前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的欧姆定律知识总结主题范文,仅供参考,欢迎阅读并收藏。
【关键词】欧姆定律 应用 初中科学 教学策略 探索
“欧姆定律及其应用”的教学目标是让学生理解欧姆定律,并应用欧姆定律进行简单计算;能根据欧姆定律及其电路的特点,更深刻理解串、并联电路的特点;通过计算,学会解答电学计算题的一般方法,培养学生逻辑思维能力,观察、实验能力以及分析问题、概括问题、解决问题的能力,并养成学生解答电学问题的良好习惯。通过实验探究等学习方法,激发和培养学生学习科学的兴趣,培养学生实事求是的科学态度以及认真谨慎的学习习惯。
近几年,中考对“欧姆定律及其应用”的考查非常多,归纳一下,主要是从这么几方面进行考查的。
1、以欧姆定律为基础,结合串、并联电路的电压、电流、电阻特点,解决一些简单的计算。
例1、如图3所示, ,A的示数为2.5A,V的示数为6V;若R1,R2串联在同一电源上,通过R1的电流为0.6A,求R1和R2的电阻值。
图3
解析:此题考查了学生对并联电路特点的掌握和对欧姆定律公式的理解。在解物理题中,数学工具的应用很重要。本题可先根据并联电路的特点,找出R1、R2和总电阻的关系。
2、结合伏安法测电阻的相关知识,更深刻的理解欧姆定律的生成,强化电学实验操作技能的考查。
例2、给出下列器材:电流表(0~0.6A,0~3A)一只,电压表(0~3V,0~15V)一只,滑动变阻器(0~10 )一只,电源(4V)一个,待测电阻的小灯泡(额定电压2.5V,电阻约10 )一个,开关一只,导线若干,要求用伏安法测定正常发光时小灯泡灯丝的电阻,测量时,两表的指针要求偏过表面刻度的中线。
(1)画出电路图;
(2)电流表的量程选 ,电压表的量程选 ;
(3)下列必要的实验步骤中,合理顺序是 。
A. 闭合开关 B. 将测出的数据填入表格中
C. 计算被测小灯泡的灯丝电阻 D. 读出电压表,电流表的数值
E. 断开开关 F. 将滑动变阻器的阻值调到最大
G. 对照电路图连好电路 H. 调节滑动变阻器,使电压表的示数为2.5V
解析:欧姆定律的得出是根据伏安法测电阻的电路图来进行探究的,而伏安法测电阻同时也是欧姆定律的一个应用。所以伏安法测电阻与欧姆定律的应用其实是相辅相成的。对伏安法测电阻的相关知识的考查,其实更能帮助学生理解欧姆定律的生成。并且通过自己画电路图的过程,考查了学生对电路连接的作图能力和实验设计能力。
3、应用“欧姆定律”判断电路中各电表的示数变化
例3、如图1所示,电源电压保持不变,当滑动变阻器滑片P由左端向右移到中点的过程中,下列判断正确的是( )
A. 电压表和电压表A1,A2和示数变大
B. 电流表A1示数变大,电流表A2和电压表示数不变
C. 电流表A2示数变大,电流表A1,电压表示数不变
D. 条件不足,无法判断
解析:本题考查了利用欧姆定中电压、电流、电阻的关系来判断电流表、电压表示数变化的同时,也考查了学生对复杂电路的判断能力,电表测哪个用电器的电压,测通过哪个用电器的电流等。R1和R2是并联关系, 测电源电压; 测干路电流, 测R2的电流。
答案: B
4、通过解方程的方法结合欧姆定律,解决由于电阻变化而引起电压、电流变化的题。
例4、 如图2所示,变阻器R0的滑片P在移动过程中电压表的示数变化范围是0~4V,电流表的示数变化范围是1A~0.5A,求电阻器R的阻值、变阻器R0的最大阻值和电源电压U。
图2
解析:在电路中由于电阻发生变化引起的电流、电压变化的题,如不能直接用欧姆定律和串、并联电路特点直接求解,可考虑用方程解题。在设未知数时,尽量设电源电压、定值电阻等电路中不会变化的量。首先分析一下电路图,弄清电流表测量对象,同时可看出电压表示数为0V时,电流表示数最大为1A,电压表示数为4V时,电流表示数最小为0.5A。但根据已知,用欧姆定律和串联电路的特点能直接求出的量只有R0的最大电阻值,别的再无法直接求出,因此这里必须要列方程来解。
5、“欧姆定律”和生活实际的结合,提高学生观察生活的能力和解决实际问题的能力。
例5、下图是新型节能应急台灯电路示意图,台灯充好电后,使用时可通过调节滑动变阻器接入电路的阻值R改变灯泡的亮度,假定电源电压、灯泡电阻不变,则灯泡两端电压U随R变化的图象是( )
解析:灯L和滑动变阻器串联,电源电压U、灯泡电阻 不变。当滑片向左移动时,滑动变阻器的电阻变大,即电路中的总电阻变大,由 知,电路中的电流I会变小,则灯泡两端电压 也会变小。
答案:选C。
结论:授之以鱼不如授之以渔,以上总结的题目类型可能并不完全,但只要学生能掌握并真正理解欧姆定律的内涵,就能很好的应用它来解决生活实际中真正出现的问题,把理论转化为实践才是学习的真正目的。
参考文献
[1] 谢妮.欧姆定律教学的优化设计[J]. 职业
[2] 邹冠男.欧姆定律知识梳理[J]. 中学生数理化(八年级物理)(人教版)
(1)牛顿第一定律。采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当做第二定律的特例;惯性不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。
(2)牛顿第二定律。在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。
(3)万有引力定律。教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。
(4)机械能守恒定律。这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不做功或所做的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。
(5)动量守恒定律。历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。
(6)欧姆定律。中学物理课本中欧姆定律是通过实验得出的。公式为I=U/R或U=IR。教学时应注意:①“电流强度跟电压成正比”是对同一导体而言;“电流强度跟电阻成反比”是对不同导体说的。②I、U、R是同一电路的3个参量。③闭合电路的欧姆定律的教学难点和关键是电动势的概念,并用实验得到电源电动势等于内、外电压之和。然后用欧姆定律导出I=ε/(R+r)(也可以用能量转化和守恒定律推导)。④闭合电路的欧姆定律公式可变换成多种形式,要明确它们的物理意义。⑤教师应明确,普通物理学中的欧姆定律公式多数是R=U/I或I=(1/R)U,式中R是比例恒量。若R不是恒量,导体就不服从欧姆定律。但不论导体服从欧姆定律与否,R=U/I这个关系式都可以作为导体电阻的一般定义。中学物理课本不把 R=U/R列入欧姆定律公式,是为了避免学生把欧姆定律公式跟电阻的定义式混淆。这样处理似乎欠妥。
《闭合电路欧姆定律》是高中物理电学部分中各种电路的基础内容,同时也是高中物理电路部分的重点内容,深刻理解并掌握本节内容对今后电路学习具有极大的帮助。在高中物理课堂教学活动开展中,为了有效提高《闭合电路欧姆定律》教学设计的有效性,下面本文首先简单分析了《闭合电路欧姆定律》教学目标,并在此基础上提出创设“问题情境”的教学设计为方法的课堂教学实践,以供参考。
高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的。教材在设计中意在从能量守恒的观点推导出闭合电路欧姆定律,从理论上推出路端电压随外电阻变化规律及断路短路现象,将实验放在学生思考与讨论之中。为了有效提高课堂教学质量和教学效果,我们特提出在《闭合电路欧姆定律》教学中创设“问题情境”的教学设计。
1.《闭合电路欧姆定律》教学目标分析
《闭合电路欧姆定律》教学目标主要有以下几个方面:一是,经进闭合电路欧姆定律的理论推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力;二是,了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力;三是,通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法;四是,利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的,其中涉及到了“电动势和内阻”、“用电势推导电压关系”、“焦耳定律”以及“欧姆定律”等诸多内容,这些内容之间具有一定的联系, 只要能够为其构建一个完善的体系,将这些知识有机的结合起来,就能够得出闭合电路的欧姆定律。以建构主义教学思想为基础,采用创设“问题情境”的教学设计,对于提高课堂教学有效性具有积极意义。
2.创设“问题情境”的教学设计具体实践
首先,通过问题的提出激发学生的求知欲。例如:将一个小灯泡接在已充电的电容器两极,另一个小灯泡在干电池两端,会观察到什么现象?并展示生活中的一些电源,演示手摇发电机使小灯泡发光和利用纽扣电池发声的音乐卡片实验,使学生进行思考这些现象出现的原因。通过观察学生会发现手摇发电机是将机械能转化成电能的过程,停止摇动就没有电能,灯泡就不会亮,而干电池、蓄电池是将化学能转化成电能,其化学能能够为干电池提供持续供电的功能,因此小灯泡能够持续发光。然后教师再在这个基础上提出问题:什么是电源的电动势?之后指出电源电动势的概念,帮助学生认识电源的正负极,并画出等效的电路图,利用学生已知的知识,如电势相当于高度,电势差则相当于高度差,这样学生就能够很好的对电势差以及电源电动势的内电压和外电压等概念进行理解了。
其次,在教学中可采用类比、启发、多媒体等多种方法进行教学。教师在课堂教学汇总可借助于多媒体播放flash课件, 借助于升降机举起的高度差或者儿童滑梯两端的高度差,帮助学生更好的理解电源电动势。另外还可以从能量的角度引导学生对其进行理解,例如小花去买衣服,共有100元,其中10元用于打车,90元用于买衣服,在这里,100元就相当于电源的电动势,车费相当于内电压(必要的无用功),买衣服的费用就相当于外电压(有用功),从而使学生掌握内外电压的本质属性。
最后,要通过实验来引导学生进行探究。物理学是一门以实验为基础的科学,观察和实验是提出问题的基础,在实验教学中应鼓励学生观察要细致人微,要善于从实验中发现问题,直观、形象的实验现象能激发学生思考。可以让学生通过实验来探究路端电压与外电阻(电流)的关系,得出路端电压与外电阻(电流)的关系,再从理论上进行分析。然后演示电动势分别为3V和9V(旧)的电源向一个灯泡供电实验,引发学生学习的兴趣,让学习进行讨论,解释现象原因。通过这种方式能够让学生很容易就明白流过灯泡的实际电流不仅与电源的电动势有关,还与电路中的总电阻有关,从而顺理成章的得出闭合电路欧姆定律,完成课堂教学任务。
3.总结语
关键词:初中物理;电流表电压表;实验观察
对于刚刚升入九年级的学生来说,九年级电学知识在近几年的中考中占有近40%的比例,只是2012年相应比例少点,八年级物理明显的不同点是:八年级物理各章相对独立些,特别是沪科版上册是声学、光学、物质的形态及其变化、物质的质量与密度,下册是力学知识:力与机械、运动与力、压强与浮力。所以某部分没学好,其他章节还能迎头赶上。我个人认为这是怕学生在学习的过程中枯燥乏味。而到九年级,开篇就是电学,大部分时间都在接触电学,电学的学习就像爬山一样,一开始如果就很累的话,那么越学到后面越吃力,到后来就根本爬不动,不可收拾,有的同学要补课还不知从何补起。所以,可以说,学好了电学就是学好了九年级物理。
一、注重学习效率,上课时专心听讲,是学好电学的主要途径。
课堂中的例题分析,考后试卷错题的讲解,只有真正听懂、理解了、消化了,课后是不需要死记硬背的。对于教师而言,学生实验自己做了,结论自己得出了,规律也会找了,但后面紧跟着的是大量的练习,来巩固对理论的理解。所以必须要有多种形式的教学手段来吸引学生上课认真听讲。有时连续几节课都是讲、练习题,必然会有些枯燥,这时教师除了运用多媒体手段教学,还可以进行学生编题比赛、学生纠错等多种教学手段,有时教师还可以故意设下陷进,让学生去犯错,然后让他们自己去“钻”出来,学生必定有一种释然的感觉。种种方式或手段目的都是为了调动同学们的积极性,让枯燥的习题课上得生动有趣。
另一方面,由于学生学得好坏有差异,学生的成绩也就有差别,所以整堂课的例题选择要顾及到绝大多数学生。
二、电学的学习,要注重学习方法的转变。
第一,重视电学实验的探究,不再是依赖老师的演示实验,而是同学们依靠自己与同伴的协作,连接电路图、测出实验数据、发现实验规律、得出实验结论。实验探究的学习方法,电学中有几个重要的定律,贯穿在整个电学中。同学们在认真完成课内规定实验的基础上,还可以自己设计实验,来判断自己设计的实验方案在实践中是否可行,因为大量的物理规律是在实验的基础上总结出来的。例如,设计楼道口开关电路、医院为病号设计电路,或设计在缺少电流表或缺少电压表的条件下测量未知电阻的实验。这些都需要学生自己独立思考、探索,不断提高自己的观察、判断、发散思维等能力,使自己对电学知识的理解更深刻,分析、解决问题更全面。
第二,电学要重视画图和识图的思维方法,刚学电学探究电路和探究欧姆定律离不开图形,复杂电路设计,都是主要依靠“图形语言”来表述的。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,明确欧姆定律应用于某一电阻还是整个电路;特别是班班通电子白板的应用,另外还必须根据现成的图形学会识图,要学会在复杂的图形中看出基本图形。例如,在计算有关电路的习题时,已给出的电路图往往很难分析出来是串联或是并联,如果能熟练地将所给出的电路图画成等效电路图,就会很容易地看出电路的连接特点,使有关问题迎刃而解。
三、学习电学要善于总结与归类。
在学习完欧姆定律后,有大量的习题,很多题目都有重复性,但很多同学就是不停地犯错。因为不善于总结、思考,所以成绩一直不理想。总结中不难发现,在整个电学知识体系中,欧姆定律是精髓,电流、电压、电阻、电功、电热以及电功率的计算,都要在对欧姆定律深刻的理解基础上才能解答得熟练而准确。所以,对一阶段的学习及时做一下总结,既是承上做一个复习又是启下的一个预习。
对于归类而言,其实把问题分一下类,就不难发现后面计算题的电路图与刚开始电路分析的电路图相差无几,只是多了条件,多了要求。而计算的熟练与否是来自于前面扎实的电路分析。比如开关类型的题目可以归为一类,刚开始学习时,主要是分析开关断开或闭合时,有哪些用电器工作并属于什么连接方式,或者要求用电器串联或并联,开关应如何动作,在分析电路时,短路现象的分析是难点;在学习了欧姆定律后,就出现了大量的计算题。有了前面会分析电路的基础,结合公式I=U/R以及两个变形公式,解题时注意短路现象和欧姆定律针对的是同一部分电路,经过一定量的练习,那么考试时计算题基本是得分题。故障分析的可以归为一类。只要做个有心人,把后面与前面所学的知识点互相联系起来,则整个电学就会逐渐在头脑中构成一个完整的知识网,任何题目隐藏的就是这张网中的一个或多个知识点的结合。
关键词:课堂环节;探究情境;教学质量
目前,技工学校都面临着一个困惑:学生基础差、积极性不高;电子电工学科抽象,学生不易接受。因此单向的教学方式已不符合现有的教学状况。现状告诉我们:只有加强互动,让学生主动学习才是提高教学质量的关键。
提高课堂教学质量,根本在于教师是否能够抓住学生的心。笔者根据多年的教学实践和电子电工这门学科的实际情况,进行了一系列的尝试,认为巧妙地创设问题性探究情境可以从以下几方面着手:
一、创设探究情境,以疑激思,导入新课
快速、有效地导入新课,是使课堂教学获得成功的一个关键。而以实验或现象创设教学情境,并通过设置疑问启发学生思维的新课导入法,是教师引发学生认知冲突、激发学生学习兴趣的一种可行有效的方法。
例如:在进行“闭合电路欧姆定律”的教学时,可先设计一个电路:把E1=3 V、E2=9 V的两个电源的一端并联,并联端与小灯泡的一端连接,小灯泡的另一端与开关S一端连接,然后,把开关的一端与E1E2的一端分别连接。再进行以下演示:先将开关扳到位置1,观察现象,此时小灯泡几乎发白光。接着让学生讨论、猜想:如果老师把开关扳到位置2,将会出现什么情况呢?大多数学生讨论的结果是灯泡会烧毁,而实际的结果却是灯泡的亮度还不如接电源E1时亮。这是怎么回事呢?原来是电源内部的电阻在起作用。这个结果大大出乎学生意料之外。他们内心已经形成的认知结构被这一现象严重打破了。这时渴求得到理论上解释的心情非常迫切,我们教师就可以轻松地带领着学生走进探求知识的新天地。
二、创设探究情境,深化理解,突破教学难点
电子电工学中很多概念和定律都比较抽象,学生在学习时常感到困惑。但它们之间又有许多相似之处和密切联系。我们可以利用简单的实验通过比较的方式创设探究情境,顺利地突破教学难点。
比如,我们在讲授“磁路欧姆定律”的内容时,发现学生对“磁路”这一概念较难理解。我们可以先演示一个实验:取一条形磁铁放在低压电源上,待会儿拿条形磁铁去吸引大头针,发现一颗也吸不住。学生的兴趣瞬间被眼前的实验现象激发出来了。我们可以趁机提出问题:本来具有磁性的条形磁铁为什么此刻连一颗大头针也吸不住?磁铁的磁性怎么会消失呢?激起学生的好奇心理后,立即解释清楚其中的原因。在解决了“磁路”这个问题后,我们又可以根据“磁路欧姆定律”与“电路欧姆定律”的相似性,拿它们进行对比,创设一系列的问题来帮助学生理解定律:它们形式上是否相似?“电路欧姆定律”讨论的是电动势E、电流I和电阻R三者之间的关系,“磁路欧姆定律”讨论的是哪三个物理量之间的关系呢?在磁路与电路的对比中,磁动势Fm、磁通Φ、磁阻Rm各自对应电路中的什么等等。如此问题性探究情境的创设不仅能轻松地为学生解惑,而且能增进学生对概念和定律的理解,课堂教学质量自然就提高了。
三、创设探究情境,启思理绪,巧妙分析解决问题
课堂教学中,教师若能构建一个具有阶梯性和延伸性的探究情境,有助于学生理清解题思路,其启发作用比我们习惯的陈述性讲解法要好得多,还能培养学生的严密逻辑思维能力,起到举一反三的作用。
构建具有阶梯性和延伸性的探究情境,是指问题探究的设计要由浅入深,由易到难,把学生思维逐步引向新的高度。也就是说,我们要善于把一个复杂的、难度较大的课题分解成若干相互联系的子问题,或几个小阶段,这些子问题不仅要紧扣当前教学应当解决的问题,还要蕴含与当前问题有关但需要学生进一步去思考、去探索的问题。同时我们要注意学生已有知识、心理发展水平和学习材料的难易程度,使知识的“探索”过程和“获取”过程有机统一;其次教师设置的探究问题要梯度适中、排列有序,形成有层次结构的开放性系统,并不断地与外界教学环境保持能量、信息的交换和延伸,使学生产生“有阶可上、步步登高”的愉悦感,从而兴趣盎然的接受知识,训练自己的思维能力。
四、创设探究情境,归纳提炼,总结授课要点
课堂教学过程应该是以不断地提出探究问题并解决问题的方式来获取新知识、新思维的过程。探究情境对于学生来说,除了能引发他们对问题进行思考外,也能有效地引导他们对知识进行归纳总结,构建知识框架,使课堂教学能突出重点,强化目标。例如,进行“库仑定律”课题教学时,在引出、陈述、应用定律之后对课堂内容进行总结归纳,我们可以采用生动的提问式归纳法替代呆板的直述式归纳法;静止点电荷间的相互作用力遵循什么规律?这种作用力的大小与哪些因素有关?方向如何?“点电荷”这一概念怎样理解?库仑定律适用于非点电荷间的相互作用力吗等等。这种方式不仅使整堂课更显活泼,而且归纳提炼的效果也更好。
关键词:电流表 电压表 滑动变阻器
在近年来浙江省的科学中考题目当中,电流表电压表示数变化判断问题常以选择题或填空题形式呈现,尽管分值不大,但对学生的电路知识综合运用能力的要求较高,加之面对复杂多变的电路情况时,学生往往不能对此类问题进行合理归类,导致其思维混乱,无从下手,失分率较高。下面笔者在具体实例中对此类问题进行归纳和解析。
一、由开关闭合、断开引起的电表示数变化
例1:如图1所示电路,当开关闭合后,判断电流表示数的变化。
解析:开关闭合前,电路中只有R1一个电阻,电流I=U/R1。开关闭合后,R1和R2并联,I=I1+I2=U/R1+U/R2,I1不变,I变大,即电流表示数变大。
例2:如图2所示电路,当开关闭合后,判断电流表示数的变化。
解析:开关闭合前,电路中R1和R2串联,R总=R1+R2。I前=U/R总;开关闭合后,R2短路,电路中只有R1,此时,I后=U/R1。由于U保持不变,R1+R2>R1,所以I前
例3:如图3所示电路,当开关闭合后,判断电流表和电压表示数的变化。
解析:开关闭合前,电阻R和灯泡L串联,R总=R+RL,电压表测的是电阻R两端的电压。UR前=U-UL,I前=U/R总。开关闭合后,灯泡L出现短路,电路中只有电阻R,UR后=U,I后=U/R。U保持不变,所以I前
图1 图2
图3 图4
二、由滑动变阻器调节引起的电表示数变化
例4:如图4所示电路,闭合开关,滑片P向左移动,判断电流表和电压表示数的变化情况。
解析:R1和R2串联,R总=R1+R2,U=UR1+UR2。P向左移动后,R2变小,R1不变,R总变小。根据欧姆定律I=U/R总,电源电压U不变,I变大,所以电流表示数变大。再根据欧姆定律UR1=IR1,因为I变大,R1不变,所以UR1变大,即电压表示数变大。
例5:如图5所示电路,闭合开关后,滑动变阻器R滑片P向右滑动,判断各电表示数变化的情况。
解析:先根据“三步走”法分析电路的联接方式,再判断各个电表的测量对象,再判断滑动变阻器电阻变化以后,各个电表示数的变化情况。电流从电源正极出发,依次通过滑动变阻器R、电流表A1和电阻R1和开关S回到电源负极,三者为串联。电压表V2直接接在电源两端(电流表A2视为导线),所以测的是电源两端电压。电压表V1直接接在R1两端(电流表A1视为导线),所以测的是R1两端电压。因此,I=IR1=IR,U=UR1+UR。R总=R1+R。
P向右移动后,R变大,R1不变,所以R总变大。根据欧姆定律I=U/R总,电源电压U不变,R总变大,所以I变小,即IR1和IR都变小,再根据欧姆定律UR1= R1IR1,因为IR1变小,R1不变,所以UR1变小,最后根据U=UR1+UR,得出UR变大。因此,电流表A1和A2的示数都变小,电压表V1示数变小,电压表V2测的是电源电压,示数不变。
例6:如图6所示电路,闭合开关后,滑动变阻器R滑片P向右滑动,判断各电表示数变化的情况。
解析:根据“三步走法”,电流从电源正极出发,通过A2,然后分为两路,一路依次通过电阻R1、电流表A1、开关S回到电源负极,电阻R1和电流表A1为串联,所以电流表A1测的是通过电阻R1的电流;一路通过滑动变阻器R、开关S回到电源负极。可以看出电流A2表处在干路,测的是通过电阻R1和滑动变阻器R的电流之和,电阻R1和滑动变阻器R是并联的。电压表V1直接接在电阻R1或电源两端(电流表A1和A2视为导线),所以测的是电阻R1两端电压或电源电压。电压表V2直接接在滑动变阻器R两端,所以测的是滑动变阻器R两端电压。以此,I=IR1+IR,U=UR1=UR。
P向右移动后,R变大,R1不变,由于U=UR1=UR,而电源电压不变,所以UR1和UR都不变。根据欧姆定律IR1=UR1/R1,UR1不变,R1不变,所以IR1不变。同理根据欧姆定律IR=UR/R,UR不变,R变大,所以IR变小,I=IR1+IR,所以I变小。因此,电流表A1的示数不变,电流表A2示数变小。电压表V1和V2示数不变。
图5 图6
图7 图8
三、由敏感电阻变化引起的电表示数变化
例7:如图7所示的电路中,R是一个定值电阻,Rt是一个半导体材料制成的热敏电阻,其阻值随温度变化(见图7曲线图),当开关闭合且电阻Rt所处的环境温度升高时,判断电流表、电压表示数的变化情况。
解析:在图7所示的电路中,电阻R和Rt是串联的,总电阻R总=R+Rt,U=UR+Ut。电压表测的是电阻Rt的电压。根据曲线图可知,Rt相当于一个滑动变阻器。当温度升高时,Rt的电阻变小,而R不变,所以R总变小。根据欧姆定律I=U/R总,电源电压U不变,I变大,同理根据欧姆定律UR=IR,R不变,I变大,UR变大。再根据Ut=U-UR,所以Ut变小。因此,电流表示数变大,而电压表示数变小。
例8:将光敏电阻R、定值电阻R0、电流表、电压表、开关和电源连接成如图8所示电路。已知光敏电阻的阻值会随光照强度的增大而减小。闭合开关,逐渐增大光敏电阻的光照强度,判断电流表、电压表示数的变化情况。
解析:如图8所示的电路中,电阻R0和光敏电阻R是串联的,R总=R0+R,电压表测的是电阻R0两端的电压,U=UR0+UR。光敏电阻的阻值随光照强度的增大而减小,闭合开关,逐渐增大光敏电阻的光照强度,Rt变小,R0不变,R总变小。根据欧姆定律I=U/R总,电源电压U不变,R总变小,I变大,根据欧姆定律UR0=IR0,R0不变,I变大,UR0变大。所以电压表示数变大,电流表示数变大。
四、结语
总而言之,面对电流表电压表示数变化的判断问题,首先要判断出电路连接的形式以及电压表、电流表的测量对象,再分辨是由哪种情况引起的电表示数变化,最后综合运用欧姆定律和串并联电路电流、电压特点去推断。同时在平时的练习过程中也要多总结归纳,化繁为简,从而提高解题的效率。
一、电磁学的发展历程
人类很早就认识了磁现象和电现象,我国在战国末期就发现了磁铁矿吸引铁的现象,在东汉初期就有带电的琥珀吸引轻小物体的记载。但是,人类对电磁现象的系统研究,却是在欧洲文艺复兴之后开展起来的,到19世纪才建立了完整的电磁学理论。在电磁学发展过程中,涌现了无数科学家通过科学假说、实验验证、理论分析等研究过程,一步步对自然规律进行揭示。其中比较典型的有:1785年库仑定律的发现,使电学进入了定量研究阶段,真正成为一门科学;1820年奥斯特电流磁效应的发现,揭示了电流能够产生磁场;1821年安培的分子电流假说,揭示了磁现象的电本质;1831年法拉第电磁感应定律的发现,进一步揭示了电和磁的密切联系;19世纪60年代,英国物理学家麦克斯韦在总结前人研究电磁现象成果的基础上,建立了完整的电磁场理论,并成功预言了电磁波的存在,1888年赫兹的实验证实了麦克斯韦的电磁场理论,从而电磁学发展到了顶峰。
二、电磁学的知识结构和知识规律
1.知识结构
2.知识规律
“电场”一章是学好电磁学的基础和关键,基本概念多,且抽象,如电场强度、电场线、电势和电势能等。教材从电荷在电场中受力和电场力做功两个角度研究电场的基本性质,许多知识要在力学知识的基础上学习。
“恒定电流”一章是在初中基础上的充实、扩展和提高,重要的物理规律有欧姆定律、电阻定律和焦耳定律,电路的等效处理方法和实验的设计是本章的重点。
“磁场”一章阐明了磁与电的统一性,用研究电场的方法进行类比,可较好地解决磁场和磁感强度的概念。由安培力导出洛仑兹力,由洛仑兹力导出带电粒子在匀强磁场中的运动规律等,因此,分析推理是本章的特点。
“电磁感应”一章的重要物理规律是法拉第电磁感应定律和愣次定理,这部分知识中,能量守恒定律是将各知识点串起来的主线。由于楞次定律较抽象,要通过实验进行分析、归纳,需加强学生的抽象思维能力。
“交变电流”和“电磁波”是在电场和磁场基础上结合电磁感应的理论和实践。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推到电磁波,从而对物质的波动性的认识提高了一步。
三、电磁学的研究方式:“场”和“路”
电荷周围存在电场,每个带电粒子都被电场包围着,运动电荷的周围除了电场还存在磁场,磁体的周围也存在磁场。现在的科学实验和广泛的生产实践完全肯定了场的观点,并证明了电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形式,是物质相互作用的特殊方式,也是电磁运动的实质。教材中以场为主线,主要有电场、磁场和电磁场。电场强度和电势是描述电场性质的两个重要物理量。磁感强度是描述磁场性质的重要物理量。电磁感应规律是反映电场和磁场间密切联系的一种物理现象。麦克斯韦从理论上指出了变化的电场和磁场总是相互联系的,一个不可分割的统一体,这就是电磁场。库仑定律、安培定律和法拉第电磁感应定律为建立麦克斯韦理论,提供了基础和实验规律。
电路知识具有广泛的实用价值,以路为主线,主要有直流电路、交流电路(包括振荡电路)。欧姆定律是从实验中总结出来的一条重要规律,是解决电路问题的重要依据。要会分析电路的连接方式(串联或并联)及等效处理方法,电功和电功率的计算,不仅能解决直流电路问题,还可以解决交流电路的问题。
四、电磁学问题的解决途径:“力”和“能”
【关键词】教材分析;科学探究;适当类比;体会与反思
教材分析及课堂教学设计思想
欧姆定律一课时初中物理电学部分的核心知识,是进一步学习电学知识和分析电路的基础,为了使学生能更好地学习本节内容,我在课堂教学过程中作了如下设计:先从生活实际引出课堂探究课题,然后与学生一起设计实验一一探究电流与电压和电阻的关系,在得出数据的基础上在进一步体会用图像法研究物理问题的优越性,在实验的基础上提高学生依据实验事实,分析、探索、归纳问题的能力,分组体验通过实验总结物理规律的过程与方法,同时通过介绍欧姆的故事,增进学生热爱科学、追求科学、献身科学的学习热情,最后自然而然得出欧姆定律的结论与公式。下面笔者就详细谈谈欧姆定律一课的课堂教学设计。
一、从生活实例中引出科学探究问题
将电源开关灯泡组成一个简单电路,灯泡发光,让学生自己动手设法改变灯的亮度,要想改变灯泡的亮度就是要改变通过灯泡中的电流,而改变灯泡中电流的方法归纳起来就两种改变电路两端电压或改变接入电路中电阻,从而引出课堂探究的问题,通过导体的电流与电压、电阻有何关系。
二、设计分组实验,用控制变量法分别探究电流与电压、电阻的关系
探究一:电阻R不变时,研究通过它的电流与其两端电压的关系
按图示电路他接好电路引导学生采用控制变量法进行分组实验
便把测量的数据填入下表
R=____Ω
然后引导学生分析数据,归纳得出结论:电阻一定时,电流与电压成正比。
探究二:保持电阻R两端电压不变时,研究通过它的电流与其电阻大小的关系
按图示电路他接好电路引导学生采用控制变量法进行分组实验
便把测量的数据填入下表
U=____V
然后引导学生分析数据,归纳得出结论:电压一定时,电流与电阻成反比。
三、适当类比,提升学生理解定律和运用公式能力
在学生分组实验探究的基础上得到欧姆定律,导体中电流与导体两端电压成正比,与导体的电阻成反比,用公式表示为I=U/R,推导出欧姆定律的变形公式U=IR和R=U/I,对于变形公式R=U/I一定要理解其物理意义,因为电阻是导体本身的一种性质,所以不能说电阻与电压成正比,不能说电阻与电流成反比,也不能说电阻与电压和电流有关,要理解电阻的大小决定于本身的材料、横截面积和长度,与加在它两端电压大小和通过它的电流大小无关,即使电阻两端不加电压,它的阻值还是本身那么大,但在不知道电阻值大小的情况下利用公式R=U/I可以算出电阻值的大小,电阻值一旦算出后,如果不考虑温度影响,电阻值就不会再发生变化。为了更好地理解公式R=U/I的物理意义,可以将电阻与密度、比热容、热值等相似的物理量进行类比。
四、课堂教学中体会与反思
通过本堂课教学实践,笔者体会到以下几点务必在教学环节中得到体现与完成:1.在探究电流与电压关系和探究电流与电阻关系时务必弄清滑动变阻器在两次实验中的作用是不同的,前者是为了改变定值电阻两端的电压,后者是换了不同阻值的电阻后每次都要重新调节滑动变阻器使电阻两端的电压保持不变。2.在探究电流与电压关系时,在学生得到实验数据后由于测量数据肯定存在误差,可引导学生以电流I为纵坐标,以电压U为横坐标,建立平面直角坐标系,根据表中数据,在坐标系中描点,画出I-U的图像,可以帮助学生较为直观地得到电阻一定时电流与电压成正比的结论。同样在探究电流与电阻的关系时也可采用图像法,这样做的好处,一是比较直观,二是可以修复实验数据测量时的误差,使学生更易得到实验结论。3.在探究电流与电阻关系时要控制电压相同,在这部分实验中,要让学生明确两个问题,一是控制的电压大小要合适,尤其是相对于电源电压而言不能太小,二是要知道选最大值多大的变阻器较为合适,当定值电阻由小换成大的或由大换成小的时滑动变阻器接入电路中的电阻应如何调节,这里的能力培养相当重要,学生一旦理解了,那么在以后考试中遇到相关的实验题做起来就会很得心应手,反之这里的实验考题将一直成为学生的考试难题。4.得到欧姆定律公式后,务必让学生理解在运用公式I=U/R时,三个量必须是同一电路上的电流、电压、电阻,即必须满足同一性和同时性,在训练学生欧姆定律公式及变形公式运用时一定要结合串联和并联电路的特点展开训练,一方面要注重训练学生看懂电路图的能力,另一方面要培养学生一题多解的能力。
论文关键词:初中测量电阻的几种常用方法
测量电阻是初中物理教学的最重要的实验之一,也是考察学生能力的重要命题热点之一。通过近几年中考试题我们就会发现,测量电阻方法多种多样,其应用的原理和计算方法也不尽相同,而电路图的设计更是灵活多变,如果学生对该部分知识不加以总结、消化的话,就会在做题时容易出错、造成不必要的丢分现象,因此电阻的测量看似简单,实则在教学中常常是学生的弱点,在各种考试中通过对电阻的测量的考察也可以反映出学生对电学基本知识掌握的情况,另外命题者还在不断的推陈出新,用不同的形式对学生进行考察。下面我们就对初中测量电阻的几种常用方法进行一个简单的总结,希望对同学们能有所帮助。
一、初中最基本的测电阻的方法
(1)伏安法测电阻
伏安法测电阻就是用一个电压表和一个电流表来测待测电阻,因为电压表也叫伏特表物理论文,电流表也叫安培表,因此,用电压表和电流表测电阻的方法就叫伏安法测电阻。它的具体方法是:用电流表测量出通过待测电阻Rx的电流I,用电压表测出待测电阻Rx两端的电压U,则可以根据欧姆定律的变形公式R=U/I求出待测电阻的阻值RX。最简单的伏安法测电阻电路设计如图1所示,
用图1的方法虽然简单,也能测出电阻,但是由于只能测一次,因此实验误差较大,为了使测量更准确,实验时我们可以把图1进行改进,在电路中加入滑动变阻器,增加滑动变阻器的目的是用滑动变阻器来调节待测电阻两端的电压,这样我们就可以进行多次测量求出平均值以减小实验误差,改进后的电路设计如图2所示杂志网。伏安法测电阻所遵循的测量原理是欧姆定律,在试验中,滑动变阻器每改变一次位置,就要记一次对应的电压表和电流表的示数,计算一次待测电阻Rx的值。多次测量取平均值,一般测三次。
(2)伏阻法测电阻
伏阻法测电阻是指用电压表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和串联电路中的电流关系,如图3就是伏欧法测电阻的电路图,在图3中,先把电压表并联接在已知电阻R0的两端,记下此时电压表的示数U1;然后再把电压表并联接在未知电阻Rx的两端,记下此时电压表的示数U2。根据串联电路中电流处处相等以及欧姆定律的知识有:
I1=I2
即:U1/R0=U2/RX
所以:
另外,如果将单刀双掷开关引入试题,伏阻法测电阻的电路还有图4、图5的接法,和图3比较,图4、图5的电路设计操作简单物理论文,比如,我们可以采用如图5的电路图。当开关掷向1时,电压表测量的是R0两端的电压U0;当开关掷向2时,电压表测量的是RX两端的电压Ux。故有:。同学们可以试一试按图4计算出Rx的值。
(3)安阻法测电阻
安阻法测电阻是指用电流表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和并联电路中的电压关系,如图6是安阻法测电阻的电路图,在图6中,我们先把电流表跟已知电阻R0串联,测出通过R0的电流I1;然后再把电流表跟未知电阻Rx串联,测出通过Rx的电流I2。然后根据并联电路中各支路两端的电压相等以及欧姆定律的知识有:
U0=UX
即:I1R0=I2RX
所以:
显然,如果按图6的方法试验,我们就需要采用两次接线,可能有的同学怕多次拆连麻烦的话,那我们还可以将单刀双掷开关引入电路图,这时我们可以采用如图7的电路设计。当开关掷向1时,电压表测量的是R0两端的电流I0;当开关掷向2时,电压表测量的是RX两端的电流Ix杂志网。通过计算就有:。
以上三种测电阻的方法是最简单的测电阻方法,也是必须掌握的方法,大家会吗,除此以外,还有常用的易于学生理解的测电阻的常用方法吗?当然还有:
二、特殊方法测电阻
(1)用电压表和滑动变阻器测量待测电阻的阻值
或者
用电压表和滑动变阻器测量待测电阻的阻值,我们也可以采取以下方法:
1.如图8所示,当滑动变阻器的滑片滑至b端时,用电压表测量出Rx两端的电压Ux,当滑动变阻器的滑片滑至a端时,用电压表测量出电源的电压U,根据串联电路的电流关系以及分压原理我们可以得到:。
2.如图9所示,当滑动变阻器的滑片滑至b端时,用电压表测量出电源的电压U,当滑动变阻器的滑片滑至a端时物理论文,用电压表测量出Rx两端的电压Ux,根据串联电路的电流关系以及分压原理我们可以得到:
(2)用电流表和滑动变阻器测量待测电阻的阻值
如图10所示,当滑动变阻器的滑片滑至b端时,用电流表测量出Rx和R滑串联时的电流I1,当滑动变阻器的滑片滑至a端时,用电流表测量出Rx单独接入电路时的电流I2,因为电源电压不变,可以得到:,故有:。
(3)用等效法测量电阻
如图11所示电路就是用等效法测量电阻的一种实验电路。其中Rx是待测电阻,R是电阻箱(其最大电阻值大于Rx)。其实验步骤简单操作如下:
把开关S闭向2,读出电流表的数值I,再把S闭向1,调节电阻箱,使电流表的读数仍为I不变,则读出电阻箱的数值,即为待测电阻Rx的值。
以上就是初中常见的测电阻的方法,大家会吗,希望以上总结对大家的学习有所帮助。