中加入强化相制备金属间化合物复合材料,即形成金属间化合物基复合材料。可以向金属间化合物中加入碳化物硬质相制备耐磨损的金属间化合物基复合材料。金属间化合物材料具有许多优秀的性能而被广泛的应用到工程领域中。

二、金属间化合物在材料科学与工程专业教学实践中的研究和应用

金属间化合物材料由于具有许多优异的性能而被广泛的应用在工程领域中,所以应该在材料科学与工程专业的课堂教学和实践教学中增加一些金属间化合物的知识和内容。金属间化合物材料主要包括Al系金属间化合物材料,主要有Fe-Al金属间化合物,Ni-Al金属间化合物,Ti-Al金属间化合物等,还有其他的如Cu-Al合金,Cu-Zn合金以及Ni-Ti合金体系等金属间化合物材料。由于一般常用的金属间化合物是由两种金属元素形成的化合物并具有典型的二元相图,所以可以通过认识和了解金属间化合物学习和掌握二元相图的知识内容。此外金属间化合物材料的制备工艺方法也有很多,主要有金属熔炼法,高温自蔓延反应合成法,机械合金化法,反应烧结法,粉末冶金工艺等多种方法。其中反应熔炼法是将不同种金属元素放到熔炼炉中进行熔化形成金属合金熔体使其均匀混合并冷却形成金属间化合物材料。高温自蔓延反应合成方法是通过反应放出大量的热量维持反应继续进行最终形成所需要的金属合金材料。机械合金化工艺过程是利用高能球磨机把两种纯金属粉末放入球磨罐中并加入适量的添加剂进行球磨,粉末的制备由机械合金化过程完成,块体的制备则由烧结过程实现,机械合金化工艺是一种固态反应的过程。机械合金化技术是近年来发展起来的一种材料制备方法,机械合金化工艺通过对粉末反复的破碎,焊合来达到合金化的目的,由于合金化过程中引入大量的应变,缺陷以及纳米级的微结构,机械合金化制备的材料具有一些与传统方法制备材料不同的特性。通过机械合金化工艺就可以制备出金属间化合物粉末。粉末冶金技术是制备金属间化合物材料比较常用的一种方法。以单质或合金粉末为原料,一般是先用塑性加工的方法把粉末制备成所需要的复合材料制件,然后在烧结同时实现了制件的成型。反应烧结法是将不同种金属元素粉末通过热压烧结工艺或者常压烧结工艺形成金属间化合物块体材料。金属间化合物材料的制备通常采用粉末冶金工艺进行制备。

由于金属间化合物材料原料成本较低,制备工艺不复杂,所以对于金属间化合物材料的制备和性能的研究工作可以引入到材料科学与工程专业的实验教学工作中。可以在实验教学的课程中增加金属间化合物材料的制备和性能的研究内容,例如通过反应熔炼法,机械合金化方法和粉末冶金法等制备金属间化合物材料,并对金属间化合物材料的结构和性能进行研究。通过以上实验教学过程可以锻炼学生的实践能力和分析能力,还可以加深学生对材料科学与工程专业知识内容的认识和了解。在上述实验方法中,其中机械合金化工艺是比较实用并且能够在实验室里进行的。机械合金化工艺是将两种不同的金属粉末混合并经过高能球磨过程制成金属间化合物粉末,并通过烧结过程制备金属间化合物块材。机械合金化工艺可以在实验室里进行,可以安排学生通过机械合金化工艺制备金属间化合物材料。此外在本科学生的专业课程设计和毕业设计期间也可以安排学生进行金属间化合物材料的制备和性能的研究工作。通过对金属间化合物材料的制备和性能的研究工作,使得学生充分的认识和了解金属间化合物材料的性能特点,并加深学生对所学习的材料科学与工程专业课程知识内容的认识和了解,使得学生对材料科学与工程专业的课程内容有一定的掌握和熟悉,并通过实验教学过程提高了学生的实践能力和分析问题解决问题的能力,扩展了学生的知识面。所以本文作者认为应该在材料科学与工程专业的实践教学过程中增加一些关于金属间化合物材料的实验课程,并以金属间化合物材料的制备和性能的研究内容作为实验教学课程,这将有助于提高学生的实践能力并扩展了学生的知识面,这为本科学生以后学习材料科学与工程专业的知识内容打下坚实的实验基础。

三、金属间化合物材料未来的研究方向和发展趋势

第5篇:材料科学与工程专业范文

关键词:智能材料与结构;研究生教学;实践与探索

中图分类号:G6432文献标志码:A文章编号:

10052909(2015)02004103

智能材料结构是材料学与多学科交叉融合发展起来的高新技术结构,是集传感、驱动及信息处理等功能于一体的功能性材料结构,具有自诊断、自适应、自学习、自修复、自增值、自衰减等六大生命功能 [1]。近20年来,智能材料结构随着材料科学、力学、控制理论、计算机技术、信息理论等学科的发展已成为国内外最活跃的研究领域之一,国内外学者对智能结构的研究及探索不断深入,智能结构领域及技术迅速发展[2]。智能材料与智能结构是力学的重要分支,其研究涉及土木工程、力学、材料学、化学、信息论、电子技术、机械工程、光学、计算机技术、仿生学、控制理论等一系列学科中的先进技术,同时引发出新的研究领域。如仿生机器人、结构健康监测、传感材料、驱动材料、元器件及材料制造新技术和新的控制理论等[3]。

智能材料与结构在土木工程领域中有着巨大的应用前景,其发展不仅意味着增强结构功能,提高结构使用效率及优化结构设计形式,而且也打破了许多土木工程结构在设计、建造、维护和使用控制等方面的传统观念。目前,在土木工程结构领域,智能材料结构系统的应用主要集中在结构的健康监测,形状自适应记忆合金材料及结构减振抗风降噪的自适应控制等方面[4]。为提高工程结构质量和结构安全性及使用可靠性,将智能材料中先进的自诊断理念引入研究领域,针对重大工程中结构损伤特征及应用对象和领域,研制应用于土木工程结构的主动减振、精密位移控制、损伤主动在线监测技术的智能材料与结构。

在土木工程专业研究生教学中开设智能材料与结构课程非常有必要。目前,智能材料与结构课程教学在课程体系上较封闭,学生知识面不够导致

学习积极性不高,且由于该门课程学时的限制,教师授课时只能挑选部分章节讲授,疑难问题不断增加,给研究生科研指导不大,忽略了这门课程对研究生实践能力的培养,严重影响了学生学习内容的深度和广度。

文中针对土木工程专业研究生的研究及专业工作背景,将智能材料与结构课程作为选修课,对如何实现这门课程的教学目标,提高教学质量,提高研究生学习的科研兴趣和实践能力进行了思考,对这门课程的选修内容及教学、实践、成绩评定等环节进行了探索研究。

一、教学内容

智能材料与结构是以材料—器件—结构—系统为主线,将基本理论与工程应用紧密结合,从材料与智能、智能材料、智能器件、智能材料结构和智能结构系统等方面循序渐进地介绍智能材料与结构系统的基本概念、性能特征、发展和应用等。结合土木工程专业研究生研究课题及就业背景,选择与土木工程行业紧密相关的智能材料与结构内容作为教学主讲内容。

首先介绍智能材料与结构的一些基本概况,包括驱动材料、驱动器与传感器,以及自适应复合材料系统中的模型与应用、自适应系统、旋翼应用、航空器控制和智能结构应用等。根据实例引入形状记忆合金的概况,包括工作原理及应用,重点介绍形状记忆合金在土木工程中的隔震体系、粘弹性阻尼器、自修复埋入式智能监测的实例。在工程结构无损中应用最为广泛的领域中,需介绍压电复合材料的力学原理及应用,重点介绍其作为智能驱动器与传感器时在土木工程领域中结构健康监测方面的应用实例。在土木工程结构抗震设计中,介绍电/磁致伸缩与电/磁流变体的工作原理,磁致伸缩智能材料是一种磁致伸缩效应强烈,具有高磁致伸缩系数并具有电磁能/机械能转换功能的材料。磁致伸缩材料作为智能材料与结构在土木工程领域中主要用于传感、监测和远距离信息传输方面,具有较好的应用前景。将智能器件置于土木工程结构中,实现其自适应的结构功能,主要介绍智能光纤材料的工作原理及其应用,复合材料中埋入光纤传感器和驱动器是目前应用前景最广、技术基础最成熟的一种智能材料。最后对智能材料与结构的应用前景及发展进行总结和展望。

二、教学实践与探索

(一)不同研究方向教师的正确引导

研究生阶段的学习关键已不再是掌握某个知识点,死记一些书本知识,更重要的是培养学生的实践创新能力,提高学生的自主学习能力,需要在自己学习的基础上进行创新性思维,实现再创造,这就需要教师的正确引导。同样在智能材料与结构这门课程中,对土木工程类研究生的教学,需要通过师生

互动形式展开,在课堂上进行课堂互动,让研究生体验从未知到新知的探索过程,将智能材料与结构系统的各个方面实行科普性的讲解,促成研究生学习的主动性,教师的基本职能从“授”转变为“导”,让教师真正成为学生学习的导师。在学习智能材料与结构这门课程中,江苏大学创新地采用多位教师讲授同一门课程的方式,针对所学内容。选择相关研究方向的专业课程教师来上这一章节内容。由于所选教师对研究方向的熟悉程度明显高于以往同一位任课教师,这无形中大大提高了课程的深度和广度,调动了学生学习的热情,拓展了研究生科研知识面。

(二)理论联系实际

智能材料与结构作为一门交叉性的课程,必须与实际相结合才能巩固学习,激发学生的兴趣。所以,在课程教学中,尽量多举土木工程中的实例来说明各智能材料与结构的工作原理,可以从学生感兴趣的结构和目前应用较广的智能材料来阐述,如智能蒙皮、结构监测和寿命预测、土木结构的减振与降噪、环境自适应结构以及住宅智能化等。将理论知识寓于工程应用背景中,效果显著。如在课堂上会增加手工制作环节,采用层合空心板制作桥梁模型,采用硬币搭建省材工程结构,将智能材料的节能减排理念运用到结构设计中。

(三)板书与多媒体演示的结合

智能材料与结构课程信息量大,属于多学科交叉综合,不能完全采用板书教学,插入多媒体教学,可加快教学进程,提高教学效率,结合图案或声音,能大大提高学生的 学习兴趣和学习积极性。与传统的板书形式相比,多媒体教学信息量输入紧凑,文字图像信息清晰直观,风格多样,内容丰富,也能活跃课堂气氛,增进教学过程中的互动。但当讲解一些重要的力学基本原理时,也需要放慢讲课速度,通过板书的形式来讲解清楚,尤其是传感器与驱动器等智能元器件的工作原理解释。例如:在讲解形状记忆合金工作原理时,Ti-Ni合金的管接头处于低温状态时,套在需要连接的两根管子上,升温到Ti-Ni合金母相状态的室温,套管内径即可回复到原来的尺寸,从而把两根管子咬紧,完成管子的连接。采用一个版面的动画演示即非常形象直观地向学生解释清楚,可以从中插入大量的工程应用实例图片和录像,调动课堂气氛。同时,在课堂教学中,增加与学生之间的互动,针对不同研究方向的研究生,选择性地

讲解智能材料与结构的运用问题,从而不断提高学生的学习兴趣。因此,在课程教学中板书与多媒体教学相结合更有助于土木工程专业研究生掌握智能材料与结构的相关概念,加深学生印象,提高学习效率。

(四)实践能力的培养

以智能材料与结构课程中搭建土木工程结构超声无损检测平台实验为例,采用预埋损伤的标准试块进行结构检测(4学时+课余时间),构建一个自动监测、自动控制的桥梁监测系统模型,可将形状记忆合金、磁流变材料及无线传感理念融入其中,学生分组进行,最后分组比较创新性(4学时+课余时间),电测应变测量及应力计算(2学时)。

通过搭建实验,进一步锻炼学生的动手能力,训练学生的研究方法,培养学生分析和解决问题的能力。在实验课堂上,让部分土木工程专业优秀本科生参与其中,学生通过实践训练把所学知识应用于解决科研问题。

三、成绩评定

智能材料与结构课程共设30学时,其中实验10学时,需要预修压电测量学。课程教学分为课堂教学、研讨、实验三部分,考核方式采用笔试(闭卷)+平时成绩+实验成绩,实验成绩通过三部分的实验总结报告及学生答辩综合评定。其中考试成绩占70%,平时成绩占10%,实验成绩占20%。通过智能材料与结构课程三部分的考核与过程管理,既考核了学生的专业基础知识掌握情况,又考核了动手操作能力,更培养了学生的创新意识,开拓了视野。

四、结语

智能材料与结构课程列举了很多实用性和工程性强的实例,融入了最新的科研成果,是一门理论与实验相结合的课程。因此,该领域为广泛新兴行业产业的快速引进和应用提供了巨大的潜力。通过本课程的学习,研究生将了解智能材料结构在土木工程领域的最新动态和进展,为后续相关课程的学习及科研打好基础。通过智能材料与结构课程在土木研究生教学中的实践与探索,为土木工程专业研究生创新能力的培养提供了指导。参考文献:

[1] 杨大智. 智能材料与智能系统[M].天津:天津大学出版社, 2000.

第6篇:材料科学与工程专业范文

关键词: 高分子化学 高分子物理 生物功能材料 教学探索

高分子化学和高分子物理是高分子科学相关专业的专业基础课。在专业课程设计中,一般两门课程独立设置,其中各占有48到72学时不等。我校的生物功能材料专业开设了高分子方面的课程,其中高分子化学与物理是该专业的专业基础课。根据该专业特点,生物功能材料涉及领域较广,从无机陶瓷材料到有机高分子材料都有涉及。该专业学生只需掌握有关高分子化学和高分子物理的基本理论知识和应用技能,因此我们开设了高分子化学与物理课程,所设学时为56学时,开设时间安排在二年级下学期,为三年级开设《高分子材料化学》等课程打下一定基础。该课程内容涉及高分子材料的合成与实施方法,高分子材料的结构、性能、成型加工及其应用,是一门多学科交叉、实用性很强的学科。根据该课程具有涵盖内容广,物理化学和有机化学知识运用较多等特点,这样有限的课时设置就给授课带来了一定困难,导致学生在理解和应用本课程知识方面具有一定难度。另外,我校该专业物理化学课程设置在二年级下学期和三年级上学期,其中物理化学反应动力学部分讲授时间较晚,这也给高分子化学与物理的授课带来了一定困难。那么如何在有限的学时内系统地讲授高分子学科基础知识,是本文需要重点探讨的问题。

1.选择教材,合理安排教学内容

受授课学时的限制,我们选用的教材是化学工业出版社出版的《高分子化学与物理基础》,由魏无际等主编。该教材系统地阐述高分子化学与物理的基本概念、基本知识、基本原理和基本测试方法,教材内容全面,难度适中,比较适合生物功能材料专业的教学要求。针对课时较少的现状,我们对教学内容进行了合理安排。对于高分子化学部分,重点讲解高分子的基础概念、缩聚和逐步聚合、自由基聚合、聚合方法、阴离子聚合等内容,自由基共聚合、阳离子聚合、配位聚合等可较简单讲解,聚合物的化学反应章节主要由学生自学。这样既保证了学生能够掌握高分子化学的基本概念及反应,又没有因为课程过难给学生造成学习困难。对课程中的某些内容,例如聚合动力学的推导,在物理化学中化学动力学部分还没讲解的情况下,我们在教学中不要求学生记住所有推导和公式,仅提出聚合动力学基本知识,引导学生自己进行动力学推导。对于高分子物理部分,我们重点讲解高分子的结构、高分子的分子运动、力学状态及其转变,简单讲解高分子固体的基本力学性质、高分子溶液的基本性质章节,对高分子电学、热学和光学的基本性质章节主要由学生自学。这样课程的安排,重点讲解能够加强学生对高分子学科基本知识的掌握;简单讲解能够扩大学生的知识面、引导有科研需求的学生课下加强该部分内容的掌握;自学部分主要为了深化学生对高分子学科知识的理解。重点讲解、简单讲解与学生自学相结合的教学方法,突出了本课程重点、拓宽了学生知识面,克服了高分子学科教学中内容多、概念多、数学推导多等难于克服的难点。

2.理论联系实际,提高学生学习兴趣

高分子化合物广泛存在于日常生活中,如穿着用的化学纤维、自然界存在的棉、麻、丝绸等,食品行业中的蛋白质、淀粉、纤维素,建筑行业中用的涂料、各种高分子管材、胶黏剂、有机玻璃,行驶工具中应用的橡胶、工程塑料、增强纤维等。高分子科学在人们的日常衣、食、住、行中发挥着极其重要的作用,其是一门应用基础型的学科。高分子化学与物理的教学,单纯的讲解很难引起学生的学习兴趣,教学效果不显著。为提高学生学习兴趣,我们在讲解基本知识的同时,注重理论和实际相结合,列举了大量实例。例如讲解缩聚反应时,对涤纶、尼龙等一些重要的缩聚物的生产原理进行了重点讲解,对聚乳酸生物材料进行了系列概述,包括其生产方法、原理和应用等;自由基共聚合部分,讲到聚丙烯腈-丁二烯-苯乙烯共聚物(ABS树脂)、丁苯橡胶(SBR橡胶)等一些著名共聚物和常见聚烯烃产品及它们的制备原理、主要性能和用途。其中举例聚四氟乙烯(PTFE)用于流量泵、反应釜内衬和搅拌棒外面涂层,聚氯乙烯(PVC)用于各种集成吊顶和各种垃圾袋等。在高分子发展史中,讲授诺贝尔奖成果和获得者的发明典故,例如电高分子的发现、齐格勒-纳塔催化剂的发展,以增强课堂的趣味性;讲述了第二次世界大战期间高分子的发展典故。此外,让学生翻看塑料水杯的材质、衣服标签让学生认识各种标志上一些材质的名称,指出我们的水杯、服装由哪些合成高分子构成,并讨论目前常用的化学纤维名称和聚合原理;通过举例讲解方式,激发学生自主学习兴趣。

3.多媒体与板书教学方法相结合,提高教学质量

高分子化学与物理基础课程知识面广,其涵盖了高分子化学、高分子物理、高分子加工等方面内容。该课程教学信息量大、理论性强,学生理解相对比较困难。因此,我们在教学过程中注意多种教学形式相结合,提高教学质量。课堂主要采用多媒体教学方式,同时辅以板书讲解,取得了不错的教学效果。利用多媒体教学方法既能够将理论的知识直观体现出来,又能够将难于理解的教学内容形象地展示出来,这样可以使学生更容易理解所学内容。例如,在讲解配位聚合时,利用动画演示双金属活性中心机理和单金属活性中心机理中单体分子的插入过程与链增长过程;自由基聚合实施方法中,利用制作动画模拟悬浮聚合和乳液聚合过程中单体的分散过程,高分子物理中拉伸对高分子结晶形态的影响、动态黏弹性模型,等等。通过多媒体的运用,可以使抽象的教学内容具体化,有效提高学生学习的趣味性。多媒体课件也会存在一些缺陷,比如讲课节奏过快,学生难以吸收;教师过于关注幻灯片屏幕,减少了和学生的交流互动,等等。在实际教学过程中,还应注意和板书的有效结合,对重点知识内容采用板书的形式进行讲解,取得了不错的效果。

4.网络教学方法的运用

针对多媒体教学存在讲课节奏过快,学生难以吸收等缺陷和板书教学进度缓慢等特点,对重要章节,我们采取课堂与课下网络教学相配合的方法。网络教学在原来多媒体教学基础上,对教学过程和教学内容提供了全面支持。目前学校构建了一个比较完整的网上教学支撑环境,提供多媒体录播室进行教学视频的录制,最后把课件与录制视频统一上传到网络教学平台。网络教学有许多传统学习方法无可比拟的优点,例如学生学习自主性增强,真正发挥学习的主观能动性,学生学习在时间和空间上少了许多限制,学习的探究性更加深入。另外,网络背景下学生在获取不同的资源时可以进行比较,相互之间取长补短,知识面更广。随着现在网络技术的发展,学生可以在宿舍、教室和学校多媒体教室通过网络对课堂内容进行学习。网络教学方法的运用,大大弥补了课堂多媒体课件存在一些不足,大大提高了教学效率。

5.开展互动式教学,发挥学生的学习主动性

教学是教师和学生的共同行为,学生是课堂的主体,教师是学生学习知识的引导者。目前高校教学方式偏重以教师“教”为主,忽视了学生“学习”的主动性,学生始终处于“被动学习”地位。这样的“被动学习”,导致学生具有学习压力大、心理负担重等特点。针对这一现状,我们采取课堂互动的教学方式,包括师生提问、讨论和学生上讲台相结合的方式进行教学活动,取得了一定效果。比如在下课前教师先提出下一节课的预习内容,提出一些讨论问题,例如在讲述缩聚反应时,提出不同聚合时间获得聚合物分子量是否相同、什么样的单体能够发生缩聚反应、什么样的单体能够获得支化的高分子等问题。让学生通过查阅资料,自己寻找答案,并在下次课堂上让学生进行讨论,然后教师补充。这样既提高了学生的学习思考能力,又增强了学生的学习主动性,提高了学习兴趣。另外,我校为农业院校,虽然学习《高分子化学与物理课程基础》课程的学生是非农业专业,但是部分学生毕业后或许从事涉农相关服务业。考虑到此种情况,我们在授课内容安排上,对目前农业应用的高分子材料和高分子在农业方面的潜在应用进行了讨论,给他们提供了创造性思维。比如在讲自由基聚合章节时,我们就对强吸水树脂的制备现状和发展前景,主要针对其在农业生产中的应用进行了讲述,对高分子薄膜在农业中的应用及带来的“白色污染”与应对措施进行了讨论。通过这样的讨论,我们锻炼了学生分析思考问题的能力,这为学生工作与科学研究的创新思维形成打下了基础,提高了学生的学习积极性和学习兴趣,加深了对本课程的理解。

6.结语

通过对本校生物功能材料专业《高分子化学与物理基础》课程教学中的一些课程设计特点、面临的问题及目前采取的措施进行了总结。《高分子化学与物理基础》虽然是一门专业基础课,但其理论性强、概念抽象难懂,如何让学生在掌握该课程基本理论的同时,调动学生的学习积极性,培养学生的自主学习能力和创新意识,是教学工作中需要不断探索的问题。我们将在总结已有教学经验的基础上,继续对本课程教学方法的改善与创新进行探索,以提高该课程的教学质量。

参考文献:

[1]魏无际,俞强,崔益华.高分子化学与物理基础(第二版).北京:化学工业出版社,2011.

[2]黄海霞.应用化学专业《高分子化学与物理》课程教学探索.广州化工,2013,41(12).

第7篇:材料科学与工程专业范文

能源、信息和材料是现代经济发展的三大支柱,而材料更是基础。没有先进的材料就没有先进的工业、农业和科学技术.重大的技术革新往往起始于材料的革新。如20世纪50年代镍基超级合金的出现,将材料使用温度由原来的700℃提高到900X2从而使得超音速飞机问世。而高温陶瓷的出现则促进了表面温度高达1000~2的航天飞机的发展。近代新技术(原子能、计算机、集成电路、航天工业等)的发展又促进了新材料的研制。当前可称为精密陶瓷时代、复合材料时代、塑料时代或合成材料时代等等。材料可以从不同角度分类.根据材料的组成可分为金属材料、无机非金属材料、有机高分子材料(聚合物)和复合材料;根据特性和用途可将它分为结构材料和功能材料两大类。结构材料主要是利用其力学性能,制造需承受一定载荷的设备、零部件、建筑结构等。功能材料主要是利用其特殊物理性能(电学、热学、磁学、光学性能等),用于制造各种电子器件、光敏元件、绝缘材料等。根据材料内部原子排列情况分为晶态和非晶态材料;根据材料的热力学状态分为稳态和亚稳态材料;根据材料尺寸分为一维(纤维及晶须)、二维(薄膜)和三维(大块)材料等。

2“材料科学”与“材料科学与工程”

材料科学(MaterialsScience)~科伴随着生产力发展和科技进步产生与发展。材料的各种性能是其化学成分和组织结构等内部因素在一定外界条件下的行为表现。研究材料主要是为了更有效地使用材料,即了解影响材料性能的各种因素,从而掌握提高其性能的途径。材料科学是阐明材料的性能和行为与其成分及内部组织结构之间的关系。一般认为,学科间的区别不是绝对的。材料科学是由多种学科分化而产生,而又通过集成走向成熟的。材料科学产生之初,有学者认为:冶金学仍然是一门健全的学科,拥有基本理论、方法和界限,但随着工程中日益不断地使用聚合物、陶瓷、玻璃和复合材料,其研究拓展为材料科学(Calvert,1997)。20世纪50年代,材料科学(MaterialsScience)这一新概念,主要源于冶金学,1958至于959年间美国大学教育性质的改变和各种新材料科学研究组织的形成,是材料科学形成的标志。西北大学(NorthWesternUifiversity)是最早将材料科学作为系名的大学(1954年),并为本科生的研究生开设了相关课程,出版了《材料性能原理(PrinciplesofthePropertiesofMaterials))(1954年)一书,材料科学领域已经发展出多个分支,包括固体物理、冶金学、高分子化学、无机化学、矿物学、玻璃与陶瓷技术。一门学术型学科抽涉及的范围远远大于由大学里院系、学会和专业杂志所构成的群体,它是一所“看不见的学院(hwisiblecollege)”,它们的成员共享某一特定的研究传统,学者们从中学到了基本的理论框架、操作规范和技术方法。DavidTumbul(1983)~E《对“材料科学”产生和发展的评述》一文中,将材料科学定义为:在超分子水平上表征,认识和控制物质的结构.并建立这一结构与性能(力学、磁、电等)间的关系,即所谓的超分子科学。

MSE(MaterialsScienee&Engineering)的概念最初产生于20世纪50年代,到1960年已经基本稳固建立。在COsMT(1974)的报告中,将MSE定义为:涉及将材料成分、结构和制备与其性能和使用建立关系所形成并应用的知识。1957年美国政府出台了资助l2个相关实验室计划,首批三个材料科学实验室分别建立在康奈尔大学、宾西法尼亚大学和西北大学。这些实验室1972年由国家科学基金会(NSF)正式负责。此后各个大学教授的课程,也深受这些材料科学实验室所从事工作的影响。1958年,为了更好地已经建立的新学科的特征,又在系保后面加上了。与工程,并开始了。材料科学与工程的教育,如牛津大学的材料科学系也简单地更名为“材料系(DepartmentofMaterials)”。同期还有一批大学,如德克萨斯大学的奥斯分校等没有设立材料科学系,但已经开始了系间合作,进行了与材料科学相关的研究生教育,通常这种教育也不仅限于在“工程学院”之内。虽然没有这个系名,但老师的专业知识和研究生的研究工作集中在材料制备、固体化学、高分子工程与科学、X射线晶体学、生物材料、结构材料、材料理论和凝聚态材料及器件等相关领域。1964年麻省理工学院(MIT)也将系名以为“冶金与材料科学系”,1974年正式改名为“材料科学与工程系”。20世纪60年代,材料科学被引入欧洲的大学,如北威尔士大学、苏赛克大学和伯明翰大学。1956年,中国在西方工作过的科学工作者们制定一份科学技术规划时,认识当时的中国已经培养了具有金属材料方面知识的科技人员,但对合金及其热处理方面的科技人员数量不足,到1980年,已经有l7个院校的金属物理专业改为材料科学专业。

第8篇:材料科学与工程专业范文

论文关键词:跨专业;研究生;培养

随着军队院校研究生招生制度的深化改革和招生规模的调整优化,跨专业招收、培养研究生在一些学科与专业正日益显现并会更加突出。近五年来,在笔者培养的材料科学与工程专业工程硕士、同等学历硕士、全日制硕士中,跨专业研究生占到了70%左右。分析跨专业研究生特点,研究培养跨专业研究生的有效措施,保证培养质量,提高培养水平显得格外重要。

一、跨专业研究生的特点分析

1.生源和专业基础分析

近年来解放军军械工程学院材料科学与工程学科跨专业招收的研究生主要有三种情况。

(1)跨专业调剂。由于受多种政策和因素影响,考生生源不足,上线研究生不多,够复试条件的研究生数量小于招生计划数量,每年不得不从其他富裕专业(通常是机械类专业)调剂研究生。这部分研究生除了在本科阶段学习过40~50学时的“工程材料”课程外,基本上没接触材料科学方面的课程和知识。

(2)跨专业报考。这部分学生对材料科学与工程学科具有浓厚的兴趣,立志从事材料科学与工程专业的学习与研究。为了考取研究生,他们自学了大量的“材料科学”课程,特别是对研究生入学考试确定的初试专业课程和复试专业课程下功夫较大,准备比较充分,成绩也比较好,具有一定的专业基础,但他们毕竟没有系统学习过材料科学与工程专业课程,为了考取研究生,突击学习痕迹明显,死记硬背的东西较多,融会贯通、举一反三、灵活应用的能力偏弱。

(3)为躲避研究生入学考试课目“数学一”而跨专业报考。我院材料科学与工程学科确定的研究生入学考试数学课目为“数学二”而非“数学一”,部分考生由于数学功底较弱,担心“数学一”难度大,考不出好成绩,受社会现实的驱动选择报考了本专业,由于目的和动机不同,这部分学生材料科学的基本理论、基本知识、基本技能也较弱。

总之,跨专业报考的研究生相对于本专业研究生而言,在专业基础知识的掌握和基础理论积累方面比较薄弱。

2.心理和优劣势分析

跨专业学习并不是一件简单的事,一切从头开始,这需要勇气、动力和毅力。跨专业研究生能够和本专业研究生坐在一起,站在一个起跑线上学习和研究,这本身就说明了跨专业研究生勇于挑战、肯于付出和战胜自我的精神。当遇到挫折、困难或不公正待遇时,跨专业研究生会表现出更加坚强的心态、信念和理想。

另外,跨专业研究生也具有非跨专业研究生所不具备的优势。首先跨专业研究生大多具有交叉学科的知识结构,无论是基础理论还是专业实践,跨专业研究生受到来自不同学科方向文化和知识体系的熏陶,具有复合型人才的优势;其次,跨专业研究生容易认识到自己的长处和不足,会注意取长补短,发挥长处。

二、跨专业研究生培养措施

1.搞好入学教育,树立学习信心

材料科学与工程专业的本科生在大学期间除了学习高等数学、大学物理、外语、计算机等公共基础课外,还要学习材料科学基础、材料现代分析方法、材料制备工艺、材料性能分析、新材料、材料实验、材料管理等专业课。本科四年的学习使得他们掌握了扎实的材料科学基础理论知识,具有较强的实践能力,建立起了材料科学概念,形成了材料思维习惯。而跨专业研究生在专业知识结构、知识积累上有所欠缺,常常会造成在进入研究生学习后“水土不服”、“消化不良”的现象,表现为不具备独立思考问题和解决实际问题的能力,学习能力差,材料概念不清,不熟悉专业学术话语,缺乏创新思维。为此必须搞好他们的入学教育,纠正动机偏差,讲清跨专业学习的利和弊,在认识差距的同时看到优势,使他们明确学习目的,树立学习信心,要求他们勇于克服困难,按期完成学业。

2.补修基础课程,夯实专业基础

对跨专业考入的研究生,解放军军械工程学院在课程设置上与本专业考入的研究生没有区别,课程设置统一,培养计划刚性,不考虑个体差异,不照顾个体要求。由于跨专业研究生与本专业研究生的专业基础相差太远,研究生授课教师往往顾此失彼,常常会使本专业的学生觉得授课深度不够、提高有限,而跨专业研究生却难以理解,从而使正常的研究生教学受到冲击和困扰,影响教学效果。

材料科学学科具有一套独立的理论体系和思维方式,它不仅在专业基础上与计算机、自动化、电子类专业相去甚远,而且思维方式独特。尽管学生学习努力,但由于缺乏系统的材料科学基础培训和思维训练,对材料类课程的学习难以摆脱夹生不熟的状态,听课的过程似乎明白,但难以用自己的语言表述出来并运用到实际工作中,对一些概念和理论似懂非懂。

授课教师应优化教学内容,注重因材施教。指导老师要加强个别指导,筛选本科阶段“材料科学”3~5门重要核心课程作为补修课程,强化跨专业学生的“材料科学”基础。为帮助跨专业学生建立对材料科学的感性认识,培养材料学思维习惯,安排他们到实验室指导本科生毕业实习,做到教学相长。督导跨专业学生利用丰富的网络资源自学相关知识,弥补跨专业研究生所需要的基础理论未来向深度和广度拓展的缺陷,从而为培养其研究能力、创新能力和综合素质创造条件。

3.依据学生特点,选定研究方向

导师是培养研究生最为重要的环节,在研究生培养中起着其他个人和机构无法替代的重要作用。对学生的严格要求大多需要通过导师才能有效落实。导师在充分考察、了解学生的兴趣和特长后,在征求学生意见的基础上帮助其选好论文方向。如数学、计算机基础较好的研究生更多地安排一些材料制备过程中与数值模拟、仿真有关的课题;动手能力较强而理论功底较弱的研究生,安排一些倾向于材料制备工艺方面的课题;机械制造专业的研究生安排一些注重与材料制备设备相关的课题,这样有利于学生扬长避短,增强自信,提高对材料学研究工作的兴趣。通过撰写论文锻炼和提高实际工作能力,他们毕业后达到与本专业生源同样的培养质量。

4.凝炼导师文化,促进师生互动

(1)坚持师生在教育上是授受关系,导师处于主导地位。坚持师生在人格上是平等关系,导师应以尊重学生的人格、平等地对待学生、热爱学生为基础,进行正确地指导、严格要求和民主型的管理。

(2)坚持师生在道德上是相互促进关系。导师应该强烈感受社会的迅速变化和知识的不断更新,加强与学生的互动,自觉不断地自我充实和提高,不断更新自己的观念,形成有组织的讨论、研究氛围,在教育培养研究生活动中不断发展自己。导师要注意对学生学习行为的观察和评价,形成对学生新的了解和认识,及时修改对学生的某些要求与期望。导师通过自己的努力影响、感化学生,增进学生对导师的了解,从而激发学生更加自觉、主动地学习和工作。在研究生中间提倡互帮互学,博士生带硕士生,高年级研究生带低年级研究生,本专业研究生帮跨专业研究生,在研究生中广泛开展学习研讨活动。

5.加强学术交流,营造创新氛围

要培养高质量的跨学科研究生,必须要有好的学术氛围。广泛开展学术交流,鼓励学生参加多种多样的学术活动,有利于学生了解本领域的前沿工作,提高专业水平和表达能力,有利于学生开阔眼界、拓宽知识面。近年来,我们坚持博士研究生在校期间外出参加学术交流会议人均不少于3次,硕士研究生人均不低于1.5次。研究生们通过参加国际、国内学术会议进一步了解到本领域科技与学术发展的信息,增长了他们的专业知识,提高了学术水平,拓宽了研究思路,并结交了一批同行,同时,也提高了他们对信息的认识程度以及捕捉、分析、判断和吸收信息的自觉性。

6.严格跟踪检查,严把论文答辩关

严格研究生中期筛选制度,对课程学习成绩出现黄牌的研究生进行个别谈话,达不到要求的推迟开题。

第9篇:材料科学与工程专业范文

《晶体学基础》是材料科学与工程专业的重要专业课程之一,也是进一步学习材料专业其他课程的基础。本文根据材料专业《晶体学基础》教学中存在的问题,从教学内容和次序、教学手段以及教学模式三个方面,提出了课程教学改革的详细思路。

关键词:

晶体学;教学内容;教学手段;研讨式教学;教学改革

一、前言

《晶体学基础》课程是为地质学、材料科学、矿物学等专业学生在完成高等数学、普通化学和物理学等公共课程后而开设的一门专业基础课[1-4]。对于材料科学与工程专业的学生而言,《晶体学基础》课程中的晶体结构、晶体对称性、倒易点阵、晶体投影、晶体生长、晶体缺陷等晶体学基本知识,是进一步学习《X射线衍射》、《电子显微分析》、《材料科学基础》、《材料力学性能》以及《材料物理性能》等专业课程的基础[2]。在材料科学领域,调控材料的性能是人们追求的目标。如果一种材料的成分确定,那么它的电学、光学、磁学以及力学等性能将取决于材料的晶体结构类型和晶体中存在的缺陷特征(如杂质原子的浓度、位错密度和晶粒尺寸等)。因此,《晶体学基础》课程的基础知识不仅在材料科学与工程专业各门专业课程的教学中起到重要的作用,而且将对学生们将来的材料科学与工程实践起到重要的指导作用。开设《晶体学基础》课程以前,北京航空航天大学材料科学与工程专业的晶体学教学计划主要安排在《材料科学基础》课程中,大约讲解4学时。另一方面,在《X射线衍射》和《电子显微分析》等专业课程教学过程中,过去通常要利用2~4学时来讲解布拉斐点阵、倒易点阵等晶体学知识。这使得部分晶体学知识被重复讲授,而一些重要的晶体学知识没有得到无法全面、系统和深入地讲解。基于以上原因,北京航空航天大学自2010年起对材料专业的本科2年级学生开设了《晶体学基础》课程。通过过去几年的《晶体学基础》课程教学实践,学生们普遍反应对晶体学基础知识的理解更加全面和深入了,同时在学习与晶体学相关的其他材料专业课程时,也更加得心应手。但是,目前的晶体学教学中还存在以下3个主要问题。

1.晶体学涵盖的内容十分广泛,它是多个学科的重要基础课程,不同学科对于晶体学知识的侧重点有所差别。目前,国内《晶体学基础》的教材主要是面向地质和矿物专业而编写的[5],其包含的内容以及章节编排次序也是为了使地质和矿物专业学生更好地掌握相关晶体学知识而设计的。所以,现有教材的教学内容以及讲授次序并不完全适用于材料专业《晶体学基础》课程的教学。

2《.晶体学基础》课程中包含着很多晶体学基本概念,同时还有非常抽象的宏观和微观对称操作以及晶体的投影操作。在以往的晶体学教学过程中,主要借助一些静态的二维或者三维图片进行讲解,其表现力度有限,无法有效地使学生理解和掌握抽象的晶体学基本概念和理论。

3.在《晶体学基础》的授课形式上,过去主要以教师讲授为主,学生主动参与较少。仅仅通过教师对《晶体学基础》中复杂空间对称变换进行讲解,难以使学生深入理解晶体中对称特点、内部质点的堆积规律以及复杂的空间概念。同时,这样也不利于学生创造性思维和解决实际问题能力的培养。由以上分析可见,现有的《晶体学基础》教学已经难以满足材料科学与工程专业学生培养目标的要求。因此,我们有必要对该课程的教学内容、教学手段和教学模式进行改革,以充分调动学生的学习积极性和主动性,提高学生的学习兴趣,使学生真正理解和掌握晶体学知识的精髓,为学生在将来的材料科学与工程实践中打下良好基础。

二、教学内容和讲授次序的改革

目前,本校《晶体学基础》的教学课时共32学时,与地质学和矿物学专业相比,总授课时间较少[3,4]。为了在有限的教学时间内讲授材料科学专业学生所必需掌握的晶体学基础知识,有必要将那些与材料科学专业相关性不大的内容进行删减。例如,晶体理想形态和晶体规则连生方面的内容对地质学和矿物学专业十分重要,但是对于材料专业学生来说,只需要在课程绪论中加以概述就能够满足本专业的教学要求了。同时,对于后续材料科学的其他专业课程将详细讲解的知识点,也可以进行适当删减,如晶体相变、晶体物理学等内容。另一方面,对于进一步学习材料专业其他课程而需要用到的一些重要晶体学基础知识,应该增加讲解内容的深度。例如,倒易点阵、吴氏网等基础知识对于分析材料的微观结构特征至关重要,但是,现有教材中的以上相关内容过于简单,无法满足材料专业学生的培养要求,所以,需要增加相关的授课内容。教学内容的变更促使我们进一步思考授课内容编排的逻辑性。由于晶体学授课内容和侧重点发生了变化,所以,我们就不能按照现有教科书中针对地质和矿物专业的教学目的来安排授课次序,而应该按照材料专业对晶体学教学内容的要求,研究如何安排授课次序才能更有利于本专业学生由浅入深、循序渐进地学习相关晶体学基础知识。例如,在讲解晶体宏观对称性之前,有必要先讲解一些典型晶体结构的实例,以帮助学生形象地理解复杂的空间对称操作;将晶体的微观对称和空间群知识从原教材的第七章提前到第三章[5],使其与晶体宏观对称合并成晶体宏观和微观对称一章,这样有利于从宏观和微观相互联系的角度进行讲解;另外,倒易点阵知识应该从原教材的第一章后移到第四章,在讲解完晶体定向和晶体学符号之后,学生们熟练掌握了晶体正空间的晶面和晶向指数,此时讲授倒易点阵知识更有利于学生理解复杂的正空间和倒易空间的相互变换。

三、教学手段的改革

《晶体学基础》课程的难点是晶体宏观和微观对称、晶体的投影以及内部质点的堆积。除了采用传统的板书和二维图形对这些晶体学难点知识进行讲解以外,我们应该更加注重利用一些三维模型。例如,在讲解晶体的球面投影和吴氏网过程中,利用地球仪作为三维实物模型,能够更好地说明晶体的各个晶面在进行球面投影过程中的操作次序,以及解释如何利用吴氏网来计算晶面夹角。在讲解晶体的旋转对称时,可以利用一些特制的三维立体模型,形象地显示出不同轴次的旋转对称;另外,在讲解晶体的极射赤平投影时,可以针对一些具有特殊对称特点的宏观晶体,让学生自己动手制作相关的三维实物模型,通过观察各晶面的投影特点,加深对极射赤平投影知识的理解。同时,为了使学生更加形象地把握各种对称变换特征和晶面投影规律,我们应该进一步利用三维多媒体软件,制作一些三维动画作为辅助教学手段[6]。这样能够通过三维旋转来观察晶体的宏观对称特点以及晶体结构中的质点(原子、分子或离子)位置,满足晶体宏观和微观对称要素及其操作等抽象教学内容的教学目的,使学生能够直观地观察不同宏观和微观对称操作的特点,从而加深对这些抽象晶体学概念的理解。

四、研讨式教学模式的改革

本校《晶体学基础》课程在开课初期的授课形式为大班整体授课,包括所有材料专业大二的学生(约150名)。由于听课学生人数较多,导致教师难以实时掌握学生的听课效果。故而,本校自2013年起对《晶体学基础》课程进行了“小班化”教学实验(每班70~80人),有效地提高了授课效果。但是,目前的教学模式基本上还是以教师的“填鸭式”教学方式为主要授课模式,学生缺乏学习的主动性,没有积极地思考问题。因此,应该实现教师和学生共同主导本课程的教学过程,通过师生之间以及学生之间“研讨式”的教学模式,使学生在研讨过程中理解和掌握《晶体学基础》的基本概念和抽象知识。针对每堂课的重点讲授内容,教师在课堂中提出相关问题,将学生分成若干小组,每组4~6人,在教师的引导下,通过学生之间反复讨论将复杂的晶体学问题进行逐步阐明,这样也有利于检验学生对每堂课知识的掌握情况。同时,将分组讨论的结果纳入平时成绩的考核体系,鼓励学生主动提出问题,并积极地通过讨论来相互启发,进而解决各个难点问题。另外,师生应该充分利用本校在校园网上建立的晶体学课程中心平台。一方面,鼓励学生在网络上进行自由讨论,另一方面,让学生针对以上问题在课堂上以小组为单位进行发言和讨论。通过以上“研讨式”教学模式及时获得学生学习效果的反馈,从而调整讲课速度,提高学生的学习效果。

五、总结

《晶体学基础》是材料科学与工程专业的重要基础课程,应该按照材料科学专业学生应该掌握的晶体学知识,优化编排授课内容和次序,提高授课效果;利用三维晶体学动画模型,加深学生对晶体对称要素及其操作等复杂晶体学概念和理论的理解;建立“研讨式”教学模式,针对课程的重点和难点,提出学生课堂和课后研讨的主题,检验学生对授课内容的掌握情况,提高学生通过主动提问以及相互讨论而获取知识的能力,最终使学生更好地掌握材料科学专业必需的晶体学基础知识,培养学生分析问题和解决问题的能力。

作者:刘彤 单位:北京航空航天大学材料科学与工程学院 北京市材料科学与工程实验教学示范中心

参考文献:

[1]张恩.关于《结晶学与矿物学》教学模式的探讨[J].中国地质教育,2000,(4):41-43.

[2]张英.材料大背景下晶体学课程的改革与创新[J].科技文汇,2011,(10):71-72.

[3]何明跃《.结晶学与矿物学》教学改革探索[J].中国地质教育,2000,(4):57-58.

[4]秦善,王长秋,鲁安怀“.结晶学与矿物学”教学改革与课程建设[J].中国地质教育,2007,(1):130-132.