前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能课程论文主题范文,仅供参考,欢迎阅读并收藏。
关键词:人工智能;深度学习;教学建议
0 引言
传统的人工智能课程主要包括人工智能导论、模式分析、机器学习、数据挖掘等。这些课程由各个院校根据专业情况不同而选择,课程的内容也有较大差别,但是,基本上都涉及人工神经网络的内容。然而在人工神经网络的教学内容上,一般只讲解经典的多层感知器和反向传播算法,或再加入一些反馈网络的内容,这种教学内容设计的一个不足是忽视了人工智能领域的最新发展——深度学习,它是近几年人工智能领域最具影响力的研究主题,并在大规模语音识别、大规模图像检索等领域取得突破。
北京邮电大学计算机学院开设人工智能科学与技术的本科专业,笔者从事深度学习的研究工作,同时承担了本科生和研究生人工智能类课程的教学工作,因此产生了将深度学习内容引人人工智能类课程的想法。本文先介绍深度学习的背景,说明深度学习在人工智能发展中的地位,之后分析了将深度学习基本内容引入人工智能类课程的必要性和可行性,最后给出了一些实施建议供探讨。
1 深度学习背景
2006年,加拿大多伦多大学的GeoffreyHinton教授与Salakhutdinov博士在美国《科学》杂志发表了题为“Reducing the Dimensionality ofDatawith Neural Networks”的论文,该文提出一种学习多层神经网络的方法,并将这种具有多层结构的学习方法命名为深度学习(Deep Learning),而这成为深度学习研究的一个导火索,从此深度学习的研究与应用蓬勃发展起来。
深度学习在语音识别与生成、计算机视觉等应用领域取得了突出进展。近几年的国际机器学会(International Conference on MachineLearning,ICML)、神经信息处理大会(AnnualConference On Neural Information Processing Systems,NIPS)、计算机视觉大会(InternationalConference on Computer Vision,ICCV)、
声学语音与信号处理大会(International ConferenceOn Acoustics,Speech,and Signal Processing,ICASSP)、计算语言学大会(Annual Meeting of the Association for Computational Linguistics.ACL)、计算机视觉与模式识别(InternationalConference on Computer Vision and P atternRecognition,CVPR)等都有不少相关的研究论文、会议教程和小组研讨会(Workshop)。美国国防高级研究计划(DARPA)也提出了关于深层学习的研究项目。此外,2013年6月《程序员杂志》的封面故事,采访了周志华、李航、朱军3位国内的机器学习专家对于深度学习的看法,他们一致肯定了深度学习在机器学习领域的贡献。
工业界对深度学习也寄予了很高期望。2012年6月,《纽约时报》报道了斯坦福大学计算机科学家AndrewNg和谷歌公司的系统专家JeffDean共同研究深度神经网络的机器学习模型在语音识别和图像识别等领域获得的巨大成功。2012年11月,微软公司在天津公开演示了一个全自动的同声传译系统,其关键技术也是深度学习。2013年1月,百度公司首席执行官李彦宏先生宣布建立深度学习研究院(Institute of Deep Learning)。2013年3月,谷歌公司收购了由深度学习创始人Geoffrey Hinton创立的公司。
从学术界与工业界的研究态势看,深度学习已经成为机器学习与模式识别,乃至人工智能领域的研究热点。正是在这样一个背景下,人工神经网络重新回到人们的视野。此前人工神经网络的发展大致可以分为两个时期,1943年,McCulloch和Pitts提出了最早的人工神经元,这种神经元具有学习能力,这是人工神经网络的发端,也可以被认为是人工智能的发端(当时还没有人工智能这个术语)。1949年,Hebb提出了Hebbian学习算法。1957年,Rosenblatt提出了感知器的神经网络模型。1969年,Minsky和Papert分析了这种感知器神经网络模型的局限性。然而,很多研究者认为,感知器的这种局限性对于所有的神经网络模型都适用,这使人工神经网络的研究很快暗淡下来。1980年代中期,诺贝尔奖得主John Hopfield提出了Hopfield神经网络模型,这种Recurrent神经网络具有的动态性有可能用于解决复杂的问题。同时,多层前向神经网络的后传算法也被重新发现,这两个工作使人工神经网络得到重生。这时,人工神经网络已经成为人工智能的一个重要组成部分。但是,在随后的研究中,人们发现,当学习多层神经网络包含更多的隐藏层时,后传算法并不能学到有效的网络权值,这使得神经网络的研究再次陷入低潮。此次以深层神经网络为代表的深度学习重新回到研究的舞台,其中一个重要因素是Hinton提出的逐层预训练神经网络方法治愈了多层神经网络的一个致命伤。
2 必要性与可行性
深度学习的发展使得从事教学一线的教师也无法忽视这个颇具影响力的研究主题。为此,我们提出将深度学习这个主题引入到人工智能类课程中,将它作为课题教学的一部分。
2.1 必要性
将深度学习这个主题引入到人工智能类课程中的必要性主要包括如下4点。
1)深度学习是人工智能的前沿。
2006年以来,深度学习的研究席卷了整个人工智能,从机器学习、机器视觉、语音识别到语言处理,都不断涌现出新的研究工作和突破性进展。深度学习不仅在机器学习领域成为研究热点,同时在多个应用领域也成为有力工具,而且,在工业界的系统应用中,深度学习成为其中的关键解决技术。
2)深度学习是人工智能的突破。
深度学习的发端是神经网络。关于神经网络的论述,在人工智能类常见教科书中还停留在多层神经网络,即神经网络的第二阶段,它们大部分描述多层结构无法训练的现象。但是,从深度学习的角度看,深层神经网络不仅可学习,而且有必要,这与第二代神经网络的观点是完全不同的。深度学习突破了原有人工神经网络的认识,超越了人工智能神经网络教科书中的原有内容,因此,有必要将多层神经网络结构的可学习性告知学生,从新的视角纠正原有的观点。
3)深度学习是人工智能的延伸。
深度学习不仅提供了一种可以在深层神经结构下训练网络的方法,也包含了不少新的内容,是人工智能的新发展,为人工智能补充了新的内容。到目前为止,深度学习至少包括:从生物神经网络与人类认知的角度认识深层神经网络的必要性;如何构建和学习深层学习网络;如何将深层结构用于解决视觉、语音、语言的应用问题;如何看待深度学习与原有的机器学习方法,如流形学习、概率图模型、能量模型的直接关系;深度学习与其他学科的关系等。
4)深度学习是学生的潜在兴趣点。
大学生对知识有着强烈的好奇心,加之当前信息技术的发达,部分对智能感兴趣的学生可以从其他途径了解到这个学科发展的前沿。因此,顺势而为,将深度学习这个主题做具体讲解,满足学生的好奇心,培养他们对学科前沿与发展的认识,是十分必要的。对高年级的学生而言,了解深度学习的基本知识,是他们全面认识人工智能与发展前沿的一个途径,而对于研究生,较多地了解和掌握深度学习的基本知识有助于他们研究工作的开展。
基于以上几点,笔者认为,将深度学习这个主题引入到人工智能类课程中非常有必要。深度学习作为人工智能的前沿,既是对人工智能原有理论和技术的一个突破和补充。
2.2 可行性
将深度学习引入到人工智能类课程中的可行性主要包括如下3点。
1)深度学习与现有人工智能联系密切。
深度学习并不像突兀的山峰拔地而起。而是深深植根于原有的人工智能理论与技术。深度学习是以神经网络为出发点,这正是深度学习教与学的切入点。比如,可以通过对多层感知器隐藏层的增加和后传算法的失效来讲解深度学习是如何解决这个问题的。再者,深度学习的一个核心构建“受限波尔兹曼机(Restricted Boltzmann Machine)”,可以被认为是一种能量模型,而这种模型与Hopfield网络都可以从物理学的能量模型角度分析,RBM可以认为是Hopfield网络的随机扩展。总之,深度学习与现有人工智能的联系,使学习深度学习变得容易。
2)深度学习的基本内容并不深。
深度学习有个很好的名字,这个名字恰当地描述了特定的学习结构。比如,深度学习的核心部件受限于波尔兹曼机RBM,其结构非常简单。从神经网络的角度,受限波尔兹曼机是一种随机的双向连接神经网络,信号可以从可见层传递到隐藏层,也可以从隐藏层传递到可见层。网络中每个节点是具有特定结构的神经元,其中的神经元具有典型的包含自身偏置的Logistic函数的随机单元,能够依Logistic函数计算得到的概率输出0状态或1状态。概括地说,深度学习的基本内容在高年级阶段较易掌握。
3)深度学习的资料容易获得。
当前的信息资讯非常发达,有相当多的资料可以通过互联网等多种途径获得,这使学习深度学习成为可能。近期,中国计算机学会主办了多个技术讲座均涉及深度学习的部分;深度学习的创始人Hinton教授的主页也有很多资料;Coursera网站有免费的Hinton教授的神经网络课程;斯坦福大学的Ng教授提供了很多的在线教程;蒙特利尔大学Bengio教授发表的题为“Learning Deep Architectures for AI”的论文也是这领域的优质资料。
3 实施建议
在具体的教学过程中,笔者建议适当安排深度学习的最基本内容,内容不宜过多,也不宜占用过多的学时,可以根据教学对象的不同进行调整。比如,本科生的高年级专业课可以安排1学时的教学量,介绍层次训练的基本算法;也可以在高年级前沿讲座中安排2学时,内容覆盖面尽可能广泛。在研究生的教学中,可以根据教学的课程主题安排内容与学时。比如,神经网络主题的课程可以安排4-6学时的教学内容,包括波尔兹曼机及学习算法、深层信念网络与学习算法、深层波尔兹曼机与学习算法卷、积神经网络、自动编码器等。结合应用,课程还可以包含MNIST数字识别的应用、人脸识别的应用、图像检索的应用、语音识别中的应用等。另外,深度学习是一个实践性很强的研究,随机性:大规模(意味着数据不宜可视化,程序运行时间长)等多种因素混合,使深度学习在学习中不容易理解。为此,可以在条件允许的前提下,增加小规模的实验,辅助理解。最后,课件可以通过对优质资料做修改得到。
美国麻省大学(University of Massachusetts Amherst)阿默斯特校区(以下简称麻省大学)是马萨诸塞州立大学系统五个校园中的主校园,是美国知名的研究型大学。该校创办于1863年,坐落在美国东部美丽的新英格兰地区。
麻省大学计算机系成立于1964年,其研究生教育也有超过40年的发展历史。由最初的3名教授发展到现在拥有43名教授,其中包括9名ACM计算机学会(Association for Computing Machinery)院士(Fellow)、4名电子和电气工程师协会(IEEE)院士、5名人工智能学会(AAAI)院士和2名美国科学促进协会(AAAS)院士。麻省大学计算机系在人工智能、网络与分布式系统、计算理论等多个领域的研究处于世界领先水平。作为美国知名的计算机系,麻省大学计算机系的教育理念是“培养下一代能以创新的方法解决真实世界问题的计算机科学家”(cs.umass.edu/grads/msphd-requirements)。在这个核心思想的指导下,该系非常注重对博士研究生的培养,为了达到培养学生具备进行原创性科学研究(Original Research)的能力的教育宗旨,该系制定了一套非常严格的课程计划,以培养学生坚实而广博的基础知识、良好的科学研究方法和思维习惯。麻省大学计算机系每年大约会收到1000份左右来自世界各国的优秀学生的申请,攻读其博士学位,而录取的人数一般保持在30名左右。完善和严格的博士研究生培养体系、开放而先进的教育理念,使麻省大学计算机系成为全美最具有竞争力的计算机院系之一。
麻省大学计算机系招收两种形式的博士研究生:硕士/博士连读研究生和直博研究生。只有在美国其他大学获得相应计算机硕士学位,并修完麻省大学计算机系认可的相关课程的学生,才有资格申请直接攻读博士学位;否则,学生在录取后必须经过硕士/博士的连续培养才能获得博士学位。
无论哪种形式,麻省大学计算机系博士生培养大体分为两个阶段:博士生资格学习阶段和博士生研究阶段。博士生资格学习阶段主要是对学生进行基础知识培养和基本研究能力训练。学生只有在通过博士资格考试论证,成为正式博士候选(PhD Candidate)人后,才能进入下一步的博士论文研究阶段学习。以下是麻省大学计算机系对硕士/博士研究生的培养要求:
(1)Actively participate in research under the guidance of an advisor(在导师的指导下,积极参与研究)
(2)Satisfy 6 Core Requirements (完成6门核心课程的要求)
(3)Complete 42 course credits (core courses taken to satisfy core requirements are included)(完成42个课程学分,其中包括核心课程的学分)
(4)Complete a 6-credit MS Project (完成6个学分的硕士研究项目)
(5)Graduate with an M.S. Degree(申请获得硕士学位)
(6)Pass the Department Qualifying Exam- Portfolio(通过博士资格考试)
(7)Form a Committee(成立答辩委员会)
(8)Propose a Thesis(提交博士开题报告)
(9)Complete 18 Dissertation Credits (完成18个学分博士论文)
(10)Pass the Teaching Assistant Requirement(完成助教的工作要求)
(11)Pass the Residency Requirement (at least 9 credits in back-to-back semesters) (完成连续两个学期修9个学分的要求)
(12)Defend and Submit a Thesis (博士答辩和提交博士论文)
本文将以麻省大学计算机系为例,探讨美国计算机专业博士研究生培养的一个重要环节――博士研究生课程教育体系的特点,以期为提高我国的计算机专业博士生教育提供借鉴。
2掌握牢固的理论知识是培养优秀博士生的基础
美国的计算机博士教育非常注重对学生基础理论知识的培养,为了使学生掌握牢固而广博的基础知识,麻省大学计算机系要求每个硕士/博士研究生必须修完6门博士核心课程,而且成绩必须达到B+以上。这些核心课程分别属于计算机科学的三大领域:理论(Theory)、系统(Systems)和人工智能(Artificial Intelligence),课程设置具体如下:
(1) 理论核心课:计算理论(Computation Theory)、高级算法(Advanced Algorithms)
(2) 系统核心课:有三组课程,分别是:
编译技术(Compiler Techniques)、现代计算机体系结构(Modern Computer Architecture)
数据库设计和实现(Database Design and Implementation)、高级计算机网络(Advanced Computer Networking)、操作系统(Operating Systems)
高级软件工程I(Advanced Software Engineering: Synthesis and Development)、高级软件工程II(Advanced Software Engineering: Analysis and Evaluation)、程序设计语言(Programming Languages)
(3) 人工智能核心课程:高级人工智能(Artificial Intelligence)、机器人学(Robotics)、信息检索(Information Retrieval)、不确定环境下的推理(Reasoning and Acting under Uncertainty)、增强型学习(Reinforcement Learning)、机器学习(Machine Learning: Pattern Classification)
根据不同的研究方向,学生可以在六门核心课程的选择上有所不同,但为了加强理论基础和掌握知识的广度,无论哪个研究方向的学生,都必须修完两门理论核心课程和一门高级人工智能课程,同时,再根据自己的研究方向选修其他三门核心课程。例如,一个系统方向的博士研究生除了修完以上两门理论和一门人工智能课程以外,还必须修完来自于系统方向不同组的三门系统方向的课程;而一个人工智能方向的博士生则必须修完另外两门人工智能方向的核心课程和一门系统方向的核心课程。
每门核心课程由教师讲授一学期,其中每星期2次课,每次2小时,3个学分。根据内容不同,每门课程一般要安排5~8次书面作业、1次期中考试和1次期末考试。其中,对系统方向的课程来说,每个章节完成后一般还有一次课程项目设计(Course Project),主要要求学生实现相应的算法和进行性能评价。由于核心课程要求高,课程学习内容多,导师和系里会建议学生每学期选学不超过一门的核心课程,所有6门核心课程则在三年内完成。如果成绩没有达到B+,麻省大学计算机系允许学生重修该核心课;但是,如果学生在规定的博士资格考试申请时间前没有通过全部的6门核心课,则不再具备继续攻读博士的资格。
严格的核心课程作业、考试制度和淘汰制度,不但使学生牢固掌握了计算机科学各领域的基础知识,培养了学生勤奋刻苦的专研精神,而且极大地丰富了学生的视野,为学生进入实际科学研究打下了坚实的基础。
3灵活而完善的博士生选修课程体系是培养创新型人才的重要途径
美国一流研究型大学博士生教育的目标是培养世界一流的科学家和拔尖创新型人才,为了实现这个目标,美国的博士生教育除了注重培养学生扎实和精深的基础知识外,还非常注重培养学生的创新思维和发现新问题的探索精神及能力。
如果核心课程体系的设置是培养优秀博士生的基础,是向学生传授学科领域的重要基本知识和原理与技术,是学生全面掌握计算机基本理论与方法的重要途径,那么,选修课的设置则是对学科基本知识的补充,是培养学生学习新的知识和了解并探索前沿研究方向,从而成为创新型人才的重要手段。
麻省大学计算机系的做法是,在博士研究阶段,除了要求学生完成18个学分(6门)的核心课程学习以外,还要求完成24个学分(8门)的非核心课程(或称为选修课)学习。这些选修课大多是关于本学科及相关专业前沿领域近3~5年的新研究方向、研究方法或新技术的相关内容的介绍,一般由教师在每学期开学前提出新的课程计划,学生则根据自己的研究兴趣和职业目标自由选课。通过课程的学习,学生能在最短的时间内了解本学科相关领域的最新研究现状,更重要的是,在课程的学习过程中,教授会将许多新出现的问题在课堂上和学生讨论,同时,通过2~3个课程项目培养学生独立(或合作)解决新问题的能力,以及教会学生各种探索问题的研究方法。
在教学模式上,可以采用由教授主讲的传统方式,也可以采用以讨论为主的方式。以教授为主讲的教学模式在此就不再赘述,以下着重描述以讨论为主的选修课教学模式。
以讨论为主的Seminar是美国计算机院系的教授最常用的选修课教学模式。Seminar的课程设置没有固定模式,但通常有以下几方面的特点。
第一,课程的选题一般是近年新出现的有代表性的前沿研究课题。
第二,课程内容的选择一般来自近年来该领域顶级国际会议的专题论文。
第三,课程内容的组织由教师完成。教师在确定题目后,一般会根据论文的情况将讨论的内容分为多个子专题,每个子问题由3~4篇论文组成。课程的开始一般是综述性的论文或在该领域出现的最早的学术论文,其目的是探讨该研究方向出现的新的应用背景需求和所带来的新的挑战。其后的每个子专题则将对具体问题和方法进行深入探讨。
第四,选课的学生人数一般在20~30人左右,而且通常是由学完了核心课程以后的高年级博士生组成。学生人数太少,论文的覆盖面可能太小;学生太多,可能导致讨论的深度不够。同时,只有学完了基本理论后,学生才有可能具备较深入分析问题的能力。在Seminar的学习讨论中,找到新的研究问题也是该课程设置的重要目的之一。
第五,课堂教学的模式基本上是教师和学生互动的教学方式。教师在第一节课引导学生对该领域的基本问题有了初步认识后,学生将对每篇论文进行评估(Review)、宣讲(Presentation)和进行课堂讨论。每篇论文的宣讲时间是25~30分钟,课堂讨论时间是10~15分钟。其中教师将引导学生对论文中所研究的问题和关键技术进行深入讨论,学生参与讨论的情况将作为课程考核的重要依据。
选择合适的题目并对教学讨论的内容(论文)进行筛选和组织对开课教师的要求非常高。为了准备一门新的Seminar课,教师一般需要预先通读该研究方向所有重要国际会议的相关论文,然后根据不同的研究问题对论文分类,并将其中有代表性的论文提炼出来,作为课程学习的论文。在课程项目的设置上,教师会事先准备一些题目,如对某些算法的实现、评估和改进,实现原形系统等,同时也非常鼓励学生在论文讨论的过程中有针对性地提出自己的见解和新的解决问题的方法。
4合理的课程学习安排是培养高质量博士生的有效保证
美国的博士教育是以博士生的最终质量为评判标准,而不是以年限来规定学生的毕业时间。在美国计算机专业,培养一个硕士/博士生一般需要至少5年时间。由于强调博士生专业知识学习的深度和广度,在整个博士学习阶段,博士生都会积极参与课程的学习,并尽可能地将研究项目中的问题和课程学习联系起来,用所学到的方法或思路来解决新问题。
以麻省大学计算机系为例,虽然学生的背景不同,但为了在保证质量的前提下帮助学生用最短的时间顺利完成博士课程要求和博士论文要求,系里建议学生按如表1所示的时间表安排整个博士阶段的学习计划。
麻省大学计算机系不但在本系有完善的研究生课程体系,学生可以根据自己的研究兴趣和职业规划来自由选课,而且也鼓励学生在其他相关院系选修本系没有开设但对研究有用的课,如数学系或电子工程系的高级课程。总之,美国博士教育的一个重要特点是强调基础知识的学习,鼓励学生以积极的态度参与到课程的学习中,同时训练学生在课程学习的过程中逐步学会发现问题和研究问题的方法。
5启示和建议
美国的博士教育强调坚实的基础理论知识、完善的知识体系和用于探索与创新的研究能力,而这些恰恰是决定博士毕业生日后发展潜力的关键。长期以来,我国计算机博士教育主要是通过参与科研项目的形式来对学生进行培养,这种“研究项目驱动型教育”在我国恢复研究生教育的初期起到了很好的推动作用,培养了大批科研人才。但随着教育本质的回归和创新型人才培养的需要,从总体来看,我国的这种单纯强调研究项目的教育模式培养的博士生,质量与国际先进水平相比还有一定的差距。由于没有严格的博士课程要求和淘汰制度,学生在学习阶段往往会忽略对基础知识的学习和对知识结构的完善。长此以往,必然会影响博士生的研究水平和发展潜力,最终将会影响国家的整体创新能力。
笔者建议,为了使学生掌握牢固的专业基础知识,同时培养学生在某一学科领域的研究兴趣和基本的研究能力,应该首先强调核心课程体系的建设,不论哪个方向的学生都必须通过一定数量的核心课程的学习,如算法、分布式操作系统、人工智能等,这些核心课程应由教师来讲授;同时,应严格课程的考核制度和课程评价体系。对于选修课,由于其主要目的是扩展学生的视野,培养学生分析问题和研究问题的能力,所以应借鉴国内外Seminar课程的成功经验,积极有效地激励教师和学生共同上好Seminar课。
博士生教育是一项复杂而艰巨的系统工程,而其中的课程学习是研究生培养中非常重要的一个环节,如何通过严格的培养机制和灵活的培养方法,在给学生传授基础知识的同时培养学生分析问题和解决问题的能力;如何将合理的研究生课程体系和研究项目结合起来,严格博士生培养机制,完善博士生资格评估体系,从制度上保障博士研究生的质量;以及如何真正教会学生探索科学基本问题的方法,培养学生良好的科研习惯和勇于开拓创新的精神等,是我们在计算机学科建设中应该进一步思考的问题。
关键词:人工智能;选修课;专题讨论
中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2012)12-0053-02
一、引言
《人工智能》是一门跨学科的课程,它的内涵十分丰富,包含了符号学、数理逻辑、神经网络、遗传算法、知识表示和推理、模式识别、机器学习等方面的知识,并且内容抽象,使得一般本科生望而生畏。目前在大多数院校里尤其是二本院校,《人工智能》只是作为一门选修课程。既然是作为选修课程,我们可以不拘泥于传统的教学方式,采取灵活多样的教学形式,培养学生研究这个领域的兴趣,使得学生既能掌握人工智能领域的基础理论,又能了解目前人工智能的前沿课题,扩大知识面,并为今后的研究打好基础。
二、改革教学方法
在传统的教学模式里,教师往往就一本教材从头到尾讲授给学生,教师讲什么,学生就听什么。但是人工智能涉及太多的数理逻辑推理知识,内容抽象,讲解起来不免有点枯燥无味,学生的兴趣就会随着讲课的进程逐渐变得淡薄。另一个问题是在传统的教学模式下,学生接触不到该研究领域的前沿问题。事实上,随着科技的进步,人工智能技术也在不断发展,再加上人工智能本身的特点,即它是一门交叉学科,涉及计算机科学、信息科学、控制科学、认知学、生物学、哲学等等领域。因此当学生了解了当前国内外学者所研究的前沿课题,这样不仅能克服“枯燥无味”的问题,而且会拓宽他们的知识面,从而他们可以将自己所学专业作为人工智能的潜在应用或研究领域。基于以上分析,考虑到人工智能是适合任何专业学生学习的一门选修课,我们设立分专题讲授模式,这些专题包括:人工智能与类人思维,人工智能与机器进化,人工智能与知识表示,人工智能与决策规划等等。下面分别叙述之。
1.人工智能与类人思维。什么是人工智能?Nilsson指出:“人工智能是关于人造物的智能行为,而智能行为包括知觉、推理、学习、交流和在复杂环境中行为。人工智能的一个长期目标是发明出可以像人类一样或更好地完成以上行为的机器……”那么为了这个长远目标,我们应该深入地探讨人类大脑是如何思维的,或者说是如何思考问题的,人类是如何感知、理解以及应付外界庞杂的世界。只有深刻理解了人脑功能原理以后,人工智能才能“贡献出”相应的类人思维模型。这相当于空气动力学,人类飞行器只是根据空气动力学的原理构造的,它并不要求人类制造像鸟儿一般的飞行工具。因此在这部分教学过程中,可以先提出“大脑是如何思维的”问题,让学生自己动脑思考,相互探讨:人脑的结构是什么?人类思考问题分层次吗?什么是智力?智力的本质是什么?……课后,学生可以带着这些问题查阅资料文献,分组讨论,甚至可以写一些文章来阐述自己对思维的理解。这样既充分调动了学生学习的积极性,又培养他们的兴趣。然后,我们在课堂上进行具体讲解,讲解内容自然而然地引入了人工智能的定义,人工智能历史知识,图灵测试方法以及认知模型方法,接着再介绍目前国内外类人思维模型的研究现状。这样的教授过程,一开始就使得学生不排斥这门课,在了解人工智能基础知识外也接触到认识论方面的知识,培养了学生查阅文献和撰写科技论文的能力。
2.人工智能与机器进化。这部分专题主要给学生讲解遗传算法方面的知识,比如遗传算法的产生与发展,遗传算法的基本操作,遗传算法的应用情况。并且在教学过程中结合实例来讲述。实例可以从最基本的简单函数优化到复杂的旅行商问题。学生可以自己设计函数优化的解决方案,指出初始种群大小、进化代数、交叉率等因素对求解结果的影响,并要求学生自己编写程序来分析和理解这些问题。这些实验和设计极大地提高了学生的动手能力。
3.人工智能与知识表示。知识表示可看成是一组描述事物的约定,在人工智能里,它研究怎样把“人类知识”表示成机器能处理的数据结构。经典人工智能的主要表示方法有:一阶谓词逻辑表示方法,这是最基本的表示方法,具有严谨的公理体系;产生式规则表示方法,这是使用最广泛的表示方法;语义网络、框架、脚本表示方法,这是结构化的表示方法,等等。但是学生在学习这部分的知识时,对于逻辑推理觉得非常枯燥无味。我们的想法是在介绍这部分的知识时,不仅透彻阐述各种表示方法的精神实质,而且建议学生阅读Sowa所编著的《知识表示》一书,该书提供了知识表示方面广泛的知识,是这一领域的公认权威著作。Sowa在介绍新思想的同时捕捉到这一领域的最新成就,并且将逻辑学、哲学、语言学和计算机科学结合到知识表示,并将其转换为可计算形式。该书中还包含了大量的哲学和语言学的知识,阅读该书可以使得学生知识面得以拓宽,加上该书目前没有翻译版本,鼓励学生阅读英文原著,对学生各方面能力的提高都有所帮助。
4.人工智能与决策规划。在决策规划中,着重介绍增强学习、偏好理论等基础知识,由于我们在这个方面上做了许多工作,因此在讲解时联系自己的研究进行一些专题探讨,例如双马尔科夫过程决策模型,协同算法,超滤偏好模型,朴素描述逻辑在中医理论上的应用等等,并欢迎学生和我们共同研究这些专题,这样做无疑会增加师生之间的学术交流,促进学生的研究兴趣,形成良好学术氛围。
5.丰富多样的教学形式。除了以上的专题外,还可以开设其他的人工智能专题。事实上可以针对不同专业的学生确定专题的内容和形式。例如对于工程类的学生,可以着重讲述神经网络,进化计算等方面的内容,并且借助于Matlab提供的相关工具箱进行实验设计。因为大多数工程类的本科生都学习过Matlab语言,该语言在科学研究和工程实践中应用广泛,在教学过程中也要充分发挥这些优点。如是文科类的学生,教学方面可以着重讲述人工智能的符号学,哲学等方面的知识,这让文科学生从另一个角度去理解人工智能。课堂上,充分利用多媒体教学,采取多样的教学手段,激发学生的兴趣和好奇心。还可以播放国际机器人大赛等录像片段,增强课堂的教学效果。
三、结束语
总之,将人工智能分专题来讲授,让学生立刻能接触到当前人工智能的前沿研究问题,并且领会其中的实质。再加以多元化的教学手段,使得学生好学,乐学,更好地实现教学目标,提高教学水平。
参考文献:
[1]Nils J. Nilsson,著.人工智能[M].郑扣根,庄越挺,译.北京:机械工业出版社,2004,6.
[2]John F. Sowa.Knowledge Representation:Logical,Philosophical,and computational Foundations[M].北京:机械工业出版社,2003,6.
[3]韩丽娟,孙玉红,李圣君.《人工智能》教程改革初探[J].电脑知识与技术,2007,(13):222-223.
[4]冯爱祥,罗雄麟.本科“人工智能”课程的教学改革探索[J].中国电力教育,2011,(10):111-112.
[5]李春贵,王萌,何春华.基于案例教学的“人工智能”教学的实践与探索[J].计算机教育,2008,(9):53-54.
[6]曾安,余永权,曾碧.人工智能课程教学模式的探讨[J].江西教育学院学报(综合),2006,27(6):40-43.
[7]王蓁蓁,邢汉承.拟人类思维的形式结构数学模型[J].智能系统学报,2008,3(6):529-535.
【关键字】人工智能;课程改革;高中;信息技术;课程实施
【中图分类号】G420 【文献标识码】A 【论文编号】1009―8097 (2008) 10―0043―04
教育部在2003年颁布的高中信息技术新课程标准中,首次把“人工智能初步”设置为选修模块,与多媒体、网络、程序设计、数据库技术等一起列入信息技术课程体系[1]。此举曾被视作信息技术课程改革的亮点之一。然而,在如今高中信息技术新课改已经全面铺开之际,人工智能选修课程的推进仍然举步维艰,面临诸多困难和问题。
一 高中人工智能课程的现状分析
自2004年我国部分省级实验区开始推进高中新课程改革以来,信息技术课程改革已经开展了四年之久。从目前的总体情况来看,信息技术课程的基础模块与多媒体技术、网络技术、算法与程序设计三个选修模块的实施情况较好,而数据库技术与人工智能初步两个选修模块的推进情况相对不佳。特别是人工智能课程,至今在全国范围内正式开设该课程的学校寥寥可数,少数高中展开了一定的探索和实验,而大多数学校仍持有观望态度。以下分别从实施取向和实施层次的角度分析该课程的现状:
(1) 课程实施的取向
由于我国长期以来实行的是全国统一的课程与教材,按照统一规定执行教学计划,对学校和学生的评价也是按照统一标准与方式实施的,因此我国以往的课程实施基本上都采用了忠实观的取向[2]。本次新课改中信息技术课程的实施过程难免受到这种取向的影响。然而,新课程标准中对信息技术技术各个模块的具体实施并没有明确而详细的规定,从而使教师对包括人工智能模块在内的课程实施缺乏长期惯于依赖的参照和依据,增加了课程实施的难度,造成部分模块的课程难以开设的情况。
(2) 课程实施的层次
课程实施包括五个层面的变化,即教材的改变、组织方式的改变、角色和行为的改变、知识与理解的改变、价值的内化[3]。目前高中人工智能课程在教材改变的层面已经做出了一定的努力。在课程标准的指导下,现已出版的五套教材在体例、版面、学习活动、评价等方面进行了多样化的设计,基本上贯彻了新课标所倡导的课程目标和理念。在组织方式的层次,少数已经开设人工智能课程的学校结合学生的兴趣与学校的实际情况,有针对性地开展了课程的组织。然而,仍然有一些地区或学校不愿或不习惯打破原有的课程组织方式,而是采用硬性规定的方式,人为指定两三门课程,将选修变为必修,限制学生的自由选择,依然维持原有的固定班级授课的形式。教材的改变仅仅是课程实施的开始,在组织方式、角色或行为、知识与理解、价值等层次,大部分学校还未发生变化或变化还很小。
(3) 课程实施的典型个案
目前国内开展人工智能课程教学或实验的典型学校如表1所示。总体来看,这两所学校都地处东南沿海地区,且学校本身比较积极参与高中新课改的实践探索,属于“敢于吃螃蟹”的类型。考虑到课程本身的要求较高,两所学校都选取了基础较好的学生开展教学。到目前为止,两所学校均已开展了三期的教学或实验探索,任课教师及时总结教学心得体会,并在相关教学刊物或课程研修活动中与广大一线教师分享教学经验。
二 高中人工智能课程的影响因素
根据Snyder的研究,可以把课程实施的影响因素归纳为四个方面:课程改革自身的性质、校区的整体情况、学校的水平以及外部环境[4]。结合高中人工智能课程的现状,本文分别从以上四个方面来探讨影响该课程的主要因素。
(1) 课改自身的性质
课程改革本身的性质是影响课程实施的第一要素。它包括课程改革的必要性及其相关性、改革方案的清晰程度、改革内容的复杂性以及改革方案的质量与实用性。结合信息技术新课程改革的相关调查研究,广大信息技术教师和教研人员对课改的必要性应该认识得比较到位,然而他们对信息技术课程中是否有必要单独开设人工智能模块存有疑惑。其次,不少教师对课程改革方案(课程标准)的认识并不是非常清晰。他们认为新课程标准中的教学理念、实施建议等内容相对抽象,不易把握和理解,缺乏具体的针对性,可操作性不强。再次,人工智能课程的实用性相比其他模块并不明显,课程内容也相对难度较高。这些因素造成课程设置的必要性不强、实施难度大、实用性不高,直接影响人工智能课程在学校的顺利设置。
(2) 校区的整体情况
校区的整体情况主要包括地区的适应性、地方管理部门的支持、教学队伍的培养、教学研讨和交流等等。各地区对课程改革的需要程度会直接影响人们实施课程的积极性和主动性。我国东西部地区的学校对课程改革的需求程度不同,从而造成了课程实施的地区差别。从目前开设人工智能课程或教学实验的学校来看,均分布于东南沿海较为发达的地区。这些学校的共同特点是基础条件较好,对课程改革的积极性高,敢于进行教学尝试和革新。此外,地方管理部分的支持对课程实施也有很大影响,如广东省为了推动信息技术课程改革,专门出台了关于课程标准的教学指导意见[5]。其中强调“要特别注意人工智能初步”,并针对人工智能课程提供了较为具体的教学建议,从而促使该省出现了全国最早正式开设人工智能课程的学校。师资队伍也是影响课程的因素之一。目前大多数高中缺乏熟悉人工智能课程内容和教学方法的专业教师,使得学校无法开设该课程。因此,有关人工智能课程的研讨和学习交流显得尤为重要,然而目前这些方面的活动总体上相对缺乏。
(3) 学校的水平
学校水平对课程实施的影响因素包括校长的作用、教师的个人特征和教师集体的行为取向。学校是课程改革的基本单位,校长和教师是学校课程改革的动因。校长对课改理念的理解,以及对课改的支持、参与程度都会影响课程的顺利实施。校长通常会根据上级主管部门的意见,结合本校的实际情况,权衡课程改革可能对学校形成的各种影响。在高考的影响下,信息技术课程在高中各科中长期存在地位“低人一等”的现象,甚至出现课时常被“侵占”的现象。如果校长对信息技术课程本身不重视,那么要求学校开设人工智能选修课无疑是一种奢望。此外,一所学校教师个人和集体的改革意识的强弱也会影响课程的实施。从人工智能课程的现状来看,恰好印证了这一点:改革意识强的教师个人或教研组即使没有上级的硬性指令,也能积极展开各选修模块的教学尝试和探索,并自觉地从教学者成长为研究者,而思想保守的学校即使具备了课程实施的基本条件,也不愿积极开设相关的选修课程,长期停留于课程的“忠实执行者”的层次。
(4) 外部环境
外部环境因素主要包括政府部门的重视、外部机构的支持以及社区与家长的协助。各国课程改革的经验表明,教育行政部门和相关机构的态度在很大程度上影响到新课程的顺利实施。特别是我国长期以来受到前苏联教育模式的影响,课程改革通常是自上而下的模式,新课程的实施主要依靠各级政府教育行政部门的政策和指令的推动。本次新课程改革同样继承了这一模式,但是整个教育体制和评价体系未能及时进行相应的调整,因此在某些方面造成各级教育部门的政策抵触,出现“上有政策、下有对策”的情况。此外,社区与家长对新课改的认识和态度也影响到人工智能课程的实施。研究表明,社区与家长更加关心的是新课改是否有助于提高学生的学业成绩,是否会给学生造成更大的负担,而对学生能力的全面发展和个性的培养则是其次的考虑。因此,要使社区与家长认识和了解课程改革的意义和目标,引导其关心新课程、支持新课程才能更好的促进新课改的健康发展,进而才可能使得包括人工智能在内的高中各科选修模块得以全面开设与实施。
三 高中人工智能课程的反思
通过调查访谈以及与相关授课教师的交流,笔者了解到高中人工智能课程的教学情况和教师的经验体会。总体来说,该课程的推进情况不如预期理想,需要从课程的设计、管理、教学以及评价等方面进行反思。
(1) 课程设计
本次高中信息技术课程改革将原来的一门课程分解为1个必修模块和5个选修模块,从而给学生提供多样化的选择。“人工智能初步”选修模块是作为智能信息技术处理专题设置的,以反映信息技术学科的发展趋势,体现教育的时代性要求。课程设置的目的在于使学生在技术掌握与使用的过程中,逐渐领会信息技术在现代社会中的应用以及对科学技术和人类发展的深远意义[6]。然而,以上的描述更多是该模块的隐性价值,相比其他模块该课程的显性价值并不是很直观。而一线的信息技术教师较多关注的是该课程的显性价值:课程能给学生带来些什么?学生的实践能力能否有较大提高?教师们在没有找到一个合理的价值依托之前,一般不会贸然开课。这一点值得课程设计者和教研人员的深刻思考。
通过网络问卷调查,不少教师认为人工智能课程在高中开设是有一定必要性的[7],但并不意味着所有的学生都需要学习该课程。课程应面向对人工智能有一定兴趣的学习者,且最好有一定的基础。事实上,相对于其他选修模块,选择人工智能课程的学生并不是很多。因此,结合我国目前的情况,可以考虑优先在发达地区条件较好的部分学校开设,再进一步利用其示范作用,以点带面,逐步铺开培训、指导、交流的规模和影响面,积极稳妥地推进高中人工智能课程的建设。
(2) 课程管理
课程的有效管理有助于提高课程实施的质量。上个世纪90年代以来,我国的中小学课程由原来的中央集权管理体制逐步转变为国家、地方、学校的三级管理体制。国家负责课程的总体规划,省级教育部门结合本地区实际制定课程计划或实施方案,而学校也将有权根据学校传统或学生兴趣开发适合本校的课程。目前人工智能课程虽然已被列入国家课程标准,但在地方管理层面并未得到应有的认可。部分地区考虑到高考因素,直接将人工智能模块排除在学生的选择范围之外,无疑成为阻碍该课程顺利实施的一个重要原因。
目前我国高中了解熟悉人工智能教学内容、方法的教师十分缺乏,相关教育主管部门需加强该课程的师资培养,邀请教材编写人员和相关专家,积极开展各级培训、研讨和交流活动,以务实的态度来听取学科教师的意见,为他们提供一些明确的、可操作的指导和建议。也可以开展优秀教学案例的征集和评奖,通过公开课的观摩和点评活动,或吸纳中学教师参与有关课程改革和教学研究的课题,以此提高教师参与改革的积极性。此外,国内高等师范院校信息技术相关专业应该对新课改作出及时的反应,针对高中信息技术各选修模块为师范生开设相关的课程,为课改的成功实施提供后备师资力量的支持。
(3) 课程教学
从已开展的人工智能课程教学或实验情况来看,主要的教学体会包括:教学对象选取时要有针对性,不宜硬性指定,应结合学习者自己的兴趣和学习基础供其自由选择;由于课程的理论和技术的要求较高,不宜大量采用“讲授法”进行教学,应设计一些有挑战性的活动供学生实践;为保证教学进度有序进行,可通过课堂小测及时巩固所学内容;应提供良好的网络条件和计算机设备以支持课程教学和实践的顺利开展。
国外一些高校通过远程网络的手段与中学合作开展人工智能教学,加快了课程建设的步伐,并提高了教学质量。大学负责教学网站的建设维护,主持与中小学的讨论答疑,中学则负责课程教学的具体实施。文中个案也印证了这种做法的有效性:让一些致力于高中人工智能课程研究的高校和部分条件较好的中学建立共同体,协作推动课程的实施。一方面,高校研究人员能为中学提供教学指导建议、技术和资源的支持;另一方面,中学的教学实践也为高校进行课程教学研究提供了材料和依据。
(4) 课程评价
研究表明,评价目前已成为影响高中信息技术新课程实施的一个重要问题[8]。从本次课改的动因来看,针对我国现行教育体制下的高考选拔制度在很多方面呈现的弊端,新课改力图在一定程度上改变这一局面,努力使学习者能够真正获得全面的发展。但是,在目前情况下以高考为“指挥棒”的评价体系短期内仍然无法发生质的变化。高中新课改实施以来,部分省份相继将信息技术课程纳入了高考的范畴,以往信息技术课程不受重视的情况逐渐得到了一些改善。然而,高考是否解决信息技术课程评价问题的一剂良药,进而为人工智能课程的实施及其评价带来新的希望,目前仍是值得怀疑和思考的问题。特别是当前高考科目已经较多,再增加科目无疑会加重学习者的负担,且很容易回到应试教育的老路上。
其次,虽然新课程标准中提供了关于课程评价的建议,但是其中的内容仍然比较抽象,可操作性不够。如在信息技术课程标准的评价建议中,提倡评价主体的多元化,关注学生的个别差异,综合应用多种过程性评价方式,适当渗透表现性评价的理念,等等。这些内容从理念上来讲都是很好的,但是如何在教学实践中加以操作实施,对一线教师而言仍是不够明确和难以把握的问题。而且,信息技术课程的每个模块各有特色,然而课程标准并未就此提供专门的评价建议。因此,一套科学合理、适合人工智能课程的评价体系和方法仍需要教研人员在实践中不断摸索总结。
参考文献
[1] 教育部. 普通高中技术课程标准(实验) [S].北京:人民教育出版社,2003:9.
[2] 钟启泉. 课程论[M].北京:教育科学出版社,2007:207-214.
[3] Fullan, M. & Pomfret, A. Research on curriculum and instruction implementation [J]. Review of education research, 1997, 47(1).
[4] Snyder J.B. & Zumwalt K. Curriculum implementation [M]. In Jackson P. W. (Ed).Handbook of Research on Curriculum. New York: Macmillan Publishing Company, 1992.
[5] 珠海教育信息网. 广东省普通高中信息技术课程标准教学指导意见 [DB/OL].
[6] 顾建军等.技术课程标准(实验)解读[M].武汉:北教育出版社,004:9.
先给大家重点推荐一本期刊:中国职业技术教育
中国职业技术教育杂志征稿信息
《中国职业技术教育》杂志是由中华人民共和国教育部主管,教育部职业技术教育中心研究所、中国职业技术教育学会和高等教育出版社共同主办的一份综合性中文期刊,集政策指导性、学术理论性和应用服务于一身,是教育部指导全国职业教育工作的重要舆论工具,是服务各级各类职业教育机构的主要阵地。
中国职业技术教育投稿栏目:主要有职教要闻、专稿专访、综合管理方略、课程教材、教研与教学、师资队伍建设、研究与探讨、职业指导、职业培训、高等职业教育等栏目。
再给大家推荐职业教育范文:人工智能背景下职业教育变革及模式建构
董文娟1,黄尧2(1.天津大学教育学院,天津300350;2.北京师范大学国家职业教育研究院,北京100875)
摘要:顺应人工智能时代的浪潮,基于新兴技术的职业教育变革及新模式建构势在必行。该文从职业教育智慧化、经济发展、政策保障、信息化生态重构四个方面,剖析了人工智能时代职业教育变革的现实诉求,并进一步分析了当前职业教育外部环境及其自身发展的困境。人工智能背景下职业教育的变革体现出融合、创新、跨界、终身化的新特征。基于此,从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面,探究职业教育的变革路径及模式建构。最后探讨了职业教育模式变革还面临回归教育本质、规避技术弊端等挑战,并提出“适应—引领人工智能”的发展目标。
关键词:人工智能;职业教育变革;模式建构;智慧化
“人工智能的迅速发展将深刻改变人类社会生活、改变世界。特别是在移动互联网、超级计算等新理论、新技术及经济社会发展强烈需求的共同驱动下,人工智能发展呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。”[1]人工智能作为新一轮产业变革的核心驱动力,为我国供给侧结构性改革下的“新常态”经济发展注入新动能,使人们的思维模式和生活方式发生了深刻变革。近年来,国家高度重视与社会经济发展联系最为密切的职业教育,积极推进职业教育信息化,运用人工智能改革教学方法和人才培养模式,构建新型智能职教体系,提升信息技术引领职业教育创新发展的能力。
一、人工智能背景下职业教育变革的现实诉求
人工智能对传统教育理念产生了革命性冲击,职业教育结构不断调整,劳动力素质与市场需求的矛盾、学习方式与自我价值实现的矛盾等促使职业教育向智慧化、智能化发展。目前,我国处于教育信息化2.0、工业4.0的新时期,全球范围内新一轮的科技革命和产业变革正在加速进行。“一带一路”“中国制造2025”人工智能等重大国家战略的提出,及以新技术、新产业为特征的新兴经济模式要求教育领域,尤其是职业教育培养行业、产业急需的技术技能型、智慧型人才,具备更高的创新创业能力和跨界整合能力,促进智慧化发展,助力经济转型升级。
(一)职业教育智慧化诉求:职业教育信息化发展的必然选择
“智慧教育是以物联网,大数据等信息技术为依托,创造智慧教学环境,转换教育方法,内容与手段,注重教育网络化,个性化和智能化的一种教育新模式。”[2]智慧教育作为“一种由学校、区域或国家提供的高学习体验、高内容适配性和高教学效率的教育行为(系统)”,被视为教育信息化发展的高端形态[3]。因此,职业教育的智慧化并非简单的数字化,强调信息技术推动职业教育教学模式和方法的变革,改变思维模式,创建价值等方面共享的学习共同体,培养创新型、智慧型人才。
职业教育智慧化是职业教育信息化发展的必然选择。目前,我国的职业教育信息化水平正在稳步提高,投入持续增加,各种智能信息技术应用于教育教学、实习实训、测量评价等领域,并逐步成熟,正在努力打造一个信息化、智慧化的现代职业教育生态系统。新时期我国很多地区及职业院校积极提升现有信息化系统的智慧化水平,积极创建智慧校园、智慧社区等,逐步实现了组织管理的智慧化、资源环境的智慧化和服务评价的智慧化。
(二)经济发展诉求:人工智能时代的新兴经济需要高技能智慧型人才
人工智能时代职业教育运用移动互联网、大数据等新兴技术,与经济及其他部门跨界融合,不断创造新产品、新业务,推动职业教育模式创新,形成了以互联网为基础设施、人工智能为实现手段的经济发展新常态。人工智能时代是以现代科学技术为支撑的新时代,各行各业的运作发展和对知识技术的掌握要求达到了更高层面,相应的教育需求也有所提升,市场环境渴求勇于创新、个性化的高技能智慧型人才。职业教育要应对行业上升发展的劳动力需求问题,基于人工智能应用,提高技能培养层级,以适应新的社会劳务需求。现代企业生产依托互联网科技,与智能化设备直接联接,通过数据分析和应用,促进科技成果转化为生产力。劳动密集型企业已不适应现代行业、产业发展,需升级为网络智能型,与此同时,职业院校的课程模式、专业设置、实习实训、师资结构等也做出相应的调整和革新,既促进了职业教育的智慧化、智能化,又推动了产业升级和工业变革。
(三)政策保障:国家从宏观层面保障人工智能时代的职业教育发展
2016年是我国人工智能元年,2017年我国颁布了《新一代人工智能发展规划》,提出了“将发展人工智能放在国家战略层面进行系统谋划和布局”,这预示着我国人工智能时代的全面到来,为我国职业教育的发展提供了良好的宏观政策环境。人工智能给职业教育带来了符合时代精神的新内容,积极融合信息技术,整合职业教育资源,提升公共服务水平,影响和改变了原有的教育生态。紧密依托信息共享平台,突破时空限制,让学习者自我选择,更加人性化和智能化。我国很多职业院校已经开启了智慧校园的行动计划,一些大中城市也在积极制定实施智慧城市的发展规划,在良好的政策保障中提升智慧化水平。
(四)信息化生态重构诉求:人工智能时代的职业教育变革是对职业教育信息化生态系统的重构
“依据《2006-2020年国家信息化发展战略》,我国正在有序推进数字教育向智慧教育的跃迁升级和创新发展。”[4]在新兴智能信息技术的催促下,技术变革带来了职业教育系统的颠覆性创新改革,打破现有的条条框框,改革传统教育模式,再造教育业务新流程。在职业教育领域创新应用物联网、大数据、人工智能等先进技术,提升各科各门教育教学业务,打造各级各类智能实训部门、培训机构,覆盖贯通中高职院校,整合系统内外现有资源,推进智慧教育生态有序发展,为各类用户提供最适合、最智能的职业教育资源和服务,完成对职业教育信息化生态系统的重构。
二、当前职业教育发展的现实困境
人工智能对各行各业的影响具有革命性和颠覆性,可能带来新的发展机遇,也可能带来不确定性的挑战,比如可能会改变就业结构、影响政府管理、威胁经济安全等,还可能会冲击法律与社会伦理,影响社会稳定乃至全球治理。当前,人工智能与“大众创业、万众创新”浪潮席卷而来,职业院校既是人工智能应用的战场,又是培养技术创新型人才的“梦工厂”[5]。人工智能时代的职业教育信息化发展迅速,影响是广而深的,对职业教育外部环境及其本身都造成了极大的冲击。
(一)职业教育外部环境发展困境
“据联合国教科文组织预测,到2020年,人工智能将替代20亿个工作岗位”[6],那些技术含量低、重复性强的技能将被智能机器、数码设备所替代,工业机器人也将大面积应用。智能设备替代行业劳动力,能够降低劳动成本,且具有高效、易操作等竞争优势。传统职业教育培养模式很难适应未来行业、产业的发展需求,人工智能冲击职业教育就业岗位,撼动其所依附的岗位基础,对职业教育的生存与定位产生了威胁。因此,根据智能时代职业教育的岗位特征与需求,提升职业人才的知识结构和专业技能,是新形势下职业教育的发展方向。
(二)职业教育自身发展困境
近年来,人工智能在职业教育领域内的应用和提高是目前职业教育的发展趋势。我国重视职业教育信息化、智能化发展,各级各类职业院校在信息化基础设施建设、校园信息化管理等方面都有了显著提升,但信息技术与职业教育的深度融合仍不够紧密,表现出信息化管理效率低、科学决策水平低等现象。人工智能背景下职业教育自身发展的困境表现在:
1.课程与教学困境
职业院校新课程改革提倡构建智慧课堂,制定个性化学习计划,注重课堂实施效果。但目前的实际课程教学仍是以教师为中心,强调知识的灌输,重视统一性和计划性,与教育改革提倡的个性化教学相去甚远。教学方法、教学理念更新慢,很难激发学生的内在学习动力,创新性思维弱,使得个性化教育的无法实现。近年来,中央、省、市、县四级教育平台逐步建立起来,课程与教学的层级设计逐步完善,但在实施的过程中,各级平台之间存在沟通不畅等问题,各级资源内容不系统,不衔接,导致无序叠加和资源的重复浪费,“精品课程”等项目丰富了课程资源,但质量不高。在线课程与教学以传统的科目、章节为单元,构建系统性的在线教育内容,为用户提供专业化的知识选择,但由于受时间条件等限制,大多数受教育者习惯于碎片化学习,连贯性和整体性差,缺乏对课程与教学体系的系统性学习。
2.认知困境
随着人工智能时代的到来,许多职业院校将“未来教室”“智慧课堂”定位为未来发展方向,进行了多种尝试和改革,如MOOC混合教学、翻转课堂、多屏教学等,但“管理者和施教者对智慧教育的理解多停留在‘智慧课堂=多媒体+传统教学的层面’,教学观念和思维依然固化,并没有因为新技术的参与而得到实质改变”[7],缺乏对多媒体网络架构和智能学习平台的深层认识,更缺乏对管理评价和互动交流等模块的理解与掌握,虽投入大量人力财力采购了数量巨大、设备精良的多媒体设备和智能服务设备,但没有充分有效使用,大大限制了智慧教育的发展潜力。
3.用户困境
传统教学以群体教育为基本单元,教师和学习者作为学习共同体,在管理、学习的互动过程中形成强大的群体约束力,促进双方共同进步。在信息化教育时代,学习者自由掌握学习时间和进度,遇到问题可能无法及时解决并获得反馈,无法进行面对面交流,因此,基于人工智能网络化学习平台,学习者需要高自控力、高学习能力才能适应这种全新的学习方式。
4.评价困境
传统的评价方式多依靠经验和观察,智慧型评价则是基于学习过程的一种发展性评价,以采集到的学习数据为客观基础。在人工智能、数字信息化环境下教育效果的评价实际要受到很多因素的影响和局限,在信息技术与职业教育融合的过程之中,许多智能技术应用于教育教学实践,难以进行定性定量的智慧评价,如互动交流及深层次的学习评价等。
三、人工智能背景下职业教育变革的新特征
人工智能带来了思维模式的创新,改变了人们认识问题、思考和解决问题的方式,越来越多地依赖人与智能网络的协同创新。人工智能背景下的职业教育变革围绕经济社会发展大局,“主动服务国家重大发展战略,加大虚拟现实、云计算等新技术应用,体现校企合作、知行合一等职教特色,以应用促融合、以融合促创新、以创新促发展。”[8]人工智能背景下职业教育的变革必将加速推进职业教育的现代化、智能化进程,表现出了融合、创新、跨界和终身化的新特征。
(一)融合
人工智能技术科学应用于当前职业教育,在最短的时间内整合、重组大量的知识信息,形成科学的技术技能知识体系,为职业教育资源、企业资源、产业资源、社会资源等一切有可能联结的资源融合提供了可能。为促进职业教育的智慧化发展,在现有的合作模式、集团模式、产教融合模式等实体协作发展的基础上,建立智能互动的智慧教育供给平台、常态化智慧课堂和大数据化智慧教育生态系统,为我国新兴经济发展提供高技能、智慧型人才支撑。
(二)创新
信息化时代下“变”为创新立足之要点。创新时代最需要提升的就是创造智慧。“由知识的理解记忆,转向知识的迁移、应用并最终指向创造发明”[9],以提高学习者的学习能力和应用能力,提升其创新思维和智慧思维,不断开拓人类社会发展的高度和宽度。智能化、信息化的时代是创新不断的时代,是原有知识不断被更新、技术不断被升级的时代。人工智能促使社会化协同大规模发展,促进职业教育体系核心要素的重组与重构,创新生产关系,呈现出新的协作架构,开创了新的教育供给方式,增加了教育的选择性,推动了教育的民主化。学习者能够按照自己的价值观、兴趣与爱好等选择适合自己个性发展的学习方式和学习内容,促进学习者个性化、多样化发展,最终实现教育公平。
(三)跨界
智能科学与职业教育连接起来,搭建起两者沟通的桥梁,跨越了人工智能虚拟教育和线下实体教育的界限,实现了两者之间的融合。教育供给由竞争资源转变为协同合作,直线型的中心组织管理转向去中心化、泛化管理。通过大数据智能技术平台、远程教育平台等对职业教育资源进行整合共享,跨越教育边界,与市场、行业、企业以及职业教育培训机构对接,提供更加便捷的智慧化服务。
(四)终身化
人工智能时代职业教育的变革坚持“以人为本”的教育理念,满足学习者在任意时间、任意地点、以任意方式、任意步调终身学习的需求[10]。打破了地域和时间的限制,体现了教育的泛在化、个性化和终身化,与终身教育理念的发展目标不谋而合。人工智能时代社会经济发展加快,人们追求高层次自我价值的实现,充分体现出终身学习的必要性和紧迫性。目前,我国正在积极创建泛在学习环境,致力于构建终身化学习型社会,努力创造有利条件向全民提供终身教育与学习的机会。
四、人工智能背景下职业教育发展的模式建构
人工智能背景下职业教育的变革预示着全新思维意识形态、社会发展形态的变革,重塑职业教育可持续发展的新思维,重构信息时代职业教育的价值链和生态系统。智能化技术科学将现代职业教育内部各要素,以及内部要素与外部环境之间,通过虚拟技术和智能化手段互联贯通,突破传统教育价值的链状模式,使职业教育由传统模式走向“人工智能+职业教育”模式的建构。人工智能对职业教育课程、教学、评价、管理、教师发展等方面产生系统性影响,为职业教育提高教育质量和提升服务水平提供了技术支持和现实路径,解决不能兼顾职业教育规模和质量的矛盾问题。下面将从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面来探究职业教育的变革路径及模式建构。
(一)人工智能背景下职业教育的课程模式
人工智能时代的信息知识、科学技术正在以前所未有的速度增长、更新和迭代,呈现出了碎片化、多元化、创新性、社会性的特征。人工智能背景下职业教育的课程模式是为学习者提供按需可随时选择的知识储备智能模式,解决了传统职业院校课程教学的滞后性,呈现的是现代职业教育的前沿信息和内容。课程革命愈演愈烈,灵活多样的微课、慕课等形式层出不穷,在线课程将成为常态,信息传播媒介、知识获取方式等都发生了巨大改变,课程内容和结构的表现形态、呈现方式、实施及评价等也都进行了相应变革。智能化信息科学技术为课程的设计、架构、实施提供了快捷和便利,为学习者的个性化、终身化选择提供了多种渠道。人工智能背景下职业教育的课程模式的建构表现为:首先,线上线下融合的大规模开放课程融入现代职业教育,课程的表现形态和实施途径呈现出智能化、数字化、立体化的特征,成为学校常态课程的有机组成部分,为学习者提供了更多的可选择机会,使实施个性化课程成为可能。现代职业教育的课程内容强调学术性与生活性相互融合与转化,融入社会资源,立足于我国社会经济的新常态和学习者的全面发展,实现社会化协同发展,共赢共创;其次,课程实施的空间得以拓展,跨越了社会组织边界、职业院校边界,将从班级、年级、全校扩展到网络社区以及更大的空间。课程的整体结构从分散走向整合,以技术为媒介,形成跨学科、多学科整合的课程;最后,课程内容的组织、课程的实施逐步模块化、碎片化、移动化与泛在化,社会化分工更加精细,教师也将承担教学设计、技术开发、在线辅导等不同的角色。
(二)人工智能背景下职业教育的教学模式
人工智能时代将信息技术有效地融合于职业教育各学科的教学过程,从知识的传递转变为认知的建构,从注重讲授和内容,转变成重视学习过程[11],构建“以教师为主导,以学生为主体”的以数字化、智能化为特征的智慧教学模式,重视学生的主体地位,引导学生“自主、探究、合作”。人工智能背景下职业教育的教学模式的建构表现为:首先,人们的学习方法、认知方式和思维模式已经发生了巨大的转变。信息化教学使得信息技术已成为学习者认知的必要工具,认知方式也由“从技术中学”转型为“用技术学”。其次,信息化教学的重点从“面向内容设计”转变到“面向学习过程设计”,更加重视学习者发现问题、分析和解决问题能力的培养,关注学习者的学习过程,以及其获得学习活动的体验。同时,信息化教学要将课堂内的学习知识和课堂外的实践活动联结互动,按照学习者的个性化需求和认知方式自主选择学习内容。第三,智慧教学将成为课堂教学的新重点。日常教学工作形态不再是点线面的连接,而是呈现为智能化、立体化的教学空间,智慧课堂将会促进学习者的深度学习、交互学习和融合学习,智能备课、批阅以及个性化指导等也将成为教育者新的教学工作形式。从机械评价学习结果转变成适应性评价学习结果。第四,在线教学、整合技术的学科教学法将成为新的教学形态,促进教育均衡发展,实现跨学校、跨区域的流转。移动学习、远程协作等信息化教学模式,能够实现教师的“教”与学生的“学”的全面实时互动,最大限度地调动学习者的主观能动性,提升教学质量与人才培养质量。
(三)人工智能背景下职业教育的学习模式
智能系统和互联网络为学习者提供了丰富多元的学习资源和环境,推进了教育教学活动与学习环境的融合发展,人工智能背景下职业教育的学习模式也逐步建立起来,具体表现为:首先,智能时代的互联网络全面覆盖每一个人、每一个角落,活动空间由课堂内拓展到课堂外,学习与非正式学习正在互相补充、互相与融合,导致学习者的学习行为变化、学习方式的革新。其次,基于互联网出现了一批创新的学习方式,借助情景感知技术及智慧信息技术,进行真实过程体验的情境学习,促进学习者知识迁移运用的情境化和社会化。第三,借助互联网云技术和各种应用工具,学习者可根据自身学习需求,选择最优学习方式,也可利用数据分析技术,追踪记录学习路径和学习交互过程,随时随地获取个性化教学服务和量身定制的学习资源,拓宽了智慧教育视野。第四,各职业院校开始拓展校园智慧学习的时间和空间,以实现虚拟和现实相互结合的智慧校园育人环境。推进网络学习空间建设,加强教与学全过程的数据采集和分析,“引导各地各职业院校开发基于工作过程的虚拟仿真实训资源和个性化自主学习系统”[12],强化优质资源在学习环境中的实际应用。
(四)人工智能背景下职业教育的环境模式
智慧教育环境是以大数据、多媒体、云计算等智能信息技术为基础而构建的虚实融合、智能适应的均衡化生态系统。信息技术与职业教育的深度融合,为师生的全面发展提供了智慧化的成长环境,如智慧云平台、智慧校园。人工智能背景下职业教育的环境模式的建构表现为:首先,智慧教育环境将信息技术与职业教育服务结合、面对面教学和在线学习结合,形成数字化的、虚实结合的职业教育智能服务新模式。其次,智慧教育环境将促进各种智能化、数字化信息技术融入职业院校的各个业务范围和业务领域,与系统内的其他业务横向互联、纵向贯通,且信息能够适时生成和采集,全过程实现数字化与互联化。第三,智慧教育环境能够感知学习者所处的学习情境,理解学习者的行为与意图,满足学习者的个性化需求,提供多元化的适应服务和智能感知的信息服务。互联网应用基于智能数据分析,实现智能调节与自动监控,为学习者提供定制式的学习服务和个性化的学习环境。未来教室必将变成“虚拟+现实”的智慧课堂,在网络空间中参与线上课程、线下活动,实现线上线下互动交流。同时,智慧校园的创建和管理,能够对每个班级、学区进行动态管理,构建出一个以问题、任务为线索,学生实现自主学习的知识体系和促进师生互动、生生互动的智慧管理平台。到2020年,“90%以上的职业院校建成不低于《职业院校数字校园建设规范》要求的数字校园,各地普遍建立推进职业教育信息化持续健康发展的政策机制”[13],以学习者为中心的自主、泛在学习普遍开展,精准的智能服务能够满足职业教育的终身化定制。
(五)人工智能背景下职业教育的教师发展模式
人工智能背景下职业教育的变革对教师的专业发展、素质能力提出了新要求,改变了教师的能力结构和工作状态。教育信息化大背景下,互联网技术、多媒体手段的产生、智能化设备的使用极大提高了教师的专业发展和能力素养,以适应新课程改革与教育信息化的要求。人工智能背景下职业教育的教师发展模式的建构表现为:首先,新时代教师专业发展的内在要求和外在环境都要求教师能够认识、了解和应用互联网新技术工具,促使教师专业发展能力和素养的提升和丰富。其次,教师的专业发展要面向实际、情境化、网络化的教学问题,教师需要在多变的教育情境中综合运用核心教学技能,将信息技术知识、学科内容知识、教学法知识很好地融合并迁移运用。新时代的教师要学会掌握使用智能化设备和数字化网络资源,积极加强与其他专家、教师的合作,或远程工作,形成基于智慧教育技术的多元化的学习共同体。教师的工作状态由个体的单独工作转变为群体的共同协作,大大提升了教师的工作效率。第三,信息化背景下教师的教学理念要发生转变,由促进学生“接受学习”转变为“主动建构”,由“被动适应”转变为“主动参与”,越来越强调以学生为中心的过程体验,从了解信息技术转变为掌握智慧教育技术,保持学科知识,教学方法,核心技术的动态平衡,促进学生智慧学习的发生。第四,信息化教师要学会使用智能化教育技术,积极开发数字化学习资源,创设丰富多元的教学活动,鼓励学生掌握智能信息工具,学会探究和解决问题,发展提升学生的创新思维能力和信息化学习能力。教师的信息化教学能力和素养全面提升,信息技术应用能力实现常态化。
(六)人工智能背景下职业教育的评价模式
现代教育价值趋于多元,以互联网为基础的智能化信息技术使教育评价在评价依据、评价内容、评价主体等多个方面实现了全面转变。人工智能背景下职业教育的评价模式的建构表现为:首先,互联网信息技术应用于学习过程使得伴随式评价成为可能,更加关注学习者的个体差异和特点。强调过程评价和多元共同评价,更加客观全面,重视评价过程的诊断与改进功能,以促进学习者的个性化发展。其次,互联网、大数据、智能云技术的出现使得评价的技术和手段多样化、智能化,节省人力物力财力,提高了评价的科学性、针对性。第三,以大数据为基础的适应性评价因人而异,可获得及时反馈,可真实地测评学习者的认知结构、能力倾向和个性特征等,从知识领域扩展到技能领域、情感、态度与价值观,构建以学习者核心素养为导向的教育测量与评价体系,促进学习者发展。
(七)人工智能背景下职业教育的管理模式
智能化信息技术、云计算技术、大数据技术等能够促进大规模社会化协同,拓展教育资源与服务的共享性,提高教育管理、决策与评价的智慧性,因此,基于互联网的教育管理必将逐步走向“智慧管理”模式。人工智能背景下职业教育的管理模式的建构表现为:首先,互联网将家庭、学校、社区等紧密、方便地联系在一起,拓宽了家长和社会机构参与学校管理的渠道,各利益相关者可共同参与现代职业院校的学校管理,协作育人。其次,新时代的职业院校管理模式通过可视化界面进行智能化管理,业务数据几乎全部数字化,能有效降低信息管理系统的技术门槛,使管理工作更加轻松、高效。通过深度的数据挖掘与分析,能够实现个性化、精准资源信息的智能推荐和服务,为管理人员和决策者提供及时、全面、精准的数据支持,以提高决策的科学性。第三,通过互联网信息技术可以实现全方位、随时的远程监督与指导,从督导评估转变为实时评估,可以实现大规模的实时沟通与协作,促进社会化分工,促进职业院校内部重构管理业务流程,使管理智能化、网络化、专业化。
(八)人工智能背景下职业教育的组织模式
人工智能时代信息科学技术的蓬勃发展冲击着学校内部的组织结构向智能化、网络化的方向发展,各职业院校需要合理调整内部组织结构和资源分配,通过互联网加快信息流动等方式,提高各职业院校组织管理的效率和活力。人工智能背景下职业教育的组织模式的建构表现为:首先,当今时代人工智能的产生不可能替代学校教育,但可以改变学校教育的基本业务流程。人工智能推动了学校组织结构向网络化方向发展,教学与课程是提供信息数据的重要平台,学校组织则构成了教育大数据生态系统。其次,“互联网+职业教育”的跨界融合将打破学校的围墙的阻隔,互联网将学校组织与企业、科研院所等社会机构紧密联系起来,提供优质教育资源供给,共同承担知识的传授、传播、转化等功能,促进学校组织体系核心要素的重构。第三,建设“智慧校园”,实现线上线下融合的智慧校园育人环境,实施一体化校园网络认证,推动智能化教育资源共建共享,实现职业教育信息化建设的均衡发展。
五、人工智能背景下职业教育的模式变革面临的挑战及发展目标
人工智能将推进大数据、云技术等智能信息技术深层次融入职业教育课程与教学、组织与管理、评价与反馈等领域,形成社会化多元供给,为学习者提供多样化的参与方式、自主选择的学习形式和及时获得反馈的评价途径,有利于实现职业教育的共建、共享、共治。但其全面实现,还面临着诸多挑战。
(一)挑战
首先,职业教育的新模式建构需要充足的资金支持。各职业院校积极建构智慧校园,努力实现智慧化产学研环境,打造一体化智慧城市网络等核心技术的开发,都需要资金的根本保障。政府要给予资金政策保障并加强监管,资金管理部门要合理规划,合理利用,专款专用,落到实处。其次,职业教育的新模式建构的成果表现离不开学习者对技术的理解、掌握和应用。在实际实施过程中,教育工作者既要利用信息技术优势变革职业教育,也要避免技术中心主义倾向,“避免一味追赶技术新潮而不顾学生身心健康等,技术本身是一个祸福相依的辩证法。”[14]第三,“目前的教育实践中,仍未能充分实现人机合理分工和双边优势互补。人工智能终端系统擅长逻辑性、单调重复的工作,而人类则更适合情感性、创造性和社会性的工作。”[15]现阶段,信息化技术水平还有待提高,智能机器不能完全胜任知识传播、数据处理等工作,有待于进一步开发和完善,绝对依赖互联网络和设备,还存在一定的风险。
(二)发展目标
人工智能时代职业教育变革重新架构了职业教育发展模式,完成了对资源的重新整合配置,改变了人的思维方式、学习方式和生活方式。人工智能时代下没有职业教育模式的改革,就不可能建构真正的现代化职业教育。人工智能背景下职业教育的发展目标可以概括为个三方面:
1.“智慧脑”与“智能脑”融通
随着第四次产业革命的到来,信息技术爆发式发展,造就了以电脑、互联网为基础的智能脑。职业教育智慧化发展的一个目标就是如何让学习者发挥人脑“智慧脑”与机器设备“智能脑”的“双脑”共同协作[16]。人工智能时代职业教育与信息技术的深度融合,就是要通过“智慧脑”和“智能脑”的协同作用,发挥互补优势,进行融通式学习,而不是简单地人脑与电脑的技术对接。
2.“现实世界”与“虚拟世界”结合
在人工智能时代,网络虚拟技术的发展使人类拥有了真实与虚拟两个世界,虚拟信息技术的兴起在一定程度上会影响职业教育的实体教育,实体教育的发展也需要虚拟技术的支撑。但在具体的学习实践中,还会存在利用这两个世界时顾此失彼、难以平衡的问题。目前,虚拟化教育技术在职业教育领域不断应用与推广,职业教育的发展模式不断优化,使得职业院校线上线下的边界逐渐消融,“现实世界”与“虚拟世界”更好地结合。人工智能时代职业教育的本质没有发生根本改变,学习者要学会利用这两个世界虚实融合、高度互动,充分发挥出自身的优势,更好地学习与生活。
3.职业教育“适应人工智能”发展为“引领人工智能”
人工智能为职业教育带来了强大的技术支持,为职业教育带来了便利。初始阶段的职业教育基本知识和技能被数字化和智能化,通过人工智能相关课程,云教育模式,个性化学习计划等,适应并应用人工智能,以提高职业教育的效率和质量。职业教育重在技术创新,对于行业技术发展具有一定的引领性作用。未来人工智能将成为职业院校快速发展和转型的技术支撑。“如某些职业院校基于自身优势专业与相关行业的智能自动化企业合作,实现以职业教育发展引领人工智能。”[17]目前,人工智能处于适应性大发展阶段,随着信息化技术的提高和智能化设备的普及,人工智能时代必将由专用人工智能时代步入通用人工智能时代。在通用人工智能时代,人工智能与职业教育深度融合高效协作,职业教育完全适应且完美应用于人工智能,进一步引领人工智能发展,由“人工智能+职业教育”发展为“职业教育+人工智能”的时代。
关键词:数据挖掘;数据预处理;挖掘算法;Web挖掘;个性化推荐
中图分类号:G642 文献标识码:A
文章编号:1672-5913(2007)14-0027-03
1引言
数据挖掘是一门综合性的交叉学科,它融合了概率统计学、数据库技术、数据仓库、人工智能、机器学习、信息检索、数据结构、高性能计算、数据可视化以及面向对象技术等,在保险业、电信业、交通业、零售业、银行业正在被越来越广泛深入地使用,同时在生物学、天文学、地理学等领域也逐渐显现出技术优势,特别是在客户关系管理系统、个性化网站设计、电子商务系统、搜索引擎等方面数据挖掘技术显示出了独特的魅力。数据挖掘技术正在以一种全新的概念改变着计算机应用的方式。
从最近计算机技术的发展以及学生就业方面来看,对本校的应用性本科生开设“数据挖掘技术”课程迫在眉睫。但数据挖掘给人的感觉就是“高深莫测”,当前数据挖掘领域主要是博士生、硕士生研究的领域,数据挖掘课程也只在一些重点大学的研究生或高年级的本科生中开设,应用型本科院校以及一些高职高专几乎都没有开设此类课程。这限定了数据挖掘作为一门既有理论又有实践价值学科的应用和推广,笔者认为很可惜。从计算机专业的学生的毕业设计以及就业角度分析,相当多的同学以后会从事电子商务类软件的开发,而这类应用目前都渐渐基于Web作为应用平台,面对的是海量的数据信息,因此让学生掌握数据挖掘的思想和方法对提高计算机素养很有必要。即使将来从事控制、通信、游戏、图像处理等软件开发,数据挖掘的思想和方法也很容易找到用武之地。
2数据挖掘课程开设的可行性分析
从计算机技术发展以及学生就业反馈的信息,笔者觉得数据挖掘的思想、方法以及算法对应用型本科生是很重要的,并且让学生掌握好这门课程也是完全可能的。我校从1998年以来一直在高年级本科生中开设了“人工智能”课程,但从教学效果上来看,很不理想。“数据挖掘技术”这门课程在不少地方很像“人工智能”,“数据挖掘技术”课程中的一些思想就是从“人工智能”中发展过来的,但是“数据挖掘技术”课程与“人工智能”课程有一个本质的区别,就是数据挖掘从诞生的一开始就是面向大量的、实际的数据库信息,因此,具有极强的应用性,如果将“数据挖掘技术”课程看做是“数据库技术”课程的自然延伸,同时充分利用数据结构、人工智能、面向对象技术与方法、Web技术、概率统计等课程的基础,就能够将“数据挖掘技术”课程开设好。于是两年前,笔者在应用型本科生中做了尝试,就是取消原来的“人工智能”课程,取而代之的是“数据挖掘技术”课程,从两年的教学实践以及教学效果上看,行之有效。并且在教学中发现,虽然数据挖掘技术要用到人工智能的一些思想和方法,但没有“人工智能”课程作为前导课程,没有任何影响,因为,数据挖掘中的一些人工智能思想在“数据挖掘技术”课程的教学中是自成体系的,并且是以比“人工智能”中的方法更加简单、更加直接、更加面向应用的方式。开设“数据挖掘技术”课程必须以下列的课程作为基础(前导课程),当然这些课程都是一些常规课程。
1) 必须深入学习一门程序设计语言,通过这门语言的学习可以掌握程序设计的基础知识,并且掌握面向对象思想开发的精髓,能够进行可视化程序设计。学习程序设计绝不是记住程序设计语言的语法就行了,而要努力做到将应用中的思想变为程序。这一点是计算机专业学生的基本素养。这一环节没有做好,其余的计算机专业的专业课程,如数据结构、操作系统、数据库原理、编译原理、软件工程等就无法学习,即使学了,也不能真正掌握。笔者从计算机发展和应用角度,推荐学习C/C++和Java,要求对C++的模板以及STL或Java的数据结构类(在Java的util包中)能够较好掌握。
2) 掌握“数据结构”课程,特别是“数据结构”课程中的树的特点和应用。在“数据结构”课程中,树主要以二叉树为主,对于一般的树,在当前的“数据结构”课程的教学中都是将一般的树转化为二叉树来进行处理的,但是在数据挖掘中这样不太方便。数据挖掘中的很多算法都涉及到树的应用,并且大多都是不太规则的树,在数据挖掘中,采用树的思想与Java中的数据结构类或C++中的STL相结合的方法,能够得到很好的效果。
3) 掌握“数据库技术”课程中数据库操作的特点和应用。数据挖掘的对象主要是数据库中的数据,但作为数据挖掘对象的数据库的数据信息量往往很大,因此,为了提高挖掘的效率,需要建立数据仓库,或者需要在算法上加工,尽量减少扫描数据库的次数。
4) 掌握“Web技术”。这是因为Internet已经广泛应用并且深入人心,未来的软件相当多的都是基于Web平台之上,因此,对于Web挖掘不仅重要,而且具有直接的应用价值。当前Internet上的软件如一些知名网站、搜索引擎以及一些电子商务系统,采用了数据挖掘技术,得到了很多有价值的信息或提高了个性化能力,大大增强了企业的竞争力。因此,掌握“Web技术”课程对Web挖掘很有裨益。
5) 熟悉“概率统计”课程中的思维方式,对各种分布以及条件概率能够熟练掌握,在数据挖掘中的分类、关联规则等领域很多挖掘方法都灵活运用了概率统计中的思想和方法。
从“数据挖掘技术”课程的教学实践中明显看出,主要需要以上几门课程,并且教学结束后发现,学生不仅能够掌握数据挖掘的思想、方法以及算法,通过对一些主要的挖掘算法的实现,对“数据库技术”、“程序设计语言”、“数据结构”、“Web技术”以及“概率统计”掌握得更加深刻,将“数据挖掘技术”作为“数据库技术”的自然延伸,是“程序设计语言”、“数据结构”、“Web技术”以及“概率统计”的综合运用得到良好效果。
3 “数据挖掘技术”课程的设置
一门课程的设置,不仅要根据当前计算机技术的发展,同时也要根据当前学生的就业需求,充分考虑到应用型本科学生的特点。两年前,经过多方面的考虑以及参考了各种国内国外数据挖掘的教材以及论文后决定,“数据挖掘技术”课程教学学时定为32课时,讲课22学时,上机实验10学时。在这个总的学时定下来之后,就是对“数据挖掘技术”课程的内容设计,这是最重要的环节。精选出的内容不仅要反映数据挖掘的特点以及最新发展,还要结合应用型本科生的特点,要具有很强的针对性,重点要突出,要能够“学以致用”。最后“数据挖掘技术”课程的教学内容如下:
1) 数据挖掘综述2学时。本讲侧重于从两、三个具体应用领域进行分析得出采用数据挖掘技术的重要性与必要性,可以选取客户关系管理、体育竞技、信息安全和商业欺诈等作为案例,然后给出完整的数据挖掘定义和数据挖掘技术的分类,以及数据挖掘需要的一些前导课程的知识要点。
2) 数据挖掘过程及当前数据挖掘的软件工具2学时。数据挖掘的过程是数据抽取与集成、数据清洗与预处理、数据的选择与整理、数据挖掘以及结论评估。本讲重点讲解挖掘的过程,强调数据预处理对挖掘的重要意义,对于缺省的值、残缺的值等的处理方法。让学生对数据挖掘的整体过程有清楚的理解。然后介绍一下当前流行的商品化数据挖掘软件如IBM的IntelligentMiner和加拿大Simon Fraser 大学的DBMiner。
3) 关联规则挖掘与序列模式挖掘6学时。在介绍关联规则原理的基础上,主要介绍著名算法Apriori及其改进、FP_Tree算法、用于序列模式挖掘的AprioriSome算法。每个算法需要2学时,对每个算法要进行彻底分析,不仅能够理解算法的原理、思想以及过程,还要分析算法提出人为什么会提出这种算法,在日常生活中的含义是什么,算法的优点和缺点是什么,以及如何用Java或C++来编程实现该算法。最后,对多层次关联以及数量关联规则挖掘做个简单介绍即可。
4) 分类技术4学时。介绍分类的原理,主要讲解ID3和C4.5、朴素贝叶斯分类,简单介绍一下BP神经网络的分类。对于C4.5要求能够从原理上把握整个算法,能够进行连续值的离散化处理,理解C4.5比ID3的优势所在;对于朴素贝叶斯分类,要深刻理解该分类的原理以及贝叶斯信念网络的工作原理。特别的,对于FP_TREE以及C4.5算法的实现,需要用到不规则树,提出用C++或Java解决这种不规则树的方法。
5) 聚类技术4学时。在介绍聚类的重要性和分类的基础上主要介绍划分聚类PAM算法思想以及基于密度聚类DBSCAN,对于当前重要的聚类STING和CLIQUE做个简单介绍。最后,比较聚类和分类的不同之处。
6) Web挖掘与个性化推荐技术4学时。对于Web挖掘从内容挖掘、访问行为挖掘和结构挖掘三个方面进行讲解,重点讲解个性化技术。对基于最小关联规则集的个性化推荐以及基于协作筛的个性化推荐作深入剖析,并指出在当今网站设计中的重要意义。
7) 上机实验设计。精选五个上机实验。第一个实验是关联规则的Apriori算法或FP_Tree算法的实现,两个任选一个,如果选择Apriori的话,需要采取一些效率改进措施;第二个实验是序列模式挖掘中的AprioriSome算法;第三个实验是分类技术中的ID3或C4.5算法,这两个算法的主体相同,任做一个即可;第四个实验是聚类中的PAM或DBSCAN算法,两个任选一个;第五个实验是利用协作筛进行个性化网站的智能推荐。以上五个实验每个实验2学时,建议编程语言采用Java或C++,最后挖掘结果具有可理解性。
当然,以上的课程内容设计会随着数据挖掘技术的发展,不断进行微调,以适应不断变化的计算机技术发展与社会需求。
4 “数据挖掘技术”教学实践总结
两年前,虽然已对“数据挖掘技术”课程作了充分准备,但在刚开设这门课程的时候,很担心这门“高深莫测”的课程的教学效果。但经过两年的教学实践发现,这门课程的教学效果比预想的还要好。通过对该门课程的学习,学生不仅基本掌握了数据挖掘的基本原理和算法,同时对以前的一些主干课程如数据结构的理解和运用有了非常深刻的认识。更为重要的是,本课程的五个实验都是数据挖掘领域中最经典、最重要的算法,通过对这些算法的编程实现,不仅理解了数据挖掘关键算法的精髓,同时,这些数据挖掘算法实现的程序经过不断改进、加工,性能不断提高,由于都是源代码,可以将这些算法应用到一些实用的软件系统如客户关系管理系统、个性化网站中去,收到良好效果。此外,在网上的一些数据挖掘论坛中,经常看到一些初学数据挖掘的研究生或技术人员很想看一看数据挖掘经典算法的具体程序实现,我们也将这两年不断改进的程序源代码作为免费资源赠送给了不少同行,也为数据挖掘的推广应用贡献了微薄之力。
5结束语
“数据挖掘技术”课程的教学尝试目前主要针对的是本校应用型计算机专业本科生,虽然收到了良好的效果,但“数据挖掘技术”绝不仅仅是计算机专业学生才需要掌握的课程,对于我校通信系、电力系、自动化系等工科专业,经济系、管理系甚至一些文科类的学生也很有价值,因此,怎样在非计算机专业的应用型本科生中开设好这门新兴课程,甚至在高职高专学生中也开设好这门课程,则是需要作进一步的探索和尝试。
参考文献:
[1] 毛国君. 数据挖掘原理与算法[M]. 北京:清华大学出版社,2005.
[2] 陈文伟. 数据挖掘技术[M]. 北京工业大学出版社,2002.
[3] 余力. 电子商务个性化[M]. 北京:清华大学出版社,2007.
A Test to Applied College Students on Teaching Data Mining
XU Jin-bao
(Dept. of Computer Engineering, Nanjing Institute of Technology,
Nanjing 211100,China)
Abstract:Data mining becomes more and more important in nowadays. To applied college students, mastering the basics and methods of data mining technology demands immediate attention. This article gives some suggestions on how to teach these students well. The content of data mining technology course and experiments are selected elaborately. Mining technologies such as association rule , data classification, clustering , web mining and personalized recommendation are emphasized.
耿国华,工学博士,1978年西北大学计算机专业学习、任教,1989年~1994年任西北大学计算机科学系副主任,现任西北大学信息学院副院长,教授、博士生导师,教育部文科计算机基础教学指导委员会副主任,陕西省计算机教育学会副理事长,陕西省人工智能与模式识别专业委员会副主任;1989年、2007年获陕西省优秀教师,2006年获陕西省教学名师,带领的计算机核心课程教学团队荣获2007年陕西省教学团队。
多年来从事智能信息处理、数据库与知识库的教学与研究工作。主持承担2项国家自然科学基金以及多项省自然科学基金、横向项目的研究,在核心期刊、国际国内学术会议发表学术论文80余篇,专著2部,9次获得省部级科技进步奖,在信息处理取得了系列研究成果,已形成智能检索处理的研究特色。
耿国华教授教书育人,长期工作在教学一线,主讲8门本科生与研究生课程,主持2门国家精品课程;主持获得国家级教学奖1项和省级教学奖3项;主编出版教材13部,列入国家“十一五”规划教材4部;共指导博士生15名,硕士研究生76名,指导本科毕业论文百余篇。教学效果得到学生的好评。
一、管理会计课程的特点
管理会计是会计学专业的核心课程之一,该课程一般在基础会计、中级财务会计、成本会计课程的学习基础上开设。教学内容主要包括战略、预算、成本、营运、投融资、绩效等管理,教学方法一般采用理论讲述、案例分析等,教学学时一般50学时左右,教学采用“多媒体+传统”方式。该门课程与财务会计相比具有四个特点。(一)以财务会计提供的会计信息为基础。财务会计通过特有的确认、计量、记录、报告等方法程序,提供决策有用的会计信息。管理会计正是利用这些信息,进一步加工,用于组织的预测决策、规划控制等方面,以实现组织的价值增值为目标。技术方法用到较多复杂的数学计算,如回归模型、指数平滑、方案评价指标等。与财务会计相比,都是比较复杂的数学计算,学生只有具备相应的数学基础,方能学好。(二)将管理理论和思想融于会计。管理会计是管理学与会计学的交叉,在会计中融入了管理的理论和思想、理念。通过不同方案、不同指标的对比(静态的指标如投资回收期;动态指标如净现值、内部收益率等),帮助企业选择最优的方案,这是管理会计决策部分的主要内容。(三)方法程序灵活多样。管理会计是为企事业单位内部管理服务的,严格的会计准则、财务程序并不完全适用于管理会计,管理会计的方法、程序、工具,灵活多样,可以交叉使用,也可单独使用。
二、管理会计指引的实施有助于促进管理会计的发展
(一)管理会计指引的作用。为促进企业和行政事业单位加强管理会计工作,提升内部管理水平,促进经济转型升级,2014年财政部《关于全面推进管理会计体系建设的指导意见》(财会[2014]27号);2016年6月财政部《管理会计基本指引》,一系列文件的颁布实施改变了管理会计缺乏“规范”的局面。管理会计指引是从政府层面提出的应用管理会计的指示和引导,具有感召力和强制性,有助于促进单位充分利用管理会计的工具方法,提高管理水平,从而增强竞争力。(二)管理会计指引体系构成。管理会计指引体系包括基本指引、应用指引和案例库。基本指引、应用指引与案例,是管理会计龙头上的眼睛(于增彪,2016),用以指导组织管理会计实践。其中,基本指引在管理会计指引体系中起统领作用,是制定应用指引和建设案例库的基础,而应用指引则是对具体业务活动的详细要求,它们之间的关系类似于会计的总分类账户与明细分类账户。《管理会计基本指引》全文共6章29条,包括制定的目的、应用原则与应用环境、管理会计活动、工具方法、信息报告等。该指引在遵循战略导向、融合性、适应性、成本效益等原则的基础上,借助内外部环境因素,其中内部环境主要包括与管理会计建设和实施相关的价值创造模式、组织架构、管理模式、资源保障、信息系统等因素;外部环境主要包括国内外经济、市场、法律、行业等,通过规划、决策、控制、评价等管理会计活动的运作,运用战略地图、滚动预算管理、作业成本管理、本量利分析、平衡计分卡等模型、技术、流程等工具方法,进行战略、预算、成本、营运、投融资、绩效、风险等管理,提供具有相关、可靠、及时、可理解性的会计信息质量特征的财务信息和非财务信息,并进行定期和不定期、综合和专项报告,最终提高管理水平。之后,陆续实施22项《管理会计应用指引》,见下表。管理会计应用指引,是对单位实施管理会计工作的具体要求,具有指导性和较强的操作性。20世纪90年代后,河北邯郸钢铁公司实行的“模拟市场,成本否决”可谓成本管理在我国企业应用的典范。管理会计应用指引的设计以企业战略、预算、成本、营运、投融资、绩效、风险等七大领域的管理为依据,每一领域都有各自适用的管理会计工具方法。
三、互联网、人工智能在财务领域的应用给管理会计带来新的发展机遇
管理也是生产力。电子计算机在会计中的广泛应用,大大提高了会计核算工作效率。从会计凭证制作、记账到会计报表形成,计算机都能在程序语言的基础上全部完成,且快速准确,这样会计核算人员的需求数量相应的减少。更多的会计核算人员可以转岗从事管理会计工作,分析、重整财务数据,为决策提供依据。人工智能用于财务领域,一些程序化、重复性的工作,可以由智能机器人完成,会计人员可以从重复的、繁琐的工作中解脱出来;通过云计算处理财务数据,提高财务数据效能。这些新的技术在财务领域的应用,使会计工作重心发生转移,会计人员可以将精力用于开发思想、管理创新、提高组织管理效率,真正实现由核算型会计向管理型会计的转变,这为管理会计提供了新的发展机遇。
四、顺应新技术时代,改革管理会计课程教学
经济发展靠人才,培养人才靠教育。管理会计的广泛应用,必须培养管理会计专业人才。而管理会计人才的摇篮主要是高校会计学专业。因此,应该与时俱进,从培养方案修订做起,通过优化大纲、改进教学方法、提升师资水平、拓宽教学资源等,探索新技术时代背景下的管理会计教学改革,培养优质的管理会计人才,促进管理会计应用。(一)师资培训与提高。从高校会计学教学实践看,管理会计师资相对紧缺。许多高校虽然开设了会计专业,但大部分是财务管理、财务会计、税收、会计电算化等方向,管理会计的师资储备并不充足。管理会计课程“管理”的特点,也对管理会计教师提出了更高的要求,不仅要精通财务会计,还要具备较丰富的管理学知识、高等数学的知识等。尤其现在的互联网、云计算、大数据等,一方面为管理会计的发展提供了契机,另一方面也需要培养具备相关知识的管理会计教师。建议通过培训、专业跨转等形式,提高、充实管理会计师资,以满足新技术时代管理会计发展对师资的要求。(二)修订培养方案。培养方案是人才培养的纲领性文件,具有目标导向性。针对计算机、互联网、人工智能等新的技术环境,要充分调研兄弟院校的教学现状,实时修订培养方案。在新的培养方案中,突出管理会计的重要地位,整个培养方案的重心由会计核算型向管理型转移。聘请业内专家,对初步拟定的培养方案进行论证,并注意吸收来自会计实务界、毕业生等方面的意见或建议,不断优化完善。(三)削减财务会计的课程及学时。一般会计学专业的培养方案中,涉及财务会计的课程包括基础会计、中级财务会计、高级财务会计、税务会计、成本会计、政府及非营利组织会计。这些课程都是利用确认、计量、记录、报告等会计特有的程序,用借贷记账法记账,实现会计核算的职能。它们之间的差异仅仅是核算具体内容的区别,其所用的会计基本理论和方法是一致的。只要学生掌握了会计的程序和方法,就能很容易通过自学扩展不同领域的会计核算问题。笔者认为,完全可以合并或删掉某门课程,如将中级、高级财务会计、税务会计合并为财务会计,在基础会计学习的基础上开设。(四)增加管理会计的课时或增加相关课程。因国家对高校培养方案总学时有明确限定,现在总的趋势是压缩专业课比重。因此,在总学时数一定的情况下,压缩的财务会计的课时,可以用来增加管理会计的比重。通过增加管理会计课程的学时,加大案例教学、辩论式教学比重,剖析管理会计应用的成功案例及失败的教训,提升管理会计教学的深度和广度,开发学生的思维空间,培养创新思维及创新能力,提高其分析解决问题的能力,更好地服务于管理会计实践。(五)优化教学大纲。依据所修订的培养方案,撰写课程教学大纲。教学大纲应包括课程简介和课程教学大纲两部分。课程简介部分重在说明课程的类别、学时数、先修课程、所用教材、课程主要内容、参考文献及网络资源等参考资料,起到总括认识该门课程的作用。课程教学大纲主要包括课程的性质及任务课程、与其他课程的联系及分工、课程教学内容、学时分配表、教学基本要求、成绩考核说明等。课程内容应该按照章、节、问题等,尽量细化,并明确教学目的与要求、重点与难点,以便于课程的讲授。课程的考核应该明确具体,包括考试成绩、论文、案例分析等作业所占比重等。明确课程的主要参考书及网站,以便于学生课外研习。(六)选用优质教材、拓展学习资源。教材是教学的主要参考书,对学生的影响至关重要。应该优先选择国家精品课程教材、国家级规划教材。注意选择与管理会计课程、教材相适应的参考教材,促进学生从不同层面、不同视角对所学管理会计理论知识的掌握。避免因某种利益关系而选用质量低劣的管理会计教材。同时,借助主流网站,充分利用网络资源拓展管理会计课程的学习。如通过大中型企业的网站,查阅其管理会计实践做法,用所学理论分析、验证、反思企业管理会计实践。通过中国会计学会管理会计专业委员会网站,学习了解管理会计的学术前沿与管理会计面临的新问题,培养学生科学研究的思维及创新能力。通过浏览会计专业期刊网站,搜索研究有关管理会计论文,从中吸收管理会计思想和实践的营养,提高管理会计理论水平和实务能力。(七)教学方法与手段。以中国人民大学国家级优秀教材《管理会计学》(第七版)为例,管理会计课程内容主要包括变动成本法、本量利分析、经营决策、存货决策、投资决策、标准成本法、作业成本法、全面预算管理、业绩考核与评价。既包括管理会计的方法,也包括预测决策、规划控制与业绩评价,这些内容要求管理会计应采用多种教学方法,既包括对理论部分的教师讲述,还应该包括案例教学、讨论式教学、参与式教学等多种方法。案例教学要求教师通过案例内容的陈述与分析,将需要学生掌握的知识点、管理会计理论融入其中,提高学习兴趣,增强实践感知性。案例的来源可以多样化,可以选用中国管理案例库、期刊杂志中的案例等;也可以因地制宜,对案例进行修改,以便符合教学需要;条件成熟时,还可以利用寒暑假或与企业合作课题等机会,深入企业实际,自行编写具有自主知识产权的案例。这些案例,既是教材内容的补充和延伸,又能激发学生的学习热情。培养方案修订、学时的增加,使得类似“咖啡屋”、小组讨论、案例教学等方法成为可能。教学手段则可以根据内容,采用传统方法与多媒体相结合,(八)网络资源的学习引导。现在网络无处不在,网络资源丰富。在上述学习的基础上,教师可引导学生积极利用网络资源学习,如微课、慕课等,作为课堂学习的补充。中国会计学会、中华会计网校、各种期刊杂志网站、各级财政部门关于会计师职称考试网、大中型企事业单位网站、教育中介机构网站、大学精品课程与在线课程网站等,都具有丰富的管理会计学习资源。只要愿意学习,总能找到学习资源。互联网时代的学习,渠道和获取资料来源已经做到充分多元化。
五、结语
管理会计是价值创造的信息系统,国家要强大必须要有强大的企业,企业要强大必须要用管理会计(于增彪,2016),但管理会计是我国的短板(楼继伟,2016)。互联网、大数据、云计算、人工智能等现代新技术,为管理会计的发展提供了新的发展机遇。管理会计指引的实施为管理会计的实践提供了政策支持,这也给管理会计课程教学提出了新的、更高的要求。管理会计案例作为管理会计指引体系的构成部分,新技术时代的案例还相对匮乏。制作、编写新的管理会计案例的过程也是促进管理会计课程教学改革的过程,实现管理会计由“短板”到“升级版”的跨越,逐渐满足我国管理会计的需求(于增彪,2017),管理会计任重而道远。
参考文献:
[1]孙茂竹,文光伟,杨万贵.管理会计学[M].北京:中国人民大学出版社(第七版),2015.
关键词:ICAI;系统模型;教学策略;综合集成方法论MSM;现代教育技术
中图分类号:G250.73 文献标识码:B 文章编号:1673-8454(2012)01-0030-04
计算机辅助教学(Computer Aided Instruction,简称CAI)是利用计算机来模拟教师的行为,通过学生与计算机之间的交互活动来达到教学的目的。即在计算机辅助下进行的各种教学活动,主要是以对话方式和学生讨论教学内容、安排教学进程、进行教学训练的方法与技术。CAI为学生提供一个个人化的学习环境,综合应用多媒体、知识库等计算机技术,这是传统CAI的主要应用方式。
在没有智能系统支持的情况下,传统CAI尽管可能具有良好的教学材料模型,但它往往仅借助于计算机来展示教学内容,并不能很好地根据它所教学生的学习特征,以不同的教学策略和教学方法来教授;只是盲目地传授知识给学生,如果某个学生不能接受提供的教学策略,系统没有为这个学生提供可供选择的另外的教学策略。目前使用的绝大多数CAI是将全部教学信息以编程方式预置于课件中,这样的CAI课件一旦制作完成,很难对课件进行更新和维护,尤其是在这样的CAI系统中,学生的学习仍然处于被动状态,即完全受计算机控制。
一、智能化计算机辅助教学概念
现代教育技术的日益发展以及与其他领先技术的结合,必然促使计算机辅助教学CAI的进一步发展。人工智能技术应用于CAI产生的基于网络环境的智能化CAI,就是现代信息化社会发展的产物,并在教育教学领域中有很好的发展前景。
人工智能是计算机科学的一个分支,它的目标是构造能表现出一定智能行为的,目的就是让计算机这台机器能够像人一样思考。人工智能的研究更多地是结合具体领域进行的,主要研究领域有专家系统、机器学习、模式识别、博弈、智能决定支持系统、人工神经网络等等。人工智能技术与专家系统的成就,促使人们把问题求解、知识表示这些技术引入CAI,并借助于网络环境来实施,这便是智能型计算机辅助教学。
智能计算机辅助教学ICAI(Intelligence Computer Assisted Instruction)属于人工智能的一个分支,是以认知科学和思维科学为理论基础,综合人工智能技术,教育心理学等多门学科的知识对学生实施教育的一门新的教育技术。ICAI通过研究人类学习思维的特征和过程,探索学习知识的模式,利用信息化网络环境使学生获得个别化自适应性学习的获取知识方法,从而使学生的学习更有针对性,更有效。
ICAI依靠人工智能技术的进步,主要应在因材施教方面取得进展。其主要特点是:
(1)能自动生成适合学习者程度的学习内容。
(2)能根据学生的不同认知水平与学习风格选择教学策略和教学方法。
(3)能评价学生的学习结果,并不断地在教学中改善教学策略。
二、智能化计算机辅助教学研究现状
现阶段,在一些发达国家,如美国、日本、加拿大、英国、法国、澳大利亚等,CAI已经普遍存在于学校和家庭中,正起着越来越大的作用。而ICAI的研究还处于初始阶段。目前国内在这一领域的研究主要集中在CAI和ICAI的优缺点比较,ICAI的理论来源、系统特征、模块建设、发展趋势等基础理论知识的研究,基于相关课程或学科的实践研究还比较少见。智能教学系统的设计和开发是一项复杂的系统工程,由于需要考虑的因素较多,系统比较庞大,同时也依赖于人工智能等技术的发展,因而要建立完善的ICAI还是比较困难的。[1]因此ICAI有很大的理论和实践发展空间。
完善的ICAI系统需能够充分调动学生的主动性,并能通过分析推理,对某具体学生做出适合的教学决策。使学生获得个别化自适应性学习的学习方法,达到因材施教的目的。人工智能技术的发展必将会对ICAI的发展起到巨大的推动作用。随着计算机科学的发展,21世纪的教育教学辅助手段将是以ICAI为主线,多学科、多方位发展的新技术的体现,越来越多的教育工作者会从更多的视角审视ICAI,并从事ICAI的研究。相信ICAI将会在现代教育领域中有更广泛的应用。
“现代教育技术”既是教育技术专业的必修课程,也是大中专院校广泛设置的选修课程,适用范围非常广泛。本文以《现代教育技术》这门课程为主要研究对象,来研究智能化教学系统设计在具体实践中的应用。
三、ICAI决策系统的理论依据
1.综合集成理论
教育是以人为主体参与的活动,而人本身就是一个复杂巨系统,因此以这种大量的复杂巨系统为子系统组成的系统――教育系统,是一个复杂巨系统。依据系统与其环境是否有物质、能量和信息的交换,将系统划分为开放系统和封闭系统来看,学生的学习受到教师、同学、家庭及社会等因素的影响,所以教育系统是一个开放的复杂巨系统。
钱学森的理论和实践研究表明:现在能用的、惟一能有效处理开放的复杂巨系统的方法,就是定性定量相结合的综合集成方法论。综合集成方法论(Meta-synthesis Methodology MSM)是方法论上的创新,它是研究复杂巨系统和复杂性问题的方法论。[2]定性定量相结合的综合集成方法是将专家群体(各种有关的专家)、数据和各种信息与计算机技术有机结合起来,把各种学科的科学理论和人的经验知识结合起来,发挥这个系统的整体优势和综合优势。[3]它把人的经验、知识、智慧以及各种情况、资料和信息系统集成起来,从多方面定性认识上升到定量认识,从而达到解决复杂系统问题的目的。在解决问题的过程中,专家群体和专家的经验知识起着重要的作用。
教学系统设计是一个复杂的系统,它是由教育系统的复杂性决定的。教育系统具有复杂系统的基本特点,它在结构与功能上表现为规模大、相关因素多且相关方式复杂、目标多样等;在运动上表现为随机性、非线性等。用一般的理论方法无法全面合理地解决这一不良结构的问题,本研究尝试用综合集成方法论来指导、分析教学设计智能化过程。因此,运用综合集成理论的方法来研究教学设计系统,探讨具体科目的教学设计在设计过程中遇到的复杂性问题,进而构建科学合理的教学设计系统,具有重要的理论和实践价值。
2.教学设计理论
本文采用“双主”教学模式作为ICAI的教学设计的理论基础。“双主”教学模式既能发挥教师的主导作用又能充分发挥学习者认知主体作用,是在教师主导下的课堂中能让学习者参与进来共同学习的一种教学模式。
基于“双主”的教学模式,要求根据学习者的特征、学习内容、学习策略、学习目标等多种因素的不同情况研究它们的结合方式,以使系统达到理想的教学效果。
基于网络环境的ICAI相对于传统的CAI来说,充分体现了“双主”的教学模式。ICAI中有专门分析学习者学习方式和认知水平的学生模型,有专门为不同的学习内容选择不同的学习策略的策略库模型(也称为教师模型),有评价学习效果并反馈给系统的评价模型。学生模型是对学习者的学习特征进行分析,包括学习者的学习风格、认知水平。策略库模型包含有丰富教学策略和有一个智能推理机,能根据学生模型的信息和学习目标为学习者选择合适的学习策略,指导学习者学习。
3.建构主义学习理论
当代建构主义者主张,世界是客观存在的,但是对于世界的理解和赋予意义却是由每个人自己决定的。建构主义者认为学习者要以自己的经验为基础来建构现实,或者至少说是在解释现实,每个人的经验世界是用自己的头脑创建的。
学习过程同时包含两方面的建构:一方面是对新知识意义的建构,同时又包含对原有经验的改造和重组。建构主义者强调学习者在学习过程中能够灵活地建构起用于指导实践活动的图式,这种图式是对概念的丰富理解,依据个人经验背景的不同而不同。
教学应当把学习者原有的知识经验作为新知识的生长点,引导学习者从原有的知识经验中,生长新的知识经验。教学不是知识的传递,而是知识的处理和转换。
ICAI伴随着这种理论的发展而发展,它注重的是由学习者来控制学习过程,重视学习内容的知识结构和学习情境,让学习者主动构建对自己有意义的知识的活动。基于网络环境的ICAI积极地为学习者创设学习情境,帮助学习者用他们已有的知识去建构、生成、整合新的知识。
4.教学处方理论
“教学处方理论”是郑永柏博士于1998年提出的一种新型适合于信息化教学设计的理论,他通过对教学系统设计理论和计算机辅助教学设计方面的研究,建构了一种新型的教学系统设计理论――教学处方理论。该理论主要包括:六个基本概念、一个理论框架、三条基本原理和两个关于教学设计的知识库。[4]
该理论指出教学处方可以看作是教学设计者(有时可以看作是教师)依据系统分析后使用的各种教学模式、教学方法和教学内容处理模式的组合;说明了在特定教学条件下对特定教学结果的教学,以不同的学习理论和教学理论为指导将会采用不同的教学方法,即教学处方,这也是本研究的核心内容,是该系统设计的指导理论。“教学处方理论”具有更好的包容性、开放性,能够吸收和容纳丰富的学习和教学研究成果。
四、ICAI系统的模块结构
1.前端分析模块:认知能力、学习动机、认知风格
前端分析是美国学者哈利斯(Harless,J.)在1968年提出的一个概念,指的是在教学设计过程开始的时候,先分析若干直接影响教学设计但又不属于具体设计事项的问题,本文主要指认知能力、学习动机和认知风格方面的分析。前端分析模块主要是建立相应的学生特征类型的数据库。
认知能力的测量采用认记、理解、应用、分析、综合、评价六个维度,每个维度有“优、良、中、差”四个选项。通过数据分析找出学习者的现状和期望之间的差距,确定需要解决的问题是什么,并确定问题的性质,形成不同层次的教学设计项目的目标。
学习风格和学习动机通过专门的量表来收集数据。
2.内容分析模块
教学内容分析就是在确定好总教学目标的前提下,借助归类分析法、图解分析法、层级分析法、信息加工分析法等方法,分析学习者要实现总的教学目标,需要掌握哪些知识、技能或形成什么态度。通过对教学内容的处理,确定学习者所需学习内容的范围和深度,确定内容各组成部分之间的关系,为以后教学顺序的安排奠定好基础。
对教学内容的处理主要包括:教学内容的选择、教学内容的编排、确定单元目标及对内容进行初步评价、分析教学内容类别及性质等四个基本方面。在构建规定性教学内容处理模式库时,应对上述四个方面提供具体的方法。[5]
3.决策模块
教学策略(处方)的制定就是根据特定的教学目标、教学内容、教学对象等条件,来合理地选择相应的教学顺序、教学方法、教学组织形式。在数据库中建立可供选择的不同的教学策略(处方),是本文所研究的ICAI系统的主要模块,也是特色模块。
教学策略(处方)的制定包括教学顺序的确定、教学方法的选择、教学组织形式的选择等。教学顺序的确定就是要确定教学内容各组成部分之间的先后顺序;教学方法的选择就是要通过讲授法、演示法、讨论法、练习法、实验法、示范模仿法等不同方法的选择,来激发并维持学习者的注意和兴趣,传递教学内容;教学组织形式主要有集体授课、小组讨论和个别化自学三种形式,各种形式各有所长,须根据具体情况进行相应的选择。教学策略的制定是根据具体的目标、内容、对象等来确定的,要具体问题具体分析,不存在能适用于所有目标、内容、对象的教学策略。
4.评价模块
在基于网络环境的ICAI的评价模块,要依据前面确定的教学目标,运用评价量表,分析学习者对预期学习目标的完成情况,主要收集三个方面的基本信息,一是要收集关于教师对教学设计方案和教学方案实施结果的满意度的信息数据,二是要收集关于学习者对教学过程、教学策略的适应性的信息数据,三是要看与其他方法相比,本处方中所采用的方法是否有独到之处,是否有不足之处。[6]在数据分析的基础上,对教学策略和教学内容的修改和完善提出建议,并以此为基础对ICAI各个环节的工作进行相应的修改。
5.ICAI系统模型框图
学习者前端数据采集数据库包括:认知结构测量及分析系统、学习动机测量及分析系统、学习风格测量及分析系统和学生基本信息系统。系统模型如图所示。
五、ICAI决策系统实验数据来源
本课题实践研究的调查对象来自云南大学,是2008届市场营销教育和财会教育本科生,共89人,课程设置为现代教育技术。学生调查表包括本科生基本信息表,所罗门学习风格量表,学习者认知能力调查问卷,学习者学习动机调查问卷四份表格组成。实际收到数据表89份,有效数据表75份。数据表中的信息选项根据所占权重,统一折合成百分制进行处理。
六、总结
本文把教学设计理论、方法与“现代教育技术”课程相结合,拟研发出一个基于综合集成方法论的广义智能网络教学设计辅助系统。主要研究成果如下:
(1)把综合集成方法论引入解决教学设计这一不良结构问题;
(2)结合数字化方法和数据挖掘技术,它能对学习者进行数字化的前端分析;
(3)它所自动化给出的教学设计方案,可为青年教师提供良好借鉴,有利于教师因材施教、因风格施教、因需要施教;
(4)它所自动化给出的学习者学习建议方案,有利于促进学习者自主学习。
现有的CAI存在的许多问题随着新技术的不断出现而显得越来越不能适应新环境的需求,因此以基于网络环境的ICAI为代表的新计算机辅助教学系统,将是教育教学研究人员在教育技术上需要不断探求、努力实现的发展方向。
参考文献:
[1]杨采坚,董玉铭.智能教学系统设计[J].中国电大教育,1993(3).
[2]于景元,涂元季.从定性到定量综合集成方法――案例研究[J].系统工程理论与实践,2002.5.
[3]钱学森,于景元,戴汝为.一个科学新领域:开放的复杂巨系统及其方法论[J].自然杂志,1990(1).
[4]郑永柏.教学系统设计理论和方法研究:教学处方理论和ISD-EPSSS的设计与开发[D].北京师范大学博士学位论文,1998.