前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高等数学教学论文主题范文,仅供参考,欢迎阅读并收藏。
【关键词】高等数学;数学建模;教学;应用
IntegrationofMathematicsModelingThoughtintheHigherMathematicsTeaching
ZHANGMing1,HUWen-yi2,WANGXia1
(1.DepartmentofBasicsofComputerScience,ChengduMedicalCollege,Chengdu610083,China;2.ChengduUniversityofTechnology,Chengdu610059,China)
Abstract:Thepurposeofstudyinghighermathematicsistosolvepracticalproblemswiththemathematicsmethod.Itwillimprovethestudent''''sthought,knowledgeandtheabilitytosolvepracticalproblemsbyintegratingthemathematicalmodelinginhighermathematicsteaching.
Keywords:highermathematics;mathematicalModeling;teaching;application
1引言
数学教学贯穿了小学、中学、大学等诸阶段的学习过程,培养了学生以高度抽象的方式来学习、理解、应用数学及相关学科的能力[1]。从基本的概念和定义出发,简练地、合乎逻辑地推演出结论的教学过程,是学生逐渐形成缜密思维方式的过程。但不可否认的是,在医用高等数学的教学实践中,却因为某些原因致使部分学生是为了“学数学”而学数学,导致兴趣索然,对数学望而生畏;或者虽然对常规的数学题目“见题就会,一做就对”,但是对发生在身边的实际问题,却无法引进数学建模思想、思路以及基本方法,建立正确的数学模型。因此为了适应科学技术发展的需要和培养高质量、高层次的应用性人才[1],怎样将数学建模思想贯穿于医用高等数学的整个教学过程中,以培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
2对数学建模在培养学生能力方面的认识
数学建模是一种微小的科研活动,它对学生今后的学习和工作无疑会有深远的影响,同时它对学生的能力也提出了更高的要求[2]。数学建模思想的普及,既能提高学生应用数学的能力,培养学生的创造性思维和合作意识,也能促进高校课程建设和教学改革,激发学生的创造欲和创新精神。数学建模教学着眼于培养大学生具有如下能力:
2.1培养“表达”的能力,即用数学语言表达出通过一定抽象和简化后的实际问题,以形成数学模型(即数学建模的过程)。然后应用数学的方法进行推演或计算得到结果,并用较通俗的语言表达出结果。
2.2培养对已知的数学方法和思想进行综合应用的能力,形成各种知识的灵活运用与创造性的“链接”。
2.3培养对实际问题的联想与归类能力。因为对于不少完全不同的实际问题,在一定的简化与抽象后,具有相同或相似的数学模型,这正是数学应用广泛性的表现。
2.4逐渐发展形成洞察力,也就是说一眼抓住(或部分抓住)要点的能力。
3有关数学建模思想融入医学生高等数学教学的几个事例3.1在关于导数定义的教学中融入数学建模思想
在讲导数的概念时,给出引例:求变速直线运动的瞬时速度[3,4],在求解过程中融入建模思想,与学生一起体会模型的建立过程及解决问题的思想方法。通过师生共同分析讨论,有如下模型建立过程:
3.1.1建立时刻t与位移s之间的函数关系:s=s(t)。
3.1.2平均速度近似代替瞬时速度。根据已有知识,仅能解决匀速运动瞬时速度的问题,但可以考虑用某段时间中的平均速度来近似代替这段时间中某时刻的瞬时速度。对于匀速运动,平均速度υ是一常数,且为任意时刻的速度,于是问题转化为:考虑变速直线运动中瞬时速度和平均速度之间的关系。我们先得到平均速度。当时间由t0变到t0+Δt时,路程由s0=s(t0)变化到s0+Δs=s(t0+Δt),路程的增量为:Δs=s(t0+Δt)-s(t0)。质点M在时间段Δt内,平均速度为:
υ=Δs/Δt=s(t0+Δt)-s(t0)/Δt(1)
当Δt变化时,平均速度也随之变化。
3.1.3引入极限思想,建立模型。质点M作变速运动,由式(1)可知,当|Δt|较小时,平均速度υ可近似看作质点在时刻t0的“瞬时速度”。显然,当|Δt|愈小,其近似程度愈好,引入极限的思想来表示|Δt|愈小,即:Δt0。当Δt0时,若趋于确定值(即极限存在),该值就是质点M在时刻t0的瞬时速度υ,于是得出如下数学模型:
υ=limΔt0υ=limΔt0Δs/Δt=limΔt0s(t0+Δt)-s(t0)/Δt
要求解这个模型,对于简单的函数还比较容易计算,而对于复杂的函数,极限值很难求出。但观察到,当抛开其实际意义仅从数学结构上看,这个数学模型实际上表示函数的增量与自变量增量比值、在自变量增量趋近于零时的极限值,我们把这种形式的极限定义为函数的导数。有了导数的定义,再结合导数的运算法则和相关的求导法则,前面的这个模型就从求复杂函数的极限转化为单纯求导数的问题,从而很容易求解。
3.2在定积分定义及其应用教学中融入数学建模思想对于理解与掌握定积分定义及其在几何、物理、医学和经济学等方面的应用,关键在于对“微元法”的讲解。而要掌握这个数学模型,就一定要理解“以不变代变”的思想。以单位时间内流过血管截面的血流量为例,我们来具体看看这个模型的建立与解决实际问题的整个思想与过程。
假设有一段长为l、半径为R的血管,一端血压为P1,另一端血压为P2(P1>P2)。已知血管截面上距离血管中心为γ处的血液流速为
V(r)=P1-P2/4ηl(R2-r2)
式中η为血液粘滞系数,求在单位时间内流过该截面的血流量[3,4](如图1(a))。
图1
Fig.1
要解决这个问题,我们采用数学模型:微元法。
因为血液是有粘性的,当血液在血管内流动时,在血管壁处受到摩擦阻力,故血管中心流速比管壁附近流速大。为此,将血管截面分成许多圆环来讨论。
建立如图1(b)坐标系,取血管半径γ为积分变量,γ∈[0,R]于是有如下建模过程:
①分割:在其上取一个小区间[r,r+dr],则对应一个小圆环。
②以“不变代变”(近似):由于dr很小,环面上各点的流速变化不大,可近似看作不变,所以可用半径为r处圆周上流速V(r)来近似代替。此圆环的面积也可以近似看作以圆环周长2πr为长,dr为宽的矩形面积2πrdr,则该圆环内的血流量可近似为:ΔQ≈V(r)2πrdr,则血流量微元为:dQ=V(r)2πrdr
③求定积分:单位时间内流过该截面的血流量为定积分:Q=R0V(r)2πrdr。
以上实例,体现了微元法先分割,再近似,然后求和,最后取极限的建模过程,并成功把所求量表示成了定积分的形式,最终可以应用高等数学的知识求出所求量的建模思想。
4结语
高等数学课的中心内容并不是建立数学模型,我们只是通过数学建模强化学生的数学理论知识的应用意识,激发学生学习高等数学的积极性和主动性。所以在授课时应从简洁、直观、结合实际入手,达到既有助于理解教学内容,又可以通过对实际问题的抽象、归纳、思考,用所学的数学知识给予解决。所选的模型,最好尽可能结合医学实际问题,且具一定的趣味性,从而使学生体会到数学来源于生活实际,又应用于生活实际之中,以激发学生学好数学的决心,提高他们应用数学解决实际问题的能力[5]。
总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。教学中融入数学建模思想,可使学生的想象力、洞察力和创造力得到培养和提高的同时,也提高学生应用数学思想、知识、方法解决实际问题的能力。
【参考文献】
[1]洪永成,李晓彬.搞好数学建模教学提高学生素质[J].上海金融学院学报,2004,3:(总63)6.
[2]姜启源.数学模型[M].北京:高等教育出版社,1993,6.
[3]梅挺,邓丽洪.高等数学[M].北京:中国水利水电出版社,2007,8.
(一)在教学过程中插入数学史教育
在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。著名数学家陈省身说:“了解历史的变化是了解这门科学的一个步骤。将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。”高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。
(二)将数学史蕴涵的思想、方法融入到高等数学教学中
弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行“再创造”。数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。在高等数学教学中,作为数学教师,数学中的这些思想、方法应该利用数学史选择典型的数学史题材,分析数学家发明、发现过程中的心智活动,透析数学家的脑海里的灵感,以对学生的数学学习起到启迪思维的作用。著名教育家斯金纳(Skinner)说:“如果我们将所学过的东西忘得一干二净,最后剩下的东西就是教育的本质了。”最能传承一门学科本质的就是这门学科的历史,高等数学也不例外。多数高职院校的学生在学习完高等数学课程之后,由于多种原因,除少部分与专业相关的内容外,其余知识都会慢慢淡忘,留在学生大脑中应当是高等数学独有的思维方式,解决问题的方式、方法,这正是高等数学教育的目的和价值所在。数学史在这些方面的推动作用是毋庸置疑的。数学思想的提炼和方法的运用是数学教学的关键,数学思想方法在教学中的重要意义,受到很多数学教育家的重视。高等数学课程内容始终围绕着“基础知识”与“思想方法”两个基点。在教学中,教师必须深挖教材中的思想方法,化“无形”为“有形”。通过数学史的教育,将鲜活的数学思想方法渗透在数学知识的学习过程中。
(三)数学史的融入符号学生的认知发展规律
影响学生学习的心理学因素包括认知因素和非认知因素。直接参与数学学习认知活动的因素称为认知因素,包括原有的数学认知结构、现有的思维发展水平和数学能力等;不直接参与数学学习认知活动的因素称为非认知因素,包括兴趣、动机、情感和意志等。数学史可以帮助学生加深对数学概念、方法和思想的理解,数学史也影响学习中的记忆和迁移。同时,数学史影响学生的认知结构。认知结构是学习者头脑中的数学知识按照自己理解的深度、广度,结合自己的感觉、直觉、记忆、思维、联想等认知特点,组合成一个具有内部规律的整体结构。所以,数学史通过影响学生的认知结构参与学生的数学学习活动。数学教育的目的在于使受教育者获得发展,数学学习的结果不仅是知识的习得,更重要的是思维的发展、形成优良的数学思维品质,数学认知结构的完善,等等。这一过程的完成,就需要抽象的数学思想方法的加入,这些思想方法的习得主要依靠数学史的融入实现。另外,高等数学课程教学中融入数学史教学,也符合维果茨基的“最近发展区”理论,即教师在教学时必须考虑学生的两种发展水平:一种是学生现有的发展水平,另一种是在他人尤其是成人指导下可以达到的较高的发展水平,这两者之间的差距就叫做“最近发展区”。教学要想实现既定目标和效果,必须考虑学生现有的思维发展水平,并要走在学生发展的前面。通过数学史的融入,可以帮助学生在高等数学学习中在教师恰到好处的逐渐引导下学习数学思想方法。在高等数学课堂教学中,遵循学生的心理发展规律,符合学生的认识发展水平,通过相关典型历史材料的引入,引导学生学习高等数学的相关知识及思想方法,促进学生认知水平的再次升华。
二、结语
【关键词】高等数学;数学建模思想;结合
实践性比较强是高等数学的明显特征,完善和添补了过于抽象化的理论数学,在数学课程中占据着重要地位。伴随着经济的迅猛发展和科学技术的持续创新,在社会、经济和生活多个方面,高等数学的工具性越来越得以突显。目前,将数学建模与高等数学进行结合已经是高等院校数学教学过程中的研究方向,使得学生在学习过程中所遇到的数学问题都可以轻松的解决。
一、数学建模与高等数学的结合的重要性
将学习过程中遇到的问题依靠数学思维方式,转变为数学课程的常用语言,运用程序符号和公式,对现实问题转变的数学语言进行分析求证,达到解决学习过程中遇到问题的目的。因此,数学建模就是通过提取学习过程中遇到的问题,从而转化为数学模型的过程。长久以来,数学的发展离不开与人类生活的密切联系,造就了数学自身具有应用性强、实践性强和逻辑性强的特点。伴随着社会的持续进步,互联网信息时代的发展,数学被越来越多的运用在科技、金融和经济等领域,但人们在对数学进行应用的过程当中发现在新时代背景下,一些问题依靠过去的数学方法已经无法进行完美的解决,所以数学建模与高等数学的结合迫在眉睫,根据当前的社会发展环境可知,现实生活中的大量问题都可以通过结合数学建模与高等数学来进行解决。与此同时,人们的实践能力还可以获得提升,在市场经济发展得到促进的同时,人类文明也在一定程度上获得了进步。
二、数学建模与高等数学结合的方法
(一)将数学建模思想带入高等数学课堂之中。要对当代大学生数学方法和数学思维进行培养,将数学建模思想带入高等数学课堂之中是最好的方法。这就要求高校数学教师在数学课堂上,要积极地向学生介绍数学建模的方法和思想。高校数学教师在讲解数学问题过程当中,将数学建模思想通过科学合理的方式,向学生进行传授。与此同时,还可以运用专题的形式而对实际问题进行讲解,将这些问题产生的全部原因和解决问题的困难之处向学生进行充分介绍。以此为依据,将一些解决问题的方式、思路介绍给学生,积极地鼓励学生运用数学建模思想。在这样的高校数学教学过程当中,在将数学理论知识教授给学生、教学任务得以完成的同时,对学生数学建模思想的树立给予了极大帮助。学生解决数学问题的能力得到培养和提高,数学课堂教学方法得到创新,高校数学课程的教学质量也得到提升。(二)开展数学建模竞赛与高等数学结合。(三)数学建模比赛的大力开展,在一定程度上可以将学生的动手能力进行提升。因此,对于学生能力的培养、将理论知识与实践相结合等方面有着积极的意义。在数学建模比赛过程当中,学生的数学思维能力得到锻炼的同时,数学建模的水平也持续提升,这有利于学生在今后面对学习和实际生活去提出相关问题并予以解决。所以高校要积极地鼓励相关社团,将建模比赛平台进行构建,鼓励学生在比赛当中促进自身的发展,在解决实际问题的过程当中将自身的数学能力和思维进行提升和改善。(四)重视提高数学建模的连接作用。学习过程和生活当中存在的问题,都可以通过数学建模思想与相关数学理论进行联系。抽象现实问题用数学语言进行描述,构建相关模型,从而简化实际问题。举例来说,在对定积分概念进行讲解时,变力沿直线做功和变速直线运动路程的模型就可以被建立。在问题当中,速度是变化的。就可以将大时间段发给小时间段。就可以得到路程的表达式:,基于这个表达式,我们还可以得到变力沿直线做功的表达式:,依据表达式的共同点,就可以将定积分的定义进行讲解。在上述转化的过程当中,对于现实生活中问题调查和数据采集都应该做到全面化,这样才可以使产生问题的原因被进一步确定。与此同时,抓住问题的特点,将调查结果和数据作为依据,从而寻找问题当中所出现的规律,依据数学建模思想,从而将实际问题进行完美的解决。所以说,数学建模连接了数学理论和实际问题,要重视提高数学建模的连接作用。
综上所述,正是由于实践性强等高等数学自身具有的特点,在一定程度上,对学生的思维能力有着重要的影响和作用。有机的结合高等数学和数学建模思想,相关数学专业学生的实践动手能力得以提升。与此同时,其他课程的发展也得到了积极的促进作用。市场经济的发展也得到了极大的推动。所以,在时代环境的背景下,数学发展的方向一定是数学建模与高等数学的结合。因此,这就对高校数学教师在教学过程当中提出了更多的要求,积极地开展数学建模竞赛、重视提高数学建模的连接作用、将数学建模思想带入高等数学课堂之中,以此来培养和提高学生的实践能力和思维能力,达到学生可以将高等数学问题进行轻松解决的目的。
作者:陶秋媛 单位:柳州城市职业学院
参考文献:
[1]杨真真;胡国雷;周华.融入数学建模思想的高等数学教学研究[J].江苏第二师范学院学报,2016,(06):13-14
关键词:问题教学;开放教育;高等数学
一、“问题式”教学法的提出
建构主义理论的内容很丰富,其核心是:以学生为中心,强调学生对知识的主动探索、主动发现和对所学知识意义的主动建构(而不是像传统教学那样,只是把知识从教师头脑中传送到学生的笔记本上)。建构主义强调,学习者并不是空着脑袋进入学习情境中的。在日常生活和以往各种形式的学习中,他们已经形成了有关的知识经验,他们对任何事情都有自己的看法。即使是有些问题他们从来没有接触过,没有现成的经验可以借鉴,但是当问题呈现在他们面前时,他们还是会基于以往的经验,依靠他们的认知能力,形成对问题的解释,提出他们的假设。教学不能无视学习者的已有知识经验,简单强硬的从外部对学习者实施知识的“填灌”,而是应当把学习者原有的知识经验作为新知识的生长点,引导学习者从原有的知识经验中,生长新的知识经验。教学不是知识的传递,而是知识的处理和转换。教师应该重视学生自己对各种现象的理解,倾听他们时下的看法,思考他们这些想法的由来,并以此为据,引导学生丰富或调整自己的解释。这样一来,在教学中摸清学生的思想情况就成为我们知识处理和转换的强有力依据。如何把握学生的思想状况?如何根据学生已有知识来处理转换新知识呢?我想“问题”是最好的帮手。
二、“问题式”教学法的特征
民主性、主动性、探究性、合作性、创新性是“问题式”教学的几个基本特征。在这种教学环境中教学打破了传统的以教师为中心惯例,要求师与生之间,生与生之间平等的对话,和谐发展。“问题式”教学是一种以问题为本的教学形式,它主要是教师引导学生创造性解决问题的过程。所以它发端于问题,行进于问题,终止于问题。学生对问题产生困惑并产生求解过程的强烈愿望,是问题式教学的前提。正是由于问题激发学生去观察、思考,他们在教学过程中才能表现出能动性、自主性、创造性,积极探索问题的解决方案,并力图克服一切困难,发展其创造性人格。这就对教师提出了很高的要求,教师应善于从教材中发现问题,创设积极的问题情景,也就是在课堂教学中设置一种具有一定的困难,需要学生努力克服,而又是力所能及的学习任务,又是教学过程发展的动力。因此,问题情景的创设成为教师进行问题式教学的关键环节。
三、高等数学教学中使用“问题式”教学法的必要性
在高等数学学习过程中,给我们留下深刻印象的是不断地提出问题、研究问题、求解问题,衡量我们学习数学的成效也主要通过解决数学问题的水平来评价。因此,在数学活动中问题以及问题解决是极为重要的。我们学习的数学是由概念、定义、定理、公式、公理、定理等组成的知识系统,数学知识体系展开的基本形式是不断地提出数学问题,并在相继地解决问题的过程中逐步建构起来和精心组织起来的。教师可以逆向地超越现实的时间和空间,说明在以往条件下事件发生的状况和特点,揭示认识主体的意图、目的、思想与抉择等进程的信息,同时与学生共同探求数学对象的特性、关系结构和规律。学生是在主动参与问题的提出和解决的活动中获取知识、发展数学的。
数学对象来源于实践,但又不同于客观世界的具体事物,而是对它们从量的侧面某些本质特征进行抽象化、形式化、模式化,并在这个过程中对它们进行研究。这一过程本身促使个体的思维水平经由直观动作思维阶段、直观表象思维阶段、抽象思维阶段向辩证思维阶段发展。数学问题应适当增加来自现实生活的实例,有利于启发学生对数学知识价值的认识,进而认识到数学活动本身所具有的社会价值,激励学习的内部动力。
电大开放教育学员学习高等数学存在基础知识薄弱、记忆力差、水平参差不齐,逻辑推理和抽象思维能力与普通高校学生相距甚远,这无疑为高等数学这样一门高度抽象、逻辑严谨的课程的教学工作带来一定的困难。但是他们大多有一定的生活、工作经验,善于观察,重视学以致用。因此,在高等数学教学过程中,必须扬长避短,在教学过程中要自始自终贯彻这样一个基本思想,那就是:数学源于生活,其认识过程是沿着“从简单到复杂,由有限到无限,从宏观到微观,由感知到感悟。”逐步形成其理论体系,并最终应用于实践,解决实际问题。
四、高等数学课程“问题式”教学法案例
下面以“导数”知识为例来说明“问题式”教学在高等数学课程中的应用。
(一)教学的总体设计
问题式教学法的实施步骤、组织形式、和学习结果用坐标
其中,实施步骤包括:1.提出问题2.探求问题3.解决问题4.拓展问题5.深化问题;相应的组织形式为:1.创设情景2.自主学习3.合作探究4.巩固应用5.反思小结。
导数知识学习过程可表示为:实例=>导数知识=>导数应用,在这个过程中导数知识是中心。应用问题式教学法的总体构思如下:首先,举出两个实例,提出问题并给出解决问题需要的已知知识和解决的思路;其次,通过自主学习合作学习得出导数的概念、基本公式、运算性质以及运算方法;第三,总结出利用导数解决实际问题的方法。
(二)组织实施步骤
第一步,创设情境提出问题:
实例1.对一个喜欢吃巧克力的人来讲,有一个实验表明:吃一颗巧克力的总效用为35,吃两颗巧克力的总效用为60,吃三颗巧克力的总效用为75,吃四颗巧克力的总效用为80,吃五颗巧克力的总效用为75。由简单的观察和计算可知,从吃第一颗巧克力到吃第五颗巧克力,每多吃一颗巧克力它产生的效用增加量分别是25,15,5,-5,呈递减的趋势,换句话说,如果吃了四颗巧克力后,再吃第五颗、第六颗的话总效用不但不会增加反而会减少,也就是说不再会得到更多的满足了。那么请问,换了你你会吃几颗巧克力?
实例2.瞬时速率问题。已知物体的运动规律既路程与时间的函数关系S=S(t),求物体运动的瞬时速度。
第二步,自主学习探究问题:
1.解决问题所用的已有知识:平均速度、平均变化率、极限;2.解决问题的关键是什么:如何解决分母不能为0的问题;3.思路与方法是什么:先从一点扩充到一个区间,再让区间趋于一点。
第三步,合作学习解决问题:
1.函数在一点导数的定义:略;2.导数的数量意义、几何意义、经济意义、物理意义:略;3.基本公式、运算法则:略。
第四步,反思小节深化问题:
1.利用导数解决问题的思想方法;2.导数计算的题型及方法;3.可以利用导数解决问题的常见案例及解决方法。
五、“问题式”教学法结果分析
通过问题式教学在高等数学中的应用,笔者认为“问题式”教学法的精髓在于,教师通过不断地提出问题、分析问题、解决问题,激发同学们的学习兴趣,使他们带着问题去学习,在分析、解决问题的过程中学习新知识;同时,这种教学法也能提高同学们发现、分析、解决问题的能力。
“问题式”教学法比较适用于数学课程的教学,特别是开放教育中数学课程的教学。因为提高学生的学习兴趣是学习数学的首要问题,只要学生对课程的学习产生兴趣了,根据已有的知识,通过参加课程的多种学习形式,一定可以达到学习目的,掌握教学要求。
参考文献:
[1]朱桂华.问题式教学方法及实践[J].邢台职业技术学院学报,2002,(4).
[2]肖为胜.论问题式教学中的“问题”[J].大学数学,2003,(6).
高等数学是大学很多专业开设的一门基础必修课程,它是对大学生进行素质教育的必修科目。在专业要求不高、学时不多的情况下,教师应如何教好这门课程,是个值得深思的问题。作为数学教师,怎样做才能提高大学生学习数学的兴趣呢?尤其作为幼儿师范高等专科学校的学生,虽然他们的专业是初等教育(理科)方向,但大多数同学的数学基础还很薄弱,本文尝试探讨如何在这样的环境中进行高等数学教育教学。
1.学习数学的目的及作用
1.1初等教育理科大专生学习数学的目的是为了学习一些数学思想和数学方法
数学思想是指人们对数学理论和内容的本质认识,是对数学规律的理性认识;数学方法是人们分析、处理和解决数学问题的根本方法,是数学思想的具体化形式。学生如果对数学这门课程的学习目的不明确,就会丧失学习数学这门课程的动力,就会淡化学习这门课程的兴趣。数学思想的教育无论是对数学学科的学习还是对其他学科的学习都是非常有益的。数学思想教育是直接影响到人的素质中的最基本的部分。加强数学思想教育有助于造就一大批创造型人才。应该说,通过从小学到中学再到大学的数学学习,最大限度地提高了人们的观察能力、分析问题和解决问题的能力、归纳总结的能力等。这就是学习数学的本质目的。
1.2初等教育理科生学习数学的作用
提到高等数学,很多学生就会想到抽象的概念、难记的公式、复杂的推理、大量的计算,因而望而却步。其实通过学习数学,不但可以培养人的科学素养,而且还可以培养人的思维能力,提高审美力,从而提高学习者的整体素质。日常生活中的很多问题都可以通过“数学思想方法”进行建模,再通过对模型的求解或者模拟来得到问题的解答。常用的数学思想有:数形结合思想、方程与函数思想、建模思想、分类讨论思想和最优化思想等。学习数学包括两方面的内容:一方面是数学知识(包括概念、公式、定理、题目等)的学习,另一方面是数学方法和思维的学习。在教学中老师更重要的是教给学生第二方面的东西,初等教育理科生毕业后大都从事小学教育工作,在小学教育工作中,数学方法和思维的学习对小学生的学习也显得至关重要。好的学习方法和思维可以影响小学生的一生。
2. 协调好教师的教与学生的学的关系的做法
2.1.要建立一个学习目标,培养学生学习兴趣,充分发挥学生的主观能动性
在教学过程中,可以采用启发问答式的教学方法,学生希望老师通过启迪他们的智慧来达到获取知识的学习目的。这是一种较为理想的教学方法,既能调动学生的学习思维,引发学生学习的兴趣,又能摆脱学生学习抽象性理论知识的枯燥感。同时教师还应重视师生的沟通。比如可通过电话、邮件、QQ、微信、面谈等途径与学生交流学习内容。在教学过程中应力求把新鲜的感觉传递给学生,向学生介绍一些数学概念史、定理发现史以及数学趣味题等,这样既可以扩大学生知识面,又可以激发他们的求知欲。在课堂中为了活跃课堂气氛还可穿插一点小故事、小笑话、新闻消息来缓解学生的紧张情绪,抓住学生的眼球,调动他们的思维。教师应对教材内容进行大胆取舍,对课程中的重点与难点,要进行详细讲授,而对学生能够看书理解的内容尽量在课堂上不予讲授。
2.2.要善于启发引导和总结,把知识的点、线、面结合起来交织成知识网络。
在教学过程中将知识系统化、条理化、专题化、网络化,让学生对所学到的知识由厚到薄再到厚。即先将知识用自己的语言进行提炼概括,形成知识网络,再将知识拓展开来。
3.存在的问题与应对方法
幼儿师范高等专科学校的学习是学生踏入社会前的最后一次有老师指导的系统学习阶段。因此,学生们争相学习与教师技能有关的各项技能,为毕业后能成为合格的小学教师打下坚实基础。但是高等数学课程中的知识却看似与此无关,因此不能完全激发学生的兴趣,甚至有些学生在学习过程中提出了“学高等数学有什么用”的疑问。这种疑问是隐藏在部分学生心中的疙瘩,授课教师如果不能及时做个解铃人来解开学生心中的疑问、激发学生的学习兴趣,教学质量就很难保证。
3.1联系小学数学教学内容,增加学生学习兴趣
学习兴趣是最好的老师。实践表明,在学生的学习过程中,授课教师的知识传授固然重要,但更重要的是学生学习动力的激发以及学习积极性、主观能动性的发挥。因此,授课教师在高等数学开篇可以把握学生“学高等数学有什么用”的心状介绍一些内容,争取在源头上打消学生的疑问,使他们明白为什么要学高等数学。如果有了坚定的信念,当以后学习遇到困难时,他们也不会轻言放弃。因此把高等数学与小学数学联系起来非常必要。在开学前几节课,教师可以通过例子讲明高等数学与小学数学的联系。
一般人认为小学数学与高等数学相差甚远,但它们之间不仅在内容方面,而且在思维形式方面都存在着密切的联系。如果站在高等数学的高度来理解小学数学,会使人感到小学数学的博大和精深;但如果能把小学数学的内容放在高等数学这一背景中理解,那将会对小学生学习和理解数学概念起到非常积极的意义。小学数学和高等数学之间在思维形式和内容间具有很强的互补性。
3.1.1内容的互补性
内容的互补性主要体现在以下几个方面:一、个别和一般。比如小学数学中有平均数的计算,平均数在高等数学中就是数学期望值的特例。如果站在数学期望的高度来讲解平均数,教师就会着重强调平均数和各个数之间的差异,学生就会知道全班数学平均分数和每个学生的分数,虽然都是分数,但是它们的意义是完全不同的。反之,如果学生只会计算平均分数,而没有把平均分数和每个学生的分数加以区别,那么学生只是多做了一些四则运算的习题。这样不仅不能活跃学生的思维,而且也不利于提高学生的学习兴趣。二、有限和无限。比如,在小学数学中无限循环小数和分数之间的互化问题,这一问题是高等数学中级数概念的应用,教师在教学中通过“0.9”、“0.99…9”和“1”之间关系的解释,就会让学生再一次体会极限的概念。
3.1.2思维形式的互补
思维形式的互补主要体现在以下几个方面:一、分析和综合。分析和综合是数学中常用的思维方法,“曹冲称象”这则故事正是分析和综合方法应用的实例。七岁的小曹冲以“称石头代称象”,运用的就是一种把整体分成若干较小而简单的问题,逐个地加以解决,从而使原问题得以解决的方法。二、比较和分类。在高等数学中可以利用同态、同构的方法把整数与多项式、矩阵与线性变换、多面体和平面图等建立联系。这就是比较、分类的方法。而小学数学中在学生掌握了自然数的四则运算法则的基础上,也是通过比较的方法使学生掌握小数的四则运算的。三、系统的方法。高等数学中的集合、向量空间、群等都是系统方法的应用。在小学数学中,如果利用这一思想方法不仅可以发展学生的思维,而且在解题时,可以化繁为简。
3.2培养学生自学能力,适当增加练习和思考时间
高等数学内容多,逻辑性强、课时相对较少,教学难度比较大。在这种情况下,教学应以重、难点为主,其它内容不能很详尽讲解,这样便要求学生必须有一定的自学能力才能学好这门课。当然,自学能力的培养离不开教师的正确引导,教师指导学生钻研教材和阅读参考书是提高学生自学能力的关键。教师在课堂上可以有意安排一部分内容和时间让学生自学,继而对自学内容中可能出现的问题及解答以提问的形式向学生提出并与学生共同讨论,经过多次锻炼,学生的自学能力会得到显著提高。授课教师还可以鼓励学生自己在课余时间选择一些教师讲解过的、自己认为已经理解的例题的解题过程再熟悉一遍。通过这些方法,不仅可以让学生自己发现学习过程中存在的问题、弄明白出问题的环节从而想办法解决,而且还能在无形之中提高学生的自学和独立思考的能力。
教师在课堂上留有一定时间,解答学生疑难问题,帮助学生及时消化课堂教学内容。这是因为教学中教师讲解之后,学生学习了基本理论,看懂了例题,不一定具备了分析问题和解决问题的能力。采取课堂指导练习的方式,给学生一定的练习时间,以便学生及时巩固所学的知识,这种讲练结合的教学方式,能调动学生学习的积极性,加深学生对课堂内容的理解。
3.3合理把握知识的深度
对于初等教育理科专业的学生,我们的培养目标不应该和数学系的学生一样,在知识深度上必须把握适当的度。在不放松基础教学大纲要求的基础上,对于性质、定理较难的证明应放弃,只做一些通俗易懂的解释。如果学生在数学学习中难题太多,本身又难以学会,学生常常产生畏难情绪,他们就会失去学好数学的信心和勇气。
关键词: 独立学院 高等数学 教学平台
一、问题提出
高等数学作为一门重要的主干基础课程是各类工程技术人才培养的基础,也是大学生科学素质教育的重要内容,是高等教育的重要组成部分,承担着培养创新型、复合型和应用型人才的重任。高等数学已经渗透到自然科学、经济、金融、社会等各个领域,高等数学的教学越来越重要。通过该门课程的学习,不但可以使学生具备学习后续课程所需的基本数学知识,而且可以培养学生的逻辑思维能力、运算能力,以及综合运用高等数学方法分析问题、解决问题的能力。因此高等数学课程的学习关系到学生在整个大学期间的学习质量,是整个大学教育的基石,也是终身教育的重要基础。
独立学院办学宗旨是培养应用型人才,为了培养学生的创新精神和动手能力,各学院将高等数学课程教学学时大量减少。针对这种情况,如何让学生在有限的时间高效地掌握高等数学的基本知识、基本数学思想,为学习其他学科打下扎实基础,为进一步推进课程教学改革,创新课程教学内容体系、教学方法、手段,切实提高人才培养质量,是所有高等数学教师迫切需要解决的问题。同时,随着网络技术的普及,利用先进的计算机技术、多媒体技术,实现校园网络化、资源数字化、管理科学化,已成为高等学校教育教学改革的重点。通过信息化与高等数学课程教学的融合,构建新型的教育教学模式,创造新的信息化环境和教育环境,以现代信息技术为技术架构的基于网络的高等数学教学服务平台建设为全面提高独立学院高等数学课程学习的整体水平,以及独立学院教育教学质量和人才培养质量具有现实意义。
二、独立学院高等数学教学平台建设现状
高等数学课程数字化教学资源建设从上世纪90年代开始起步,特别通过教育部在上世纪末和本世纪初组织的“96-750”项目和“新世纪网络课程建设工程”。到现在,国内已经构建了一个包括高等数学CAI、电子教案、多媒体学习软件、辅导系统、习题课学习系统、试题库、网络课程等资源体系。但目前该资源系统只是在教学软、硬件设施较好,办学成熟的一本、二本院校初步实施。目前,由于独立学院的教师紧缺,办学条件还不够完善,相应的软件、硬件设施还有待加强,因此针对独立学院学生特点制定的相应数学资源库很少;有部分院校建立了资源库,但也仅仅将高等数学的教学大纲、教案、习题、疑难解析、学习方法、实验指导等挂在静态的网页上。只是为教师、学生提供可下载的文档文件,也仅仅是放在“收集资源”上,这样的资源库无助于教师的教和学生的学,缺乏实用性。
三、独立学院高等数学教学服务平台建设的意义
针对目前独立学院高等数学的现状,恢复高等数学应有的活力和作用,使之真正成为大学生应该普遍具有的素质、知识和能力基础,以适应社会发展的需要,这是摆在我们面前极其重要的教学改革任务。同时,随着独立学院的不断发展,教学资源的不断丰富,师资力量的增加,为了提高学生学习高等数学的兴趣,充分调动学生学习数学的积极性与主动性,也为了进一步推动基础课教学改革,使得独立学院的基础课教学状况大为改观。基于目前独立学院现有的校园网络环境建立适合教师和学生需要的、合理的、可行的公共高等数学教学服务平台为师生提供优质的信息化服务是非常必要的。
高等数学课程信息化教学服务平台的研究和推广将体现了数字、网络等现代信息技术的发展对高等数学教学模式和学习方式的重大影响,其创新特点主要表现在:打破了传统高等数学教学的时空限制,学生可以自主安排学习时间和学习内容;以信息技术为手段,不仅使教师的辅导更具体,而且建立了师生交流、互动的平台;以学生为中心,使得教学模式由教师为中心转向以学生为中心,为其自主学习和个性化培养提供全面的服务;具有前沿性,教学服务网提供高等数学及数学学科前沿发展动态及新思想、新方法在各学科领域的应用,既提高了高等数学教师的理论水平和教学能力,同时又拓宽了学生的视野,激发了学习兴趣,极大地提高了学习效率。
四、独立学院高等数学教学平台建设内容
高等数学教学平台内容与教师教育教学工作及学生学习紧密相关,将开设资料库、教师信息化工作区、学生学习区和交流公告区。资料库有多媒体高等数学教学素材中心、优秀高等数学教学案例中心、试题练习中心、考试评价中心、教学论文中心、教学文献中心,现代数学中心,数学建模软件中心;教师信息化工作区以上述资料为主要材料,将教师所需要的资料汇集,供教师备课参考和下载,教师可以制定个性化课程,管理课程文件,课程公告,教学大纲,教学讲义,布置作业,讨论交流,解答学生问题;学生学习区提供有关的读书指导,电子课件,章节习题,期中期末考试模拟题、自测题,历年考研试题,数学建模竞赛题、数独趣味题等;交流公告区包括BBS讨论,常见问题解答,邮件答疑,在线答疑等互动学习交流功能。
五、独立学院高等数学教学平台的应用
高等数学教学平台运行机制是采用任课教师、学生及管理人员共同参与的运行机制,允许教师提供各种教学资料,并直接上网,保证内容的及时更新。高等数学教学平台的应用对于任课教师可以为学生提供图、文、声、像并茂的、丰富多彩的多媒体教学内容,并随时随地进行优化组合,从感官上对学生产生刺激,极大激发学生学习高等数学的兴趣,充分调动学生学习高等数学的积极性。
对于学生而已,由于高等数学教学平台资源库中存在丰富的高等数学教学信息,学生可以从中选择自己感兴趣的知识进行学习,拓宽自己的知识视野、提高自身的素质。学生可以浏览、欣赏教学资源库中前沿数学发展动态、新技术及伟大数学家逸闻趣事,为学生提供丰富教学信息同时也是作业课堂教学的补充,真正体现自主学习。
高等数学教学平台开辟了教学讨论区及答疑区,学生及教师及时网络交流产生一种新型的学习方式——协同学习。协同学习是新的学习和交流模式,对于独立学院师生而言处于探索阶段,是一个非常值得关注的课题。
总之,独立学院高等数学教学平台的建设是一个学习累积的过程,通过构建信息化与高等数学课程融合的教学平台,使教师教学的主要任务变为提供给创造最有利的信息环境,教会学生获取和加工信息的能力,使学生的学习在体现主体性前提下,强调探究式、协同学习的新模式,突出个性化和创新性学习行为。独立学院高等数学教学平台建设、推广与应用,将逐步缓解独立学院教学资源不足的矛盾,有力促进独立学院高等数学课程教学质量的进一步提高及人才培养质量。
参考文献:
[1]徐刚,李蕊.现代信息技术条件下高等数学课程数字化教学资源建设[J].高等数学研究,2005(11),51-54.
[2]林美艳,皇甫明.高等数学网络资源库建设的研究与实践[J].航海教育研究,2009(4),82-83.